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Abstract

Background: Protein kinases play crucial roles in cell growth, differentiation, and apoptosis. Abnormal function of 
protein kinases can lead to many serious diseases, such as cancer. Kinase inhibitors have potential for treatment of 
these diseases. However, current inhibitors interact with a broad variety of kinases and interfere with multiple vital 
cellular processes, which causes toxic effects. Bioinformatics approaches that can predict inhibitor-kinase interactions 
from the chemical properties of the inhibitors and the kinase macromolecules might aid in design of more selective 
therapeutic agents, that show better efficacy and lower toxicity.

Results: We applied proteochemometric modelling to correlate the properties of 317 wild-type and mutated kinases 
and 38 inhibitors (12,046 inhibitor-kinase combinations) to the respective combination's interaction dissociation 
constant (Kd). We compared six approaches for description of protein kinases and several linear and non-linear 
correlation methods. The best performing models encoded kinase sequences with amino acid physico-chemical z-
scale descriptors and used support vector machines or partial least- squares projections to latent structures for the 
correlations. Modelling performance was estimated by double cross-validation. The best models showed high 
predictive ability; the squared correlation coefficient for new kinase-inhibitor pairs ranging P2 = 0.67-0.73; for new 
kinases it ranged P2

kin = 0.65-0.70. Models could also separate interacting from non-interacting inhibitor-kinase pairs 
with high sensitivity and specificity; the areas under the ROC curves ranging AUC = 0.92-0.93. We also investigated the 
relationship between the number of protein kinases in the dataset and the modelling results. Using only 10% of all data 
still a valid model was obtained with P2 = 0.47, P2

kin = 0.42 and AUC = 0.83.

Conclusions: Our results strongly support the applicability of proteochemometrics for kinome-wide interaction 
modelling. Proteochemometrics might be used to speed-up identification and optimization of protein kinase targeted 
and multi-targeted inhibitors.

Background
Protein kinases comprise a large family of membrane-

bound and cytosolic enzymes, with 518 genes identified

in the human genome [1]. All protein kinases catalyze the

transfer of the γ-phosphate of adenosine triphosphate

(ATP) to the hydroxyl group of tyrosine, serine, or threo-

nine residues of protein substrates. Together with the

protein phosphotases, kinases act as regulatory switches

for essentially all cellular processes, including metabolic

pathways, cell growth, differentiation, survival, and apop-

tosis. Abnormal function of protein kinases leads to

development of many serious diseases, such as cancer,

diabetes, inflammatory and autoimmune disorders, and

diseases of the heart. In particular, many cancers (breast,

ovary, lung, liver, colon, and prostate cancer, lymphoma,

glioma, melanoma, and others) may be linked with

increased activity of specific growth-factor-receptor
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tyrosine kinases due to overexpression, or mutations

leading to constitutively active forms [2].

Great hopes were placed that inhibition of dysfunc-

tional kinases will lead to new highly effective therapies.

The first small-molecule kinase inhibitor, imatinib, was

launched in 2001 as an anticancer agent for the treatment

of chronic myeloid leukemia; its action being to inhibit

the constitutively active form of Abelson tyrosine (ABL)

kinase. Since then, eight compounds targeting the kinase

catalytic domain were approved for treatment of various

forms of cancer; over thirty kinase inhibitors are in the

clinical phases of development, and many more are in

preclinical pipelines.

A major problem in the development of kinase inhibi-

tors is to achieve specificity. Most of the kinase inhibitors

in current development interact with the kinases' ATP

binding cleft, where they compete with ATP [3]. How-

ever, the ATP-binding site is highly conserved among all

kinases and it is therefore difficult to design a drug selec-

tive for only one kinase at a time. Other functional

domains that have been exploited to target kinases are

also conserved among numerous kinases making the

design of selective inhibitors problematic also in these

cases. In fact, a large-scale screening undertaken by

Fabian et al. [4] revealed that the three first FDA

approved inhibitors actually interacted with about one

sixth of the protein kinases included in the screen; each of

them cross interacted with between 18 to 23 of 119 evalu-

ated protein kinases. Seventeen other kinase inhibitors in

pre-clinical and clinical phases of development were also

tested in this study and were shown to possess various

degree of promiscuity; only one of the compounds inter-

acted with less than five kinases.

