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Abstract—In this paper we present Kingfisher, a cost-aware
system that provides efficient support for elasticity in the cloud
by (i) leveraging multiple mechanisms to reduce the time to
transition to new configurations, and (ii) optimizing the selection
of a virtual server configuration that minimizes the cost. We
have implemented a prototype of Kingfisher and have evaluated
its efficacy on a laboratory cloud platform. Our experiments
with varying application workloads demonstrate that Kingfisher
is able to (i) decrease the cost of virtual server resources by as
much as 24% compared to the current cost-unaware approach,
(ii) reduce by an order of magnitude the time to transition to
a new configuration through multiple elasticity mechanisms in
the cloud, and (iii), illustrate the opportunity for further design
alternatives which trade-off the cost of server resources with the
time required to scale the application.

I. INTRODUCTION

Today’s cloud computing platforms support elastic on-
demand allocation of server resources, while supporting a
multitude of hardware configurations, at different price levels.
Further, as application needs change over time, a number
of elastic scaling mechanisms, ranging from replication to
migration, are available to transition the application to a new
hardware configuration. It is left to the application provider to
choose a particular hardware configuration for her application
and to choose a specific scaling mechanism to increase or
decrease the application’s provisioned capacity. In this pa-
per, we develop a generalized provisioning framework for
supporting elasticity in the cloud, which exploits the pricing
differentials of various server configurations and chooses the
most appropriate scaling mechanism to minimize transition
overheads. Our paper makes the following key contributions:

Cost-aware elasticity. We present Kingfisher, a cost-aware
system that integrates multiple elasticity mechanisms such as
replication and migration and computes both a cost-optimized
configuration for the desired capacity as well as a plan for
transitioning the application from its current setup to its new
configuration.

Prototype implementation and experimentation. We im-
plement a prototype of our Kingfisher cloud provisioning en-
gine, using the OpenNebula cloud toolkit [1], that incorporates
our optimizations, and evaluate its efficacy on a laboratory
cloud testbed.

Our experimental results (i) demonstrate that cost-aware
elasticity can achieve up to 24% rental cost savings (for the
pricing scheme shown in Table I), (ii) show that integrating
multiple mechanisms such as migration and replication into a
unified approach can double the cost savings, and (iii) demon-
strate how our transition-aware approach can be employed to

quickly provision capacity in scenarios where an application
workload surges unexpectedly. Our experiments also show an
order of magnitude reduction in the transition overhead.

II. CLOUD COMPUTING BACKGROUND AND PROBLEM
DEFINITION

Amazon EC2 Cloud Platform - aws.amazon.com
Server size Configuration Cost $/core
Small 1 ECU, 1.7GB RAM, 160GB disk $0.085 / hr $0.085
Large 4 ECUs, 7.5GB RAM, 850GB disk $0.34 / hr $0.085
Med-Fast 5 ECUs, 1.7GB RAM, 350GB disk $0.17 / hr $0.034
XLarge 8 ECUs, 15GB RAM, 1.7TB disk $0.68 / hr $0.085
XLarge-Fast 20 ECUs, 7GB RAM, 1.7TB disk $0.68 / hr $0.034

NewServer’s NS Cloud Platform - www.newservers.com
Small uni-core 2.8GHz, 1 GB RAM, 36GB disk $0.11 / hr $0.11
Medium dual 3.2 GHz, 2 GB RAM, 146GB disk $0.17 / hr $0.085
Large 4-core 2.0GHz, 4GB RAM, 250 GB disk $0.25 / hr $0.063
Fast 4 core 3.0 GHz, 4 GB RAM, 600GB disk $0.63 / hr $0.158
Jumbo 8 core 2.0GHz, 8GB RAM, 1TB disk $0.60 / hr $0.075

TABLE I: Cloud server configurations and their prices. For
EC2, ECU= 1.2 GHz Xeon or Optron circa 2007.

Our work assumes a cloud platform that rents computing
capacity to its customers. The cloud platform is assumed to
use a usage-based pay-as-you-go pricing model that allows
servers to be rented on a fine time-scale (e.g., hourly). We
assume that these servers can be allocated or deallocated on-
demand by a customer for her application in order to elastically
match capacity to fluctuating workload demand. From an
application standpoint, these capacity changes can be made
either via replication—by adding or removing replicas—or
via migration—by altering the server configuration to a larger
or a smaller server. If a specific cloud platform exposes a
subset of these mechanisms (e.g., the EC2 cloud does not
presently support live migration), then the system must take
these constraints into account when provisioning resources.

