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Abstract—In this work we present a fast kinodynamic
RRT-planner that uses dynamic nonprehensile actions to
rearrange cluttered environments. In contrast to many
previous works, the presented planner is not restricted
to quasi-static interactions and monotonicity. Instead the
results of dynamic robot actions are predicted using a black
box physics model. Given a general set of primitive actions
and a physics model, the planner randomly explores the
configuration space of the environment to find a sequence
of actions that transform the environment into some goal
configuration.

In contrast to a naive kinodynamic RRT-planner we show
that we can exploit the physical fact that in an environment
with friction any object eventually comes to rest. This
allows a search on the configuration space rather than the
state space, reducing the dimension of the search space
by a factor of two without restricting us to non-dynamic
interactions.

We compare our algorithm against a naive kinodynamic
RRT-planner and show that on a variety of environments we
can achieve a higher planning success rate given a restricted
time budget for planning.

I. Introduction

We study the rearrangement planning problem [6, 9,
11, 17, 21] where a robot must manipulate several
objects in clutter to achieve a goal. Rearrangement
of clutter can significantly increase the success rate
of manipulation tasks [9, 11] and perception [18, 24],
and is increasingly significant in unstructured human
environments such as homes, workplaces, disaster sites
and shared workcells in factories.

Consider a robot clearing a set of toys from a table.
As shown in Fig. 1, the table is cluttered with objects.
The robot’s goal is to move the green box into a
crate, weaving through clutter. Early works focused
on finding a sequence of pick-and-place actions that
moved clutter aside and eventually the target to its
goal [22]. Recent work has shown that nonprehensile
actions such as pushing, pulling, sliding, and sweeping,
enable faster and better solutions, with higher success
rates [5, 7, 16].

The problem of rearrangement planning has been
shown to be NP-hard [25]. Previous works have used
heuristics such as monotonicity to keep the problem
tractable [8, 22]. Nonprehensile interactions have been
modeled as motion primitives under the quasi-static as-
sumption that any inertial forces can be neglected due
to frictional forces [6, 7]. While there exist analytical
quasi-static pushing models [10, 12, 15] that allow a fast
to compute prediction of the object’s behavior during
a push, the actions and objects this can be applied to
are limited.

We are interested in overcoming these limitations and
present a planner that utilizes dynamic nonprehensile

Fig. 1. A robot clearing a table. First, the robot’s task is to push
the green box to a goal region(green circle) inside of a crate (a)-(g).
Afterwards, the robot is supposed to push the green ball to the same
area (h)-(p). The bottom row shows the total displacements for each
trajectory. The trajectories were generated for a floating end-effector
in a 2D-workspace.

actions to rearrange clutter without being restricted to
monotonicity. In our example, after the robot pushes
the box into the crate its goal is to put a ball into
the crate. In this case the robot must reason about the
dynamic behavior of the ball as the ball might fall off
the table otherwise.

The recent increasing availability of fast dynamic
rigid body physics models [1–4] allows modeling dy-
namic interactions between a robot and the objects in
its environment in planning algorithms [27, 28]. Under
the quasi-static assumption the rearrangement problem
can be formulated as a search for a sequence of robot
actions on the joint configuration space of the robot and
each movable object in the environment. In contrast,
a costly consequence of dynamic interactions is that
the search space becomes the full state space of the
environment, containing both the configuration and
velocity of each object and the robot, doubling the
dimension of the search space.
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(a) Labyrinth maze1 (b) Pool billard (c) Bouldering2 (d) Mini golf3

Fig. 2. Examples for dynamic actions between statically stable states utilized by humans.

Our insight is that by choosing dynamic actions that
result in statically stable states, e.g. the environment
comes to rest after each action, we can search on
the lower dimensional configuration space. Consider
a bartender sliding a beer bottle to a customer or a
child kicking a soccer ball. In both cases, in absence of
any external forces other than gravity, the manipulated
object eventually comes to rest due to friction. In many
activities humans follow a similar approach by transi-
tioning dynamically from one static state into another
static state (see Fig. 2).

We contribute by formulating the rearrangement
problem as a search for dynamic transitions between
statically stable states in the joint configuration space.
We show that we can utilize a kinodynamic RRT [14]
to solve this search problem. The planner explores the
configuration space by randomly sampling dynamic
nonprehensile actions and utilizing a dynamic black
box physics model to predict the actions’ outcomes.
To guarantee statically stable states, we require the
environment for each action to come to rest after a
duration Tmax. We compare our algorithm to a full-
dynamic search and show that with a reasonable choice
for Tmax we can achieve a better planning time even for
challenging environments. As a result we show that
the probability for our planner to find a solution in a
restricted time frame is higher compared to a dynamic
planner.

