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KINK-ANTIKINK INTERACTION FOR SEMILINEAR WAVE
EQUATIONS WITH A SMALL PARAMETER

MARTIN G. GARCIA, GEORGII A. OMEL’YANOV

Abstract. We consider a class of semi-linear wave equations with a small

parameter and nonlinearities which provide the equations having exact kink-

type solutions. As a main result we to obtain sufficient conditions for the
nonlinearities under which the kink-antikink collision occurs without changing

the waves shape and with only some shifts of the solitary wave trajectories.

1. Introduction

We consider a class of semi-linear wave equations with a parameter ε

ε2(utt − uxx) + F ′(u) = 0. (1.1)

The nonlinearities F (u) are assumed to be such that (1.1) have self-similar exact
solutions of the so-called “kink” (“fluxon”) type,

u(x, t, ε) = ω
(
Sβ

x− V t
ε

)
, S = ±1, β = (1− V 2)−1/2, |V | < 1,

ω(η) ∈ C∞(R), ω(η) → 0 as η → −∞, ω(η) → 1 as η → +∞.
(1.2)

More in detail, the function (1.2) is called “kink” if S = 1 and “antikink” if S = −1.
It is easy to establish that under the following conditions such solutions exist and
tend to the limit values sufficiently above.

(A) F (z) ∈ C∞(R), F (z) > 0 for z ∈ (0, 1),
(B) F (i)(z0) = 0, i = 0, 1, . . . , k, F (k+1)(z0) > 0, where z0 = 0 and z0 = 1, and

k = 1 or k = 3.
Under the additional assumption

(C) F (1/2 + z) = F (1/2− z),
the function ω(η)− 1/2 will be odd and ω(η) + ω(−η) = 1.

To consider the superposition of the waves ω(±βi(x − Vit − x0
i )/ε) with large

distance between their fronts x = Vit+x0
i as two non-interacting kinks or antikinks

(for t� 1) we set the condition of periodicity
(D) F (z + 1) = F (z).
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As examples of such nonlinearities we consider the following functions:

F (z) =
(
1− cos(2πz)

)
/4π2, ω =

2
π

arctan eη, (1.3)

F (z) = sin4(πz), ω =
1
π

arccot(−
√

2πη). (1.4)

The first example corresponds to the sine-Gordon equation. It is well known that
the kinks of the sine-Gordon equation collide without changing their form and the
unique result of the interaction is a phase shift appearance (see [17, 18]) or any
book about the Inverse Scattering Transform Method).

A natural question appears here: is the sine-Gordon equation the unique one
from the class (1.1) for which such scenarios hold? If no, how to find conditions on
F under which the kinks and anikinks of (1.1) will collide following the sine-Gordon
scenario?

Obviously, traditional functional methods cannot describe the wave collision sce-
nario. We cannot either use exact solutions of Cauchy problems, since the sine-
Gordon equation is a unique representative from class (1.1) which can be inte-
grated exactly [19]. Therefore, we will construct an asymptotic solution treating
ε as a small parameter. Nevertheless, traditional asymptotic approaches cannot
answer the question considered here, since there are problems nowadays unsolved
(about the existence of special solutions to nonlinear PDEs and the solvability of
the corresponding linearized non homogeneous equations [13, 15, 16].

To avoid these difficulties, we use the weak asymptotic method which is in
progress now [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14]. The main advantage of this
approach is the possibility of reducing the problem of describing nonlinear waves
interaction to a qualitative analysis of some ordinary differential equations (instead
of partial differential equations). This method takes into account the fact that kinks
(as well as solitons [5, 6]) which are smooth for ε > 0 become non-smooth in the
limit as ε→ 0. So we will treat solutions of (1.1) as a mapping C∞

(
0, T ;C∞

(
R1
x

))
for ε > 0 and only as C

(
0, T ;D′

(
R1
x

))
uniformly in ε ≥ 0.

Next, to construct a definition of an asymptotic solution that admits the pas-
sage to the limit as ε → 0, it is natural to use the standard D′- construction.
Recall that u ∈ D′

(
(0, T )× R1

x

)
is a solution of (1.1) in the weak sense if F ′(u) ∈

D′
(
(0, T )× R1

x

)
and the relation∫ T

0

∫ ∞

−∞

{
ε2u(ψtt − ψxx) + ψF ′(u)

}
dx dt = 0 (1.5)

holds for any test function ψ(x, t) ∈ D
(
(0, T )× R1

x

)
. However, we cannot change

the zero in the right-hand side of (1.5) to O(ε2) since we will loose all the informa-
tion about the motion of kink fronts. Indeed, with this accuracy the sine-Gordon
type equation (1.5) becomes algebraic. Moreover, Assumptions (C) and (D) imply
that for any smooth function φ = φ(t) the following equalities hold:∫ ∞

−∞
ψ(x)F ′

(
ω
(
β
x− φ
ε

))
dx =

∫ ∞

−∞
F ′

(
ω
(
β
x− φ
ε

)) d

dx

∫ x

−∞
ψ(x′)dx′dx

= −
∫ ∞

−∞
ψ1

(
φ+ η

ε

β

) d

dη
F ′(ω(η))dη

= −ψ(φ)
ε

β

∫ ∞

−∞
η
d

dη
F ′(ω(η))dη +O(ε2) = O(ε2),
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where ψ1(x) =
∫ x
−∞ ψ(x′)dx′, ψ(x) ∈ D(R1

x).
Moreover, it is impossible to improve this situation by increasing the accuracy

to O(εN ), N = const > 2. This becomes clear just in the simplest single wave situ-
ation when we consider a perturbed sine-Gordon equation (with a(x) sinu instead
of F ′(u) = sinu). Indeed, let us try to construct the one-phase asymptotic solution
using the weak definition in (1.5). A simple algebraic transformation shows that in
this way we obtain an infinitely long chain of connected relations (for parameters
of the solution). Moreover, these relations involve smaller-in-ε terms of the asymp-
totics whereas motion of the actual front is described by an ordinary differential
equation (the so-called Hugoniot type condition) which does not depend on smaller
corrections [15, 16].

Apparently, this effect was first pointed out in [9], where the passage to the limit
(from the phase field system to the Stefan-Gibbs-Thompson problem) was studied.
A way to improve the situation has been found as well in [9]. The main idea is to
use special test functions, namely, the ones that are rapidly varying there where
the solution varies rapidly. For (1.1) this means the choice of the test functions
u′xψ(x), ψ(x) ∈ D(R1). Standard transformations of the weak definition for such
test functions lead to the following result (see also [5]):

Definition 1.1. A sequence u(t, x, ε), belonging to C∞
(
0, T ;C∞

(
R1
x

))
for ε > 0

and belonging to C
(
0, T ;D′

(
R1
x

))
uniformly in ε, is called a weak asymptotic

mod OD′(ε2) solution of (1.1) if the relation

2
d

dt

∫ ∞

−∞
ε2utuxψdx+

∫ ∞

−∞

{
(εut)2 + (εux)2 − 2F (u)

}
ψxdx = O(ε2) (1.6)

holds for any test function ψ = ψ(x) ∈ D(R1).

Here the right-hand side is a C∞-function for ε > 0 and a piecewise continuous
function uniformly in ε ≥ 0. The estimate is understood in the C(0, T ) sense:

g(t, ε) = O(εk) ↔ max
t∈[0,T ]

|g(t, ε)| ≤ Cεk.

Note that, in contrast to the equality (1.5), Definition 1.1 involves in the leading
term the derivatives of u with arguments x/ε and t/ε. Moreover, it requires the
relation β2 = 1/(1− V 2) for the solitary wave solution (1.2). The left-hand side of
(1.6) is the result of multiplication of (1.1) by ψ(x)ux and integration by parts in
case of smooth u. Therefore, it is zero for any exact solution. On the other hand,
the relation (1.6) is just the orthogonality condition which appears for single-phase
asymptotic [15, 16]. This condition both guarantees the first correction existence
and allows to find an equation for the distorted kink’s front motion.

In what follows we will use the notation OD′(εk) for the smallness in the weak
sense:

Definition 1.2. We denote by v(t, x, ε) = OD′(εk) all sequences v(t, x, ε) which
belong to C∞

(
0, T ;C∞(R1

x)
)

for ε > 0 and belong to C
(
0, T ;D′

(
R1
x

))
uniformly

in ε such that the relation ∫ ∞

−∞
v(t, x, ε)ψ(x)dx = O(εk)

holds for any test function ψ ∈ D
(
R1
x

)
. Here the estimate for the right-hand side

is treated in the same way as in Definition 1.1.
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The case of two kinks interaction has been studied in [14]. More in detail, (1.1)
has been complemented by the initial conditions

u|t=0 =
2∑
i=1

ω
(
βi
x− x0

i

ε

)
, ε

∂u

∂t

∣∣∣
t=0

= −
2∑
i=1

βiViω
′
(
βi
x− x0

i

ε

)
, (1.7)

were βi = 1/
√

1− V 2
i , |Vi| ∈ (0, 1), and the initial front positions x0

i are such that
x0

1−x0
2 > 1. Obviously it is assumed that the trajectories x = Vit+x0

i have a joint
point x = x∗ at a time instant t = t∗.

