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Kink-antikink asymmetry and impurity interactions in topological mechanical chains
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We study the dynamical response of a diatomic periodic chain of rotors coupled by springs, whose unit

cell breaks spatial inversion symmetry. In the continuum description, we derive a nonlinear field theory which

admits topological kinks and antikinks as nonlinear excitations but where a topological boundary term breaks

the symmetry between the two and energetically favors the kink configuration. Using a cobweb plot, we develop

a fixed-point analysis for the kink motion and demonstrate that kinks propagate without the Peierls-Nabarro

potential energy barrier typically associated with lattice models. Using continuum elasticity theory, we trace the

absence of the Peierls-Nabarro barrier for the kink motion to the topological boundary term which ensures that

only the kink configuration, and not the antikink, costs zero potential energy. Further, we study the eigenmodes

around the kink and antikink configurations using a tangent stiffness matrix approach appropriate for prestressed

structures to explicitly show how the usual energy degeneracy between the two no longer holds. We show how the

kink-antikink asymmetry also manifests in the way these nonlinear excitations interact with impurities introduced

in the chain as disorder in the spring stiffness. Finally, we discuss the effect of impurities in the (bond) spring

length and build prototypes based on simple linkages that verify our predictions.

DOI: 10.1103/PhysRevE.95.022202

I. INTRODUCTION

Topological ideas have led to recent advances in contin-

uum mechanics often inspired by the physics of electronic

topological insulators and the quantum Hall effect. In these

electronic systems the basic question is whether a material

is an insulator or a conductor. The answer depends on

which portion of a topological insulator one examines: The

bulk is usually gapped and hence insulating while the edge

displays gapless edge modes whose existence is protected from

disorder and variations in material parameters by the existence

of integer-valued topological invariants [1]. In topological

mechanical systems, the corresponding question is whether

a material is rigid or floppy. The ability to modulate the

rigidity of a structure in space allows us to robustly localize the

propagation of sound waves [2–19], change shape in selected

portions [20–29], or focus stress leading to selective buckling

or failure [30].

By translating the topological properties of bands of

electronic states into the classical setting of vibrational

bands, one can identify topologically protected and hence

robust properties of vibrational modes in both discrete lat-

tices and continuous media. For example, the concept of

“topological polarization” recently introduced by Kane and

Lubensky [20] building on counting ideas from Maxwell and

Calladine [31,32] determines the existence and the position of

zero-energy motions that are localized at edges and defects of

a marginally rigid mechanical lattice (one in which constraints

and degrees of freedom (d.o.f.) are exactly balanced).

Perhaps the simplest model of topological mechanical

lattices is the rotor chain proposed in Ref. [20]. The system
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consists of a chain of classical rotors harmonically coupled

with their nearest neighbors, as shown in Fig. 1(a). There

are two distinct classes of ground-state configurations, one

with all rotors leaning towards the left and the other where

they lean towards the right. Mathematically, these two states

may not be deformed to each other without the appearance of

bulk zero modes; thus they may each be assigned a different

winding number, associated with the Fourier transform of

the compatibility matrix C(q), which connects the linear

displacement of rotors with the extension of bonds; see

Ref. [21] for a detailed explanation.

The above considerations arise from band theory and

thus concern only the linearized zero-energy infinitesimal

motions. Indeed, the vanishing of the linear response implies

that nonlinear effects dominate. By developing a nonlinear

theory of the rotor chain, it was shown in Ref. [23] that

the infinitesimal zero-mode displacement integrates to a finite

motion. This motion can be described in the continuum limit

by objects similar to “kinks” in the φ4 field theory [33],

which connects the topological polarization invariant of the

linear vibrations to the study of topological solitons [23,24].

Although the two appearances of the term “topology” in

the linear and nonlinear theory stem from different contexts,

the latter encompasses the predictions of the former and

also explains additional features exclusive to the nonlinear

dynamics [24].

The nonlinear dynamics of this topological chain can be

approximated by the critical trajectories of a Lagrangian

written in the following form [23,24]:

L =
∫

dx

(

∂u

∂t

)2

−
(

∂u

∂x

)2

− 1

2
(u2 − 1)2 −

√
2
∂u

∂x
(u2 − 1).

(1)

The first term corresponds to the kinetic energy while the

second and third are the ones encountered for example in the

Landau theory of the Ising model. Note, however, that there

is an additional boundary term that contributes to the energy
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FIG. 1. A kink (a) and an antikink (b) configuration in a

topological chain (TC) model of rotors (blue) and springs (red dashed

lines) in the presence of a single impurity (green solid lines) modeled

as a spring with a different stiffness. For the kink profile, the springs

in the chain are at their rest length, while for the antikink, they are

stretched. A sketch of kink and antikink profiles in terms of the

continuum field variable u = sin θ (where θ is the rotor angle) is

shown below each configuration. (c) A two-rotor system. The masses

are the blue dots, the rigid rotors are the black lines, the pivots are

the crosses, and the spring is the dashed red line. Here a is the lattice

spacing, r is the rotor length, l̄ is the rest length of the springs, and

θ1,2 are the rotor angles with respect to the vertical.

but does not enter the Euler-Lagrange equation. Hence, one

obtains static kink and antikink solitary wave solutions of the

usual form [33],

u = ± tanh

(

x − x0√
2

)

. (2)

The boundary term gives new properties to the solutions

and breaks the symmetry between kinks and antikinks. For

example, it predicts that the static kink configuration costs

zero potential energy while the static antikink configuration

has a finite potential energy. Previous work on this model

has been motivated by the kink’s zero-energy properties, and

thus the shape and stability of the antikink and its dynamical

behavior were not studied.

In this paper we explore the physics of these finite-energy

configurations. We compare the dynamics of the kink and

antikink sectors in the topological rotor chain and study their

interaction with a lattice impurity. We find that differences

arising from the topological boundary term are apparent in

all of these aspects. In Sec. II, we explain the discrete model

and develop a fixed-point analysis of the kink motion using

a cobweb plot. In Sec. III, we review the continuum theory

and compare the predictions for the antikink with the discrete

model. In Sec. IV, we study the eigenmodes of the chain
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FIG. 2. Illustrated are the possible scenarios for how the kink

and antikink interact with a single impurity of spring stiffness. As

indicated by the arrow, an initial kink or antikink approaches the

impurity site (indicated by the green star) from the right. After

scattering, the incident kink is either (I) perfectly transmitted or

(II) splits into a reflected kink, a transmitted kink, and an antikink

that gets trapped at the impurity site. The incident antikink isr (I)

perfectly transmitted, (II) trapped at the impurity site, or (III) perfectly

reflected.

around a single kink or antikink profile. We exploit the tangent

stiffness matrix approach developed by Guest [34] to analyze

prestressed structures. In Sec. V, we study the nonlinear

transport properties. In a conventional continuum φ4 field

theory, due to translation invariance, both the kink and antikink

propagate at uniform speed. However, lattice discreteness

effects breaks this invariance and generates the so-called

Peierls-Nabarro (PN) barrier [35–37]. For the topological

rotor model, we find that only the antikink has a finite PN

barrier, whereas the kink always propagates freely. We explain

this phenomenon as a consequence of the zero-energy cost

associated with the kink profile. In Sec. VI, we investigate how

kinks and antikinks interact with a spring constant impurity

in the lattice. For the normal φ4 model, a phenomenological

theory predicts alternating windows of initial kink (antikink)

velocities that leads to reflection, trapping, and transmission

of the excitation [38,39]. By contrast, for the topological rotor

model that we study, an impurity in the spring stiffnesses

results in dramatically different scattering behaviors for the

kink and antikink, respectively. Figure 2 summarizes all the

possible scattering scenarios that we observe. Finally, in

Sec. VII, we make a connection between linear mode analysis

and nonlinear dynamics of kink motion in the context of spring

length impurities. We conclude by listing some open questions

related to our study.