This work is structured in the following way. In
Sec. II we formalize the problem of rearrangement
planning. Our algorithm is presented in Sec. III and
our experiments are described in Sec. IV. In Sec. IV-C
we present our results in simulation and on a robot.
Finally, we discuss limitations and future work in Sec. V
and finish in Sec. VI with a conclusion.

II. The Rearrangement Planning Problem

A. Terminology

In our work an environment E contains a robot R, a
target object T, M movable objects the robot is allowed
to manipulate and a set S of static obstacles the robot
must not collide with.

We denote the state of movable object i ∈ {1, . . . , M}
as xi = (qi, q̇i) ∈ X i, where qi is the object’s configura-
tion and q̇i its velocity. Analogously, we denote the state

1Image: Labyrinth of Failure by Kim Navarre from Brooklyn, NY
published on http://commons.wikimedia.org/wiki/File:Labyrinth_
of_Failure.jpg, accessed 2014

2Image: Hueco Tanks Bouldering by Surfsupusa at English
Wikipedia published on http://commons.wikimedia.org/wiki/File:
Hueco_Tanks_Bouldering.jpg, accessed 2014

3Image: Bulltoftaparken, Minigolfbanan by User Jorchr on
sv.wikipedia published on http://commons.wikimedia.org/wiki/
File:Bulltoftaparken,_Minigolfbanan.jpg, accessed 2014

space of the target object as X T and the robot as X R.
We describe the state space of the environment X E as
the Cartesian product X E = X R ×X T ×X 1 × . . .×X M

of the state spaces of all objects in the scene and the
robot. We define the free state space X E

f ree ⊆ X E as the

set of states in which no objects are penetrating and
the robot is not in collision with any static obstacle
in S . Note that this definition specifically allows for
movable objects, the target and the robot to be in
contact with each other. Furthermore, contact between
movable objects or the target and static obstacles is
included.

Throughout this work we denote the manifold CE =
{(q, q̇) ∈ X E

f ree | q̇ = 0} as the environment’s statically

stable free state space, where every object and the robot
are at rest. Note that this is the free configuration
space. Likewise, let CT , CR and C i denote the statically
stable free state spaces for the target, the robot and all
movable objects i ∈ {1, ..., M} respectively.

B. Problem formulation

Given a statically stable start state xt0 ∈ CE, the goal
of the rearrangement problem is to find a sequence
of control actions that can be applied to the robot in
order to rearrange the environment to a statically stable
state g ∈ G within a goal region G ⊂ CE. Let A
denote the set of control actions the robot can perform,
i.e. joint velocities applied for some duration d. The
transition function Γ : X E × A → X E maps a state
xt ∈ X E and an action at ∈ A at time t to the action’s
outcome xt′ ∈ X E at time t′ > t, where d = t′ − t
is the duration of the action. Since we are interested in
nonprehensile manipulation, Γ is the laws of physics of
the real world. We can describe a solution of the rear-
rangement problem as a sequence of state-action pairs
τ = {(xt0 , at0), . . . , (xti

, ati
), (xti+1

, ati+1
), . . . , (xte ,∅)}.

The sequence starts at the start state xt0 and ends
in an end state xte ∈ G. For each two successive
pairs (xti

, ati
), (xti+1

, ati+1
) in the sequence the condition

xti+1
= Γ(xti

, ati
) must hold, i.e. each state must be the

physical outcome of the previous action applied to the
previous state.

C. Complexity

The complexity of the problem arises from three
aspects. First, the system is under-actuated. One robot
must manipulate several objects. Second, the physics
of the manipulation makes the transition function, Γ,
non-linear. Third, the dimension of the search space is
linear in the number of movable objects in the scene.
For example, for rigid objects in a three dimensional
workspace and a 7-DOF robot the dimension of the
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Fig. 3. Dynamic transitions between statically stable states in CE

search space is dim(X E) = 14 + 12(M + 1). We reduce
the dimensionality of the search space by a factor of
two by imposing the restriction xt ∈ CE for all xt ∈ τ.
Given the same numbers, the search space’s dimension
then becomes dim(CE) = 7 + 6(M + 1). Note that this
restriction does not require the environment to be at
rest all the time. Instead the environment can behave
dynamically during each transition action ati

from xti

to xti+1
for any i = 0..|τ| − 2 (see Fig. 3).

