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Abstract

Background: Basal breast cancers (BCs) represent ~15% of BCs. Although overall poor, prognosis is heterogeneous.

Identification of good- versus poor-prognosis patients is difficult or impossible using the standard histoclinical

features and the recently defined prognostic gene expression signatures (GES). Kinases are often activated or

overexpressed in cancers, and constitute targets for successful therapies. We sought to define a prognostic model

of basal BCs based on kinome expression profiling.

Methods: DNA microarray-based gene expression and histoclinical data of 2515 early BCs from thirteen datasets

were collected. We searched for a kinome-based GES associated with disease-free survival (DFS) in basal BCs of the

learning set using a metagene-based approach. The signature was then tested in basal tumors of the independent

validation set.

Results: A total of 591 samples were basal. We identified a 28-kinase metagene associated with DFS in the

learning set (N = 73). This metagene was associated with immune response and particularly cytotoxic T-cell

response. On multivariate analysis, a metagene-based predictor outperformed the classical prognostic factors, both

in the learning and the validation (N = 518) sets, independently of the lymphocyte infiltrate. In the validation set,

patients whose tumors overexpressed the metagene had a 78% 5-year DFS versus 54% for other patients (p =

1.62E-4, log-rank test).

Conclusions: Based on kinome expression, we identified a predictor that separated basal BCs into two subgroups

of different prognosis. Tumors associated with higher activation of cytotoxic tumor-infiltrative lymphocytes

harbored a better prognosis. Such classification should help tailor the treatment and develop new therapies based

on immune response manipulation.
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Background
Breast cancer (BC) is heterogeneous. Gene expression

profiling has identified molecular subtypes with different

biological features and different outcome [1-5], includ-

ing basal BCs. Basal BCs, which represent ~15-20% of

invasive BCs are high-grade tumors, frequently do not

express hormone receptors (HR) and ERBB2, and have

the worst prognosis overall [6,7]. Yet, basal tumors show

prognostic heterogeneity. Both the standard histoclinical

features and the recently defined prognostic gene

expression signatures (GES) fail to identify patients who

will relapse and patients who will not respond to che-

motherapy [8]. Defining the molecular bases of this het-

erogeneity should help better understand these tumors,

identify new therapeutic targets and more reliable pre-

dictors of survival and therapeutic response.

Kinases, which constitute ~1.7% of human genes [9],

are activated or overexpressed in cancers [10], and con-

stitute current or future targets for successful therapies

[11]. Previously, we identified a 16-kinase GES that

improved the prognostic classification of luminal BCs

[12]. A similar approach was successfully applied to 44

estrogen receptor (ER)-negative BCs, including ERBB2-
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positive tumors and less than 50% of basal tumors [13].

To our knowledge, the “kinome approach” has never

been applied to basal BCs only.

We tested the hypothesis that the expression of kinase

genes may distinguish good- from poor-prognosis basal

tumors.

Methods
Patients’ selection

Institut Paoli-Calmettes (IPC) and public retrospective

data sets from BC samples profiled using oligonucleotide

microarrays were collected (Additional file 1, Table S1).

All were pre-treatment samples of invasive non-inflam-

matory and non-metastatic adenocarcinomas. Microar-

ray data from our set are available through Gene

Expression Omnibus (series entry GSE21653).

The “IPC” training set included 261 patients who

underwent initial surgery in our institution between

1992 and 2007. Each patient gave written informed con-

sent and this study has been approved by our institu-

tional ethics committee. All samples were histologically

reviewed in a standardized fashion by a pathologist (JJ)

to asses the ER, progesterone receptor (PR) and ERBB2

status by immunohistochemistry (IHC), and the percent

of cancer cells (superior to 60%). Antibodies used

(Dak®) were SP1 clone for ER, PgR636 clone for PR and

Herceptest™ for ERBB2. The cut-off for positivity was

1% of stained tumor cells for HR, and ERBB2 status (0-

3+ score, DAKO HercepTest kit scoring guidelines) was

defined as positive if 3+ or 2+ with amplification con-

firmed by in situ hybridization. Vascular invasion and

lymphocytic infiltration were assessed by Hematoxylin

and Eosin Staining (HES).

Twelve pooled public data sets constituted the valida-

tion set including a total of 2254 samples [5,7,14-23].

DFS was the best annotated survival information among

these sets and was chosen as survival end-point.

Gene expression data analysis

Details are given in Additional file 2 (Supplementary

Material). Data sets were processed as previously

described [24]. Briefly, for the Agilent sets, we applied

quantile normalization to available processed data.

