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Kink decay in a parametrically driven </>4 chain 
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We consider the parametrically driven discrete rjJ4 model with loss. Using an analytical approach 
and direct numerical simulations, which turn out to be in excellent agreement, we demonstrate that 
there is a range of driving parameters such that kinks cannot exist in the system. This effed may 
be understood with the help of an averaged external potential energy of the system, which has no 
double-well structure in this region. 

PACS number(s): 03.40.Kf, 42.25.-p 

I. INTRODUCTION 

The ljJ4 model has become an important subject be· 
cause of its numerous applications in condensed-matter 
physics. It describes, for example, structural phase 
transitions in ferroelectric and fel'l'omagnetic materials 
[1]-[5], topological excitatiolls in quasi-one-dimensional 
systems like biological macromolecules and hydrogen
bonded chains [6, 7], or polymers [8]-[10], etc. Its sim
plest localized solutions are the so-called kinks, which 
are related to the motion of the aforementioned topo
logical excitations, e.g., domain walls in second-order 
phase transitions [1, 2] or polymerization mismatches 
[8]. A more realistic modeling of physical situations in 
condensed-matter physics often requires the inclusion of 
perturbations of different types, like thermal noise [4] and 
time [11-13] or spatial [14] -dependent potential fluc
tuations. These perturbations lead to a modification 
of the system parameters, and, in particular, most of 
them change the shape of the double-well potential of 
the model (see, e.g., Ref. [13] fora detailed description). 

Considering fluctuations as a superposition of differ
ent harmonics with random amplitudes, it is natural to 
analyze the structural stability of kinks in such a period
ically varying, double-well potential. The purpose of this 
paper is to demonstrate that there is a range of values 
of the parameters of a parametrically driven ljJ4 model 
in which kinks cannot exist. This assertion means that 
the averaged dynamics of the wave field is described by 
a single-well potential instead of a double-well one. We 
predict kink anihilation analytically by means of an ap
proach that is similar to the well-known method of av
eraging for a pendulum motion under a high-frequency 
parametric force [15] (see also Ref. [16]). Using numer
ical simulations of the so perturbed ljJ4 model, we show 
that the kink decay due to the parametrical driving may 
be actually observed, and that there is an extremely good 
agreel11ent between our analytical predictions and numer
ical results. 

The paper is organized as follows. Section II contains 
analytical results obtained by averaging the fast oscilla
tions in the perturbed ljJ4 model. Section III presents 
results of direct numerical simulations. Section IV con
cludes the paper. 
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i:CANALYTICAL APPROACH 

We consider a discrete nonlinear chain under the in
fluence of a parametric force and damping, whose corre
sponding evolution equation is 

= a G(ljJn) coswt (1) 

where a and ware the amplitude and frequency of the 
periodic force and I is a damping coefficient. On the 
other hand, the parameter f{ accounts for the coupling 
between particles, while V(ljJn) is the external (substrate) 
potential and G( ljJn) characterizes the coupling between 
the wave field and the force. For the sake of definiteness, 
we will subsequently take 

V(4)) (2) 

and with respect to the coupling, we will let 

G(4)) ljJ. (3) 

In the absence of perturbation, Eq. (1) with the choice in 
Eq. (2) is nothing but a chain of particles with nearest
neighbor interactions, each one of them on an on-site, 
double-well potential. Substituting the ansatz ljJn ±1+ 
ljJo exp(iqnb - int) for the solution of Eq. (1), having in 
mind (2), letting a :::::: I :::::: 0, and expanding in small 
4>0, we find that small-amplitude excitations around the 
two minima ljJn :::::: ±1 are described by waves with wave 
number q and frequency n, obeying a dispersion law of 
the form 

n2 :::::: 2 + 4f{ sin2 (q;) , (4) 

which amounts to saying that eigenfrequencies lie in a 
bounded region, n~in :::; n2 

:::; n~ax' where n~in == 2, 
n~ax 2 +4f{. 

In the continuum limit, when qb ~ 1, Eq. (4) yields 
the dispersion law n2 2+I<q'2b'2, and Eqs. (1) and (2) 
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with a = , = 0 are transformed into the well known ~4 
model, . 