II. DISCRETE MODEL AND COBWEB PLOT

The model we study consists of rotors of length r . The

rotor pivots are placed on a one-dimensional (1D) lattice

with spacing a. The angles θi of the rotors are measured

in an alternating fashion along the lattice, from the positive

y axis at odd-numbered sites and negative y axis at even-

numbered sites. The equilibrium angle is θ for a uniform lattice

configuration without a kink or antikink. The masses M at the
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FIG. 3. The configuration (a) and the corresponding cobweb plot

(b) for the kink in a topological rotor chain with r/a = 0.8, |θ | =
0.58. The springs are at their rest lengths. In (b), the black curve is the

constraint equation which ensures that the springs are unstretched, the

gray diagonal line satisfies θi+1 = θi , the blue point (θi,θi) represents

rotor i, the red point (θi,θi+1) represents the spring connecting rotors i

and i + 1, and the red dashed lines with arrows indicates the iterative

process that generates the kink profile. The iteration steps from θ7 to

θ10 are shown.

tips of the rotors are connected by harmonic springs with

identical rest lengths l and spring constants k. The two-rotor

unit cell of the topological chain is illustrated in Fig. 1(c).

We now construct the chain with a kink under free boundary

conditions. There are n rotors and n − 1 springs. If we assume

that the springs are infinitely stiff (k → ∞), the springs

become n − 1 constraints and the system only has a single

independent degree of freedom. The angle of a single rotor

determines all the others iteratively. This degree of freedom

manifests itself as a mechanism which, as has been previously

shown in Ref. [23], can be approximately described by the

domain wall solution in a modified φ4 theory [40]. We call

this mechanism a “kink” and discuss its continuum theory in

the following sections.

We use a cobweb plot to display the kink in Fig. 3. This

is a tool for visualizing the process of iteratively solving the

nonlinear constraint equations Eq. (3) cell by cell. We construct

the cobweb plot by drawing (1) a diagonal line θi = θi+1 and

(2) a curve of the implicit function given by the nonlinear

constraint equation that ensures the springs are not stretched,

(a + r sin θi − r sin θi+1)2 + (r cos θi + r cos θi+1)2 = l
2
.

(3)

(An explicit relation between neighboring rotor angles is

derived analytically with complex notation in Appendix A.)

The iteration steps are as follows:

(1) Given the angle θ1 of the first rotor at the left end, find

the point on the function curve with coordinates (θ1,θ2).

(2) Draw a horizontal line from (θ1,θ2) to the diagonal line.

This gives the point (θ2,θ2).

(3) Draw a vertical line from (θ2,θ2) to the function curve.

This gives the point (θ2,θ3).

(4) Repeat step 2 and 3 until the point (θn−1,θn) is found.

In Fig. 3(b), we illustrate steps (2) and (3) from θ7 to θ10,

which are near the kink center. The blue point with coordinates

(θi,θi) stands for the ith rotor of angle θi . The red point with

coordinates (θi,θi+1) represents the state of the spring that

connects the rotors of θi and θi+1.

Note that in Fig. 3(b), the diagonal line and the function

curve intersect at two points. They are the fixed points of

iteration. If all the red points (θi,θi+1) stay at one fixed point,

then the plot represents a uniform lattice. The iteration step

proceeds from the leftmost rotor of the chain to the rightmost.

We see that the flow proceeds outwards from one fixed point

and then inwards towards the other fixed point.

The cobweb plot may be used to graphically derive the

decay lengths of zero energy deformations, as they approach

their uniform limits. As mentioned above, a fixed point

corresponds to an intersection between the line θi = θi+1 and

the function curve. Note that the behavior of θi as it approaches

a fixed point resembles a “self-similar” zigzag motion between

θi = θi+1 and the tangent line of the function curve. This

motivates linearizing the function curve around the fixed point

as follows:

θi+1 − θ = F ′(θ )(θi − θ ), (4)

where θ , the equilibrium angle, is also just the value of the

fixed-point angle and F ′(θ) is the slope of the function curve

at that point (which could be computed explicitly in terms

of r,a,l). This equation yields that θi − θ ∝ exp ( log F ′(θ)i)

or that the decay length is |1/ log F ′(θ )| (the sign of log F ′

tells us whether the fixed point is attracting or repelling). This

result recovers the penetration depth of the boundary modes

computed in Ref. [23] using band theory.

In the cobweb plot, the static kink appears as a sequence of

points on the function curve interpolating between a repelling

and attracting fixed point. The dynamics of the kink in the

cobweb plot is therefore the flow of a cascade of points between

a pair of fixed points (see movie S1 in the Supplemental

Material [41]). While the kink propagates, the points in the

middle, such as (θ7,θ8), (θ8,θ9), and (θ9,θ10), corresponding to

the kink center, move more than those points close to the fixed

points, corresponding to the spatially localized nature of the

kinetic energy.

Generating an antikink requires a few more steps, as it

stretches springs, and thus does not satisfy a constraint function

that we could iteratively solve. However, the continuum theory

suggests that kinks and antikinks both have the same functional

profiles with only their signs reversed (see Sec. III). As a result,

we use the same iterative procedure as that for the kink and

then simply swap the appearances of θi and θi+1 in Eq. (3) to

obtain an approximation for the antikink profile. This method

is equivalent to reflecting the red points in Fig. 3(b) across

the diagonal line. The antikink constructed this way is not an

equilibrium configuration and has unbalanced stresses in the

springs. This is because, generically, the profiles of the kink
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FIG. 4. The configuration (a) and the corresponding cobweb plot

(b) for an antikink profile in the topological rotor chain with r/a =
0.8, |θ | = 0.58, where we see that the springs are stretched. In (b) the

same graphic notation as in Fig. 3 is used except that we have not

used an iterative process for constructing the antikink profile; rather,

depicted is only a visualization of the configuration of the rotor chain.

The red points are obtained by first reflecting the red points in Fig. 2

across the diagonal line and then relaxing the springs using dissipative

Newtonian dynamics. Note that the two rotors at the edges need to

be collinear with the springs to ensure force balance. This results in

the angles overshooting at the fixed points.

and antikink are not the same in a discrete topological rotor

chain. We next relax the springs using dissipative Newtonian

dynamics to remove the unbalanced stresses and obtain a stable

profile, which we show in the cobweb plot in Fig. 4. In that

figure, the spring connections (red dots) around the core of

the antikink profile (rotors 8 and 9) do not fall on the curve

which corresponds to unstretched springs. This implies large

spring deformations which we show explicitly in Fig. 5(b).

The amount by which the springs are stretched is symmetrical

around the eighth spring, which is in accordance with the

fact that a stable antikink has balanced forces on each rotor.

Note that we have fixed the boundary conditions to ensure

that the antikink is in mechanical equilibrium, which is not

generically true. As discussed later in Sec. V, this has important

consequences for the PN barrier.

III. CONTINUUM THEORY

In this section, we review the continuum approximation to

the kink and antikink profiles [23] and compare these with the

discrete model developed in the previous section. The discrete

Lagrangian for the topological rotor chain [see also Fig. 3(a)]

FIG. 5. (a) The θ profile (rotor angles) for the antikink profile in

Fig. 4(a) and the corresponding continuum prediction from Eq. (13).

Note that the two rotors at the edges need to be collinear with the

springs to ensure force balance and this results in the rotor angles

overshooting the equilibrium value θ = ±0.58. (b) The amount of

spring stretching for the antikink profile.

with free boundary conditions is

L =
n

∑

i=1

1

2
Mr2

(

dθi

dt

)2

−
n−1
∑

i=1

1

2
k(li,i+1 − l)2. (5)

Here n is the total number of rotors, M is the mass at the tip of

a rotor, r is the rotor length, θi is the angle that rotor i makes

with the vertical [measured alternately as shown in Fig. 3(a)],

k is the spring constant, l is the rest length of the spring, and

li,i+1 is the instantaneous length of the spring that connects

rotor i to rotor i + 1. From geometry

l2
i,i+1 = a2 + 2ar(sin θi+1 − sin θi) + 2r2

+ 2r2 cos(θi + θi+1), (6)

which in the uniform limit θi = θi+1 = θ̄ gives the rest length

of the spring l
2 = a2 + 4r2 cos2 θ .