Many promising kinase inhibitors were abandoned

early due to toxicity [5]. Yet another common reason for

failure was lack of clinical efficacy. The latter problem can

be attributed to the multitude and complexity of cellular

signaling cascades, with redundant pathways and com-

plex feed back mechanisms. Use of multi-targeted com-

pounds that can selectively inhibit a specific group of

kinases of such pathways might increase the chance to

achieve clinical antitumor activity [6]. Yet another reason

for lack of clinical efficacy is resistance that arises due to

mutations in the targeted oncogene. E.g., drug resistance

in imatinib-treated leukemia patients appears due to

mutations in the BCR-ABL fusion protein. This prompts

the need for new generations of drugs that can override

the acquired resistance by inhibiting the mutated onco-

gene [7,8].

A computational method widely applied in drug design

is quantitative structure-activity relationship (QSAR)

modelling. QSAR models are used to optimize lead com-

pounds for target activity and other properties (e.g.,

ADME and toxicity) and to perform virtual screening to

find new hits. However, drawbacks of QSAR are that its

models consider only properties of ligands and that it

analyzes interactions with only one drug target at a time.

Hence QSAR models are unable to generalize between

multiple targets.

A more general approach is proteochemometric mod-

elling, which we introduced some time ago to study dif-

ferences in mechanisms of molecular recognition for

groups of related proteins [9,10]. Proteochemometric

models are based on experimentally determined interac-

tion data for series of proteins interacting with series of

ligands, like organic compounds, peptide inhibitors, sub-

strates, etc. These data are correlated to descriptors of the

two sets of interacting entities, which creates models that

can be used to predict activities of yet untested ligand-

protein combinations, as well as foresee activity profiles

of novel unseen ligands and proteins.

Proteochemometric models take advantage of the fact

that 3 D structures of homologous proteins are more con-

served than their primary sequences and functions. Thus,

proteins that have diverged functionally during evolution

may still share the same structural organization and

exploit similar molecular interaction mechanisms. The

principle behind proteochemometrics is simple. It

requires (1) consistent interaction data, (2) numerical

descriptions of relevant physico-chemical and/or struc-

tural properties of both ligands and the protein macro-

molecules, and (3) a non-linear correlation method that

jointly uses the two sets of descriptors to explain ligand-

protein complementarities and interaction profiles. We

have previously successfully applied proteochemometrics

to create high-resolution models for ligand interactions

with several classes of G-protein coupled receptors and

for inhibition of multiple mutated variants of the HIV-1

protease. The aim of this study was to evaluate several

types of kinase descriptors and compare the performance

of different multivariate correlation methods in large-

scale proteochemometric modelling of protein kinase-

inhibitor interactions.

Results
Performance of different types of kinase descriptors in PCA 

and PLS-DA models

In order to compare the performance of the alignment-

based approach and the five alignment-independent

approaches used herein for describing protein kinase

sequences we applied principal component analysis

(PCA) and partial least-squares discriminant analysis

(PLS-DA). PCA was performed to visualize how different

types of descriptors separate the seven groups of protein

kinases confined in the data set of 317 sequences. PLS-

DA was used to obtain a quantitative measure of the abil-

ity of the descriptors to discriminate these groups. The

seven kinase groups were as defined in [1], namely: AGC,
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CaMK, CK1, CMGC, STE, TK, and TKL. (The so-called

atypical and other kinases were included in the PCA anal-

ysis but they were excluded from the PLS-DA modelling.)