III. Forward Search utilizing dynamic black box

physics

Randomized sample-based planners have been
shown to perform well even on high dimensional state
spaces [13, 19]. We follow a similar approach to Zick-
ler et al. [27] and present a kinodynamic RRT algo-
rithm [14] that can solve the rearrangement problem
by utilizing nonprehensile motions.

Traditional implementations of the RRT algorithm
require a steering method to solve the two-point-
boundary problem. The complexity of the transition
function Γ and the under-actuation of the system make
solving this problem as difficult as solving the full
rearrangement problem. Kinodynamic RRTs overcome
this limitation.

In Sec. III-A we present the kinodynamic RRT al-
gorithm applied to the rearrangement problem. In
Sec. III-B we present the details that are specific to
the algorithm when performing a search on the full
dynamic state space X E. In Sec. III-C we present our
modification to the algorithm that allows it to search
for dynamic transitions between statically stable states
in CE. To distinguish between both variants, we refer
to the algorithm presented in Sec. III-B as dynamic
planner and to the algorithm presented in Sec. III-C
as semi-dynamic planner.

A. Kinodynamic RRT

The underlying kinodynamic RRT algorithm we use
is shown in Alg. 1. The algorithm builds a tree with
root xt0 ∈ X E

f ree on the state space X E
f ree until a goal

state g ∈ G is added to the tree. The extension of the
tree is performed by sampling a state xrand ∈ X E

f ree
and extending the tree towards it. For the extension
the closest state in the tree xnear is picked.

Due to the complexity of Γ we can not trivially com-
pute an action a such that Γ(xnear, a) = xrand. Instead
the algorithm uniformly samples k actions ai ∈ A and
computes their outcomes xi in the Propagate function.
Each action consists of some control and a duration.
In the Propagate function we model the interaction
between the robot and any object in the environment
by utilizing a dynamic black box physics model T that
approximates the true transition function Γ. The state

xi for i = 1...k that is closest to xrand is then added to
the tree. Once a goal state xnew ∈ G is added to the
tree, the search is terminated and the path is extracted
from the tree.

The distance function used is a weighted sum of
distances on the individual state spaces with weights
wr, wt, wm for the robot, target and movable objects:

Dist(x, y) = wr‖xr − yr‖R + wt‖xt − yt‖T

+ wm

M

∑
i=1

‖xi − yi‖M

for x = (xr, xt, x1, . . . , xM), y = (yr, yt, y1, . . . , yM) ∈ X E

where xr, yr ∈ X R, xt, yt ∈ X T and xi, yi ∈ X i, i ∈
{1, . . . , M}. The norms ‖ · ‖R, ‖ · ‖T and ‖ · ‖M are norms
on the respective state space, e.g. the Euclidean norm.

The algorithm further requires the specification of a
state sampling technique and a propagation method
including a validity check. The details about these
components for the dynamic and the semi-dynamic
planner are presented in the next two sections.

Algorithm 1: The kinodynamic RRT algorithm

Input: The start state xt0 , integer k
Output: A path

1 tree ← {nodes = {xt0}, edges = ∅}
2 path ← {}
3 while not ContainsGoal(tree) do
4 xrand ← SampleConfiguration()
5 xnear ← NearestChild(tree, xrand)

6 {a1, . . . , ak} ← SampleActions(k)
7 (xnew, a) ← (∅,∅)
8 for i = 1 . . . k do
9 (xi, a′i) ← Propagate(xnear, ai)

// Dist(∅, x)= ∞ for any x ∈ X E

10 if Dist(xi, xrand) < Dist(xnew, xrand) then
11 (xnew, a) ← (xi, a′i)
12 if (xnew, a) 
= (∅,∅) then
13 tree.nodes ∪ {xnew}
14 tree.edges ∪ {((xnear, xnew), a)}
15 path ← ExtractPath(tree)

B. Dynamic Planner

For the dynamic planner a state xrand is sampled
uniformly from X E

f ree. The Propagate function is pre-

sented in Alg. 2. Given an input state xin ∈ X E
f ree and an

action ain the physics model T is utilized to compute
the resulting state xout. A resulting state xout is valid if
and only if xout ∈ X E

f ree and the robot did not collide

with any static obstacle at any time during the execu-
tion of ain. Note that the physics model T guarantees
that any resulting state is physically feasible, e.g. no
objects intersect.