(5) 

where the variable x == nb is considered to be continuous. 
As is well known (see, e.g., Ref. [21), Eq. (5) has an 
exact kink solution that connects two parts of the chain 
at different minima of the potential (2), i.e., at ~n = ±l. 
The static form of the kink is given by 

~ = ± tanh ( ~), 
bv2K 

(6) 

where the signs + or - stand for the kink and antikink, 
respectively. In the discrete chain, the kink (6) may be 
considered as an approximate solution, which is stable 
due to topological properties; in such a case, the discrete 
value nb describes the positions of the particles. 

We will consider now the general expression, Eq. (1), 
without specifying any particular choice for V and G, so 
as to lose no generality at all. We will study this per
turbed system assuming that the driving frequency w is 

larger than the limit frequency Omax. To describe the 
corresponding nonlinear dynamics under the influence 
of such a parametric force, we will apply an averaging 
method analogous to the well-known one for the Kapitza 
problem, i.e., for the dynamics of a pendulum hanging 
from an oscillating suspension point (see Ref. [15]). In 
order to derive an averaged equation of motion in our 
case, we will decompose the wave field ~n into a sum of 
slow and fast varying parts, that is to say, 

(7) 

where the functions ~n(t) and en(t) describe the slow 
and fast evolutions, respectively. The function en(t) 
stands for small oscillations around the slowly varying 
field ~n(t), and the mean value of en(t) during the pe
riod 27r/w is assumed to be zero, i.e., (cPn(t») = ~n(t), 
the brackets standing for time average. Our goal is to 
derive an effective equation for the function ~n(t) that 
describes the slow ("averaged") wave field. To this end, 
we substitute Eq. (7) into Eq. (1), and expanding in en, 
which we assume to be small enough for such a purpose, 
we obtain the equation 

::i>n + in - K(~n+l - 24>n + 4>n-l~ - K(en+! - 2en + en-l) + V'(4)n) + en V"(~n) + 4e~V"'(~n) 

where we have neglected higher-order term contributions. 
The periodic driving a G( cP) cos wt looks like a para

metric force term. However, in the asymptotic parts of 
the kink (or kink tails), i.e., n values such that ~ = ±l, 
it simply acts as an external periodic force. According 
to Eq. (4), this assertion means that if the frequency lies 
outside the eigenfrequency band (Omin, Omax) (this must 
be compared with the requirement Omin < 0/2 < Omax 
for a parametric force), the periodic forcing cannot excite 
linear waves in the system. Then, it is natural to assume 
that the function en(t) is a slow function of n and write 
en(t) ~ en±l(t). 

Let us go on taking a careful look at Eq. (8). It is clear 
that it has terms of a very different nature, slow and fast 
varying ones. Hence, these different terms must verify 
the equality in Eq. (8) separately, giving rise to their 
own particular equations. In order to satisfy the rapidly 
oscillating part of Eq. (8), it is necessary to take into 
account all terms which are proportional to the rapidly 
varying function ';n (t) plus the term,..., a cos wt, which is 
also fast. As a result, the following equation must hold 
(recall again that we assume en±l ~ en; equivalently, 
there is no excitation of linear waves by the oscillating 
force) 

e~ +en V"(4)n) = a G(4)n) coswt -,e~. (9) 

In principle, the second term in the left-hand side (Ihs) of 
Eq. (9) is smaller than the first one, because e~ is propor
tional to the large value w 2 • However, assuming that the 
theory may apply to the case when w 2 > O~ax but when 

= a G(4)n) coswt + a G/(~n) en coswt -,ci>n -,en, (8) 

w is not very large, we will keep this term. Besides, we 
may also think of including in Eq. (9) higher-order terms, 
i.e., ,..., e~ and,..., aen cos wt, but these terms have an ad
ditional small multiplier ';n in comparison with those ap
pearing in Eq. (9). Moreover, they are more important 
in the equation for the slowly varying field ~n(t), where 
they contribute because (.;~) and (';n cos wt) are nonzero. 
Finally, as may be also seen from Eq. (9), there is no lim
itation for the dissipative coefficient " which may also 
be not so small. 