The first three principal components of the PCA mod-

els for the six sets of descriptors are visualized in Figure 1,

Panels A to F. As seen from panels A and B, SO-PAA and

CTD descriptors distribute the kinases in a more or less

random fashion, albeit part of tyrosine kinases are sepa-

rated from other groups, and the STE and CK1 groups

are quite compact. Clustering into groups is more evident

when the AAC-DC descriptors and MACCs of z-scale

descriptors are used (Panels C and D). For these descrip-

tors the location of the TK group, which is the largest

group in the data set, shows almost no overlap with the

other groups. Finally, the ACCs of z-scale descriptors

(using the maximum lag L = 50; see below the reason for

selecting this lag) and the z-scale descriptors of aligned

sequences give good separation of most of the kinase

groups (Panels E and F). However, a notable difference

between the two last is that ACCs separate subgroups of

TKs, while the first three PCs of descriptors of the

aligned sequences do not reveal such sub-clustering. On

the other hand, the alignment-based descriptors are the

only ones that separate CMGC kinases as being substan-

tially different from the other groups. As seen from Panel

F, for the alignment-based approach the CMGC kinases

form a distinct cluster in the first two PCs.

PLS-DA finds the directions in PC space where maxi-

mum separation among the classes is obtained and where

each class forms a maximally compact cluster. In an ideal

situation a cross-validated correlation coefficient Q2 = 1

indicates that all members of a class are predicted to have

y = 1, whereas all non-members are predicted to have y =

0. In reality Q2 is always lower than 1, which is due to

intra-class variations. Nevertheless, a Q2 within the range

0.6-0.8 still indicates a good separation of classes, with

few or no mispredictions. Should Q2 drop down to 0.4-

0.6, or even less, we have a warning that classes overlap

and that the model will make multiple mispredictions.

(Anyhow, the predictions would still be better than ran-

dom. In fact, a random model has a Q2 = 0).

Cross validation results for each type of kinase descrip-

tion for each kinase group are shown graphically in Fig-

ure 2, where panels A to F present PLS-DA results for the

same descriptor types as in Figure 1, A-F. Similarly as for

the PCA models, z-scale based descriptions perform the

best, with the alignment based approach performing over

all the best. As seen, extremely high predictive ability was

obtained with the Q2 values for the seven kinase groups

Figure 1 Plots representing the separation of kinase groups in 

the three first components of PCA models. Panels A-F show results 
of six PCA models using various types of alignment independent (A-G) 
and alignment based (F) kinase descriptions. Each one of the 317 pro-
tein kinases is represented by a tetrahedron, color-coded according to 
its belonging to a kinase group: black, AGC (named after member fam-
ilies PKA, PKG and PKC); red, CAMK (calcium/calmodulin regulated ki-
nases); blue, CK1 (casein kinases); electric green, CMGC (named after 
member families CDK, MAPK, GSK3, and CLK); orange/amber, STE (ho-
mologues of yeast Sterile kinases); magenta, TK (tyrosine kinases); sea 
green, TKL (tyrosine kinase-like kinases); gray, atypical/other. Note that 
in Panels A and B kinase groups do not form distinct clusters, whereas 
in the other panels the largest kinase groups are clearly separated.

Figure 2 Predictive ability of PLS discriminant analysis (PLS-DA) 

models estimated by five fold-cross-validation. Kinase descriptions 
in the six models presented in panels A-F correspond to respective 
panels in Figure 1. Q2 values may vary from 0 to 1. A low value indicates 
that a kinase group is randomly mixed with the others, while a value 
approaching 1 indicates a perfect discrimination. The overall high Q2 

values certify that the respective types of kinase descriptions have cap-
tured sequence properties that are present in members of a specific ki-
nase group while being absent among all other kinases.
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ranging from 0.89 to 0.97, the overall Q2 being 0.94 (Fig-

ure 2, Panel F). Comparisons of all six panels of Figure 2

reveal that, irrespectively of the description type, the best

separation is obtained for TKs. The lowest Q2 values were

for all descriptions obtained for TKL kinases suggesting

that this group is more diverse than the other groups; (as

its name indicates, the TKL group comprises enzymes

that are phylogenetically related to TKs, although they

are in fact serine-threonine kinases). However, cross-vali-

dation results showed that none of the TKL kinases was

mispredicted as being non-member, and none of the

other kinases was mispredicted as being member of TKL

group in the models that used MACCs or alignment

based descriptions. However, the model that exploited

ACCs mispredicted one TKL kinase (the TNNI3K

kinase).