In [14] has been proved the following statement.

Theorem 1.3. Let assumptions (A)-(D) hold. Moreover, let the function F and
the numbers βi, i = 1, 2, be such that∫ ∞

−∞
F (ω(η) + ω(θη)) dη

≤
∫ ∞

−∞

{
F (ω(η)) + F (ω(θη)) + 2β2

2

√
F (ω(η))F (ω(θη))

}
dη, θ = β1/β2.

(1.8)

Then the interaction of kinks in (1.1), (1.7) preserves the sine-Gordon scenario
with accuracy mod OD′(ε2) in the sense of Definition 1.1.

In fact, the asymptotic solution construction implies the appearance of a more
delicate than (1.8) condition. However, this condition is very complicated therefore
it has been changed to the form (1.8). This rough version of the main assumption
can be treated as admissible since (1.8) is fulfilled in the case of the sine-Gordon
equation for any value of the parameter θ.

The aim of the present paper is the consideration of the kink - antikink collision,

u|t=0 =
2∑
i=1

ω
(
Siβi

x− x0
i

ε

)
, ε

∂u

∂t

∣∣∣
t=0

= −
2∑
i=1

SiβiViω
′
(
Siβi

x− x0
i

ε

)
, (1.9)

where S1 = 1, S2 = −1, x0
1 − x0

2 > 1, and we use the same notation as in (1.7).
The main result consists of obtaining sufficient conditions for the nonlinearities

under which the kink–antikink interaction occurs without changing the waves shape.
It is very important that the main condition, which appears instead of (1.8), is
verified numerically for any specific nonlinearity and for any initial velocities Vi
of the noninteracting waves. However, it has an extremely complicated form and
we can not simplify it in any reasonable way. For example, one of the possible
simplifications is of the form∫ ∞

−∞

{(
ηF ′(ω(η))

)2

− 3
4
F (ω(η))

}
dη > 0. (1.10)

This inequality guaranties the preservation of the sine-Gordon scenario, although
only for the case |θ− 1| � 1. For this reason we will present the main theorem and
the main assumption at the end of the paper.

Let us note also that the conditions ((1.8), (1.10) or others) which appear in
the asymptotics constructions are necessary ones only. Therefore, their breakdown
does not lead, generally speaking, to the breakdown of the sine-Gordon interaction
scenario. Actually, we indicate in the present paper how to improve the situation
and how to obtain some less burdensome conditions. Namely, in such situation it
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should be fruitful to add some special corrections to the asymptotics leading term
and check again the safety of the sine-Gordon scenario. At the same time it is clear
that these additional terms make our calculations much more complicated. So in
what follows we restrict ourselves to the simplest version of the asymptotic anzatz.

Let us describe the content of the present paper. In Section 2 we present the
leading term of the weak asymptotic solution for (1.1), (1.9). After some technical
calculations we obtain a system of ordinary differential equations for the parameters
of the asymptotics. Next, we pass to a 2×2 dynamical system for auxiliary functions
W and σ. It turned out that the system has a singularity at the line σ = 0.
Therefore, the existence of the required asymptotic solution is equivalent to the
existence of a trajectory γs such that: 1. it passes from one half-plane to another
one, and 2. its W -coordinate tends to zero as σ → ±∞. The investigation of the
dynamical system (Section 3) shows that the first property can be realized only
under some specific assumption. In fact, this is the required condition additional
to (A)-(D). At the same time the second property fails. On the other hand, the
leading term of the asymptotic solution does not have any additional free parameter
to change γs. For this reason, in Section 4 we supplement the leading term of the
asymptotic solution by some small corrections which are localized near the origin
W = 0, σ = 0. The aim of this transformation is to rotate the trajectories preserving
the main properties of the phase portrait and obtaining the trajectory γs with the
required properties. The proof of the existence of such corrections completes the
construction of the asymptotic solution. The main statement (Theorem 4.2) is
formulated in the end of Section 4. There we present also Theorem 4.3 which
shows that the required conditions for the nonlinearity can be obtained directly
from two balance laws of (1.1). The realizability of the assumptions of Theorem
4.2 is considered in Conclusion. Appendix contains some technical proofs.

2. Construction of the asymptotic solution

Let us write the leading term of the weak asymptotic mod OD′(ε2) solution of
(1.1), (1.9) as the sum of distorted solitary waves:

u =
2∑
i=1

ω
(
Siβi

x− Φi(t, τ, ε)
ε

)
. (2.1)

Here Φi = φi0(t) + εφi1(τ), φi0 = Vit + x0
i , τ = ψ0(t)

ε , ψ0(t) = φ20(t) − φ10(t),
φi1 = φi1(τ) are smooth functions such that

φi1 → 0 as τ → −∞, φi1 → φ∞i1 = consti as τ → +∞ (2.2)

with a rate not less than 1/|τ |, and where the constants βi, Vi, and Si are the same
as in (1.9).

Let us consider briefly this anzatz. Since x0
1 > x0

2, the difference φ20(t)− φ10(t)
remains negative during some t < t∗. Thus, for this time interval, the “fast time”
τ = (φ20(t) − φ10(t))/ε → −∞ as ε → 0. Therefore, the first assumption in (2.2)
implies that the function (2.1) describes the motion of two noninteracting solitary
waves. After the interaction φ20(t) − φ10(t) > 0 and we obtain the situation with
τ → +∞ as ε → 0. In the case when the second assumption (2.2) is fulfilled,
the kink–antikink collision occurs without changing the shape of the waves. By
contrast, if the functions φi1 are unbounded as τ → +∞, the phase shift will change
in time. Finally, non-existence of φi1 for some τ ≥ 0 means that the travelling waves



6 M. G. GARCIA, G. A. OMEL’YANOV EJDE-2009/45

loose kink form during interaction. For simplicity, we assume that the properties
(2.2) hold and will justify this assumptions in the proof.

Let us pass to the construction of the weak asymptotic solution. Obviously, to
this aim we should calculate weak asymptotics with discrepancy OD′(ε2) for the
expressions (εux)2, (εut)2 and others, which appear in the left-hand side of the
relation (1.6). We clarify the techniques using as an example the expression (εux)2.
Differentiating the anzatz we obtain:

(εux)
2 =

2∑
i=1

β2
i ω

2
0

(
Siβi

x− Φi
ε

)
− 2β1β2ω0

(
S1β1

x− Φ1

ε

)
ω0

(
S2β2

x− Φ2

ε

)
.

Here and in what follows

ω0(η) :=
dω(η)
dη

is an even function in view of the assumption (C).
Obvious changes of variables in integrals imply the equality∫ ∞

−∞
(εux)2ψ(x)dx = ε

2∑
i=1

β2
i

∫ ∞

−∞
ω2

0(βiξ)ψ(Φi + εξ)dξ

− 2εβ1β2

∫ ∞

−∞
ω0(β2ξ)ω0(β1ξ + β1σ)ψ(Φ2 + εξ)dξ,

where ψ(x) ∈ D(R1) is an arbitrary function and

σ :=
Φ2 − Φ1

ε
= τ + φ21(τ)− φ11(τ). (2.3)

Next, note that Assumption (B) implies the following estimate, uniform in η ∈ R1,

η2ω0(η) ≤ const. (2.4)

Therefore, applying the Taylor formula

ψ(Φi + εξ) = ψ(Φi) + εξψ′(ξ∗),

where ξ∗ is an intermediate point, we obtain the relation∫ ∞

−∞
(εux)2ψ(x)dx = ε

2∑
i=1

β2
i ψ(Φi)

∫ ∞

−∞
ω2

0(βiξ)dξ

− 2εβ1β2ψ(Φ2)
∫ ∞

−∞
ω0(β2ξ)ω0(β1ξ + β1σ)dξ + O(ε2),

which is correct for any test function. Let us introduce the notation

λ1(σ) =
1
a2

∫ ∞

−∞
ω0(η)ω0(θη + β1σ)dη, a2 =

∫ ∞

−∞
ω2

0(η)dη, (2.5)

where θ = β1/β2. Then we can rewrite the last formula in the following form∫ ∞

−∞
(εux)2ψ(x)dx = εa2

{ 2∑
i=1

βiψ(Φi)− 2β1ψ(Φ2)λ1(σ)
}

+O(ε2). (2.6)
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It remains to note that estimate (2.4) implies the same rate of the convolution λ1

vanishing. Therefore, we can use the Taylor formula again. Definitions of Φi and
σ result in the formulas

Φi = x∗ + Vi(t− t∗) + εφi1, t− t∗ =
ε

ν
(σ + φ11 − φ21) , ν := V2 − V1.