We assume that the platform offers N different servers types
for rent, each with a different hardware configuration and a
different rental cost. The pricing of servers is assumed to
be arbitrary and can increase sub-linearly with the number
of cores per system (convex pricing) or super-linearly with
cores (concave model). Table I depicts two different pricing
models for two real cloud platforms—the pricing is convex for
most popular choices (e.g., small, medium, large) and becomes
arbitrary for higher-end configurations.

Further we assume a multi-tier cloud application whose
workload demand change over time—due to incremental
growth or sudden change in popularity. In such cases, the ap-
plication will need to be reconfigured by dynamically altering
its capacity. To do so, given a certain hardware configuration
that is already in use, we must determine a new configuration
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Fig. 1: Kingfisher Architectural Overview

that specifies how many cloud servers and of what types to use
for each tier to sustain the new peak workloads at each tier.
Furthermore, we must also specify a plan for morphing each
tier from its current configuration to the new configuration
using mechanisms such as migration, replication or shutdown.
Thus, for our elastic provisioning decisions, we are interested
in minimizing two types of costs: (i) the rental cost of
the servers, which depends on the hardware configuration
chosen by the system; and (ii) the transition cost (the latency
overhead), which depends on the elasticity mechanism chosen
for transition.

III. KINGFISHER SYSTEM OVERVIEW

Kingfisher is a system that supports elasticity in today’s
public and private cloud computing platforms. Kingfisher
presently supports both Amazon’s EC2 public cloud and Xen-
based private clouds [2]. Kingfisher combines an application-
centric provisioning engine with a cloud management plat-
form. It assumes a virtualized cloud platform and provides
support for virtual machine (VM) deployment, VM image
management, in conjunction with elastic provisioning. King-
fisher uses a modified version of the OpenNebula toolkit
to implement its cloud management mechanisms—e.g., to
deploy/undeploy VMs on a set of servers in a private-cloud,
and to reconfigure applications with more or less capacity.

Figure 1 depicts the high-level architecture of Kingfisher.
Its key components include (i) the monitoring engine, which
monitors the workload and resource usage on servers, (ii)
workload forecasting subsystem, which uses the monitored
workload to predict future demand, (iii) the capacity planner
and orchestration engine, which implement the cost-aware
elasticity algorithms that are discussed in the next Section.
Additional details of these components can be found in [2].

IV. COST-AWARE ELASTICITY ALGORITHMS

In this section, we discuss Kingfisher’s cost-aware elasticity
algorithms in more detail.

A. Rental Cost-aware Provisioning

Given the estimated peak workload λi that must be sus-
tained at each tier i, the goal of our approach1 is to compute
which type of cloud server to use and how many at each tier so
as to minimize rental cost; the provisioned servers must have

1The future peak workload can be estimated using any workload forecasting
technique, e.g., time-series-based predictions [3].

the collective capacity to service at least λi request/s while
meeting tier’s response time SLAs.

Our cost-aware provisioning algorithm involves two steps:
(1) for each type of cloud server, compute the maximum
request rate that the server can service at a tier, and (2) given
these server capacities, compute a least-cost combination of
servers that have an aggregate capacity of at least λi.

Step 1. Empirical Determination of Server Capacities.
For each server configuration supported by the cloud platform
(e.g., small, medium, large), we must first determine the
maximum request rate that each hardware configuration can
sustain for this application.

Kingfisher employs a systems approach to empirically de-
rive capacities of different server types—it estimates the max-
imum server capacity by running the application on different
hardware configurations, subjecting them to a gradually in-
creasing synthetic workload, and determining the point where
the server saturates (and begins violating SLAs or dropping
requests). Such an empirical approach is more accurate than
analytical queuing approaches [4] since capacities are com-
puted using actual measurements on real hardware and can
account for software artifacts since the actual application
behavior is used when estimating capacities. In production
environments, a system such as JustRunIt [5] can be used
to clone virtual machines and run the cloned application on a
sandboxed server in order to empirically profile and measure
server capacities.

Step 2. Determining Server Configurations. Given a cloud
platform with M different types servers (e.g., small, medium,
large), let Cj and pj denote that capacity (maximum request
rate) and the rental cost of server type j. Let λ denote the peak
workload request rate for which capacity needs to be provi-
sioned at a tier. Then the problem of rental cost-aware provi-
sioning is stated as minimize

∑M
j=1 njpj s.t.