Selection of optimal lags for ACC and MACC transforms

An additional goal of the preliminary modelling was to

identify the optimal complexity of the ACC and MACC

descriptions. (In other words to find the maximum lag L,

up to which descriptors contribute to improved separa-

tion of kinase groups). As described in Methods, covari-

ances over long distances are less helpful in finding

physico-chemical similarities in related protein

sequences due to the differences in the length of seg-

ments that connect their functional units. Use of very

many ACC or MACC terms with large lags may then give

rise to chance correlations, deteriorating the resolution of

any mathematical models created from them. By compar-

ing PLS-DA models exploiting ACC and MACC descrip-

tors with different maximum lags (L being 10, 25, 50, and

100) we showed that for both descriptor types the results

were somewhat inferior for L = 10; the overall Q2 being

0.76 and 0.86 for ACC and MACC based models, respec-

tively. Increasing L to 25 gave major improvements (the

overall Q2 being 0.90 and 0.89, respectively); further

increase to L = 50 produced yet slightly better models.

Finally, including very long distance covariances with L =

100 led to slightly reduced predictive ability, the Q2s

dropping to 0.88 and 0.87 for ACCs and MACCs, respec-

tively. An interesting finding was that the performance of

the two descriptor types was quite similar when the max-

imum lag was set to L = 25 and larger. This was so both in

terms of overall Q2, and with respect to Q2's for the seven

groups of kinases (data not shown). Based on all these

results we elected to use ACC and MACC descriptors

with maximum lag 50 in all further modelling of kinase-

inhibitor interactions.

Performance of different types of kinase descriptors and 

multivariate correlation methods in predicting kinase-

inhibitor activity

We used several machine learning methods to correlate

the descriptors of kinase inhibitors and kinases to the

interaction activities. The methods used were as follows:

decision trees (DT), one nearest neighbour (1-NN) and k-

nearest neighbour (k-NN) approach, support vector

machines (SVM), and partial least-square projections to

latent structures (PLS). The first four methods induce

non-linear models, whereas PLS is a linear method.

When using PLS we created both linear and non linear

models; in the latter case the dataset included cross-

terms derived from kinase and inhibitor descriptions.

The predictive abilities for new inhibitor-kinase combi-

nations (P2) and new kinases (P2
kin) as assessed by outer-

loop cross-validation are presented in Table 1. The most

predictive models were obtained using SVM, where for

all three z-scale based description methods the P2 values

fell in the range 0.70-0.73 and the P2
kin values in the range

0.67-0.70. The PLS (with cross-terms) and k-NN models

performed almost as good. (However, the performance of

the k-NN model exploiting ACC descriptions was infe-

rior; its P2
kin being only 0.53.) Models based on AAC-DC

descriptors performed clearly worse than the z-scale

based descriptions, but also here the SVM model was the

most predictive; the P2 being 0.68 and P2
kin being 0.64,

whereas the values of these parameters for PLS model

were only 0.58 and 0.53.

The inferior performance for the AAC-DC descriptions

is not surprising. In fact it seems quite unlikely that the

fraction of any single dipeptide would show significant

correlation with the functional properties of the kinases.

Such correlations, however, can become evident for

larger sets of dipeptide combinations (i.e., tripeptides,

tetrapeptides, and longer similar sequence stretches), giv-

ing an advantage to the SVM model which by the use of

its non-linear kernel can approximate high-complexity

interaction effects between the descriptors. The differ-

ence between the performances of SVM and PLS models

is even larger when proteins are described by CTD or by

SO-PAA descriptors; the P2
kin for PLS models using these

two sets of descriptors being, respectively, 0.45 and 0.44,

compared to 0.60 and 0.63 for the SVM models.

For any set of descriptors the k-NN method outper-

formed 1-NN (see Table 1). However, the optimal num-

ber of neighbours found to be used by the cross-

validation inner-loop was quite low, and ranged in all

cases 3 to 5. The predictions of k-NN models are thus

based on local subsets of the data set, and for this reason

it would be problematic to use these models to draw any

general conclusions on the molecular properties that

determine kinase-inhibitor complementarity.