C. Semi-dynamic Planner

Since the semi-dynamic planner is planning on the
statically stable state space CE, any sampled state xrand
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Algorithm 2: Propagate: The dynamic propagate
function using a dynamic physics model T .

Input: A state xin ∈ X E
f ree, an action ain

Output: The tuple (xout, aout) with xout ∈ X E or
xout = ∅

1 xout ← T (xin, ain)
2 aout ← ain
3 if IsInvalid(xout) then
4 xout ← ∅

5 aout ← ∅

and resulting state xout of a propagation need to be
at rest, i.e. xrand, xout ∈ CE. The state sampling thus
uniformly samples statically stable states xrand ∈ CE.

The Propagate function is shown in Alg. 3. First, we
apply the physics model T to obtain a resulting state
x′ ∈ X E. This state is not guaranteed to be at rest. Next,
we repeatedly apply the physics model T to compute
the duration tw that is needed for the environment to
come to rest if the robot remains inactive. If tw is less
than a fixed maximal duration Tmax and x′ is valid,
the resulting statically stable state xout = x′ and a
modified action aout are returned. The returned action
aout is the original action ain followed by a period of
the robot being inactive for the duration tw. In case
the environment does not come to rest within Tmax
the propagation is considered a failure and no state
is returned. Accordingly, a state xout = x′ ∈ CE is
considered valid if the robot did not collide with any
static obstacle during the execution of ain.

Algorithm 3: Propagate: The semi-dynamic prop-
agate function using a dynamic physics model T

Input: A state xin ∈ CE, an action ain, two
constants Tmax, ∆t

Output: The tuple (xout, aout) with xout ∈ CE or
xout = ∅

1 tw ← 0
2 aw ← be inactive for time ∆t
3 x′ ← T (xin, ain)
4 while x′ /∈ CE & tw < Tmax do
5 x′ ← T (x′, aw)
6 tw ← tw + ∆t
7 if tw < Tmax & IsValid(x′) then
8 xout ← x′

9 aout ← do ain, then be inactive for time tw
10 else
11 xout ← ∅

12 aout ← ∅

IV. Experiments & Results

We implement both algorithms in C++ by extending
the Online Motion Planning Library (OMPL) frame-
work [23]. We choose Box2D [3] as our physics model,
which is a fast 2D dynamic rigid body simulator de-
veloped for 2D games. We run experiments both in
simulation and on HERB [20], a bimanual manipulation
platform developed in the Personal Robotics Lab at
Carnegie Mellon University.

Our experiments explore two hypothesis:
H.1 Given a restricted planning time budget, the semi-

dynamic planner achieves a higher success rate
than the dynamic planner.

H.2 Increasing Tmax leads to higher success rates for
the semi-dynamic planner.

Hypothesis H.1 is motivated by the fact that the semi-
dynamic planner plans on a smaller search space than
the dynamic planner. Given a restricted time budget,
we expect the semi-dynamic planner to find a solution
faster as long as there is a semi-dynamic solution.

Our second hypothesis H.2 is motivated by the fact
that greater Tmax allow a greater variety of actions. This
is because the larger time frame increases the likelihood
for the environment to come to rest.

A. Simulation

Due to the nature of the chosen physics model, all
experiments are run in a 2D workspace. The state space
for each movable object and the target object are X T =
X i = SE(2)× se(2), the set of poses and twists in the
plane. The robot is the floating end-effector of HERB,
which is assumed to move holonomically in the plane.
Therefore X R = SE(2)× se(2).

The action space A = se(2) × [dmin, dmax] is the set
of twists, consisting of a translational x, y-velocity and
rotational velocity that are applied for some duration
d ∈ [dmin, dmax]. For the semi-dynamic planner each
twist is realized with a ramp profile (Fig. 9, bottom),
which guarantees the robot being at rest after each
action. The number of action samples taken is k = 10.
The norms on the state spaces are weighted Euclidean
distances:

‖a, b‖ = sqrt((xa − xb)
2 + (ya − yb)

2 + wθ(θa − θb)
2

+ wv((ẋa − ẋb)
2 + (ẏa − ẏb)

2 + wθ(θ̇a − θ̇b)
2))

for a = (xa, ya, θa), b = (xb, yb, θb) ∈ SE(2)× se(2). We
choose wθ = 0.001 and wv = 0.25.