∑M
j=1 njCj ≥

λ, where nj denotes the number of servers of each type that
is chosen. This optimization problem can be formulated and
solved as an integer linear program, as discussed later in this
section. The ILP solution yields (n1, n2, . . . , nM ) — which
tells the application provider how many servers of each type
should be chosen for the application tier.

B. Transition Cost-aware Provisioning

Our transition cost-aware provisioning method is designed
to address the scenario where the transition latency incurred
in moving the application to new configuration is optimized.
Thus, our provisioning approach is to estimate the latency
of using different provisioning mechanisms – replication,
migration and resizing as follows:

Local resizing: Local resizing involves using the hypervisor
API on a machine to modify the resource allocation of a
virtual machine (e.g., to give it more RAM or to allocate it
additional cores or CPU shares). This can be done efficiently
with minimal overheads.
Replication: Starting up a new instance (replica) of an ap-
plication tier involves copying the machine image of the
OS/application from central storage to the disk on the new
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server, starting up the OS and the application replica, and
reconfiguring the application to make it aware of the new
replica. The latency can be estimated as D

r +b, where D is the
size of the disk image, r is the network bandwidth available
for the copy operation and b is a constant representing the OS
and application startup time.
Live migration: Live migration of a virtual machine from one
server to another involves copying the memory state of the VM
to new server while the application is running. Typically live
migration mechanisms assume that the disk state of the VM is
maintained on a shared file system. Hence, the latency of the
live migration is w · R

r , where R is the size of the VM’s RAM,
r is the network bandwidth available for the copy operation,
and w is a constant that captures the mean number of times a
memory page is (re)sent over the network (due to dirtying of
pages during the migration process).
Shutdown-migrate. Migration can be “simulated” in a public
cloud by suspending the application, converting its disk state
into a new machine image, copying the machine image to
a new server and restarting the image on the new machine.
Since the disk state may need to be copied twice, once to
construct a new machine image and then to copy the machine
image to the new server , the latency of this approach is 2D

r +b.
The transition-aware approach then attempts to minimize

this overhead by preferring mechanisms that incur lower
copying overheads (and hence, lower latencies). Like before,
this can be formulated and solved as a ILP optimization
problem as discussed next.

ILP formulation: Both rental and transition cost-aware pro-
visioning problems can be stated using the following integer
linear program (ILP). Let M denote the number of server types
supported by the cloud platform; Let pj denote the rental cost
for server type j and let Cj denotes its maximum capacity.
Let λ denote the peak workload for which the application
needs to be provisioned, and let N denote the maximum
number of servers that could be needed to satisfy λ (any large
number can be chosen as N). Let T denote the number of
the provisioning mechanisms supported by the platforms (e.g.,
replication, migration, resizing). Then the objective function
for minimizing rental cost is

min
N∑

i=1

M∑
j=1

T∑
k=1

p(j)xijk (1)

subject to the constraints
N∑

i=1

M∑
j=1

T∑
k=1

xijkCj ≥ λ;
∑M

j=1

∑T
k=1 xijk = 1,∀i (2)

The terms xijk is an integer variable in the ILP that can take
values of of 0 or 1; A value of 1 indicates that server i is
transformed into server-type j using a provisioning mechanism
k (e.g., replicate or migrate); a value of 0 indicates that that
option was not chosen by the ILP. The output of the ILP is
set of values xijk that denotes which server types are chosen
and also specifies a plan for transitioning for each server i to
the new server type j using method k (replicate. migrate etc).

The ILP for transition-aware provisioning is identical to the

previous one except for the optimization criteria which must
minimize the transition cost rather than rental cost, and thus
Equation (1) changes to: min

∑N
i=1

∑M
j=1

∑T
k=1 mijkxijk.

Here mijk be the cost of transforming server i to server-j
using mechanism k. This cost is estimated using the above
equations that capture the overhead of replication, live migra-
tion etc. Like before, xijk ∈ {0, 1} indicate whether the final
solution will employ technique k to transition server i to server
type j.

We have implemented a greedy-type heuristic with a worst
case bound of 2 [6] for an approximate solution of the above
ILP. The heuristic sorts xi,j,k in increasing order of pj/Cj

and then finds the smallest list of xi,j,k’s which satisfy Eq.
(2). Once an xi′,j′,k′ has been chosen for a particular i = i′,
we skip the remaining xi′,j,k; this ensures that we satisfy the
constraint in Eq. (2).