We make the working assumption that deformations do not

stretch the springs significantly and hence we can neglect (or

add) terms higher than quadratic order in li,i+1 − l for all i. This

is a reasonable approximation for the system configuration

with a kink profile but is not well justified for an antikink

profile. However, in the limit that θ ≪ 1, we find this to be

a good approximation for both kinks and antikinks. Within

this limit, we therefore express the potential energy term in
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Eq. (5) as

1

2
k(li,i+1 − l)2 ≈ k

8l
2

(

l2
i,i+1 − l

2)2
. (7)

Substituting the expression for l̄ and Eq. (6) into Eq. (7), we

express the potential energy as

Vi,i+1 = kr4

2l
2

[

a

r
(sin θi+1 − sin θi) − cos 2θ + cos(θi +θi+1)

]2

.

(8)

Now we take the continuum limit of the potential. First we

define a continuum field for the rotor angles θ (x), where the

spatial variable x = ia + a
2

is located symmetrically between

two rotors in the unit cell. To leading order, θi → θ (x) −
(a/2)(dθ/dx) and θi+1 → θ (x) + (a/2)(dθ/dx). Equation (8)

can then be expressed as

aV [θ ] = 2k

l
2

(

a2

2

du

dx
+ u2 − u2

)2

, (9)

where we have defined the projection of the rotor position

on the x axis as a new field variable u(x) ≡ r sin θ (x) and

u ≡ r sin θ .

The kinetic energy density term in Eq. (5) then assumes the

form

aT [θ̇] = 1

2

Mr2

r2 − u2

(

du

dt

)2

. (10)

Next we approximate the Lagrangian Eq. (5) as

L ≈
∫

dx

[

M

2a

(

∂u

∂t

)2

− ka3

2l
2

(

∂u

∂x

)2

− 2k

al
2

(u2 − u2)2 − ka

l
2

∂u

∂x
(u2 − u2)

]

, (11)

where we have taken the leading order of the Taylor series

expansion of the nonlinear kinetic term (in the variable u2/r2),

which is valid in the limit when u ≪ r or, equivalently,

sin θ ≪ 1.

The first three terms in Eq. (11) constitute the normal

φ4 theory. The last term linear in ∂u/∂x, is an additional

topological boundary term. Being a total derivative, it does not

enter the Euler-Lagrange equation of motion and we obtain

the usual nonlinear Klein-Gordon equation

M

a

∂2u

∂t2
− ka3

l
2

∂2u

∂x2
− 8k

al
2
u2u + 8k

al
2
u3 = 0, (12)

whose kink and antikink solutions are given by

u0 = ±u tanh

[

x − x0 − vt

(a2/2u)
√

1 − v2/c2

]

, (13)

where the ± denotes an (+)antikink and (-)kink, respectively.

Here v is the (anti)kink speed of propagation and c =
(a2/l

√
k/M) is the speed of sound in the medium. See Fig. 5(a)

for a comparison with the discrete profile.

Note how the additional boundary term makes the potential

energy density V [θ ] a perfect square, see Eq. (9). For the kink

configuration, V [θ ] therefore vanishes as is the case in the

discrete topological chain. For the antikink, however, V [θ ]

FIG. 6. The normalized potential energy plotted against the

equilibrium angle θ , for a static antikink configuration in a topological

rotor chain with with r/a = 0.8. The discrete model has 60 rotors.

Note that the wobbler transition [23] is around θ = sin−1 ( a

2r
) = 0.67,

which is close to where the continuum theory starts to significantly

deviate from the discrete model.

is nonzero and is in fact twice of what we would expect

in the normal φ4 theory (where both the kink and antikink

configurations have the same energy). This is an agreement

with our discussion on the discrete model in Sec. II.

On substituting the static (v = 0) antikink profile from

Eq. (13) into Eq. (11) and completing the integral, we obtain

the potential energy of the topological rotor chain with an

antikink profile

Vantikink/(ka2) = 16

3

(r/a)3 sin3 θ

1 + 4(r/a)2 cos2 θ
. (14)

In Fig. 6, we compare this expression with the predictions from

the discrete model. We see that the continuum theory agrees

reasonably well with the discrete model as long as θ is less

than approximately 0.6, below which, the width of the antikink

is larger than the lattice spacing and, therefore, a continuum

approximation well justified.

IV. LINEAR MODE ANALYSIS: TANGENT STIFFNESS

MATRIX APPROACH

We now study small oscillations around the kink and

antikink configurations, first in the continuum limit and next

in the discrete model by developing the tangent stiffness

matrix approach. In the continuum limit, we make the ansatz

u = u0 + δu and substitute into Eq. (12) retaining only terms

linear in δu:

M

a

∂2δu

∂t2
− ka3

l
2

∂2δu

∂x2
− 8k

al
2

(

u2 − 3u2
0

)

δu = 0. (15)

If we Fourier transform Eq. (15) with respect to time,

then we obtain a Schödinger-like equation with a solvable

potential [42,43]. This yields one continuous spectral band

as well as two discrete modes—one translation mode for the

(anti)kink and one shape mode, which corresponds to small

deformations of the shape of the (anti)kink localized around

the center of their profile. For the topological rotor chain, the
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(a)

(b)

(c)

(d)

FIG. 7. The configurations of (a) the kink translation mode, (b)

the kink shape mode, (c) the antikink translation mode, and (d) the

antikink shape mode. The green arrows depict the mode component

of each rotor.

frequencies of the two discrete modes are as follows:

ωt = 0, for the translation mode (16)

ωs = (r/a)
√

12k/M sin θ/

√

1 + 4(r/a)2 cos2 θ,

for the shape mode. (17)

In Figs. 7(a) and 7(c), the kink and antikink are located

in the middle of the chain. The mode arrows (in green) that

all point in the same direction, correspond to a translation

mode. In Figs. 7(b) and 7(d), the arrows on either side of the

(anti)kink point in opposite directions and these correspond to

shape deformations of the (anti)kink.

In Appendix B, we follow the approach proposed by

Guest [34] to derive the tangent stiffness matrix K for

prestressed mechanical structures. With K we numerically

obtain the frequencies of localized modes for the discrete

chain model and compare them with the predictions of the

continuum theory [Eq. (16) and Eq. (17)] in Fig. 8. We find that

the translation mode ωt for the kink indeed vanishes [within

machine-precision in our numerics) for all values of θ and is

thus absent in the range of the log-log plot shown in Fig. 8(a)].

However, as seen in Fig. 8(b), the translation mode (open

circles) for the antikink is nonzero.

For the shape mode ωs (filled circles), we find the numerical

results for both the kink and antikink to be in good agreement

with the continuum theory at small θ . Note that in Fig. 8(b),

although the antikink has a finite nonzero ωt , the value is still

significantly smaller than ωs .

V. KINK-ANTIKINK PROPAGATION IN ORDERED

LATTICES

In the previous section, we have seen that for the discrete

topological chain, the energy of the translation mode for the

kink is zero, whereas that for the antikink is nonzero. Note

that the standard discretization of a φ4 field theory leads to a

nonzero translation mode for both the kink and antikink [37].

Thus, the kink here differs qualitatively from the antikink in

(a)

(b)

FIG. 8. The frequencies ω of localized mode(s) for (a) the kink

and (b) the antikink as a function of θ for a rotor chain with

r/a = 0.8. The data points are numerically obtained from the tangent

stiffness matrix approach, filled circles correspond to the shape mode

(ωs), while open circles correspond to the translation mode (ωt ).