Thus, Φi = x∗ + εχi, i = 1, 2, where

χi = biσ + b2φ11 − b1φ21, bi = Vi/ν. (2.7)

Since |σλ1(σ)| ≤ const, we can transform the relation (2.6) into the final form∫ ∞

−∞
(εux)2ψ(x)dx = εa2

{ 2∑
i=1

βiψ(Φi)− 2β1λ1ψ(x∗)
}

+O(ε2).

Obviously, this means

(εux)
2 = εa2

{ 2∑
i=1

βi δ(x− Φi)− 2β1λ1 δ(x− x∗)
}

+OD′(ε2), (2.8)

where δ(x) is the Dirac δ-function.
Calculating weak asymptotic for other terms in the left-hand side of (1.6), we

obtain some more convolutions. Let us introduce the notation

λ2(σ) =
1
a2

∫ ∞

−∞
ηω0(η)ω0(θη + β1σ)dη, λ̄2(σ) =

1
a2

∫ ∞

−∞
ηω0(η)ω0

(η − β1σ

θ

)
dη,

(2.9)

B∆(σ) =
2
a2

∫ ∞

−∞

{
F

(
ω(η)−ω(θη+β1σ)

)
−F

(
ω(η)

)
−F

(
ω(θη+β1σ)

)}
dη. (2.10)

Lemma 2.1 (Properties of convolutions). Under Assumptions (A)-(D) the convo-
lutions (2.5), (2.9), and (2.10) exist and have the following properties as σ → ±∞:

|σ2λ1(σ)| ≤ const, |σλ2(σ)| ≤ const, |σ2B∆(σ)| ≤ const. (2.11)

Moreover, B∆ < 0 for sufficiently large |σ| and

λ̄2(σ) = θ
(
β1σλ1(σ) + θλ2(σ)

)
.

A sketch of the proof of the above lemma can be found in the Appendix. Now
we can complete the calculations of the weak asymptotic.

Lemma 2.2. Let Assumptions (A)-(D) and (2.2) be satisfied. Then the following
relations hold:

(εut)2 = εa2ν
2
{ 2∑
i=1

βib
2
i δ(x− φi) +K1δ(x− x∗)

}
+OD′(ε2), (2.12)

F (u) = ε
a2

2

{ 2∑
i=1

1
βi
δ(x− Φi) +

B∆

β2
δ(x− x∗)

}
+OD′(ε2), (2.13)
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∂

∂t

(
ε2utux

)
= −a2ν

2 dK2

dτ
δ(x− x∗) + εa2ν

2 d

dτ

( 2∑
i=1

βibiφi1 +W
)
δ′(x− x∗)

+ εa2ν
2

2∑
i=1

βib
2
i δ
′(x− Φi) +OD′(ε2).

(2.14)

Here and in what follows

K1 =
2∑
i=1

βiφ
′
i1(2bi + φ′i1)− 2β1λ1Φ1t

Φ2t
,

K2 =
2∑
i=1

{βiφ′i1 − β1λ1Φit} , W = K2χ2 + β1φ
′
11(χ1 − χ2)− θλ2

2∑
i=1

Φit ,

(2.15)
where

Φit := bi + φ′i1, φ′i1 :=
dφi1
dτ

. (2.16)

Relations (2.12) - (2.14) are obtained in the same way as (2.8) but after more
complicated calculations. Note only that assumptions (B) and (2.2) are the weakest
under which we can guarantee both the convolutions existence with the properties
(2.11) and the boundedness of the remainders.

Furthermore, Definition 1.1 implies the necessity of the relation

2
∂

∂t
ε2utux −

∂

∂x

{
(εut)2 + (εux)2 − 2F (u)

}
= OD′(ε2).

Using formulas (2.8) and (2.12)-(2.16) we obtain that the left-hand side of the last
relation is a linear combination of the functions δ(x−x∗), δ′(x−x∗), and δ′(x−Φi).
Since these functions are linearly independent, the coefficients of δ and δ′-functions
have to be zero. Thus, we obtain the following system of equations:

βi

(
b2i −

1
ν2

)
+

1
βiν2

= 0, i = 1, 2, (2.17)

dK2

dτ
= 0, (2.18)

2
dW

dτ
+ 2

2∑
i=1

βibiφ
′
i1 = K1 −

1
ν2

(
2β1λ1 +

B∆

β2

)
. (2.19)

Equality (2.17) imply the same relations β2
i = 1/(1−V 2

i ) as for the solitary waves.
Next, taking into account the condition φ′i1 → 0 as τ → ±∞ and integrating (2.18),
we obtain

2∑
i=1

{
βiφ

′
i1 − β1λ1Φit

}
= 0. (2.20)

This and (2.3), for the function σ = σ(τ), allow us to rewrite φ′i1 in terms of
σ′τ := dσ/dτ . Indeed, from (2.3) we have

dσ

dτ
= 1 + φ′21 − φ′11. (2.21)
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Solving the system (2.20), (2.21) with respect to φ′11, φ
′
21, we obtain the following

equations
dφ11

dτ
= −FG1,

dφ21

dτ
= θFG2, (2.22)

where
F = (1 + θ − 2θλ1)

−1
, G1 = (1− θλ1)σ′τ − 1− 2θb1λ1,

G2 = (1− λ1)σ′τ − 1 + 2b2λ1.
(2.23)

Note that the right-hand sides of the equations (2.22) depend on σ which is treated
now as an unknown function. To complete the system we have to use the last
equality in the system (2.17) - (2.19). Let us simplify it. Firstly we note that the
equalities (2.20) and (2.22) allow to rewrite the expression for W defined in (2.15)
in the following form:

W = (β1σ + θλ2)FG1 − θ2λ2FG2 − θ(b1 + b2)λ2.

Simple algebraic manipulations lead to

W

F
= L

dσ

dτ
− β1σ − 2

(
b1λ̄2 + θb2λ2

)
, (2.24)

where

L = β1σ + θλ2 − λ̄2. (2.25)

Similar transformations of the right-hand side of (2.19) and (2.24) allow us to
rewrite the second order equation (2.19) as the desired system of the first order
autonomous equations

dσ

dτ
= Q,

dW

dτ
= P, (2.26)

where

Q =
1
L

{W
F

+ β1σ + 2(b1λ̄2 + θb2λ2)
}
, (2.27)

P =
Fβ1

2

{
(1− θλ2

1)Q
2 − 2[1− λ1(b2 − θb1)]Q+ 1− 2λ1(θb21 + b22)

}
− β1

ν2

(
λ1 +

B∆

2β1β2

)
.

(2.28)

Let us define additional conditions for the system (2.26). The first assumption in
(2.2) and (2.3) imply that σ → τ as τ → −∞. Next, the equality (2.24) implies
that W → 0 for such τ . Therefore we obtain the “initial” condition

σ

τ
→ 1, W → 0 as τ → −∞. (2.29)

The second assumption in (2.2) and (2.3), (2.24) imply that σ and W need to have
the same limiting values as τ → ∞. Thus, the fulfillment of our assumptions is
equivalent to the existence of a trajectory γs =

(
σ = σs(τ),W = Ws(τ)

)
which

satisfies the condition (2.29) and

σs
τ
→ 1, Ws → 0 as τ →∞.
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3. Analysis of the basic dynamical system

Passing to the variables τ ′ = β1τ , σ′ = β1σ and omitting primes, we rewrite the
system (2.26) in the same form but with the simpler right-hand sides:

Q =
1
L

{W
F

+ σ + 2(b1λ̄2 + θb2λ2)
}
, (3.1)

P =
F
2

{
(1− θλ2

1)Q
2 − 2[1− λ1(b2 − θb1)]Q+ 1− 2λ1(θb21 + b22)

}
− 1
ν2

(
λ1 +

B∆

2β1β2

)
.

(3.2)

Here L, F , and the convolutions have the form (2.23), (2.25), (2.5), (2.9), (2.10)
but with arguments as if β1 = 1. For example,

L = σ − λ̄2 + θλ2, λ1 =
1
a2

∫ ∞

−∞
ω0(η)ω0(θη + σ)dη.

Let us perform a more detailed analysis with description of the convolutions’
properties (for a sketch of the proof see Appendix).