V. EXPERIMENTAL STUDY OF ELASTICITY:
METHODOLOGY AND SETUP

We evaluate the efficacy of Kingfisher’s elasticity mech-
anisms using a laboratory cloud testbed; results from our
Amazon EC2 evaluation are in [2]. We conduct experiments
with a number of mechanisms for achieving elasticity in
the cloud, starting with cost-awareness with replication, and
adding migration and transition-cost awareness. Our goal is
to understand whether these mechanisms can further improve
cost-aware elasticity support beyond the traditional replication-
only approach. Our evaluation metrics are the overall rental
cost of the virtual servers supporting the application deploy-
ment, the cost in terms of latency to change or scale the
configuration, and the latency to achieve target application
response time after a configuration change.

Cost-aware elasticity mechanisms:
Cost-aware vs Cost-oblivious with Replication: First, we con-
sider replication as the only method for supporting elasticity -
the typical method to provide elasticity. Here we compare be-
tween resource cost-oblivious (CO-R) and cost-aware (CA-R)
approaches to illustrate the benefit of cost-aware approaches.

Migration: Second, we introduce VM migration in addition
to replication as the means for supporting elasticity to inves-
tigate benefits of these mechanisms beyond replication based
elasticity We refer them as CA-RM and CO-RM.

Transition cost-aware: Third, we account for transition cost,
defined as the time taken to execute the configuration change to
understand its effect on supporting elasticity. We compare the
transition cost aware (TA-RM) and transition-cost oblivious
(TO-RM) approach to explicitly account for such costs as part
of elasticity study.

Experimental Testbed and Workload: We use a vir-
tualized Xen/Linux-based laboratory cloud platform for our
experiments. Our private cloud platform is built on two types
of servers: 8-core 2GHz AMD Opteron 2350 servers and 4-
core 2.4 GHz Intel Xeon X3220 systems. All machines run
Xen 3.3 and Linux 2.6.18 (64-bit kernel). Our platform is
assumed to support small and large servers, comprising 1, 2
and 4 cores, respectively.
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We use the java implementation of TPC-W [7] for our
experiments. TPC-W is a multi-tier web benchmark that repre-
sents an e-commerce web application comprising of a Tomcat
application tier and a mysql database tier. We created a virtual
appliance of TPC-W on Centos 5.2 using a modified version
Tomcat-5.5.27 as the servlet container and mysql-5.0.45 as
the backend database-server; our modified Tomcat server logs
the service time of each request, in addition to other default
per-request statistics. We also created a dispatcher appliance
using the HAProxy load balancer; the dispatcher is used to
distribute and load balance across all TPC-W replicas. We
used the browsing workload of the TPC-W specification to to
trigger the provisioning. We tested each approach on two types
of workload patterns: 1.) smoothly increasing workload (small-
jump workload) 2.) Sharply increasing workload (large-jump
workload).

VI. EXPERIMENTAL RESULTS

We now present our experimental results.
Profiling Server Capacities: We configured TPC-W with

both tiers in a single VM, and ran this VM on various server
instances of the private cloud, mentioned as above. We refer
to the single-core system as “small,” dual-core as “medium,”
and the quad-core as “large”. In each case, we gradually
increased the workload seen by the TPC-W application until
the server saturated and began dropping requests. Fig. 2
plots the empirically derived capacities for various multi-core
configurations on our Intel and AMD systems in our private
cloud. The figure shows that server configurations on each
processor have a very different capacity and in both cases
they scale non-linearly.

Fig. 2: Non-linear scaling behavior of TPC-W across multi-
core servers configurations.

Cost-aware versus Cost-oblivious Provisioning: We first
compare the cost-aware approach to a cost-oblivious approach
(which ignores rental costs when provisioning servers) in a
restricted setting where only “replication” is used to modify
the deployment. We denote these two approaches as CA-R
(cost-aware with replication) and CO-R (cost-oblivious with
replication). In these experiments, for simplicity we used two
types of server-classes, small and large, with the NS-cloud
platform’s pricing model, detailed in Table-I. We increase the
request rate (λ) from 35 to 210 req/s. Fig. 3a depicts the server
configurations chosen by the CA-R and CO-R approaches (and
the resulting rental cost) when the workload increases sharply
in a few large steps. We see that, even for this relatively small
deployment, cost-aware shows up to 12% reduced rental cost
for the same provisioned capacity.
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Fig. 3: Cost-aware versus cost-oblivious provisioning

If the workload increases more steadily, as shown in Fig. 3b,
both approaches choose identical configurations. With repli-
cation as the only elasticity mechanism, and slowly increasing
workload, the cost-aware approach is not able to find oppor-
tunities for further cost improvement.