Regarding the Affymetrix sets, we used Robust Multi-

chip Average (RMA) with the non-parametric quantile

algorithm as normalization parameter [25]. Quantile

normalization or RMA was done in R using Bioconduc-

tor and associated packages. The five molecular subtypes

were determined using the single sample predictor (SSP)

classifier [26].

Other analyses were centered on 771 kinase and

kinase-interacting genes, based on an update of the

initial kinome description [9,13]. This list was matched

with genes available on the Affymetrix U133 Plus 2.0

microarrays used to profile the IPC tumor set, finally

retaining 661 genes (Additional file 3, Table S2). Ana-

lyses were both unsupervised and supervised. Supervised

t-test analysis searched for genes upregulated in basal

samples compared to at least one of the four other

molecular subtypes, with 5% significance and a false dis-

covery rate (FDR) lower than 5%. To circumvent the

problem of dissymmetry of variables with a number of

samples inferior to the number of genes being tested

[14,27-31], we grouped the resulting genes with corre-

lated and interdependent expression (gene subsets) in a

single “metagene”. Metagene expression value is the

mean of the normalized expression values of all genes in

the respective gene subset. Each metagene is treated as

if it were a single gene, thereby reducing data dimen-

sion. We defined our metagenes by hierarchical cluster-

ing using data median-centered on genes, Pearson

correlation as similarity metrics and centroid linkage

clustering [32]. We identified robust gene clusters (mini-

mal cluster size and minimal Pearson correlation were

15 and 0.6, respectively) using the quality-threshold

(QT) clustering method [32]. A metagene was then

computed for each selected cluster, and its prognostic

incidence (as continuous value) evaluated using a Cox

regression univariate analysis. Once a metagene asso-

ciated with DFS (5% level significance) was defined, its

expression value was used to divide the training set into

two subgroups then tested for association with DFS.

The cut-off was defined as the best threshold dividing

the population into two subgroups with the greater DFS

difference, “Metagene-Low” (expression value inferior to

the threshold) and “Metagene-High” (expression value

above) subgroups. This cut-off was applied to basal

tumors of each validation series, and the define sub-

groups were then pooled before prognostic analysis.

We tested the prognostic value of two recently

reported classifiers associated with survival in basal BCs:

the medullary BC (MBC) classifier [33] and the HER2-

derived prognostic predictor (HDPP) [34] associated

with survival in both ERBB2+ and basal tumors. We

also tested three multigene signatures identified as prog-

nostic in breast cancer, independently of molecular sub-

types: the Genomic Grade Index [16], the 76-gene

signature [15], and the 70-gene signature [5]. Ontology

analysis was done using Ingenuity Pathway Analysis

(IPA) software (Redwood City, CA, USA) [35]. We also

determined if immune signatures [36] were overrepre-

sented in one prognostic subgroup using the gene set

enrichment analysis (GSEA) algorithm and 1000 permu-

tations [37].

Statistical analysis

Correlations between sample groups and histoclinical

factors were calculated with the Fisher’s exact test and
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the t-test when appropriate. DFS was calculated from

the date of diagnosis until date of first relapse or death

using the Kaplan-Meier method, and follow-up was

measured to the date of last news for event-free

patients. Survival curves were compared with the log-

rank test. Univariate and multivariate prognostic ana-

lyses used the Cox regression method. Univariate ana-

lyses tested classical histoclinical factors: age (≤50 years

vs. > 50), pathological tumor size (pT≤20 mm vs. > 20),

lymph node status (pN positive vs. negative), SBR grade

(I vs. II-III), IHC ER status (negative vs. positive), peritu-

moral vascular invasion (negative vs. positive) and lym-

phocytic infiltrate. Data regarding the delivery of

adjuvant chemotherapy and hormone therapy were also

analyzed. Analyses included also binary classifications

based on the immune metagene, the MBC and HDDP

classifiers (good vs. poor-prognosis subgroups). Multi-

variate analyses tested all variables with a p-value infer-

ior to 0.05 in univariate analysis and excluded patients

with one or more missing data. All statistical tests were

two-sided at the 5% level of significance. Analyses were

done using the survival package (version 2.30), in the R

software (version 2.9.1). Our analysis adhered to the

reporting recommendations for tumor marker prognos-

tic studies (REMARK) [38].

Results
Identification of a prognostic kinase expression signature

Five hundreds and ninety-one out of 2515 tumors were

basal, including 73/261 in our IPC series and 518/2254

in the public sets (Table 1). These tumors displayed

classical histoclinical features of basal BC (Additional

file 4, Table S3). Clinical outcome, available for 2109

patients, correlated with subtypes with 5-year DFS of

83% for luminal A, 60% for luminal B, 77% for normal-

like, 61% for basal, and 61% for ERBB2-overexpressing.