Now, as ~n evolves much slower than en, we can con
sider all functions of ~n as constants in time, and subse
quently write the forced solution of Eq. (9) in the form 
[15] 

en(t) __ aG(~n) () .. --;===;:===== cos wt + b , 
..j(w2 - w5)2 + ,2w2 (10) 

where 

cosb = (11) 

and 

(12) 

The next stage is to input Eqs. (10) and (11) into 
Eq. (8) and to average over the fast oscillations. By 
so doing we derive the equation for the slowly varying 
function 4>n(t), which turns out to be 
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a2G2( <pn) VIII ( <pn) 
4[(w2 - W5)2 + i2w2] 

a2(w2 - w~)G/(<pn)G(<Pn) 

2[(w2 - w5)2 + i2w2] 
(13) 

with w5 defined as in Eq. (12); on the other hand, we 
have used the results 

2 a2G2(<Pn) 
(~n(t)} = 2[(w2 _ w~)2 + 'Y2W2] , 

(a ~n(t) coswt} 

= 
2J(w2 - w5)2 + i 2w2 

a2G(<pn)(w2 - w5) 
2[(w2 - w5)2 + i 2w2]' 

(14) 

(15) 

In the case when w2 ~ w5, i.e., in fact, in the region 
w2 ~ n~ax' the first term in the right-hand side (rhs) of 
Eq. (13) can be omitted, yielding 

.. dVeff • 
<I>n - J«<I>n+l - 2<I>n + <pn-d + d<P

n 
= -i<Pn, (16) 

where we have defined 

_ a2 G2 (<p) 
Veff(<I» = V(<p) + 4(w2 + 'Y2) (17) 

Let us now particularize our results for the </>4 model, 
recalling Eq. (2) with the parametric force given by 
Eq. (3) to get the corresponding effective potential, 

Veff(<P) = ~ (1 - 2<I>~in<p2 + <p4) , 

<Pmin == (1 - 2(w2a: 'Y2») 1/2 

(IS) 

(19) 

Consequently, the potential (18) will have a double-well 
shape, provided that 

(20) 

under this condition, the perturbed system can support 
kink excitations of the averaged field, whose expression, 
in the continuum limit and in their own rest reference 
frame, is [cf. Eq. (5)] 

) (
<Pminx) <p( x, t = ±<Pmin tanh In'V' 
by2K 

(21) 

According to Eqs. (19) and (21), the kink amplitude 
2<I>min is a function of the force parameters, so that it 
may be changed by the force. If<Pmin -+ 0, the kink width 
goes to infinity and the kink itself disappears. Comparing 
Eq. (21) and Eq. (6), one might initially expect that the 
modified kink (21) corresponds to an infinite energy situ
ation because the asymptotes are not ± 1 as before. This 
can be understood by recalling that the periodic force 
must be applied to all of the particles in the chain, and, 
therefore, the parametrically driven model makes sense 
only for finite system lengths L; having this in mind, the 
approach we use in this paper is valid, provided the kink 
width (I'V bJK/~min) is much less than L. 

I 
If the condition (20) no longer holds, and a2 ~ 2(w2 + 

'Y2), the effective potential (18) does not have a double
well structure and kinks cannot exist. The condition (20) 
may be transformed in another one for the frequency w 
of the parametric force, assuming also that w is larger 
than the maximum eigenfrequency of the system Omax, 

a2 

w
2 >"2 -i2

• (22) 

In the general case, when w2 '" w5, the first and second 
terms in the rhs of Eq. (13) are of the same order, and 
we cannot neglect any of them; subsequently, we cannot 
compute the effective potential either. Nevertheless, in 
the particular problem of the </>4 model, V(<p) and G(<p) 
are given by simple expressions and we can write the 
effective force explicitly as follows: 

(23) 

Equating Eq. (23) to zero, we may find the extrema of 
the effective potential Veff( <p). Thus <1' = 0 is always an 
extremum, and other extrema, ±<I>min, are given by the 
equation 

2 a2 (w 2 + 1) 
<Pmin = 1 - 2[(w2 _ 3<P~in + 1)2 + 'Y2W 2]' (24) 

These two _additional extrema exist when <p2 in > O. 
Hence, the critical condition corresponds to <P1in = 0, 
which means that the extrema exist, provided 

2 2[(w2 + 1)2 + i2w2] 
a < (w2 + 1) . (25) 

It can be easily shown that if w2 ~ 1 the previous con
dition (20) is recovered from Eq. (25). 