Benefits of adding Migration mechanism: We next
consider the benefit of migration by enabling both mecha-
nisms to modify the deployment. Our provisioning algorithms
are able to consider a larger set of feasible configurations,
which can yield higher savings in the rental cost. Figure 4b
compares the two approaches as the workload grows in large
jumps. The cost-aware approach (CA-RM) shows a benefit as
high as 24% over cost-oblivious (CO-RM), twice the relative
benefit as with using replication-based elasticity alone. For the
steadily growing workload, shown in Figure 4a, the cost-aware
algorithm shows a similar benefit over cost-oblivious. – Thus,
by adding the migration mechanism, cost-aware provisioning
is able to improve the rental cost by 24%.

Figure 5 shows the changing request-rate applied to the
TPC-W application, and the corresponding average response-
time during the experiments. By leveraging migration mecha-
nism, the CA-RM approach is able to be much more responsive
to provisioning requests. For example, for the first large
increase in workload, CA-RM chose a migration while CO-
RM selected 2 replications, hence cost-aware finished the task
in 10 sec as opposed to 1000 sec for cost-oblivious. This
is because live-migration copies only the RAM-image of the
VM, which is an order of magnitude faster than copying the
disk image in replication.

Transition cost-aware Provisioning: Kingfisher’s tran-
sition cost-aware approach can quickly provision additional
capacity in the cloud when the workload surges suddenly
by making elasticity decisions based on the time overhead.
However, by focusing on rapid reconfiguration, transition cost-
aware provisioning may not produce the minimal rental cost.

Figure 6 shows that the transition cost-aware approach is
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Fig. 4: Benefits of using replication and migration in a unified
provisioning approach.
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Fig. 5: Application Performance during cost-aware and cost-
oblivious provisioning for large-jump workload.

able to pick lower transition time configurations, while the
other approach opts for a lower rental cost configuration but
takes an order of magnitude more time. For example, transition
cost-oblivious takes 458 seconds as opposed to 7 seconds for
transition cost-aware, when the workload jumps from 140 req/s
to 175. We note that the transition cost-aware approach opts
to perform a single live-migration when workload jumps from
140 to 175 req/s. This is because live-migration copies only
the RAM of the VM, and the algorithm opts for this because
it tries to minimize the total data copying cost. This live-
migration causes a slight over-provisioning and thus when the
workload jumps from 175 req/s to 210 req/s no reconfiguration
is necessary.

Figure 7(a) and (b) show the rental cost and transition cost
for the scenario in Figure 6 . We observe that by having
migration as additional mechanism for elasticity, it is possible
to provide elasticity more rapidly.

Overall, the experiment demonstrates that copying of mem-
ory state during a live migration incurs lower latencies than
copying of disk images during replication. Hence, live migra-
tion may be preferred, whenever feasible, to reduce transition
costs.
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Fig. 6: Comparison of a transition-cost aware system with a
transition-cost oblivious system.
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Fig. 7: Comparison of rental cost and time of transition of
transition-cost aware and oblivious system

VII. CONCLUDING REMARKS

Since today’s cloud platforms offer a plethora of different
server configurations for rent and price them differently on a
cost-per-core basis, we argued that these pricing differentials
can be exploited by an application provider to minimize the
rental cost of provisioning a certain capacity. We proposed a
new cost-aware provisioning approach for cloud applications
that can optimize either the rental cost for provisioning a
certain capacity or the transition cost of reconfiguring an appli-
cation’s current capacity. Our approach exploits both replica-
tion and migration to dynamically provision capacity and uses
an integer linear program formulation to optimize cost. We
prototyped a cloud provisioning engine, using OpenNebula,
that implements our approach and evaluated its efficacy on
a laboratory-based Xen cloud. Our experiments demonstrated
the cost benefits of our approach over prior cost-oblivious
approaches and the benefits of unifying both replication and
migration-based provisioning into a single approach.
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