We test 12 different scenes with varying degree of
clutter and objects. For the movable objects we distin-
guish between high friction and low friction objects.
While high friction objects almost immediately come
to rest, low friction objects tend to continue moving
for some time after contact. Some of the scenes contain
high friction objects only, some low friction objects
only and some are mixed. Additionally, some scenes
contain static obstacles that need to be avoided by
the robot. Movable objects, however, can collide with
static obstacles. The goal region G ⊂ CE is the set of
configurations where the target lies within a circular
goal region in the workspace. Three example scenes
can be seen in Fig. 8, top.

We compare the semi-dynamic planner for different
choices of Tmax = 0s, 1s, 8s, 20s, 60s to the dynamic
planner. There are several parameters for both planners
that need to be specified. First, the action set is param-
eterized by velocity and duration limits. Second, the
weights in the distance function wt, wr, wm need to be
chosen. For each planner, we select parameters for each
scene such that the highest success rate is achieved.

All planners are run 110 times on each scene. A run
is considered a success if the planner finds a solution
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within a planning time of 60s. The success rate is the
proportion of successful runs.

B. Real World Execution

Algorithm 4: Jacobian pseudo-inverse trajectory lift

Input: An end-effector trajectory
τE = {(xt0 , at0) . . . (xte ,∅)}, a stepsize ∆t

Output: A manipulator trajectory
τM = {(x′0, a′0) . . . (x′e′ ,∅)}

1 q ←SampleStartIK (xt0 )
2 for i = 0 . . . e − 1 do
3 d ←ExtractActionDuration (ati

)
4 t ← 0
5 while t < d do
6 ψ ←ExtractEEFVelocity (ai, t)
7 φ ← J†(q)ψ+SampleNullspace (q)
8 a′ ← (φ, ∆t)
9 τM ← τM ∪ (q, a′)

10 q ← q + φ∆t
11 if not ValidConfiguration (q) then
12 return {∅}
13 return τM

We wish to validate our trajectories can be exe-
cuted on a robot. For this, we generate trajectories for
the 7-DOF manipulator pictured in Fig. 9. To gener-
ate trajectories for our manipulator, we first use our
planner to generate trajectories for the end-effector of
the manipulator moving in the plane. The actions,
(at0 , . . . , ate−1

) ∈ se(2) × [dmin, dmax], in the resulting
trajectories describe a sequence of end-effector twists.
Given this sequence, we apply a post-processing step to
generate a set of joint velocities (φ0 . . . φe′−1) ∈ R

7 that
achieve the end-effector motion. We use the Jacobian
pseudo-inverse to achieve this conversion. Alg. 4 shows
the basic algorithm we use.

We initialize the conversion by sampling a full arm
configuration from the set of inverse kinematics solu-
tions that place the end-effector in the configuration
specified in xt0 , the initial configuration in the end-
effector trajectory. During the conversion, we generate
a set of intermediate robot configurations (q0 . . . qe′) ∈
R

7. Each intermediate configuration is checked to en-
sure there is no unmodeled collision, e.g. collision
between the forearm and a movable object. If we
encounter an invalid configuration, an empty path is
returned and an outer process restarts the conversion.

Fig. 9 and Fig. 11 show snapshots of trajectories
resulting from this process.

C. Results

Fig. 4 shows the success rate of the semi-dynamic
planner for Tmax = 8s and the dynamic planner on
all scenes as a function of planning time budget. As
the planners are allowed more time more solutions are
found and the success rate grows. For all time budgets
the semi-dynamic planner outperforms the dynamic
planner. This supports our first hypothesis H.1: Given
a restricted time budget the semi-dynamic planner
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Fig. 4. The success rate of the semi-dynamic planner for Tmax = 8s
and the dynamic planner on all scenes as a function of available
planning time budget with 95% Wilson confidence interval [26].
As expected, the dynamic planner performs worse than the semi-
dynamic planner on a restricted time budget. Note, however, that
given an infinite time budget the dynamic planner is expected to
perform at least as well or better.
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Fig. 5. Success rate of the different planners as function of available
planning time budget with 95% Wilson confidence interval. Interest-
ingly, the success rate for Tmax = 8s, 20s, 60s does not differ largely
at tb = 60s. For Tmax = 0s, 1s the planner performs worst. The success
rate can be interpreted as a probability of success.

achieves a higher success rate than the dynamic
planner.