To conclude this section, we would like to make some 
comments related to the possibility of chaotic regimes 
happening in the chain. Equation (9) describes, in fact, 
the chain behavior far from the kink; however, as is 
well known, such a homogeneous oscillatory dynamics 
may show chaotic evolution when the amplitude is large 
enough, which implies that non linear terms must be 
taken into account. This means that the above-presented 
analytical approach is valid only outside this chaotic re
gion. To estimate the range of the system parameters 
where chaos can be observed, we will use some consid
erations based on the Melnikov function [17]. According 
to Eq. (1), the homogeneous oscillations of the </>4 chain 
under the parametric perturbation are described by the 
equation 

(26) 

Equation (26) is similar to the one considered in Ref. [IS], 
where the parametric modulation affected only the cubic 
term. Calculation of the Melnikov function .1( to) foI' OUI' 
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problem, Eq. (26), yields (see details of similar computa
tions in, e.g., Ref. [18] and references therein) 

A(t ) _ lI'a(w
2 -1) '- 4, 

o - . h ( /2) sm( wto) + -. sm lI'W 3 
(27) 

If the parameters are such that the function A(to) de
fined in Eq. (27) changes sign, then homoclinic intersec
ti~ns are present, and hence chaotic solutions of Eq. (26) 
eXist. Nevertheless, A(to) will not change sign (which 
prevents the onset of chaos), provided the inequality 

311'a (w 2 - 1) 
r> 4sinh(lI'w/2) 

holds. As can be seen from this equation, large frequen
cies (like the ones we are concerned with) easily fulfill this 
requirement, provided there is some dissipation acting in 
the system, as indeed it does. 

Ill. NUMERICAL RESULTS 

In order to get a deeper insight into the system (1) 
and check our analytical approach validity, we have per
formed a number of direct numerical simulations of the 
system for the ~4 case, i.e., Eq. (2) and driving as in 
Eq. (3). The basis of our numerical procedure is the 
Strauss-Vcizquez finite-difference scheme [19]. The ad
vantages of this method are that it has been proved to 
be stable and convergent [20] and to be free of numeri
cal blow ups [21] in the unperturbed case. Moreover, it 
has been used to study many perturbed nonlinear Klein
Gordon problems (see, e.g., Refs. [12]-[14]), with very 
good results. - _. .. -

The scheme has been thoroughly described elsewhere 
(cf. references in the previous paragraph) and we are not 
going to repeat it here; however, it is worth explaining 
some points on this specific case. First of all the size of 
the lattice parameter Ax must be chosen t; be neither 
too large as to induce discreteness effects that disturb 
kink propagation nor too small as to transform the model 
into a quasicontinuum one, with the subsequent widen
ing of the eigenfrequency spectrum (nmin, n max] (notice 
that n max goes to infinity when Ax goes to zero). We 
have accomplished this requirement by letting Ax = 0.1, 
which in turn implies n~ax = 402 (nmax :::::: 20). Sec
ondly, the choice for the lattice spacing poses a constraint 
on our time step to integrate Eq. (1) because the sta
?ility of the Strauss-V azquez scheme is guaranteed only 
If At ::; Ax. Furthermore, to reproduce faithfully the 
parametric driving for high frequencies w it is necessary 
to have Ai ~ w- 1 • We have then chosen At = 0.01 for 
almost all the simulations (for frequencies near w = 50 it 
was necessary to take Ai = 0.005 or even Ai = 0.0025) 
and we have checked that the results did not change upon 
the decreasing of this time step; in this way we have been 
able to ensure that the outcome of our numerical com
putations makes physical sense. 

Our simulations have been carried out on a system of 
N = 401 particles with the initial condition given by a 
~4 kink centered at n = 201, Eq. (4), with tails of value 
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FIG. 1. Kink structure in the parametrically driven ifJ~ 
.- chain when a = 25, W = 25, and "t = 10. The initial state is 

an unperturbed kink at rest (large-dashed line). Other shown 
profiles correspond to instants t = 10 (small-dashed line) and 
t = 100 (solid line); this last one is in the asymptotic state. 