The curves are from the continuum theory. The frequencies for the

kink translation mode for all θ̄ and the frequencies for the antikink

translation mode for θ < 0.1 are effectively zero at machine precision

and, thus, not visible in the figure.

that it has a zero mode even when we consider the discrete

model. We next numerically simulate the propagation of a

kink and antikink along the discrete chain and see how this

difference manifests in their dynamics.

We numerically integrate Newtons equation of motion

for the rotors using molecular dynamics simulations. (The

simulation settings are described in Appendix C.) A stable

chain configuration with a single kink or antikink is used

as the initial configuration [see Figs. 7(a)–7(c) for the initial

conditions used]. An excitation is set in motion with a velocity

along the direction of the translation mode but with variable

amplitudes.

In Fig. 9, we plot the kinetic energy (KE) of the chain

as a function of time for a set of parameters for a kink

excitation (solid curve) and an antikink excitation (dashed

curve). The KE of the kink remains nearly constant for all times

with some small fluctuations (as the springs have to slightly

deform to transport energy by simultaneously minimize the

potential and kinetic energy). However, in comparison, the KE

of the antikink for the same set of initial parameters changes

significantly as it propagates down the chain. The key point is

that the kink and antikink do not propagate in the same way.

The asymmetry between a static kink and antikink configu-

ration was discussed in Ref. [23]. Further, we also know from
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FIG. 9. Time evolution of the kinetic energy for a kink [Fig. 7(a)]

and an antikink [Fig. 7(c)] in a topological rotor chain with nondi-

mensional parameters M = 1, k = 10000, r/a = 0.8, and θ = 0.58.

The magnitude of initial velocity in both cases is v0 = 2.4. The units

of energy and velocity are determined by the aforementioned physical

parameters. The kink propagation only results in small oscillation of

the KE, whereas we see significant fluctuations during the propagation

of an antikink. These can be traced to the Peierls-Nabarro potential

as shown in Fig. 10.

Eq. (11) (and the ensuing discussion) that in the continuum

limit, the topological rotor chain is approximately described

by a φ4 theory with an additional topological boundary term

which ensures that the potential energy of the kink is zero

while that for the antikink is nonzero (see Ref. [24] for an

interpretation of this fact in terms of supersymmetry breaking).

However, the additional boundary term does not affect the

continuum equation of motion and, thus, both the kink and

antikink should have translational invariance in this limit and

their dynamics should not have differed.

The reason for this asymmetrical behavior can be under-

stood only if we examine the discrete model. The system

with free boundary conditions has n rotors and n − 1 springs,

and the static kink does not require any of the springs to be

stretched. We can therefore interpret the springs as constraints.

Thus, the discrete kink’s equilibrium manifold is a continuous

curve embedded in the n-dimensional configuration space of

the rotor angles θi and the kink can be positioned stably

anywhere along the chain. By contrast, an antikink requires

the springs to be stretched. Forces on each of the rotors have to

be balanced for the system to be in mechanical equilibrium. So

the possible equilibrium configurations have to be symmetrical

locally around the center of the antikink, as shown in Fig. 10.

As a result, the equilibrium manifold for an antikink is not a

continuous curve but rather consists of a set of discrete points.

These correspond to either saddle points or minima in the

potential landscape. Any locally asymmetrical configuration

is therefore not stable and will slide towards a minima.

The saddle points and their nearest minima can be con-

nected by an “adiabatic trajectory” [36], which is a curve

of steepest descent. The concept of an adiabatic trajectory is

useful in two ways. First, it describes the slow motion of the

antikink through the chain. The position of the antikink center

can be defined by a coordinate along such a trajectory. Second,

it helps to rigorously define the so-called PN potential [35–37],

which is the effective periodic potential that the antikink feels

(a)

(b)

FIG. 10. Two equilibrium configurations in the potential energy

landscape of a static antikink: (a) a minimum and (b) a saddle

point, respectively. The topological chain has the same configuration

parameters as in Fig. 9.

as it moves along the adiabatic trajectory. A saddle point in the

full potential energy landscape corresponds to a maximum

along the adiabatic trajectory (while a minimum is still a

minimum). Note that although the antikink’s KE fluctuations

in Fig. 9 do not strictly equal its PN potential barrier, the former

reveals the existence of the latter.

In Appendix D, we derive the PN potential barrier from the

continuum theory

VPNB = 4π2[π2 + (a/w)2]

3[1 + 4(r/a)2 − (a/w)2] sinh(π2w/a)

∝ e−π2w/a for large w/a. (18)

This shows that the PN barrier decays exponentially as the

width w of the antikink increases.

We next compare the theoretical results with numerical

simulations. We obtain the exact PN barrier by computing

the difference in potential energy between the two types of

equilibrium points: a minima and a saddle point, see Fig. 10,

where for a given set of parameters, we find the barrier

height to be 1359.75 − 1359.15 = 0.60, consistent with the

magnitude of the KE fluctuations shown in Fig. 9 for the same

set of parameters. By repeating this calculation for systems

with various antikink widths w, we obtain the dependence

of the normalized PN barrier VPNB/(ka2) on w/a, which

FIG. 11. The dependence of the normalized PN barrier

(VPNB/ka2) on the normalized antikink width (w/a) for both the

discrete model (black circles) and the continuum theory (solid line).

The slope of the dashed line (fit to simulation) is −10.6, in reasonable

agreement with the predictions from the continuum theory in Eq. (18),

which gives a slope −π 2 ≈ −9.9.
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FIG. 12. The finite-size effect on VPNB. �VPNB is defined as

VPNB(L) − VPNB(L = 60). The configuration parameters are r/a =
0.8 and θ = 0.40.

we show in Fig. 11. We compare these with the predictions

from the continuum theory, given by Eq. (18). The numerical

results (filled circles) obtained from the discrete lattice and

the theoretical predictions (continuous curve) follow a similar

trend but differ by at least one order of magnitude. This

can be explained by the fact that the discreteness of the

lattice is ignored in the theory when we take the continuum

limit in going from Eq. (8) to Eq. (9). See Ref. [35] for a

thorough discussion of the effect of lattice discreteness on the

single-kink dynamics in a φ4 model.

Further, we also investigate finite-size corrections to the

PN barrier or, more precisely, the difference between VPNB

for a system with a small finite size and that for a system

with a sufficiently larger size (60 rotors). We find that finite-

size effects decay quickly as an exponential function with

increasing system size for a topological rotor chain with a

central antikink (see Fig. 12). This is because an antikink

configuration is a localized object. The components of its

displacement, its translation mode, as well as its shape mode,

decay exponentially away from its center and therefore so does

the effect of any boundaries.

To summarize, for the topological rotor chain that we study,

the PN barrier for a kink vanishes and that for an antikink

is finite. This not only affects how their respective kinetic

energies fluctuate over a lattice spacing but also affects their

dynamics over long distances. It is well known that φ4 kinks

and antikinks are nonintegrable solutions [43]. Although the

kinks and antikinks are “topologically” robust objects, they

still tend to dissipate energy into phonons and into shape

fluctuations as they propagate. Once an antikink has lost too

much kinetic energy to be able to overcome the PN barrier, it

gets trapped in a PN potential minimum, as shown in Fig. 13.

On the other hand, for the topological rotor chain that we study,

the kink never gets trapped, since its PN barrier vanishes.