The 73 IPC basal tumors were used as training set for

identifying a prognostic kinase GES from the 661-gene

list. Supervised analysis identified 581 genes differen-

tially expressed in basal versus at least one other sub-

type, including 360 genes overexpressed in basal tumors

(Additional file 3, Table S2). Within this series most of

the patients (90%) received adjuvant chemotherapy.

Twenty-five patients developed relapse or death with a

median time-to-relapse of 19 months, and forty-eight

patients remained disease-free with a median follow-up

of 64 months. The 5-year DFS was 63%. Hierarchical

clustering of these tumors with the 360-gene set (Figure

1A) revealed two main clusters, I (n = 24) and II (n =

49), with 5-year DFS superior in cluster I (77% versus

56%; p = 0.22, log-rank test; Figure 1B). QT clustering

identified three gene clusters with a major role in this

discrimination (Figure 1A, and Additional file 5, Table

S4). One included 21 genes not related to any specific

biologic function. A second cluster was associated with

the cell cycle. The third cluster (thereafter designed

immune cluster) contained 28 genes, which for many

were involved in immune signaling (e.g. BLK, BTK,

FYN, SYK, ITK, JAK3, LCK, LCP2, PRKCB, and ZAP70).

Visually, lower expression of this cluster was associated

with more relapses (Figure 1A). We built a metagene

for each gene cluster, and analyzed their correlation

with DFS using univariate Cox regression analysis. Only

the immune metagene correlated with DFS (HR = 0.32,

Table 1 Histoclinical features of basal-like tumors (IPC

and validation series)

Characteristics (N) Basal

N = 591

N (% of evaluated cases)

Age (445)

≤ 50 years 215 (57%)

> 50 years 162 (43%)

Histological type (256)

ductal 234 (91%)

lobular 7 (3%)

other* 15 (6%)

Pathological tumor size, pT (466)

pT1 115 (25%)

pT2-4 351 (75%)

Pathological lymph node status, pN (493)

negative 314 (64%)

positive 179 (36%)

Tumor grade (493)

SBR 1 14 (3%)

SBR 2-3 479 (97%)

IHC ER status (507)

negative 411 (81%)

positive 96 (19%)

IHC PR status (223)

negative 199 (89%)

positive 24 (11%)

IHC ERBB2 status (105)

negative 86 (84%)

positive 19 (16%)

Adjuvant chemotherapy (309)

no 203 (66%)

yes 106 (34%)

Adjuvant hormone therapy (322)

no 237 (95%)

yes 13 (5%)

Events (453)** 183 (40%)

5-year DFS (453)** 61%

*4 metaplastic carcinomas, 4 mixed adenocarcnomas, 1 mucinous carcinoma,

and 5 adenocarcinomas non otherwise specified. **out of these 453 patients

with available follow-up, 193 did not received any systemic adjuvant

treatment, 115 received adjuvant systemic therapy, no patient received

adjuvant Trastuzumab, and data were unavailable for 145 patients.
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95%CI [0.17-0.68], p = 2.4E-3, Wald test; Additional file

6, Table S5). Resampling with 100,000 iterations showed

only a 0.8% probability to find a metagene built from 28

random genes with similar or better prognostic correla-

tion than the immune metagene.

We defined two subgroups of basal tumors according

to the immune metagene expression value: “Immune-

High” if above the value threshold (n = 25) and

“Immune-Low” if under (n = 48). No histoclinical fac-

tor including the lymphocyte infiltrate was different

between the two subgroups (Additional file 7, Table

S6). Survival was different, with 91% 5-year DFS in

“Immune-High” subgroup versus 49% in “Immune-

Low” (p = 0.005, log-rank test, Figure 2). On univariate

analysis (Table 2), two factors were associated with

DFS: vascular invasion (HR = 2.32, 95%CI [1.04-5.18],

p = 0.04, Wald test) and immune metagene expression

(HR = 0.21, 95%CI [0.06-0.70], p = 0.01, Wald test).

They remained significant on multivariate analysis

(Table 2).

We also performed a similar analysis on genes underex-

pressed in basal tumors, but it did not allow the identifi-

cation of any robust gene clusters.