Lemma 3.1. Under the assumption of Lemma 2.1 the following relations hold:

λ1(−σ) = λ1(σ) > 0, λ1(σ) = λ0
1 +O(σ2) as σ → 0,

signσλ2(σ) = −1, signσλ̄2(σ) = 1,

λ2(−σ) = −λ2(σ), λ̄2(−σ) = −λ̄2(σ),

λ2(σ) = σλ1
2 +O(σ3), λ̄2(σ) = σλ̄1

2 +O(σ3) as σ → 0,

B∆(−σ) = B∆(σ), B∆(σ) = B0
∆ +O(σ2) as σ → 0,

where λ0
1 := λ1(0), B0

∆ := B∆(0),

λ1
2 :=

1
a2

∫ ∞

−∞
ηω0(η)

dω0(z)
dz

∣∣∣
z=θη

dη < 0,

λ̄1
2 := − 1

a2θ

∫ ∞

−∞
ηω0(η)

dω0(z)
dz

∣∣∣
z=η/θ

dη > 0.

These properties and the formulas (2.23), (2.25), (3.1), (3.2) imply the following
statements:

Corollary 3.2. System (2.26) is invariant with respect to change of variables τ →
−τ , σ → −σ, W → −W .

Corollary 3.3. Under the assumptions of Lemma 2.1

L|σ=0 = 0 (3.3)

and the following estimates hold, uniformly in σ,

(1 + θ)−1 ≤ F ≤
(
1 + θ − 2θλ0

1

)−1
:= F0 ≤ (1−

√
θ)−2. (3.4)

Equality (3.3) shows that the system (2.26), (3.1), (3.2) has a singularity at the
line (0,W ) on (σ,W )-plane. We will assume that this singularity is of the type 1/σ
and that there are not other points of singularity. Therefore we set the additional
assumption
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(E1) Let the function F and the number θ = β1/β2 be such that

L(σ) > 0 for σ > 0, L1 :=
dL

dσ

∣∣∣
σ=0

> 0.

Let us note that the last condition implies in particular the inequality

θ 6= 1 (3.5)

since
L1|θ=1 = {1− λ̄1

2 + θλ1
2}|θ=1 = 0.

Conversely, under the condition (3.5) the estimates (3.4) guarantee that F ≤ const
uniformly in σ. Thus the singularity of Q is of the type 1/σ. In fact, for θ = 1 the
singularities of Q and P are of the type 1/σ again. However, this case needs to be
considered separately and here we assume the fulfilment of the condition (3.5).

The next remark is such that Assumption (E1) is verifiable for any specific non-
linearity F and for any number θ defined in initial data. Moreover, this assumption
is realizable. We will present some examples in Conclusion.

Let us investigate when a trajectory would be able to pass from the left half-plane
to the right one. Obviously, it can occur only through the point (0, 0).

Let us consider a sufficiently small neighborhood of the origin of coordinates.
Lemma 3.1 implies that the dynamical system has the following representation for
|σ| � 1:

dσ

dτ
=

1
L1

{ 1
F0

W

σ
+ 1 + 2

(
b1λ̄

1
2 + θb2λ

1
2

) }
+O

(
σ2 + |σW |

)
, (3.6)

dW

dτ
=
F0

2

{(
1− θλ0

1
2)(dσ

dτ

)2 − 2
(
1− λ0

1(b2 − θb1)
)dσ
dτ

+R
}

+O(σ2),

where

R = 1− 2λ0
1

(
b22 + θb21

)
− 2
ν2F0

(
λ0

1 +
B0

∆

2β1β2

)
. (3.7)

Next, the system (3.6) can be easily transformed into

L1
d2

dτ2
(σ2) =

(
1− θλ0

1
2
) (dσ

dτ

)2 + 2N
dσ

dτ
+R+O

(
σ2

(∣∣dσ
dτ

∣∣ +
∣∣dW
dτ

∣∣))
, (3.8)

W = F0 σ
{
L1
dσ

dτ
− 1− 2

(
b1λ̄

1
2 + θb2λ

1
2

) }
+O

(
|σ3|+ σ2|W |

)
, (3.9)

where
N = (λ0

1 + 2θλ1
2)(b2 + θb1). (3.10)

Applying the Cauchy-Kovalevskaya method and taking into account the oddness of
σ = σ(τ), we write:

σ = a1τ + a3τ
3 + . . . (3.11)

with arbitrary coefficients ai. Then (3.8) and simple algebra imply the following
equations:

Ma2
1 − 2Na1 −R = 0, (3.12)

{(M + 2nL1)a1 −N} a2n+1 = f2n+1(a1, . . . , a2n−1), n ≥ 1, (3.13)

where
M = 2L1 − (1− θλ0

1
2
). (3.14)

If M 6= 0, for a1 we obtain two roots

a±1 =
1
M

(
N ±

√
N2 +MR

)
. (3.15)
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Consequently, the function σ(τ) has the representation (3.11) only under the con-
ditions

N2 +MR ≥ 0 and (M + 2nL0
1)a

±
1 −N 6= 0 for all n = 1, 2, . . . . (3.16)

However, M can be arbitrary (including the case M = 0 since θλ0
1
2
< 1 for θ < 1

and θλ0
1
2
> 1 for θ > 1) and we have to investigate all the possible situations. Let

M > 0. Then
a−1 < 0, a+

1 > 0, and Ma−1 < N < Ma+
1 .

Let R > 0. Then both conditions (3.16) are fulfilled since

(M + 2nL0
1)a

+
1 −N > 2nL0

1a
+
1 > 0 and (M + 2nL0

1)a
−
1 −N < 2nL0

1a
−
1 < 0.

Next, if R < 0, then we need to assume the fulfillment of the first condition (3.16).
Furthermore, the second condition (3.16) can be easily transformed into the follow-
ing form:

N 6=
√
N2 +MR (1 + qn) for all n = 1, 2, . . . , (3.17)

where the numbers qn,

qn :=
M

2nL1
=

1
n

(
1− 1− θλ0

1
2

2L1

)
,

are positive here. Obviously, for M > 0 and R < 0 both of the roots a±1 are positive.
It is clear that if R = 0 then there exists a+

1 > 0 if and only if N > 0.
Considering in the same way the case M < 0 we obtain the condition:

(E2) Let M 6= 0. Moreover, let the function F and the velocities Vi be such that
the one of the following assumptions holds:

(E2a) M > 0 and R > 0,
(E2b) M > 0, R < 0 with

N2 +MR ≥ 0. (3.18)

Moreover, let N > 0 under the assumption (3.17),
(E2c) M > 0, R = 0 and N > 0 under the assumption (3.17),
(E2d) M < 0, R < 0 and the inequality (3.17) is satisfied,
(E2e) M < 0 and R > 0. Moreover, let N < 0 and the assumptions (3.17),

(3.18) are satisfied,
(E2f) M < 0, R = 0, N < 0, and 1− θλ0

1
2 6= 2L1(1 + 2n) for n = 1, 2, . . . .

Remark. Theoretically, there exists also a specific case when M = 0. However,
we will not consider it.

Calculating the W -coordinates of the trajectories in the form similar to (3.11),
that is

W = w1τ + w3τ
3 + . . . , (3.19)

we pass to the following statement.

Lemma 3.4. Let Assumptions (A)-(E2) be satisfied. Then there exists at least one
trajectory γs = {(σ = σs(τ),W = Ws(τ))} of the system (2.26), (3.1), (3.2) which
goes from the left half-plane (W,σ) to the right one when τ grows from −τ0 to τ0
for sufficiently small τ0.
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Consider now thin domains where

|W | ∼ 1, |σ| � 1. (3.20)

Relation (3.9) shows that in the case (3.20) σσ′τ = W/L1F0+O(σ) = O(1), whereas
σ′τ = O(1/σ). Thus, conserving in (3.8) the leading terms O(1/σ2) only, we obtain
the following model equation:

σ
d2σ

dτ2
+ r

(dσ
dτ

)2 = 0, (3.21)

where r = M/2L1. The solution of (3.21) and the function W = L1F0σσ
′
τ have

the form

σ = σ0

{
1 +

W0

ασ2
0

(τ − τ0)
}1/κ

, W = W0

{
1 +

W0

ασ2
0

(τ − τ0)
}2/κ−1

, (3.22)

where κ = 1 + r, α = F0L1/κ, W0 = W |τ=τ0 = O(1), |σ0| =
∣∣σ|τ=τ0∣∣ � 1.

For M > 0 we have κ ∈ (1, 2). It is clear that for W0 > 0 functions (3.22)
exist for any τ ≥ τ0 and they grow with τ . Conversely, for W0 < 0 these functions
vanish.