VI. EFFECT OF SPRING STIFFNESS IMPURITIES

We next numerically explore whether the kink-antikink

asymmetry also manifests in the way these excitations interact

with a single lattice impurity, a natural starting point to study

their propagation in disordered lattices. For the conventional

φ4 models, previous studies on kink-impurity interactions (in

both discrete models [38] and continuum field models [39])

FIG. 13. Perspective view of a moving antikink trapped in

its Peierls-Nabarro barrier around Time = 20 near Rotor 35. The

topological rotor chain has the same configuration parameters as in

Fig. 9 and the initial antikink velocity is v0 = 1.1 in nondimensional

units.

have shown that scattering can result in transmission, trapping

or reflection of kinks, depending on the type of the impurity,

the attraction-repulsion strength of the impurity, and the kink’s

initial velocity. Although similar scattering also occurs in

the topological rotor chain model, we also find other novel

phenomena, for instance, the kink can split into two kinks and

one antikink. Moreover, as we will see, kinks and antikinks no

longer scatter in the same way—a feature which underscores

the kink-antikink asymmetry in our topological rotor chain.

In this work, we study impurities in properties of the springs,

which yield a richer set of effects on the response than mass

impurities.

In this section, we model an impurity by changing the

spring stiffness constant at a single site [Fig. 1(a)]. We study a

topological chain with lattice spacing a = 1 and rotor length

r/a = 0.8 and with equillibirum angle θ = 0.28. We perform

Newtonian dynamics simulation on a system with 60 rotors

using free boundary conditions and for a range of impurity

spring stiffness constant ki and kink-antikink initial velocity

v0. See Fig. 2 for a table of the possible scattering scenarios

that we observe.

Consider first the kink-impurity interaction. For most ki

and v0, the kink simply passes through the impurity and may

excite an impurity mode, which can be seen in the form of small

fluctuations in the middle of the chain as shown in Fig. 14(a).

When the impurity spring is sufficiently soft, the incident kink

splits into three: a transmitted kink, an antikink that is trapped

at the impurity, and a reflected kink. This is shown in Fig. 14(b).

Antikink scattering results in an ever richer set of behaviors.

Recall that the springs near the location of an antikink are

always stretched significantly, see Fig. 5(b). For ki/k near

1, the antikink gets transmitted with energy dissipation and

thus slows down [Fig. 15(a)]. Softening the impurity spring

stiffness creates an attractive potential well for the antikink.

The antikink may then release a part of its potential energy

and get trapped at such an impurity site [Fig. 15(b)]. If the

impurity spring is made even softer, such that an antikink can

no longer transfer its kinetic energy forward or dissipate it
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FIG. 14. A kink interacts with an impurity (different spring

stiffness) and is either (a) transmitted, shown here for v0 = 4.0 and

ki/k = 0.10, or (b) splits into a transmitted kink, a reflected kink,

and an antikink trapped at the impurity, shown here for v0 = 9.6

and ki/k = 0.01. The nondimensional parameters are M = 1, k =
10 000,r/a = 0.8, and θ̄ = 0.28.

sufficiently quickly to be trapped, then the incident antikink is

completely reflected [Fig. 15(c)]. For similar reasons, a stiffer

impurity acts like a repulsive potential well that can reflect

slow moving antikinks.

These numerical results are summarized in the phase

diagrams in the space of ki and v0 in Fig. 16. First, note that

a kink [Fig. 16(a)] behaves quite differently from an antikink

[Fig. 16(b)]. For instance, a kink is never completely trapped or

reflected by an impurity. The reason is that it has zero intrinsic

potential energy and, thus, no potential energy to lose during

a scattering event. As a collective object, the kink experiences

a flat potential landscape along the chain. It will always go

through the impurity, unless ki is so soft or v0 is so large that

the initial kinetic energy of the kink is sufficient to stretch

the impurity spring to form a pinned antikink. That is when

scattering results in the kink being split. This also explains the

positive slope of the boundary line between these two regimes.

(The topological constraints of the field require that the number

FIG. 15. An antikink interacts with an impurity and is either (a)

transmitted, shown here for v0 = 4.0 and ki/k = 0.80, (b) trapped,

shown here for v0 = 4.0 and ki/k = 0.70, or (c) reflected, shown here

for v0 = 4.8 and ki/k = 0.20. The system parameters are the same

as in Fig. 14.

of kinks minus the number of antikinks remains constant [33],

which is one for our boundary conditions.)
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(a)

(b)

FIG. 16. The phase diagram of the scattering behavior in the

parameter space of normalized spring constant of impurity ki/k and

kink initial velocity v0 for (a) the kink and (b) the antikink. The

system parameters are the same as Fig. 14. The lower limit of v0

for the antikink is around 0.7, below which even the PN barrier in a

perfect chain will capture the antikink.

For an antikink, the scattering phase diagram has more

regimes [Fig. 16(b)]. The positive slope of the boundary curve

at higher ki between the upper reflection regime (square) and

the transmission regime (circle) comes from the fact that the

higher the barrier is the faster the antikink needs to be to get

transmitted. The negative slope of the boundary between the

transmission regime (circle) and the trapping regime (triangle)

suggests that a softer impurity spring causes the antikink to

dissipate more energy. The antikink then needs a sufficiently

high initial velocity to avoid being trapped at such an impurity

site. The positive slope of the curve between the trapped regime

(triangle) and the lower reflection regime (square) suggests

that if the impurity spring is so soft such that it can no longer

transform the kinetic energy into other forms or channelize

the kinetic energy to the other side of the impurity sufficiently

“quickly,” an antikink incident with sufficiently high energy

will then be completely reflected. (In simulations, we find

that the maximum initial velocity with which we can launch

an antikink is around v0 = 12. Above this, the antikink itself

becomes unstable and tends to quickly disintegrate.)

For the topological rotor chain, the antikink scattering

behavior is therefore very similar to the ones reported for kinks

and antikinks in previous studies on the φ4 model [38,39]. In

addition, for normal φ4 kinks and antikinks, one also observes

resonance windows which are alternating regimes of the

excitation being reflected or trapped, along the axis of initial

velocities for a given impurity strength. These have not been

observed during our simulations of the discrete topological

chain. Instead, we only observe a small range of alternating

regimes where the antikink is transmitted or trapped, around

ki/k = 0.75 and v0 = 3.6 in Fig. 16(b). We leave a detailed

characterization of the resonance energy exchange between

these modes for future studies.

VII. EFFECT OF BOND LENGTH IMPURITIES

In Sec. IV we perform linear mode analysis of the

topological chain, and in Sec. VI we study the nonlinear motion

of (anti)kinks with impurities. Here in this section we will show

in a qualitative way that there is a connection between these

two aspects. For convenience, we investigate another type of

impurity: the spring length.

A. Linear mode analysis

We start with a qualitative observation of the linear

vibrational modes. For a perfect topological rotor chain

with free boundary conditions, there exists only one zero

mode—the translation mode of the kink. This is what the

Maxwell-Calladine counting predicts [31,32]: The chain has n

rotors as degrees of freedom and n − 1 springs as constraints,

and the former quantity minus the latter equals the number

of zero modes minus the number of states of self-stress. (In a

perfect chain there are no states of self-stress.) This counting

does not depend on the geometrical parameters of the chain

components.

(a)

(b)

(c)

(d)

FIG. 17. The zero vibrational mode (a), the soft vibrational mode

(b), and the soft tensional mode (c) of a topological chain with a longer

spring in the middle as an impurity. The configuration parameters are

θ = 0.58, r/a = 0.8, l/a = 1.68, l0/a = 2.30, and lcritical/a = 2.31.