Validation of the prognostic signature

The expression of the immune metagene was studied in

the independent panel of 518 basal tumors not used to

define the predictor. Follow-up for DFS was annotated

for 380 patients: 158 developed relapse or death with a

median time-to-relapse of 30 months, and 222 remained

disease-free with a median follow-up of 93 months. The

5-year DFS was 60%. At least 25 out of 28 (mean = 27)

genes included in the immune metagene were common

to each separate set (Additional file 1, Table S1). A total

of 122 patients were defined as “Immune-High” and 396

as “Immune-Low”. Their histoclinical features (including

A

Relapses

I II

3 -30

B

Cluster I

Cluster II

77%

56%

p = 0.22, log-rank test
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Figure 1 Hierarchical clustering of basal breast cancer. (A) Unsupervised hierarchical clustering of 73 non-metastatic non-inflammatory basal

BCs from IPC with 360 genes coding for kinase or kinase-interacting proteins overexpressed in basal tumors. Each row represents a gene and

each column a sample. The expression level of each gene in each sample is relative to its median abundance across the samples and is

depicted according to the color scale shown under the matrix. Red and green indicate expression levels respectively above and below the

median. Relapses are indicated in the stripe under the dendrogram: white for no relapse during follow-up, and grey for relapse. Two tumor

clusters (I and II) are delineated by the vertical green line. To the right, vertical colored bars indicate the three clusters identified by the QT

clustering method: purple, immune-related cluster; green, biologically unspecific cluster; red, proliferation-related cluster. (B) Kaplan-Meier disease-

free survival curves for cluster I patients (n = 24), and cluster II patients (n = 49).
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the lymphocyte infiltrate available in 56 out of 518

tumors) were well balanced, except SBR grading, more

frequently II-III in the “Immune-High” subgroup (Table

3). The 5-year DFS was 78% in the “Immune-High” sub-

group and 54% in the “Immune-Low” one (p = 1.62E-

04, log-rank test, Figure 3A), confirming the prognostic

value of the immune metagene. Analysis by data set

showed that the mean difference of 5-year DFS between

“Immune-high” and “Immune-low” cases was 25% (95%

CI, [13 - 37], p = 0.0038, T-test).

On univariate analysis (Table 4), two factors correlated

with DFS: lymph node involvement (HR = 1.53, 95%CI

[1.04-2.25]; p = 0.03, Wald test) and immune metagene

expression (HR = 0.45, 95%CI [0.29-0.69]; p = 2.9E-04, Wald

test). On multivariate analysis, both remained significant.

Comparison with existing classifiers

Two prognostic multigenic models have been reported

in basal BC: the MBC and HDPP classifiers [33,34]. We

assessed their prognostic value in the present 518 basal

tumors. On univariate analysis, the MBC classifier corre-

lated with DFS, with a HR for relapse of 0.59 (95% CI

[0.43-0.82], p = 0.0017) for good-prognosis patients as

compared with poor-prognosis patients. In multivariate

analysis including this classifier, our immune metagene

classifier and lymph node status showed that both geno-

mic classifiers were significant, whereas node involve-

ment was not (Table 4), suggesting that the multigenic

models have independent prognostic value. The HDPP

classifier confirmed its prognostic value for ERBB2-over-

expressing tumors in our series (n = 214), but not in

the 518 basal samples: 5-year DFS was 63% for the

good-prognosis patients versus 61% for the poor-prog-

nosis patients (p = 0.62, log-rank test).

We also assessed the prognostic impact of three pub-

lished major prognostic expression signatures recently

reported in early breast cancer. In each data set, each

sample was assigned a good or a poor prognosis based

on each signature. Data sets were then pooled, and sur-

vival was compared between the predicted good-prog-

nosis and poor-prognosis subgroups. Univariate DFS

analysis performed in the basal subtype showed that

none of these classifiers was associated with survival

(Table 5). These results show the absence of informative

value of these signatures in the basal subtype, by con-

trast with our classifier.

Prognostic and/or predictive value of the immune

classifier?

To determine the link of the immune metagene with

metastatic risk and/or with response to chemotherapy,

we analyzed - within the series of 518 basal BCs - the

187 cases with available follow-up who had not received

Immune-High

Immune-Low

91%

49%

p = 0.005, log-rank test

0 24 48 72 9612 36 60 84

0,0
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Figure 2 Disease-free survival and basal subgroups in the

learning set. Kaplan-Meier disease-free survival curves of basal BC

patients in the IPC series according to the subgroups “Immune-

High” (n = 25) and “Immune-Low” (n = 48).