~ = ±1. To allow its evolution and subsequent decay, if 
any, we have imposed antiperiodic boundary conditions 
at the edges of the system, i.e., ~N+l = -~l' ~o = -~N' 
Finally, we have introduced a somewhat large dissipation 
value, r = 10, to avoid great amplitudes of the wave field 
and fast oscillations that can lead to chaotic regimes as 
we have explained above [see Eq. (28»). ' 

The results of our simulations are plotted in Figs. 1-
6. As a first example, Figs. 1 and 2 show the effect of 
a parametric driving with a = 25, w = 25 on the ini
tial kink. Recalling (20) and substituting for wand r we 
find that the approximate threshold above which the kink 
does not exist anymore is a > V1500 :::::: 38. Accordingly, 
from the plots it appears distinctly that the kink still ex
ists, though its amplitude has diminished from <f>min = 1 
at t = 0 [see Eq. (21)J to <f>min .-v 0.315. This evolution 
is fas~ at early stages and slow as time becomes large, 
reaclung an asymptotic state in which the kink oscillates 
around the bottom of the wells of the renormalized po
tential [see Fig. 2; we represent <f>min at the tails by the 
val~e of <f>(n = 301) or, in other words, <f>(x = 10)]. If 
we mcrease the driving-force amplitude above the thresh
old, letting a = 38, Figs. 3 and 4, we appreciate that the 
kink actually decays for these parameters, again rapidly 
at first and asymptotically for large times. 

The whole of our results is summarized in Figs. 5 and 
6. Figure 5 is a plot of the asymptotic mean value <f>min 
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t 

FIG. 2. Time dependence of the kink amplitude for the 
sam: set of parameters of Fig. 1. The plot shows q,(x = 10, t) 
vs tune. 
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FIG. 3. Same as in Fig. 1 but with a = 50. A kink cannot 
exist under a driving with these parameters. 

as obtained from simulations compared to the theoretical 
prediction Eq. (19) for w = 25 fixed. cI>min is computed as 
explained above and we plot its value at time t = 100, in 
the asymptotic regime. As can be seen from Fig. 5, our 
analytical approach is actually excellent, although some 
small discrepancy can be noticed at the large-amplitude 
part of the plot. This is related to the fact that we have 
observed that the time needed to reach an asymptotic 
state, at least as clearly as in Fig. 2, grows with increas
ing a. Thus, the points for a around 40 or above in Fig. 5 
could be closer to the theoretical line, because at t = 100 
when they were computed, the asymptotic state had not 
been entered. Much longer runs would be needed, but we 
have not proceeded with them because they would con
sume a lot of CPU time, and we feel that the fair agree
ment between theory and simulations has been already 
well established. This agreement is further supported by 
Fig. 6, in which we plot the asymptotic mean value, as 
well as our theoretical prediction, for a = 25 fixed. The 
accord of theory and simulations is again very good. 

IV. CONCLUSIONS 

In conclusion, we have analytically and numerically 
studied the structural stability of kinks in the discrete ljJ4 
model under the action of a periodic parametric driving. 
By averaging over the fast oscillations, we have shown 
that in a certain region of the external frequencies it is 
possible to observe decay of kinks, which would corre
spond to the case when the averaged, effective potential 
of the model is transformed from a double-well shape to 
a single-well one. This prediction has been confirmed 
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FIG. 4. Same as in Fig. 2 but with a = 50. The kink 
decay is clearly appreciated. 
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FIG. 5. Kink amplitude <I>min vs amplitude of the para
metrically driving force, a. The plotted numerical values of 
<I>min (dots) correspond to c/J(x = 10, t = lOO}. The solid curve 
is the analytical prediction. 

by direct numerical simulations, not only qualitatively 
but also quantitatively, of the parametrically driven ljJ4 
chain with loss, which allow one to settle on a firm ba
sis the phenomenon of kink decay due to this periodic 
forcing. The obtained results will be useful for analyz
ing the kink dynamics in the presence of random para
metric fluctuations, i.e., multiplicative noises (see, e.g., 
Ref. [12]), which can be considered as a set of parametric 
forces with random amplitudes and different frequencies. 
As has been shown in the present pa.per, such a para
metric force can lead to the disappearance of kinks, so 
that kink dynamics under the influence of multiplicative 
noises must exhibit a lot of peculiarities when the noise 
amplitude is large. 

In conclusion, we would like to point out here that the 
method that we have used in this work may be applied 
to other parametrically driven non linear models like the 
sine-Gordon one [22]. In this latter case, for instance, a 
high-frequency parametric force may support the stable 
propagation of 71" kinks [16]. 
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