The soft mode frequency is 7.7 × 10−9 in the unit of (r/a)
√

k/M ,

which means the mode is much “softer” than the kink shape mode

whose frequency is of the order 10−2. In (a) and (b), the arrows

indicate the mode amplitude of the displacement of each rotor. In (c),

the thickness of the green bars indicates the tensional mode amplitude

on each spring. All the springs, both normal ones and the impurity,

have the same stiffness. Panel (d) shows a LEGO demonstration (see

movie S2 in the Supplemental Material [41]).
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Now we increase one geometrical parameter, namely the

length of the middle spring l0, so it is an impurity in the

system (Fig. 17). As long as no state of self-stress is created,

there remains only one zero mode. However, as l0 approaches

a critical value lcritical, several qualitative changes take place:

(1) The profile of the chain varies significantly. There are two

kinks, one on each side of the impurity spring. (2) Eigenmode

analysis shows that the amplitude of the zero mode has two

prominent parts that are spatially separated, each of which is

localized around a kink as an individual translation mode. Both

parts of the zero mode point towards the same direction. (3)

An additional soft vibrational mode appears, whose amplitude

also has two separated parts just like the zero mode. But the

directions of these two parts are opposite to each other. This

soft mode has a frequency close to zero, much lower than that

of kink shape modes. (4) A soft tensional mode dual to the soft

vibrational mode emerges, being localized around the impurity

spring. (A tensional mode is a vector whose components are

the infinitesimal spring tensions caused by the infinitesimal

motion of the dual vibrational mode. The duality comes from

the fact that the tensional mode is an eigenfunction of the

supersymmetrical “partner” of the dynamical matrix, while

the vibrational mode is an eigenfunction of just the dynamical

matrix. See Refs. [20,21,24] for more details.)

These changes do not contradict the Maxwell-Calladine

counting: Only one vibrational mode has strictly zero fre-

quency, unless l0 actually reaches lcritical. In that case, the

frequencies of both the soft vibrational mode and the soft

tensional mode go to zero. By definition, the tensional mode

becomes a state of self-stress. Then the Maxwell-Calladine

counting still holds as there are now two zero modes and one

state of self-stress.

The above analysis only considers infinitesimal oscillations

around zero-energy equilibrium points. In the next section, we

study qualitatively the nonlinear motion of kinks with finite

energy, providing a perspective complementary to the linear

analysis.

B. Nonlinear dynamics: Linkage limit

1. Setup: Hamiltonian

To simplify the problem, we consider the linkage limit,

where all the springs in a perfect chain are nondeformable

rigid bars so they are holonomic constraints. There is only

one degree of freedom which is the translational motion of the

kink. We choose the kink position x as a collective variable to

describe this degree of freedom.

(a)

(b)

FIG. 18. (a) Illustration of the coordinate system of a topological rotor linkage chain with θ = 0.58, r/a = 0.8, l/a = 1.68, and lcritical/a =
2.31. The linkage bars are the solid lines and the impurity spring is the dashed line. In (b), the upper panels show the potential functions in 2D

configuration space for various l0. One corner of the function is trimmed for visualization. The red curve corresponds to the potential for Kink

1 in the one d.o.f. case where Kink 2 is fixed at x2 = 0. The lower panels show the phase portraits of Kink 1.
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Then we introduce the impurity by replacing the middle

rigid bar with a longer spring that is “soft” (i.e., with a finite

spring constant) [Fig. 18(a)]. A soft spring does not strictly

constrain the angles of the two rotors it connects but rather

gives a potential energy to deviations from its preferred length.

The chain then has one fewer constraint, which in turn means

that it has two degrees of freedom. We regard the whole

chain as two linkage subchains, and then the two degrees

of freedom are shared by the two kinks of the subchains,

which we call Kink 1 and Kink 2 with position x1 and x2,

respectively. The coordinate system for the discrete chain

model is illustrated in Fig. 18(a), and its precise definition

is contained in Appendix E. We see that by taking the linkage

limit, the number of degrees of freedom is reduced from the

number of rotors [16 for the chain in Fig. 18(a)] to the number

of kinks (2 for two kinks).

Now we derive the Hamiltonian. Note that the potential

energy only comes from the deformation of the impurity

spring, which in turn just depends on the angles of the head

rotors θ̃i . Since xi is the degree of freedom, it determines the

state of the subchain i, including θ̃i . Thus from the continuum

theory [Eq. (13) where u = r sin θ ], we obtain θ̃i(xi):

sin θ̃i(xi) = sin θ tanh

[

r sin θ(|xi | − x̃i)

a2

]

, (19)

where θ is the equilibrium angle of a perfect chain, a is the

lattice spacing, r is the rotor length, and x̃i is the position of

the head rotor.

Putting θ̃i(xi) into the Hookean spring potential V =
1
2
k(l1,2 − l0)2, where l1,2 takes the form in Eq. (6) and l0 is

the rest length of the impurity spring, we obtain the potential

function V (x1,x2; l0) as a function of the kink positions

(a) (b)

(c) (d)

FIG. 19. The trajectories of the chain generated by simulations of Newtonian dynamics on the theoretical potential function in the

configuration space at (a) l0 < lcritical, E < Ec; (b) l0 < lcritical, E > Ec; (c) l0 = lcritical, E = Ec = 0; and (d) l0 > lcritical. In the top figures of

(a) and (b), the color scale of the trajectories indicates the potential energy of the chain in arbitrary units. The big red dots correspond to the

configuration of the real-space chains shown in the bottom figures of each panel.
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[Fig. 18(b)]. We formally define the effective kink momentum

p and mass m for the subchains in terms of the total kinetic

energy of the rotors T = ∑8
j=1

1
2
mr2θ̇2

j ≡ 1
2m

p2. Thus the

Hamiltonian H (x1,x2,p1,p2; l0) = T (p1,p2) + V (x1,x2; l0) is

obtained.

2. Individual kink: Phase portrait

We first investigate a simple case where Kink 2 is fixed at

x2 = 0 and only Kink 1 is allowed to move. Then the chain has

only one degree of freedom x1. With the Hamiltonian, we draw

the phase portraits of xi for various l0 in Fig. 18(b). We find

that there is a critical value for the rest length of the impurity

spring,

lcritical =
√

(2r sin θ + a)2 + (2r cos θ )2, (20)

which determines the pattern of the phase portrait and the

qualitative behavior of the dynamics of the chain.

When l0 < lcritical, the dumbbell-shaped separatrix curve

extends almost across the whole reachable region of x1. The

two equilibrium points at x1 ≈ +8 and x1 ≈ −8 correspond

to the kink being localized around the impurity spring. x1 is

either positive or negative depending on the orientation of the

end rotor. At these two equilibrium points the impurity spring

is not stretched.

The behavior of Kink 1 depends on whether E is above

or below the separatrix curve’s energy Ec = 1
2
k(l0 − lcritical)

2.

If E < Ec, the trajectory in the phase plane stays inside the

region enclosed by separatrix and circulates around one of

the equilibrium points. In real space, Kink 1 makes small

oscillations around the impurity spring at either x1 ≈ −8 or

x1 ≈ +8. If E > Ec the trajectory moves in the region outside

of the separatrix. In real space, Kink 1 is able to go over the

subchain end and move back and forth between x1 ≈ −8 and

x1 ≈ +8.

When l0 approaches lcritical from below and exceeds lcritical,

the separatrix curve shrinks and disappears. The two equi-

librium points merge into one at x1 = 0 at the end of the

subchain [44]. In real space, the kink with finite energy

oscillates around the subchain end x1 = 0.

3. Two kinks: Accessible configuration space

The phase space of a chain with two kinks is 4D. For

the convenience of visualization, we investigate the potential

function V (x1,x2; l0) in the 2D configuration space. The shape

of the potential depends on l0 and determines the qualitative

dynamics of the two kinks. We also perform simulations of

Newtonian dynamics to investigate the qualitative behavior of

the nonlinear motion of the kinks.

When l0 < lcritical [Fig. 19(a)], the potential looks like a

square Mexican hat. The bottom of potential valley is a square

ring, on which all the points are at zero energy. In linear mode

analysis, we find a zero mode along the valley and a soft mode

along the transverse direction. We will show that the nonlinear

dynamics at finite energy possesses the traits that are closely

related to those in the linear analysis at zero energy.

Note that the impurity spring is maximally stretched at

x1 = x2 = 0, and the corresponding potential maximum Ec =
1
2
k(l0 − lcritical)

2. It is the minimal energy for both kinks to

move away from the impurity. If E < Ec, then the two kinks

take turns moving on their respective subchains. One kink

oscillates near the impurity spring, while the other kink moves

away. The nonlinear dynamics of the kinks is visualized as

a trajectory going along the bottom of the potential valley.