Table 2 Univariate and multivariate analyses by Cox regression of basal tumors, IPC series

Univariate Analysis Multivariate Analysis

N HR [95% CI] p-value N HR [95% CI] p-value

Age ≤50 (vs > 50 y) 73 1.83 [0.79-4.26] 0.16

pT > 20 mm (vs ≤ 20 mm) 73 1 [0.96-1.05] 0.95

pN pos (vs neg) 73 1.93 [0.88-4.24] 0.1

Grd 2-3 (vs 1)* 73 0.15 [0.02-1.18] 0.07

ER pos (vs neg) 73 1.08 [0.25-4.68] 0.91

Vascular invasion 72 2.32 [1.04-5.18] 0.04 72 2.30 [1.03-5.14] 0.04

Lymphocyte infiltrate ** 71 0.38 [0.11-1.28] 0.12

Chemotherapy 73 0.62 [0.18-2.12] 0.62

Hormone therapy 72 1.76 [0.64-4.81] 0.27

Immune metagene High (vs Low) 73 0.21 [0.06-0.70] 0.01 72 0.22 [0.07-0.73] 0.01

* Only 1 tumor was grade 1

**absent to low vs moderate to high.
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any adjuvant systemic therapy. In this set, “Immune-

High” patients had a longer DFS than “Immune-Low”

patients with 5-year DFS of 82 vs. 55% respectively (p =

4.75E-03, log-rank test; Figure 3B).

Next, we studied the capacity of our model to predict

pathological complete response (pCR) after anthracy-

cline-based neoadjuvant chemotherapy. Information was

available for two data sets with the following regimens:

weekly paclitaxel and fluorouracil-doxorubicin-cyclopho-

sphamide (55 patients with pCR and 70 without) [22],

and fluorouracil-epirubicin-cyclophosphamide or doce-

taxel followed with docetaxel-epirubicin (34 patients

with pCR and 99 without) [23]. We identified 98 basal

cases out of the 258 included samples. “Immune-High”

patients experienced more pCR (59%) than “Immune-

Low” patients (43%), but the difference was not signifi-

cant (Odds ratio = 1.87, 95%CI [0.57-6.40], p = 0.29,

Fisher’s exact test).

Altogether, these observations suggested that the

immune metagene is associated with relapse risk,

whereas its association with response to chemotherapy

deserves to be tested in larger series.

The immune kinase metagene correlates with cytotoxic T-

cell response

We next sought to elucidate the type of immune

response associated with our metagene. Ontology analy-

sis of the 28 genes using IPA software confirmed asso-

ciation with many pathways involved in immune

response [35], particularly in lymphocyte activation pro-

cesses, such as “T-cell receptor signaling”, “CD28 signal-

ing in T helper cells”, “NK cell signaling”, “PLC

signaling”, “Role of NFAT in regulation of the immune

response”, “NF-kB signaling”, or “IL2 signaling” (Addi-

tional file 8 - Table S7, and Additional file 9 - Figure

S1). The upregulation of BTK, CD3E, FYN, ITK, LCK,

Table 3 Histoclinical comparison of the two basal subgroups defined with the immune metagene in the independent

validation series

Characteristics (N) Immune-High n = 122 Immune-Low n = 396 p-value OR (95%CI)

N (% of evaluated cases)

Age (372) 0.71*

≤ 50 years 53 (62%) 169 (59%) 1

> 50 years 33 (38%) 117 (41%) 1.11 (0.66-1.89)

Pathological tumor size, pT (394) 0.11*

pT1 32 (33%) 73 (24%) 1

pT2-4 64 (67%) 225 (76%) 1.54 (0.9-2.6)

Pathological lymph node status, pN (420) 0.90*

negative 62 (65%) 208 (64%) 1

positive 33 (35%) 117 (36%) 1.06 (0.64-1.77)

Tumor grade (420) ND

SBR 1 0 (0%) 13 (4%)

SBR 2-3 103 (100%) 304 (96%)

IHC ER status (434) 0.57*

negative 73 (77%) 269 (79%) 1

positive 22 (23%) 70 (21%) 0.86 (0.49-1.57)

Lymphocyte infiltrate (56) 0.51*

absent 6 (46%) 14 (33%) 1

present 7 (54%) 29 (67%) 1.76 (0.41-7.48)

Adjuvant chemotherapy (354) 0.43*

no 49 (64%) 162 (58%) 1

yes 28 (36%) 115 (42%) 1.24 (0.72-2.18)

Adjuvant hormone therapy (269) 0.11*

no 59 (91%) 197 (97%) 1

yes 6 (9%) 7 (3%) 0.40 (0.12-1.46)

Follow-up (months, median) (380) 95 89 0.44**

Relapses (380) 25 (26.3%) 133 (46.7%) 4.77 E-04* 0.41 (0.23-0.70)

5-year DFS (380) 78% 54% 1.6 E-04***

N, number of tumor samples - out of the 2515 samples - with available information for the corresponding characteristic, *, Fisher’s exact test; **, Mann-Whitney

test; ***, log-rank test; ND, not done.
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LCP2, PRKCs, SYK, ZAP70 and JAK3 clearly identified

an activated profile of the lymphocytic lineage.