If we compare the success rates for the different
choices of Tmax, we observe two interesting trends (see
Fig. 5). First, the planners with Tmax = 0s and Tmax = 1s
perform worst. This can be explained by the fact that
many scenes require the manipulation of objects that
behave dynamically. Consider the scene in Fig. 9. The
robot’s task is to move the ball into the goal. Finding
actions that result in statically stable states after 0s or
1s is unlikely because the ball keeps rolling for some
time after contact.

Second, the success rates for Tmax = 8s, 20s, 60s
do not differ largely from each other at a budget of
tb = 60s. The planner achieves the highest success
rate for any time budget for Tmax = 8s, followed by
Tmax = 20s and then Tmax = 60s. This weakens our
second hypothesis H.2 for a restricted time budget:
Increasing Tmax does not necessarily lead to a higher
success rate for a restricted planning time budget.

While the results support our hypothesis for
Tmax < 8s, the benefit of increasing Tmax vanishes
in the range of [8s, 20s]. This is surprising since any

solution found with some T
′

max can also be found with
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Fig. 6. Average propagation time for a single action. As Tmax
increases the propagation time increases. The propagation time for
the dynamic planner is the shortest as it does not require additional
time to model the acceleration from rest and deceleration to rest of
the manipulator. The error bars show the standard error.

any T
′′

max > T
′

max.
An explanation for this is the average propagation

time needed to predict the actions’ outcomes, e.g. the
time to compute T (x, a) for some state x and action
a. As Tmax increases more planning time is spent on
computing the outcome of actions that result in in-
termediate states with high velocities and thus need
longer to come to rest (see Fig. 6). For smaller Tmax the
propagation of such actions is aborted earlier, saving
time for more exploration.

Semi-dynamic example trajectories for a choice of
Tmax = 8s are shown in Fig. 1, Fig. 9 and Fig. 11.
In Fig. 1 two subsequent semi-dynamic end-effector
trajectories in a cluttered environment are depicted. For
both trajectories the task is to move the green object to
the goal region marked with a green circle. The robot
manipulates multiple objects at once, utilizes object to
object collisions and is not restricted in the number of
contacts with any object.

The trajectories in Fig. 9 and Fig. 11 are planned in
2D and then lifted to a full arm trajectory following the
approach presented in Sec. IV-B. In Fig. 9 the robot’s
task is to move the green ball, which is modeled as a
low-friction disc, into the goal on the left side. As can
be seen in the velocity profile of the end-effector and
the target object, the robot moves the target object from
one statically stable state to another. A particularly
interesting caging behavior occurs between Fig. 9b,
Fig. 9c and Fig. 9e, Fig. 9f. In both cases the robot
first accelerates the ball using one side of the end-
effector and then catches it at the end of the action
using the other side of the end-effector. We observed
this behavior frequently in many scenes. An action
where the robot pushes a ball into open space is less
likely to lead to a statically stable state within Tmax than
an action for which caging occurs.

Fig. 10 shows the velocity profile for a trajectory
planned with the dynamic planner on the same scene.
Note how both the manipulator and the target object
keep in motion for the whole trajectory. As a result the
total duration of the trajectory is shorter than the semi-
dynamic one. In fact, on average the solutions found by
the dynamic planner are shorter in execution time for
scenes with dynamically behaving objects.

In Fig. 7 the average execution time is shown on
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Fig. 7. Average path durations with standard deviation for three
different scenes in comparison (also see Fig. 8). Note that there was
only a single path found for Tmax = 0s in Scene 3.

(a) Scene 1 (b) Scene 2 (c) Scene 3
Type Scene 1 Scene 2 Scene 3
Tmax = 0s 0.98 ± 0.02 0.25 ± 0.08 0.026 ± 0.024
Tmax = 1s 0.98 ± 0.02 0.39 ± 0.09 0.10 ± 0.05
Tmax = 8s 0.98 ± 0.02 0.98 ± 0.02 0.05 ± 0.04
Tmax = 20s 0.98 ± 0.02 0.98 ± 0.02 0.06 ± 0.04
Tmax = 60s 0.98 ± 0.02 0.98 ± 0.02 0.30 ± 0.08
Dynamic 0.73 ± 0.08 0.90 ± 0.05 0.27 ± 0.08

Fig. 8. Top: Three scenes: the green object is the target object,
movable objects are blue and static obstacles are red or orange. Boxes
have high friction and balls are modeled as low friction discs. The
green circle marks the goal region. Bottom: Table showing the 95%
Wilson confidence intervals[26] of the success rates for the different
planners on the depicted scenes.

three different scenes for each choice of Tmax and the
dynamic planner. In an environment with only high
friction objects (Fig. 7, Fig. 8, left) the path duration is
similar for all planners.