The accessible region in the configuration space is a square

annulus, at the corner of which the major part of energy is

transferred from the one kink to another. In fact, this can be

interpreted as the motion of a single “split” kink through the

system.

When E � Ec [Fig. 19(b)], there is sufficient energy

for both kinks to move away from the impurity spring

simultaneously. In the configuration space, the trajectory gets

out of the potential valley and climbs up to the 2D plateau in

the middle. The accessible region now is a square disk. In real

space, the kinks independently hit the impurity spring and get

reflected.

When l0 = lcritical [Fig. 19(c)], the linear mode analysis

predicts that the chain model in Fig. 19(c) has two zero

modes, each being localized around the kink at the end of

the respective subchain and a state of self-stress localized

around the impurity spring. From the viewpoint of nonlinear

dynamics, the potential function changes qualitatively: As

l0 approaches lcritical, the square ring of the potential valley

shrinks into one point at x1 = x2 = 0, and Ec goes to zero. In

other words, the Mexican hat transforms into a single basin.

In this shrinking process, the soft mode, which corresponds

to the oscillation transverse to the valley, transitions into a

zero mode, because the depth of the valley vanishes. In terms

of nonlinear dynamics, this transition means that no matter

how small the total energy E is, the accessible region in the

configuration space is always a square disk rather than a square

annulus.

When l0 > lcritical [Fig. 19(d)], the impurity spring is

compressed, which gives a minimum potential energy Emin =
1
2
k(l0 − lcritical)

2 for the static configuration. In a linear anal-

ysis, the two zero modes become normal modes with finite

0

l0

E

Ec=
k

2
(l0 - lcritical)

2

lcritical

FIG. 20. The parameter space of the total energy E and the

impurity spring length l0. The critical energy Ec as a function of

l0 forms a parabola. The chain shows different dynamical behaviors

across the left branch of the parabola. The vertical dashed line of

l0 = lcritical is the boundary line across which the shape of the potential

function transitions qualitatively. The gray area below the right branch

of the parabola is energetically forbidden.
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frequency, as the impurity spring pushes the two kinks to the

chain ends, generating a finite restoring force for the motion

of the modes. In the nonlinear dynamics, the accessible region

of the kinks is still a square disk.

Figure 20 summarizes the above results with E and l0 as

parameters. When l0 � lcritical, the curve Ec = 1
2
k(l0 − lcritical)

2

marks the transition of the accessible region in configuration

space from an annulus to a disk. Note that we only investigate

the case of l0 > l, in which Fig. 20 is valid. For l0 < l case,

the potential landscape takes a different form and so does

the possible transition. We do not cover this case in this paper,

however, as we have made the connection between linear mode

analysis and nonlinear dynamics.

VIII. CONCLUSION

We have studied the nonlinear dynamics of a topological

rotor chain. The continuum limit is well approximated by a

modified φ4 theory whose nonlinear excitations are the kinks

and antikinks. We have seen how the breaking of inversion

asymmetry at the discrete level results in an asymmetry

between the kink and antikink excitations that affects the

properties of linear modes around these excitations, their

transport along an ordered lattice, as well as in how these

excitations interact with a lattice impurity. The results herein

further enrich the class of phenomenon described by the

φ4 theory, a model which is extensively studied and finds

numerous applications in many fields of physics.

Some questions for further research include the following:

(1) We find that kinks reflect perfectly off the free boundaries

of a topological rotor chain. This is surprising given that in

the continuum limit, the φ4 kink is a nonintegrable solution

and thus could create bound states or emit radiation as it

interacts with a free boundary. Furthermore, an antikink cannot

reach a free boundary without colliding with a kink—another

feature which we do not yet know how to interpret within the

continuum theory. (2) We have not undertaken a detailed study

of the phases of motion for an antikink (wobbling, spinner).

Preliminary simulations indicate that antikink configurations

in these other phases are in fact unstable. The large amount

of initial spring stretching energy necessary in a configuration

where the rotors point “away from each other” is immediately

converted to kinetic energy and induces rapid spinning of

the nearby rotors which then spreads across the system in

a chaotic fashion. It is not clear how this effect would arise in

the continuum theory, which, for the spinner, is related to the

integrable sine-Gordon model [23].

A more speculative question is whether there are connec-

tions between our results and the observed asymmetry between

kinks and antikinks in certain one-dimensional quantum

magnetic systems, called δ or sawtooth chains [45,46]. These

systems also have two uniform ground states which may be

thought of as the analog of “right-leaning” and “left-leaning”

states and also share the property that the excitation energy for

a kink is zero while for an antikink is large and finite.
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APPENDIX A: COMPLEX NOTATION

We use complex variables to derive the explicit relation

between neighboring rotor angles. Adopting the notation in

Fig. 1(c), we put the pivot of rotor 1 at the origin of complex

plane and the pivot of rotor 2 at the coordinate (a,0). The

positions of the rotor tips are

z1 = ire−iθ1 , (A1)

z2 = a − ireiθ2 . (A2)

We have two constraints (where a bar represents complex

conjugations):

(z2 − z1)(z̄2 − z̄1) = l2
0 , (A3)

(z2 − a)(z̄2 − a) = r2. (A4)

Eliminating z̄2 from above two constraints, we find a

quadratic equation for z2,

Az2
2 + Bz2 + C = 0, (A5)

where

A = z̄1 − a

a − z1

, (A6)

B =
(

l2
0 + a2 − 2r2

a − z1

)

− a

(

z̄1 − z1

a − z1

)

, (A7)

C = a2 − r2 − a

(

l2
0 + a2 − 2r2

a − z1

)

. (A8)

We have two branches of the solution for z2

z2 = −B ±
√

B2 − 4AC

2A
, (A9)

which explicitly expresses the black curve in Fig. 3(b).

APPENDIX B: VIBRATIONAL MODES OF PRESTRESSED

MECHANICAL STRUCTURES: METHOD OF TANGENT

STIFFNESS MATRIX

Consider a single spring p in the configuration shown in

Fig. 21(a) (note here we are now specifying rotor angles θ with

respect to the positive x axis). From geometry, we find

fp =−
vp · 
lp t̂p

fp+1 = 
vp+1 · 
lp t̂p. (B1)

FIG. 21. Detailed configurations around a single spring p.
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Here fp is the spring force projected along the tangent vector


vp of rotor p,


vp =
(

− sin θp

cos θp

)

. (B2)


lp is the vector along the length of the spring p and points

from rotor p to p + 1,


lp =
(

a + r cos θp+1 − r cos θp

r sin θp+1 − r sin θp

)

. (B3)

t̂p is a scalar tension coefficient for spring p, defined as t̂p ≡
tp/|
lp|, where tp ≡ kp(|
lp| − l) for a harmonic spring. Here,

|
lp| is the instantaneous length of spring p, l is the rest length

of the spring, and k is the spring constant.

In order to find the tangent stiffness, we differentiate

Eq. (B1) with respect to the rotor angles θp and θp+1,

∂fp

r∂θp

= ∂(−
vp · 
lp)

r∂θp

t̂p − 
vp · 
lp
∂t̂p

r∂θp

, (B4)

∂fp

r∂θp+1

= ∂(−
vp · 
lp)p

r∂θp+1

t̂p − 
vp · 
lp
∂t̂p

r∂θp+1

, (B5)

∂fp+1

r∂θp

= ∂(
vp+1 · 
lp)

r∂θp

t̂p + 
vp+1 · 
lp
∂t̂p

r∂θp

, (B6)

∂fp+1

r∂θp+1

= ∂(
vp+1 · 
lp)

r∂θp+1

t̂p + 
vp+1 · 
lp
∂t̂p

r∂θp+1

. (B7)

To simplify Eq. (B4), we express

∂t̂p

r∂θp

= dt̂p

d|
lp|
∂|
lp|
r∂θp

, (B8)

dt̂p

d|
lp|
= d(tp/|
lp|)

d|
lp|
= 1

|
lp|
(gp − t̂p) = ĝp/|
lp|, (B9)

where gp ≡ dtp/d|
lp| is defined as the axial stiffness and ĝp ≡
gp − t̂p is defined as the modified axial stiffness.