To better explore the molecular differences between

“Immune-High” and “Immune-Low” basal BCs, we

searched for the genes differentially expressed between the

two subgroups in the IPC series using the whole genome

and not only the kinome. Supervised analysis (0.1% FDR)

identified 532 differential genes. Most of them (n = 506)

were overexpressed in “Immune-High” samples (Additional

file 10, Table S8A). Ontology analysis showed that these

genes were particularly involved in immune response, and

more specifically in adaptive immunity (Additional file 10,

Table S8B). To confirm this observation, we applied GSEA

using reported T-cell, CD8+ T-cell and B-cell expression

signatures [36]. As shown in Additional file 11 (Figure S2),

an enrichment of genes involved in T-cell, CD8+ T-cell and

B-cell signatures was found in “Immune-High” cases.

Discussion
Basal BCs are poor-prognosis tumors, which require

both improvement of our ability to predict the clinical

outcome for better tailoring treatment and identification

of new therapeutic targets. Their prognosis is heteroge-

neous, and it is currently impossible to predict which

patients will or will not relapse using classical histoclini-

cal factors or the recently reported prognostic GES,

notably those currently tested in clinical trials [39]. In

the same way, the HDDP classifier [34] identified using

ERBB2+ tumors, failed to classify basal samples. Prog-

nostic analyses should be done per subtype [40].

Analysis of kinase and kinase-related genes might help

develop new targeted therapies. We report a kinase-

based model that divides basal BCs into two subgroups

with balanced histoclinical factors but different survival

(25% difference for 5-year DFS). This model is based on

the expression of an immune 28-gene metagene. Identi-

fied in a learning set, its prognostic value was confirmed

in an independent data set of 518 cases. The model out-

performed the individual current prognostic factors on

multivariate analysis, both in the learning and validation

sets. Patients with high expression of the immune meta-

gene had a better DFS than other patients. This prog-

nostic value remained when applied to patients treated

without any adjuvant chemotherapy, suggesting a link

with the metastatic potential. An additional link with

chemosensitivity cannot be excluded as “Immune-High”

patients experienced a higher, but non significant, pCR

rate than “Immune-Low” patients.

The favorable prognostic impact of the immune

response, particularly the T-cell response, has been

reported in ER-negative [8,13,14,26,41-43] or ERBB2+

BCs [8,28,31,44]. Similar finding was reported in 97 tri-

ple-negative BCs [45] in which increased expression of

interferon-related genes tended to confer better prog-

nosis. In our previous study [33] and the present one,

we focused on basal BC only, since this subtype is even

more homogeneous than the triple-negative group [46].

In our previous study, we defined a 368-gene prognosti-

cator, which confirmed the positive influence of TH1

Table 4 Univariate and multivariate (with and without MBC-based classifier) DFS analyses by Cox regression of basal

tumors: public series

Univariate Analysis Multivariate Analysis*

N HR [95%CI] p-value N HR [95%CI] p-value HR [95%CI] p-value

Age ≤ 50 (vs > 50y) 253 0.96 [0.65-1.41] 0.84

pT > 20 mm (vs ≤ 20 mm) 275 1.40 [0.93-2.11] 0.11

pN pos (vs neg) 301 1.53 [1.04-2.25] 0.032 301 1.58 [1.07-2.33] 0.021 1.46 [0.99-2.16] 0.06

Grd 2-3 (vs 1) 302 3.00 [0.74-12.1] 0.12

ER pos (vs neg) 315 0.68 [0.45-1.03] 0.07

Chemotherapy 236 1.28 [0.77-2.14] 0.34

Hormone therapy 250 1.01 [0.41-2.48] 0.98

MBC-based classifier 380 0.59 [0.43-0.82] 1.72 E-04 301 0.59 [0.40-0.87] 7.5 E-03

Immune metagene High (vs Low) 380 0.45 [0.29-0.69] 2.4 E04 301 2.15 [1.32-3.50] 0.0022 0.54 [0.33-0.89] 0.015

* multavariate analyses were performed without (left) and with (right) the medullary-based classifier.
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p = 4.75E-03, log-rank test

0 24 48 72 9612 36 60 84

p = 1.62E-04, log-rank test

Figure 3 Disease-free survival and basal subgroups in the

validation set. Kaplan-Meier disease-free survival curves of basal BC

patients in the independent validation series according to the

subgroups “Immune-High” and “Immune-Low”. (A) in all patients (95

versus 285 patients respectively), and (B) in patients having received

no systemic adjuvant therapy (39 versus 148 patients respectively).