For M < 0 the behavior of the solution (3.22) is more complicated. If κ ∈
(1/2, 1), both of the coordinates vanish when the arguments in the braces vanish.
If κ ∈ (0, 1/2), the σ-coordinate vanishes and the W -coordinate grows when the
arguments in the braces vanish and for κ < 0 both of the coordinates vanish. In
the case r = −1 the behavior of the trajectories is described by the formulas

σ = σ0 e
W0

α1σ2
0
(τ−τ0)

, W = W0 e
2

W0
α1σ2

0
(τ−τ0)

,

where α1 = F0L1 > 0.
It should be noted also that the first assumption (3.20) is very important since

the above analysis does not hold in the case |W | � 1.
The next step in the analysis is the consideration of system (2.26), (3.1), (3.2)

for σ → ±∞. Since the convolutions vanish as σ → ±∞, we have

Q = 1 + (1 + θ)
W

σ
+O

( 1
σ2

(
1 +

W

σ

))
, P =

1
2(1 + θ)

(Q− 1)2 +O
( 1
σ2

)
. (3.23)

Thus, solving the system (2.26), (3.23) in the leading term for large |σ|, we obtain
the solution

σ =
1 + θ

2
W 2

c−W
, c = W0

(
1 +

1 + θ

2
W0

σ0

)
, (3.24)

where W0 = W |σ=σ0 . Therefore, W = c+O(1/|σ|) as |σ| � 1. Moreover,

W = c− 1 + θ

2τ
+O

(
1/|τ |2

)
.

The last formulas imply the stabilization of the W-coordinate of any trajectory
for τ → ±∞, if |W0| = |W (τ0)| is bounded by a constant and |σ0| = |σ(τ0)| is
sufficiently large.

The last step of the analysis of system (2.26), (3.1), (3.2) is the consideration of
the isoclines. The isocline γQ = {(σ,W ), Q(σ,W ) = 0} is the curve

WQ = −F
(
σ + 2(b1λ̄2 + θb2λ2)

)
,
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which turns into the line W∞
Q = −σ/(1+θ) for sufficiently large |σ|. We stress that

the curve WQ = WQ(σ) intersects the trajectory γs at the origin since{dWs

dσ
− dWQ

dσ

}∣∣∣
σ=0

= F0L1a1 > 0, (3.25)

where Ws denotes γs as the function Ws(σ).
To find the isocline γP = {(σ,W ), P (σ,W ) = 0} we need to solve firstly the

equation (
1− θλ2

1

)
Q2 − 2D1Q+D2 = 0, (3.26)

where

D1 = 1− λ1(b2 − θb1), D2 = 1− 2λ1(b22 + θb21)−
2

ν2F

(
λ1 +

B∆

2β1β2

)
.

Denote by Q±(σ) the roots of the equation (3.26). Then we obtain the following
expressions for the branches W±

P = W±
P (σ) of the isocline γP

W±
P = F

(
LQ±(σ)− σ − 2(b1λ̄2 + θb2λ2)

)
.

For sufficiently large |σ| the equation (3.26) has the unique root Q+ = Q− = 1.
Therefore γP turns into the line {(σ, 0)} as σ → ±∞. Furthermore, since λ1 → 0
as |σ| → ∞, for sufficiently large |σ| we can transform the discriminant DP of the
equation (3.26) as follows

DP =
1 + θ

ν2

{
2λ1(1 + V1V2) +

B∆

β1β2

}
+O(λ2

1).

An asymptotic analysis of the convolutions implies the following statement (for a
sketch of the proof see Appendix).

Lemma 3.5. Under Assumptions (A)-(D), DP → +0 as |σ| → ∞.

Then, we obtain the following result.

Corollary 3.6. The isocline γP consists on two branches W±
P which are defined

at least for sufficiently large |σ| and stick together as |σ| → ∞. If DP ≥ 0 for all
σ ∈ R, then the branches W±

P pass through the point (0, 0).

Let us assume now that (3.24) has real roots near the origin. Then{dW±
P

dσ
− dWQ

dσ

}∣∣∣
σ=0

= F0L1Q
0
±. (3.27)

Formulas (3.25), (3.26) show that, depending on the initial velocities Vi, there can
be realized one of the following possibilities:
(i) if Q− < Q+ < 0, then the curves γ±P and γQ have two intersection points for
σ > 0. Therefore, the phase portrait contains five singular points,
(ii) if Q− < 0, Q+ > 0, then the curves γ−P and γQ have one intersection point for
σ > 0. Therefore, the phase portrait contains three singular points, and
(iii) if Q+ ≥ Q− > 0, then the curves γ±P and γQ have not intersection points for
σ > 0. Thus, the phase portrait contains the unique singular point (0, 0). Let
us note that the second possibility is realized for R < 0, whereas the others are
realized for R > 0 and D1|σ=0 > 0 or D1|σ=0 < 0 respectively.

Furthermore, the equality (3.24) shows that the W -coordinate of trajectories
grows with σ with the rate not more than σ, whereas the convolutions vanish with
the rate not less then 1/σ2. Therefore, all trajectories, which started near the
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origin, stabilize with bounded W -coordinate as σ → ±∞. However, concerning
the desired trajectory γs, there is not any reason to assume that Ws(τ) → 0 as
τ → ±∞ As a result of this analysis we obtain the following statement.

Lemma 3.7. Let Assumptions (A)-(E2) hold. Then the dynamical system (2.26),
(3.1), (3.2) has at least one trajectory γs which lies in a strip {σ ∈ R1, |W | ≤ const}
and goes from (−W∞

s ,−∞) to (W∞
s ,+∞) through the point (0, 0).

0
2 4 6 8 10 12
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fI

Figure 1. The phase portrait of the basic dynamical system for
the case of three singular points. The curve I is the separatrix,
which joins the saddle point with the origin. Arrows show the
direction of motion along the trajectories.

The phase portrait of the basic dynamical system (2.26), (3.1), (3.2) is shown
on Fig. 1. More in detail, Fig. 1 presents results of numerical simulations for
the sine-Gordon equation (3) in the case V1 = −

√
3/2, and V2 =

√
15/4. Since

R < 0 for such velocities, there appear two additional saddle points (approximately
(σ∗±,W

∗
±) = (±1.19,∓0.84)). Respectively, there appear separatrixes which join the

saddle points with the origin. For the scale which has been used, the trajectories
γ±s = (W±

s , σ
±
s ) coincide with the σ-axis. That is why we show the behavior of

these curves at the additional picture Fig.2. More in detail, the trajectories γ−s and
γ+
s are situated in the regions bounded by the curves 1, 2 and 3, 4 respectively.

12

0.12
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Figure 2. Trajectories γ±s

Let us apply now the obtained results for calculations of the phase shifts φi1.
Passing to ±∞ along one of the trajectories γ±s and using the formulas (2.22),
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(2.23), (2.26), (3.1) we obtain that

dφ11

dτ
= −1

θ

dφ21

dτ
= −W

∞
s

σs
as |τ | � 1.

Let W∞
s 6= 0. Since σs(τ) = τ + O(1) for such τ , this implies a logarithm-type

behavior of φi1 as τ → ±∞. Obviously, we obtain a contradiction with the second
assumption (2.2). On the other hand, the leading term (2.1) of the asymptotic
solution does not contain any free parameter to change the value of W∞

s . Thus, we
need to change the anzatz.

4. Influence of arbitrary small perturbations. Completion of the
asymptotic solution construction

To simplify formulas, in what follows we will write again τ and σ instead of β1τ
and β1σ.

As it has been written in Introduction, the main idea of the anzatz correction is
to rotate the phase trajectories near the origin with the aim to change the limiting
value W∞

s . To this end we add to the leading term (2.1) some small, localized
near the origin, corrections. For definiteness, let the trajectory γs = {W = Ws(σ)}
defined from the basic dynamical system be such that dWs/dσ|σ→−∞ > 0. Then
we need to rotate γs in the clockwise direction.

The main result of this section is the following lemma.

Lemma 4.1. Under the assumptions of Lemma 3.7 there exist such corrections of
the leading term (2.1) that both of the conditions (2.2) are fulfilled.

Proof. We look for the asymptotic solution in the following form:

u =
2∑
i=1

{
ω
(
Siβi

x− Φi(t, τ, ε)
ε

)
+

Ai√
a′2
U

(
Siµβi

x− Φi(t, τ, ε)
ε

)}
. (4.1)

Here the functions ω, Φi, and notation τ , σ, Si are the same as in (2.1), Ai =
Ai(βiτ), where Ai(z) ∈ C∞ are exponentially vanishing as |z| → ∞ functions, µ is
a sufficiently small parameter, ε < µ < 1, and

U(η) =
dmU0(η)
dηm

, a′2 =
1
a2

∫ ∞

−∞

(
U(η)

)2
dη,

where m ≥ 1 is an arbitrary number and U0(η) ∈ C∞ is a sufficiently fast vanishing
function as η →∞. Moreover, we will assume that U(η) is an odd function.