From Fig. 21(b), we see that �l = r�θ (−
vp · 
lp)/|
lp| and,

therefore,

∂|
lp|
r∂θp

= (−
vp · 
lp)

|
lp|
. (B10)

Substituting Eqs. (B8)–(B10) into Eq. (B4), we find

∂fp

r∂θp

= ∂(−
vp · 
lp)

r∂θp

t̂p − (
vp · 
lp)
ĝp

|
lp|
(−
vp · 
lp)

|
lp|
. (B11)

Similarly, we simplify Eqs. (B5)–(B7).

With the above derivatives, we can now define the tangent

stiffness matrix. For a single spring p, the tangent stiffness

matrix, Kp, relates small changes in rotor position to small

changes in rotor forces,
(

δfp

δfp+1

)

= Kp

(

rδθp

rδθp+1

)

, (B12)

and can be expressed as

Kp =
(

np

np+1

)

[ĝp](np np+1) + sp, (B13)

where np ≡ −
vp · 
lp/|
lp|, np+1 ≡ −
vp+1 · 
lp/|
lp|, and the

stress matrix sp is

sp =

⎛

⎝

− ∂(
vp ·
lp)

r∂θp
t̂p − ∂(
vp ·
lp)

r∂θp+1
t̂p

∂(
vp+1·
lp)

r∂θp
t̂p

∂(
vp+1·
lp)

r∂θp+1
t̂p

⎞

⎠. (B14)

To derive the total tangent stiffness K for the rotor chain, we

first represent the tangent stiffness Kp in a global coordinate

system as an n × n matrix and then sum up all the Kp for the

n − 1 springs:

K =
n−1
∑

p=1

Kp =
n−1
∑

p=1

ap[ĝp]aT
p +

n−1
∑

p=1

Sp, (B15)

where

ap =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
...

0

np

np+1

0
...

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(B16)

and

Sp =

⎛

⎜

⎜

⎜

⎜

⎝

0 . . . 0
... sp11 sp12

...
... sp11 sp12

...

0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎠

. (B17)

In ap, the np and np+1 terms are in the pth and p + 1th rows,

respectively, and all the other terms are zero. In Sp, spij is the

(i,j ) element of the 2 × 2 stress matrix sp for a single spring

p and is located in the (p − 1 + i,p − 1 + j ) position of Sp,

and all the other terms in Sp are zero. Here Sp has a simpler

form than that of Ref. [34] because we exploit the fact that

only nearest neighbors are coupled in the topological chain.

APPENDIX C: SIMULATION METHODS

The molecular dynamics simulations are carried out in

MATHEMATICA. The ordinary differential equation (ODEs)

are solved by the function NDSolve, which uses a multistep

method (LSODA) by default.

In the simulations, we set the lattice spacing a = 1, the

rotor mass M = 1, and an arbitrary time unit t = 1. The spring

constant k is measured in units of M/t2. The linear velocity

of a rotor is measured in units of a/t . The initial velocity v0

of a (anti)kink is defined as the velocity amplitude of the unit

translation mode et and et
i is the mode component on the ith

rotor. Thus the initial kinetic energy is 	i
1
2
m(v0e

t
i )

2 = 1
2
mv2

0 .

APPENDIX D: PEIERLS-NABARRO POTENTIAL

BARRIER VIA CONTINUUM THEORY

We derive the PN potential by discretizing the potential

energy density in the continuum theory, i.e., taking the

quasicontinuum limit. The PN potential is, by definition, the
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potential that the kink faces as it propagates along the adiabatic

trajectory (ad. tr.):

VPN(X) = V (. . . ,un−1,un,un+1, . . . )|X∈ad.tr.. (D1)

Here X is the position of the (anti)kink center, un is the

continuum field at lattice site n, and V is a discretization

of the potential energy density V (θ ) in Eq. (9) and is obtained

by summing the potential f (n,X) of each lattice site:

V (. . . ,un−1,un,un+1, . . . ) =
∑

f (n,X), (D2)

where

f (n,X) = 2k

l
2

[

a2

2

dun

d(na)
+ u2 − u2

n

]2

. (D3)

f (n,X) is the approximate potential at a single site n when the

(anti)kink center is at X. Here, we discretize the continuum

potential energy density rather than directly use the exact form

of the lattice potential in Eq. (8), so we can readily substitute

un, the continuum field at site n, into f (n,X), which results in

an integrable solution. We choose the static solution (v = 0)

of Eq. (13) as the adiabatic trajectory:

un(X) = ±u tanh

(

na − X

w

)

, (D4)

where the “+” is for the antikink, “−” is for the kink, and the

width of the (anti)kink w = a2

2r sin θ
[23]. Substituting Eqn. (D4)

into Eq. (D3), we find

f (n,X) = 0 for the kink,

f (n,X) = 8ku4

l
2

sech4

(

na − X

w

)

for the antikink. (D5)

Thus VPN(X) = 0 for the kink, in accordance with the fact

that the kink configuration does not stretch springs and hence

costs zero potential energy. For the antikink, we use the Poisson

summation formula to express:

VPN(X) =
+∞
∑

n=−∞
f (n,X) =

+∞
∑

k=−∞
f̂ (k,X)

=
+∞
∑

k=−∞

∫ +∞

−∞
dnf (n,X)e−2πikn. (D6)

To leading order, we only consider the first harmonic terms k =
1 and k = −1 (k = 0 recovers the continuum approximation).

For k = 1, we find

∫ +∞

−∞
dnf (n,X)e−2πin

= e−2πi(X/a)

∫ +∞

−∞
dn′ 8ku4

l
2

sech4

(

n′a

w

)

e−2πin′
. (D7)

The complex exponential suggests a sinusoidally varying

potential along the coordinate X of the adiabatic trajectory,

with a period that is equal to the lattice spacing a. We define

the PN barrier (VPNB) as the height of this sinusoidal potential.

The last integral in Eq. (D7) can be completed using residues

to yield

VPNB = 4π2[π2 + (a/w)2]

3[1 + 4(r/a)2 − (a/w)2] sinh(π2w/a)

∝ e−π2w/a for large w/a. (D8)

APPENDIX E: DEFINITION OF KINK COORDINATES IN

DISCRETE MODELS

The concept of kinks stems from the continuum φ4 theory.

To extend this concept to the discrete chain model, we

define the coordinate system of a subchain kink as follows

[Fig. 18(a)]: The absolute value of the position of a kink equals

the rotor’s integer index if the rotor is vertical, otherwise the

position is a real number interpolating between the indices of

the two neighboring rotors that are leaning opposite to each

other. The positional interpolation is proportional to the linear

interpolation between the absolute values of the angles of two

neighbor rotors. The rotor angles are the measured against the

vertical alternatively, as mentioned in Sec. II. When a kink

approaches the end points of the chain, the end rotor flips over.

Here the kink profile from the continuum theory ceases to be

valid. Thus we take as our convention that a kink is at the origin

of the coordinate system when the end rotor is collinear with

the spring connecting to the next rotor, and its sign depends

on whether the end rotor leans upwards or downwards. The

coordinate between 0 and 1 (or −2) is obtained by linear

interpolation of the angles of the end rotor at 0 and 1 (or −2).

In this ad hoc convention, the chain forms a state of self-stress

when both kinks are at origin. The two subchains are aligned

head to head, and the two head rotors (|xi | = 8) are coupled

by the impurity spring.
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