Sabatier et al. Molecular Cancer 2011, 10:86

http://www.molecular-cancer.com/content/10/1/86

Page 7 of 11



cells and high cytotoxic activity. This model outper-

formed two immune signatures in multivariate analysis

of DFS [28,42]. We showed here that both the immune

kinase model and this previous model maintain their

prognostic value in multivariate analysis, suggesting

their independence. It is of note that our “immune-

metagene” model presented a prognostic value in lumi-

nal B (p = 0.03, Wald test) and ERBB2-overexpressing

cases (p = 0.02, Wald test), but not in luminal A and

normal-like samples (p = 0.58 and 0.98, respectively,

Wald test). Moreover, it is worth noting that previously

published signatures (Genomic grade index, 70-gene sig-

nature, and 76-gene signature), mainly based on prolif-

eration, failed to separate good from poor prognosis

basal breast cancers.

Ingenuity analysis of both the 28 genes and the genes

differentially expressed between the two subgroups

defined by our kinase immune metagene confirmed that

the differences between these histoclinically similar sub-

groups are in immune genes. Upregulated kinome-genes

suggest the presence of an activated lymphocyte infil-

trate in “Immune-High” patients. This lymphocyte-acti-

vated status is due to stimulations by cytokines (JAK3,

STAT1, STAT4, TBX21 and TH1 cytokine receptors),

by T-cell receptor (T-cell receptor chains [alpha, beta

and gamma], CD3E, CD3D, CD247/CD3Z, CD28, CD27,

CD2, CD8A, CD4, LAG3, MAL, LAT2, PIM2), by B-cell

receptor (CD19, CD79b, CD27, CD40, IGJ, IGK@,

IGH@, BTK, BLNK, BANK1), and by anti-tumor recep-

tors (KLRK1, KLRB1, GAB3, SLAMF1, SLAMF6-8). The

lymphocyte infiltrate is strictly TH1-biased with the

overexpression of IL2RG, IL23RB and IL7R involved in

lymphocyte survival, of IL12RB1, IL15RA, IL18BP, and

IL21R TH1-biased receptors, of STAT1, STAT4, and

TBX21 TH1 transcription factors, and of several inter-

feron-inducible molecules (GVIN1, ISG20, GBP2, IRF1,

IRF4, IRF7, and IRF8). This agrees with increased levels

of cytotoxic granules and pore-forming molecules

(VAMP1, GZMA, GZMB, GZMH, GZMK, GNL, PRF1,

CFLAR, CASP1, and CASP10). Interestingly, there are

also several genes encoding activated memory lympho-

cyte recruitment such as IL16, XCL1, CCL5, CCR5,

CXCL9, CXCR3, CCL19, CCR7, and CXCR6 (mostly

helper and cytotoxic T-cells), and CXCL13, CXCR5

(activated B-cells), among which some are strictly pro-

duced by activated T-cells, such as CCL4 and CCL5.

Finally, we also found transcripts involved in lymphocyte

migration and/or activation (ITGAL and ITGB2 hetero-

dimers, ITGA4, ITGAX, ITGB7, SELL, SELP, SELPL,

and CD69).

Thus, we show that the immune response, and notably

the adaptive cytotoxic TH1-cell response [47], influence

survival of basal BC patients. Despite the small size of

the independent population with lymphocyte infiltrate

data available, which does not allow to really conclude

about the impact of the quantity of lymphocyte infiltrate

on the expression of immune response-related genes,

the absence of correlation between the immune meta-

gene and lymphocyte infiltration in our cohort and in

two independent data sets [5,8] as well as the function

of genes, suggest that this influence does not depend on

the degree of lymphocyte infiltrate, but on the efficiency

of its cytotoxic activation status. The differential expres-

sion of these “immune genes” is probably also due to a

variable expression of epithelial-derived molecules

[13,42,48], which activate (in “Immune-High” cases) or

repress (in “Immune-Low” cases) the local immune

response to the tumor. These hypotheses deserve further

investigation to understand the respective role of tumor-

infiltrative lymphocytes and cancer cells on cancer

history.