In the C-sense the function U is of the value O(1). However, it is arbitrary small
in D′ sense:∫ ∞

−∞
U

(
µβ

x− Φ
ε

)
ψ(x)dx =

(
− ε

µβ

)m ∫ ∞

−∞
U0

(
µβ

x− Φ
ε

)dmψ(x)
dxm

dx = O
(( ε
µ

)m)
.

To prove the lemma we need to construct the asymptotic solution again. However
we run here into technical obstacles calculating the terms of relation (1.6) for anzatz
(4.1), since the leading term of asymptotic expansions becomes extremely huge. In
particular, the simplest expression (εux)2 contains now 10 terms. For this reason
we will present all the terms with the precision OD′(ε2 + εµ) only.

To calculate the terms of the equation (1.6) we take into account the relations:
ω0iUi ∼ ω0iU

′
i = OD′(ε2) whereas ω0iUj ∼ ω0iU

′
j = OD′(ε) and UiUj ∼ UiU

′
j =

OD′(εµ−1) for i 6= j.
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It is easy to verify that the expression (εux)2 has the same mod OD′(εµ) form
as in (2.8) whereas

2F (u) = εa2

{ 2∑
i=1

1
βi
δ(x− Φi) +

1
β2
B∆A δ(x− x∗)

}
, B∆A =

1
µ

(B + µB∆),

where B∆ has been defined in (2.10) and

B =
2
a2

∫ ∞

−∞

{
F

(
ω
( θ
µ
η + σ

)
− ω(

η

µ
) +

A1√
a′2
U(θη + µσ)− A2√

a′2
U(η)

)
− F

(
ω
( θ
µ
η + σ

)
− ω(

η

µ
)
)}
dη.

Furthermore,

(εut)2 = (εut)2|Ai=0 + a2ν
2 ε

µ

{ 2∑
i=1

βiA
′
i
2 − 2β1A

′
1A

′
2Λ1

}
(1 +O(µ))δ(x− x∗),

∂

∂t

(
ε2utux

)
= −a2ν

2 dK2A

dτ
δ(x− x∗) + εa2ν

2 d

dτ

( 2∑
i=1

βibiφi1 +WA

)
δ′(x− x∗)

+ εa2ν
2

2∑
i=1

βib
2
i δ
′(x− Φi) +OD′(ε2),

where A′i = dAi(z)/dz|z=βiτ/β1 , K2A = K2 + r0,

WA = χ2K2A +W − χ2K2 +
r1
µ

+ r11 − r2
2∑
i=1

Φit,

the functions K2 and W are defined in (2.15),

r0 = A′2(Λ01 +A1Λ3) +A′1(Λ02 +A2Λ4), r11 = θ(A′2Λ̄01 +A′1Λ̄02)− α
2∑
i=1

A′i,

r1 = θ(A1A
′
2Λ̄3 +A2A

′
1Λ̄4) +

1
2

2∑
i=1

AiA
′
i, r2 = a3θA1A2Λ̄2.

Here and in what follows we use the notation

Λ1 =
1

a2a′2

∫ ∞

−∞
U(η)U(θη + µσ)dη, Λ3 =

1
a2a′2

∫ ∞

−∞
U(η)U ′(θη + µσ)dη,

Λ4 =
1

a2a′2

∫ ∞

−∞
U ′(η)U(θη + µσ)dη, Λ̄2 =

1
a2a′2a3

∫ ∞

−∞
ηU ′(η)U ′

(
θη + µσ

)
dη,

Λ01 =
1

a2

√
a′2a3

∫ ∞

−∞
ω0(θη + σ)U(µη)dη,

Λ02 =
1

a2

√
a′2

∫ ∞

−∞
ω0(η)U

(
µ(θη + σ)

)
dη,

a3 =
1

a2a′2

∫ ∞

−∞

(
U ′(η)

)2
dη, α =

1
a2

√
a′2

∫ ∞

−∞
ηω0(η)U(µη)dη,

and Λ̄3, Λ̄4, Λ̄0i denotes the convolution similar to Λ3, Λ4, Λ0i respectively but
with the additional factor η in the integrand (like in λj , λ̄j).
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Substituting these asymptotic into (1.6) we obtain the relations (2.17) and the
following analog of the equations (2.22), (2.26):

dφ11

dτ
= −FG1A,

dφ21

dτ
= θFG2A, (4.2)

dσ

dτ
= QA,

dW

dτ
= PA, (4.3)

where G1A = G1 + θr0, G2A = G2 − r0, LA = L+ (1− θ)r2,

QA =
1
LA

{W + r1
F

+ σ + 2(b1λ̄2 + θb2λ2)− θr0(σ + 2θλ2)− 2r2(b2 + θb1 − θr0)
}
,

PA =
F
2

{
(1− θλ2

1)Q
2
A − 2l1QA + l0

}
+

1
2µ

{
A′1

2 +
1
θ
A′2

2 − 2A′1A
′
2Λ1

}
− 1
ν2

(
λ1 +

B∆A

2β1β2

)
,

and

l1 = 1− λ1(b2 − θb1) + (1− θλ1)A′2Λ01 − θ(1− θλ1)A′1Λ02,

l0 = 1− 2λ1(θb21 + b22) + θr20 + (b2 + θb1 − θr0)(A′2Λ01 +A′1Λ02).

Let us choose the sign of the coefficients Ai. Denote by z0 the first positive root of
the equation Λ2(z)|µ=1 = 0 and let τ0 be such that σ(τ0) = z0/µ. Suppose

(1− θ)A1(τ)A2(τ)Λ̄2(σ(τ)) > 0 for 0 < τ < τ0. (4.4)

Since τ = O(σ) for |σ| � 1 and Ai vanish with an exponential rate, r2 = O(µ∞)
for τ ≥ τ0. Thus, under the assumption (E1), LA > 0 for σ > 0 and L′A :=
dLA/dσ|τ=σ=0 > 0.

Under the additional assumption

A′i(0) = 0, i = 1, 2, (4.5)

there exist isoclines γQ, γP which pass through the point (0, 0).
The last step is the construction of the trajectory γs. For small |σ| we obtain

again the equation similar to (3.12), that is

MAa
2
1 −NAa1 −RA = 0, (4.6)

where MA and NA coincide mod O(µ) with M and N (3.14), (3.10), and with the
following RA:

RA = R− 2θ
µF0

(ζA + ζB).

Here

ζA =
{
A1A

′′
2 Λ̄3 +A′′1A2Λ̄4 +

1
2

2∑
i=1

AiA
′′
i

}∣∣
τ=σ=0

, ζB =
B

ν2β2

∣∣∣
σ=0

.

The choice of the amplitudes Ai(τ) depends on the sign of the coefficient M in
(3.12). Let M > 0. Obviously, the assumption ζA + ζB < 0 implies the existence
of the real solution

a1 =
1
√
µ

(√
2θ
MF0

|ζA + ζB |+O(
√
µ)

)
.

of (4.6). Moreover, condition (3.16) is satisfied now automatically for any n.
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Finally, the second equation in (4.3) allows to define the W -coordinate of the
trajectory γs. Simple algebra implies the following formula for the leading term of
the expansion (3.19):

w1 = − θ

µM

{(
M + (1− θλ0

1
2
)
)
ζB + (1− θλ0

1
2
)ζA +O(

√
µ)

}
.

Obviously, w1 will be negative under some special choice of ζA, ζB only. Since
there appears a second assumption for the second order derivatives of Ai, we need
to summarize both of them:

ζB < |ζA| < q ζB , where q =
M + 1− θλ0

1
2

1− θλ0
1
2 . (4.7)

Note that the inequality M > 0 implies that q > 1. Thus, the fulfilment of the
conditions (4.4), (4.5), and (4.7) is obvious. Therefore, the derivative

dWs

dσ

∣∣∣
σ=0

=
w1

a1
:= − 1

√
µ
f (A1(0), A2(0)) , f > 0,

may be of arbitrary value. The variation of the amplitudes Ai(0) and of the param-
eter µ implies the variation of the limiting value W∞

s := limσ→±∞Ws(σ) from the
positive number W∞

s |Ai(0)=0 to any negative number. This and the structure of
the phase portrait imply the existence of such values of Ai(0) and µ that W∞

s = 0.
Let M < 0. Then the assumption ζA + ζB > 0 implies the existence of the real

solution

a1 =
1
√
µ

(√
2θ

|M |F0
(ζA + ζB) +O(

√
µ)

)
.

of (4.6). Therefore,

w1 = − θ

µq1

{(
(q1 − 1)ζB − ζA

)
+O(

√
µ)

}
,

where

q1 =
|M |

1− θλ0
1
2 > 0.