The second environment (Fig. 7, Fig. 8, middle) con-
tains two low friction objects, depicted as balls. In
this environment the average path duration is higher
for each Tmax than for the dynamic planner. The path
duration increases with Tmax. Note, however, that the
success rate on this scene is significantly lower for
Tmax = 0s, 1s than for larger Tmax (Fig. 8).

The last scene (Fig. 7, Fig. 8, right) proves to be dif-
ficult for all planners. It contains a static wall blocking
direct access to the goal. Furthermore, the goal region
lies in open space, where no obstacle prevents the ball
from overshooting the goal region. The semi-dynamic
planner with Tmax = 0s, 1s, 8s, 20s found only very few
solutions. If a solution was found the path duration is
on average shorter than for greater Tmax as it involves
less waiting time. For Tmax = 60s more solutions are
found, but the path duration on average is the longest.
The dynamic planner achieved a similar success rate on
this environment, but it found paths with the shortest
execution times on average.

We run preliminary experiments on a real robot
(Fig. 11), which are discussed in the next section.
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Fig. 9. Top: Snapshots from a semi-dynamic trajectory lifted to a 7-DOF arm trajectory and executed on a robot in simulation (Tmax = 8s).
The task is to move the green ball into the red goal. The orange boxes are static obstacles. The states marked with * are statically stable.
Bottom: Velocity profile of the end effector and the target. Note how the robot waits until the target comes to rest before it performs the next
action. In order for the robot to reliably come to rest, each action follows a ramp velocity profile.

Fig. 10. Velocities for a dynamic trajectory. In contrast to the semi-dynamic trajectory the environment does not come to rest after each
action.

V. Limitations & Future Work

Our implementation plans for a floating end-effector
in 2D-environments and then lifts a trajectory to a
full arm trajectory in a post-process. Planning in 2D
allows us to use the very fast physics model Box2D
and restricts the search space to a manifold, where it is
most likely for the robot to constructively interact with
objects. This approach, however, suffers from two main
limitations. First, our implementation does not take the
kinematics of the arm into account, which can result in
infeasible end-effector trajectories. Second, any contact
between the arm and objects is not modeled. As our
algorithm is not restricted to 2D-environments, future
work will incorporate a 3D physics model. Note that
our current implementation is well applicable to mobile
robots operating in a plane.

Despite these limitations, in preliminary experiments
we are able to produce executable trajectories on a
real robot (Fig. 11). Our physics model is not a per-
fect reflection of the physical world. The assumption

of perfect knowledge of all geometry, mass and fric-
tion coefficients is impractical. While we are able to
achieve some success executing trajectories open-loop,
our experiments highlighted the need to incorporate
uncertainty into planning. This is especially the case for
rearranging objects with low friction. Here, we believe
that the nature of semi-dynamic plans is particularly
well suited. While each action requires a dynamic
control, there is no time constraint after the execution of
an action. The robot waits until the environment comes
to rest and then has time to observe the environment
and re-plan in case of an execution failure.

VI. Conclusion

We presented a semi-dynamic motion planner that
solves rearrangement problems utilizing dynamic non-
prehensile actions. In contrast to many previous works
our planner does not require monotonicity nor is it
limited to quasi-static interactions. We showed that our
planner outperforms a dynamic planner in planning
time on a variety of scenes. This, however, comes at
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Fig. 11. Top: Snapshots from a semi-dynamic trajectory lifted to a 7-DOF arm trajectory and executed on the robot HERB (Tmax = 8s).
The task is to move the white box to the left. Bottom: Velocity profile for the trajectory as planned. Note how multiple objects are pushed
simultaneously. Also the target object, the cup and one of the poptart boxes are moved multiple times. The statically stable states are marked
with *.

the cost of an increased execution time in case of the
presence of low friction objects. Hence, we highlighted
a fundamental trade-off between decreased planning
time and increased execution time.
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