Conclusions
In conclusion, we propose a robust prognostic subdivi-

sion of basal BC based on the expression of 28 genes,

involved in immune response and notably the cytotoxic

T-cell response. Tumors associated with higher activa-

tion of cytotoxic tumor-infiltrative lymphocytes have a

better prognosis, and are likely to better respond to che-

motherapy. Such classification should help tailor treat-

ment. Furthermore, since adaptive immunity seems to

play a pivotal role [49] immune response manipulation

might be an efficient way of treating or preventing these

poor-prognosis tumors [47,50].

Additional material

Additional file 1: Table S1: Description of the breast cancer data

sets.

Additional file 2: Supplementary materials.

Additional file 3: Table S2: List of 661 kinase and kinase-related

genes analyzed.

Additional file 4: Table S3: Molecular subtypes and histoclinical

features of the pooled data sets.

Additional file 5: Table S4: Description of the three genes clusters

identified with QT clustering.

Additional file 6: Table S5: Univariate DFS analysis of metagenes by

Cox regression of basal tumors: IPC series.

Table 5 Comparison of the prognostic value of the

immune-metagene classifier with three available

signatures, Disease-free survival, Cox univariate analysis

N HR [IC95] p-value

Immune-metagene High vs Low 380 2.23 [1.45-3.42] 2.4 E-04

70-gene signature Poor vs Good 380 1 [1] NaN*

Genomic grade index High vs Low 380 1.30 [0.53-3.18] 0.56

76-gene signature Poor vs Good 317 1.40 [0.96-2.03] 0.08

*all basal tumors were classifeid as “poor prognosis” by this classifier.
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Additional file 7: Table S6: Histoclinical comparison of the two

basal subgroups defined with the immune metagene (IPC series).

Additional file 8: Table S7: Ingenuity canonical pathways associated

with the immune-related cluster.

Additional file 9: Figure S1: Biological network of genes included in

or associated with our 28-gene model. A fine-tuning between

inhibitor (phosphatases) and activator (kinases) signals regulates

lymphocyte anti-tumor immunity. AK and Pyk2 are two of the major

kinases that become tyrosine phosphorylated following lymphocyte

stimulation. Both are associated to Lck. Lck (lymphocyte specific kinase)

and Fyn are cytoplasmic tyrosine kinases of the Src family expressed in T-

cells and natural killer (NK) cells, under the T cell receptor (TCR) or

Natural cytotoxicity receptor (NCR). Their activity is critical for T and NK

cell receptors-mediated signaling, leading to normal T- and NK-cell

development and activation. Increased Fyn transcript and protein

content in T cells can be observed with high T cell activity. Square 1. LAT

is a linker protein essential for activation of T lymphocytes. Its rapid

tyrosine-phosphorylation upon TCR stimulation recruits downstream

signaling molecules for membrane targeting and activation. LAT is a

substrate for Syk/Zap70 kinase and an immediate substrate for both Lck

and Syk kinases. Its phosphorylation is an early event leading to T-cell

activation. Both Lck and Syk phosphorylate the ITAM-like motifs on LAT,

which is essential for induction of the interaction of LAT with

downstream signaling molecules such as Grb2, PLC-g1 and for activation

of MAPK-ERK pathways. ZAP70 is thus at the crossroad of several

signaling pathways that control lymphocyte development and function

and cell survival in response to a wide variety of activator signals coming

from the NCR, TCR or other receptor involved in anti-tumor immunity.

Square 2. Cytokines receptors express at the membrane also regulate

lymphocyte activation through the JAK-STAT signaling pathway. Square

3. In B, T and NK cells, the inhibition of these kinases is mostly mediated

by protein tyrosine phosphatases (PTP), regrouping members of the SHP

family (SHP-1, SHP-2) or LYP family. These proteins inhibit effector phase

functions by dephosphorylating a wide spectrum of phospho-proteins

involved in hematopoietic cell signaling.

Additional file 10: Table S8: Genes differentially expressed between

the “Immune-High” and “Immune-Low” basal tumor subgroups in

the IPC set. (A) Summary of the 532 genes differentially expressed

(Student’s t-test). (B) Canonical pathways associated with the genes

overexpressed in “Immune-High” tumors in the IPC set.

Additional file 11: Figure S2: Correlation of basal breast cancer

subgroups (IPC series) and leukocyte cell-type gene expression

signatures (GSEA algorithm). (A) Results of GSEA with the three tested.

NES, normalized enrichment score; FDR, false discovery rate. (B)

Enrichment plots for the three significant signatures: T-cell, CD8+ T-cell,

and B-cell (from left to right).
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BC: breast cancer; DFS: disease-free survival; ER: estrogen receptor; FDR: false

discovery rate; GES: gene expression signature; GSEA: gene set enrichment
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