Thus, instead of (4.7) we obtain the following assumption

−ζB < ζA < (q1 − 1)ζB . (4.8)

Since q1 > 0, the fulfilment of the conditions (4.4), (4.5), and (4.8) is obvious.
Consequently, there exist such values of Ai(0) and µ that W∞

s = 0.
It remains to consider the limiting values of φi1. Let us choose σ = σs(τ) and

W = Ws(τ). Then |W/σ| = o(1/|τ |) as τ → ±∞. Next, let M < 0. Then,
integrating the equations of the form (4.2), we obtain that φ∞i1 are bounded by a
constant for any choice of the parameter µ ∈ [0, 1). Let M > 0. Then the right-
hand sides of the equalities (4.2) contain the terms of the type A1(τ)A′2(τ/θ)Λ3(µσ).
However, Ai vanish as τ → ±∞ with an exponential rate. Hence the integral of
this term is bounded by a constant uniformly in µ ≥ 0. This implies the fulfilment
of Assumption (2.2) and completes the proof of Lemma 4.1. �

Consequently we obtain our main result.
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Theorem 4.2. Let the assumptions (A)-(E2) hold. Then the kink and antikink
preserve mod OD′(ε2) their form after the interaction. The weak asymptotic so-
lution of (1.1), (1.9) has the form (4.1) with the special choice of the amplitudes
Ai and of the parameter µ.

Finally we would like to present a result which shows that our definition of weak
solutions for (1.1), (1.9) is equivalent to the fulfilment of the conservation law

d

dt

∫ ∞

−∞
utuxdx = 0 (4.9)

and of the energy relation

2
d

dt

∫ ∞

−∞
xε2utuxdx+

∫ ∞

−∞

{
(εut)2 + (εux)2 − 2F (u)

}
dx = 0. (4.10)

Theorem 4.3. Let the assumptions of Theorem 4.2 hold. Then the function (4.1)
is the weak asymptotic mod OD′(ε2) solution of (1.1), (1.9) if and only if relations
(4.9), (4.10) are fulfilled.

To prove this statement it is sufficient to substitute the anzatz (4.1) into the
balance laws (4.9) and (4.10). For more detail see Appendix.

5. Conclusion

The shape of the kink-type solution (1.2) of the semilinear wave (1.1) is similar
to a smoothed shock wave. However, these waves have distinct properties. In par-
ticular, we can choose an arbitrary anzatz constructing asymptotic [15, 16] or weak
asymptotic [3, 5, 10, 11, 12] for quasilinear parabolic equations with a small viscos-
ity, that is, the shock wave regularization. Indeed, the resulting wave front motion
does not depend on the type of regularization. Conversely, kink-type asymptotic
solutions require special (in the leading term) anzatz related with the nonlinear-
ity. It becomes clear if we consider the simplest problem of a weak asymptotic for
solitary kink motion. Indeed, writing

u = ω
(
β
x− V t
ε

)
, ω(η) → 0 as η → −∞, ω(η) → 1 as η → +∞

and using Definition 1.1 we obtain the relation

β2(1− V 2) = 2
∫ ∞

−∞
F (ω

(
η)

)
dη

/ ∫ ∞

−∞

(
ω0(η)

)2
dη.

Obviously, we obtain a coincidence with the exact solitary wave solution only for
special anzatz ω(η) which satisfies the Newton equation

dω

dη
=

√
2F (ω(η)). (5.1)

The same situation holds for the problem of soliton interaction for the KdV-type
equation (with the nonlinearity un, n ≥ 2) [5, 6]. At the same time, to describe the
soliton collision for the KdV-type equation it is enough to present the asymptotic
solution as the sum of two distorted solitons [5, 6]. The same is true for quasilinear
parabolic equations with a small viscosity, that is, to describe the shock wave
interaction we simply write two distorted shock-wave regularizations [3, 5, 10, 11,
12]. On the contrary, for the sine-Gordon-type (1.1) we need to add some special
corrections to the sum of the distorted kinks/antikinks. We guess that the sense
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of this difference is the following. It is clear that the shape of the sum of the
distorted kinks/antikinks is very far from the shape of the real two-kinks solution
during the time of interaction. The sine-Gordon equation is more sensitive as others
and it requires to approximate the real solution better as simply the sum of kinks.
However, this is nothing more than a speculative hypothesis.

Let us come back to Assumptions (E1), (E2). They are very complicated and
we need to verify their realizability at least by examples.

Example 5.1. Let θ = 1 + κ, 0 < |κ| � 1. Then for sufficiently small 0 < σ � 1

L =
σ

2
(3c0 − 1)κ2(1 +O(κ)), c0 =

1
a2

∫ ∞

−∞

(
ηω′0(η)

)2
dη.

Thus, to satisfy the second assumption (E1) we need to assume

3c0 > 1. (5.2)

Furthermore, for bounded σ positive,

L = σ
(
1− θλ1(σ, θ)

)
+ θ(1− θ)λ2(σ, θ)

= σ
(
1− λ1(σ, 1)

)
− κ

{
σ

∫ ∞

−∞
ω0(η)ω′0(η + σ)dη

+
σ

2

∫ ∞

−∞
ω0(η +

σ

2
)ω0(η −

σ

2
)dη

}
(1 +O(|κ|))

≥ σ
(
1− λ1(σ, 1)

)
− const|κ|σ(1 +O(|κ|)) > 0

(5.3)

for sufficiently small |κ|.
To check the fulfilment of the condition E2 we need to take into account the

direction of the wave movement. Let the waves move with almost the same velocities
in opposite direction, that is V1 = −v − α, V2 = v, where v ∈ (0, 1) is a constant
and |α| � 1. Then with the accuracy O(|α|3)

R = −
( α

2v(1− v2)

)2

, M =
v2(8c0 − 3)
4(1− v2)2

α2, N =
4c0 − 1

4(1− v2)2
α2. (5.4)

Obviously, one of the assumptions (E2b), (E2d) is fulfilled for any c0 6= 3/8 and the
roots of the equation (3.12) are: a+

1 = 1/v2, a−1 = 1/
(
v2(8c0 − 3)

)
. Let the waves

move with almost the same velocities in the same direction, that is V1 = v + α,
V2 = v, where v ∈ (0, 1) is a constant and |α| � 1. Clearly, α needs to be negative.
Then

R =
2
|α|

2− v2

1− v2
, (5.5)

whereas M is of the form (5.4). Therefore, the assumption (E2) is fulfilled if
c0 > 3/8 or c0 < 1/4 and it is failed for c0 ∈ [1/4, 3/8]. Combining this with (5.2)
we obtain the following restrictions for the nonlinearity:

c0 >
1
3
, c0 6=

3
8
, if V1V2 < 0, and c0 >

3
8
, if V1V2 > 0.

Note that c0 ≈ 0.607 > 3/8, c0 ≈ 0.5 > 3/8 for examples (1.3), and (1.4) respec-
tively. In fact, the condition (1.10) is the inequality c0 > 3/8 rewritten in terms of
F (ω(η)).
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Example 5.2 (Counterexample). Here and in what follows we assume that the
number k in condition (B) is equal to 1 which implies an exponential rate of ω0

vanishing.
Let θ � 1. Since βi > 1, this requires 1 − V 2

2 � 1, whereas β1 is a constant.
Let, for definiteness, V2 > 0. To check the assumption (E1) it is sufficient to use
the obvious estimates |λi| ≤ 1/

√
θ, i = 1, 2, and choose θ to be small enough.

After some simple calculations we obtain the relations:

λ0
1 = ζ +O(θ), λ1

2 = c1θ
ω′′0 (0)
a2

+O(θ3), ζ :=
ω0(0)
a2

, c1 =
1
a2

∫ ∞

−∞
η2ω0(η)dη.

(5.6)
Therefore, L1 = 1+O(θ) = M , N = b2ζ+O(θ), R = 1− ζ 4

ν2 +O(θ), which implies

N2 +MR = 1− ζ 3
ν2

+O(θ).

Respectively, to satisfy the condition (E2) we need to assume:√
F

(1
2

)
< (1− V1)2

√
2

3

∫ ∞

−∞
F

(
ω(η)

)
dη. (5.7)

Since ∫ ∞

−∞
F

(
ω(η)

)
dη ≤ 1√

2

√
F

(1
2

)
,

there appears the restriction −V1 >
√

3− 1 for any nonlinearity.
We see again that the restriction for the nonlinearity depends not only on the

value of θ, but also on the sign of the velocity V1. Moreover, for the examples (1.3)
and (1.4) F (1/2) = 1/2π2, a2 = 2/π2 and F (1/2) = 1, a2 = 2

√
2 respectively.

Thus, the inequality (5.7) is violated always for these examples.

Example 5.3 (Counterexample). Let θ � 1 which requires V1 = −1+α, 0 < α�
1, whereas β2 is a constant. To verify the condition (E1) we use the equalities:

θλ1(σ, θ) = λ1

(
− σ

θ
,
1
θ

)
, θ2λ2(σ, θ) =

1
a2

∫ ∞

−∞
η ω0

(η
θ

)
ω0(η + σ)dη := λ̃2(σ, θ).

(5.8)
It is easy to check that −σθλ1(σ, θ) − λ̃2(σ, θ) = O(1/θ2) for bounded σ. Thus
L = σ+O(1/σ) for bounded σ, which implies the fulfilment of the assumption (E1)
for sufficiently large θ. Next we use the asymptotic expansion

λ0
1 = ζ +O

(1
θ

)
, λ1

2 = O
( 1
θ5

)
,

where ζ is the same as in (5.6). Then

L1 = 1−ζ+O
(1
θ

)
, N = ζ

b2
θ

+O(1), M = 1−2ζ+O
(1
θ

)
, R = 1−ζ 4

ν2
+O

(1
θ

)
.

Consequently,

N2 +MR =
1
ν2

(
9ζ2 − 2(2 + ν2)ζ + ν2

)
.

On the other hand, ν = 1 + V2 + O(1/θ) ∈ (1, 2). Therefore N2 + MR < 0 and
Assumption (E2) is violated always for large θ.
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Finally we recall that the assumptions of Theorem 4.2 are sufficient ones only.
When the conditions (E1), (E2) are violated we should have to look for the as-
ymptotic solution in the form (4.1) again. However, in this case we should have
to analyze the corresponding dynamical system in detail over the complete (σ,W )
plane. Obviously, this investigation is much more complicated.

6. Appendix

Proof of Lemma 2.1. Existence of the convolutions is obvious, since ω0 vanishes
with the rate not less as 1/η2. Next, when k = 1 in Assumption (B), the function ω0

has an exponential rate of vanishing. Obviously, the same holds for the convolutions.
Consider the case when k = 3 and, consequently, ω0 vanishes as |η|−2. For our aim
it is enough to estimate the convolution

λ(n) =
∫ ∞

−∞
ηnω0(η)ω0(η + σ)dη for σ � 1,

where n is equal to 1 or 2. Let us rewrite λ(n) as the sum of integrals

λ(n) =
{∫ −σ/2

−∞
+

∫ ∞

−σ/2

}
ηnω0(η)ω0(η + σ)dη

To estimate the last integral we use the following obvious inequality:

|η|nω0(η + σ) ≤ Cσ−2+n |z|n

(1 + z)2

∣∣∣
z=η/σ

≤ Cσ−2+n for z ≥ −1
2
, (6.1)

where C is a constant. For the first integral we change the variable η ′ = η+ σ and
estimate it as follows:

1
n

∣∣∣ ∫ −σ/2

−∞
ηnω0(η)ω0(η + σ)dη

∣∣∣
≤

∫ σ/2

−∞
|η|nω0(η)ω0(η − σ)dη + σn

∫ σ/2

−∞
ω0(η)ω0(η − σ)dη.

Now it is clear that it is enough to use an inequality similar to (6.1) for the first
integral and the inequality ω0(σ − η) ≤ Cσ−2, η ≤ σ/2, for the second one. To
prove the last statement of the lemma it is enough to use the periodicity of F and
the equalities

ω(η) = 1 + v(η) as η → +∞, ω(η) = v(η) as η → −∞,

where v(η) is an exponentially vanishing function in the case k = 1 and |v(η)| ≤
const/|η| when k = 3. �

Proof of Lemma 3.1. Let us indicate only the proof of the relation λ2(σ) = σλ1
2 +

O(σ3). Using the Taylor formula and taking into account the evenness of ω0, we
obtain

λ2(σ) = σλ1
2 + σ3 β

3
1

6

∫ ∞

−∞
ηω0(η)ω′′′0 (θη + ξβ1σ)dη, (6.2)

where ξ ∈ [0, 1]. Let us rewrite the last integral as the following sum{∫ −1

−∞
+

∫ 1

−1

+
∫ ∞

1

}
ηω0(η)ω′′′0 (θη + ξβ1σ)dη, (6.3)
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The second integral is bounded by a constant. For the last integral we take into
account that

θη + ξβ1σ ≥ const · η for |σ| � 1

uniformly in ξ ∈ [0, 1]. Thus, η|ω′′′0 (θη + ξβ1σ)| ≤ const. This implies the con-
vergence of this integral. Similar consideration of the first integral in (6.3) implies
that the remainder in (6.2) is of the value O(σ3). This completes the proof. �

Proof of Lemma 3.5. Clearly, it is enough to consider the case when σ � 1. Let
us rewrite the convolution B∆ defined in (2.10) as the sum of two integrals, one
from −∞ to −σ/(1 + θ) and another one from −σ/(1 + θ) to ∞. For the second
integral we note that θη+ σ ≥ σ/(1 + θ) →∞ as σ →∞. Thus 1− ω(θη+ σ) � 1
and we can apply the Taylor expansion. Transforming in the same manner the
first integral and using the equality (5.1), after some manipulations we pass to the
following asymptotic expansion

B∆ =
2
a2

{
−1 + θ

2θ

(
2ω0(ξ)ω(−ξ) +

∫ ∞

ξ

ω2
0(η)dη

)
+

1
θ
λ1,1 + θλ1,2

}
+O

(
ω3

0(ξ)
)
,

(6.4)
where

ξ =
σ

1 + θ
, λ1,1 =

1
θ

∫ ξ

−∞
ω0(η)ω0

(η − σ
θ

)
dη, λ1,2 =

1
θ

∫ ∞

−ξ
ω0(η)ω0(θη + σ)dη.

Let Assumption (A) be realized for k = 1. Then ω(−ξ) ∼ ω0(ξ) vanish with an
exponential rate as ξ →∞. Therefore, the first two terms in (6.4) are of the value
O(ω2

0(ξ)). To estimate the other terms we assume firstly that θ > 1. Then for any
q > 0,∫ ξ

−qσ
ω0(η)ω0

(η − σ
θ

)
dη ≥ ω0

(1 + q

θ
σ
) ∫ ξ

−qσ
ω0(η)dη = constω0

(1 + q

θ
σ
)
. (6.5)

Choosing q < (θ − 1)/(θ + 1) we obtain the estimate

ω2
0(ξ) � λ1,1 as σ →∞.

It is obvious that the same is true for λ1,2. Consequently B∆ > 0.
If the number k is equal to 3, then ω0(η) vanishes with the rate |η|−2 as η →∞.

Thus the first two terms in (6.4) are of the value O(σ−3). On the other hand, in the
right-hand side of the inequality (6.5) we have now the estimate ω0(σ(1 + q)/θ) ∼
σ−2. Thus we conclude again that λ1,i are the leading terms of the asymptotic
expansion (6.4) and B∆ > 0.

Finally, for θ > 1 we use the equality B∆(σ, θ) = θ−1B∆(−σθ−1, θ−1) and the
symmetry (5.8). Since 1 + V1V2 > 0 for any |Vi| ∈ (0, 1), all the terms of DP

mod O(λ2
1) are positive and we compleat the proof. �

Proof of Theorem 4.3. For simplicity let us calculate the product utux for the func-
tion of the form (2.1). Integrating this expression over x and changing variables
β1(x− Φ1) = εη or β2(x− Φ2) = εη we obtain the formula∫ ∞

−∞
utuxdx = −a2

ν

ε

2∑
i=1

{βi − β1λ1}(bi + ϕ′i1) = −a2
ν

ε

(
K2 +

2∑
i=1

βibi

)
, (6.6)
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where the notation (2.5), (2.15), and (2.16) has been used. Since the right-hand
side in (6.6) is a function of argument τ only, we calculate again the time derivative
using the formula d/dt = ε−1νd/dτ .

Now it is obvious that the conservation law (4.9) is precisely the equation (2.18).
Similar but more complicated calculations show that the energy relation (4.10)
implies the equalities (2.17) and (2.19) for the anzatz (2.1). Conversely, rewriting
equations (2.17)-(2.19) in terms of ut, ux, F (u) for u of the form (2.1), we arrive to
the energy relations (4.9) and (4.10). Calculating the left-hand sides of (4.9), (4.10)
for the anzatz (4.1), we obtain again the equalities similar to (2.17) - (2.19). �
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