Finally, as expected, PLS modelling without use of

kinase-inhibitor cross-terms explained only a minor part

of the activity variation; the P2
kin for all three z-scale-

exploiting models being 0.32 (see Table 1). This result

shows that the non-linear part which describes kinase-
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Table 1: Results of proteochemometric modelling of kinase-inhibitor interactions using different types of kinase 

descriptions and different data analysis methods

Data analysis method: DT 1-NN k-NN SVM PLS PLS (w/o cross-terms)

Kinase description: P2 P2
kin P2 P2

kin P2 P2
kin P2 P2

kin P2 P2
kin P2 P2

kin

Composition, transition, and 

distribution (CTD) of amino 

acid properties

0.45 0.38 0.48 0.43 0.58 0.53 0.66 0.60 0.48 0.45 0.32 0.30

Sequence order and 

pseudo-amino acid (SO-PAA) 

descriptors

0.44 0.33 0.52 0.49 0.60 0.55 0.68 0.63 0.49 0.44 0.32 0.29

Amino acid and dipeptide 

composition (AAC-DC)

0.43 0.33 0.50 0.46 0.62 0.57 0.68 0.64 0.58 0.53 0.34 0.31

Maximums of auto- and 

cross-covariances (MACCs) of 

z-scales

0.46 0.30 0.55 0.55 0.63 0.63 0.70 0.67 0.66 0.63 0.35 0.32

Auto- and cross-covariances 

(ACCs) of z-scale descriptors

0.48 0.42 0.53 0.49 0.64 0.53 0.72 0.69 0.66 0.64 0.35 0.32

Z-scales of aligned sequences 0.49 0.43 0.55 0.58 0.65 0.64 0.73 0.70 0.67 0.65 0.34 0.32

Shown are the performances of proteochemometric models based on decision trees (DT), one nearest neighbour (1-NN) and k-nearest 

neighbour (k-NN) approaches, support vector machines (SVM), and partial least-square projections to latent structures, with (PLS) and without 

cross-terms (PLS w/o cross-terms). P2 and P2
kin indicate the squared correlation coefficient from outer loop of cross-validation for, respectively, 

new kinase-inhibitor combinations and new kinases.

inhibitor selectivity dominate over the linear part that

describes the average activity of a ligand for the protein

series and the average activity of all ligands for a particu-

lar protein. The high non-linearity in the dataset is also

likely the reason for the moderate success of the decision

tree algorithm, which for any of the six used kinase

descriptions created a massive tree with over 300 leaves

explaining 65-71% of the activity variation (data not

shown). However, all these trees suffered in ability to gen-

eralize to novel kinases; the P2
kin for various descriptions

ranging only 0.30-0.43.

Distribution of prediction errors in SVM, PLS and k-NN 

models

The performance of the SVM, PLS, and k-NN models

exploiting z-scale descriptors of aligned sequences (i.e.

the description that gave the best models) is further illus-

trated in Figure 3. The figure presents histograms for the

prediction errors calculated in the outer-loop of cross-

validation for 1/5 of the kinases that had been entirely

excluded from the modelling (see Methods for details).

The distributions of errors in the SVM and PLS models

are very similar (cf. panels A and B). The cumulative plot

demonstrates that in the SVM model the difference

between predicted and observed pKd values range 0-0.25

logarithmic units for 57% of the kinase-inhibitor combi-

nations; for 75% of the combinations they fall below 0.5

logarithmic units; for 89% they are less than one logarith-

mic units, and for 99% less than two logarithmic units.

The corresponding fractions in the PLS model are 49%,

70%, 88%, and 98%. To interpret these results one should

keep in mind that the total span of kinase-inhibitor activ-

ities exceeded five logarithmic units, namely from pKd = 5

to 10.62, and all non-interacting entities were assigned

the numerical value pKd = 4; hence mispredictions by

more than six units could be theoretically possible.

For the k-NN model the pattern of error distribution is

quite different (Figure 3, Panel C). Here the prediction

error was zero for more than one half of the non-interact-

ing pairs (i.e. all their nearest neighbours had also been

identified as non-interacting in the primary screen and

were in the modelling assigned the same numerical value

pKd = 4). However, 14% of the prediction errors exceed

one logarithmic unit and 4% exceed two logarithmic

units, thus indicating that predictions of the k NN model

are less accurate compared to those obtained by SVM and

PLS. In other words, activities for inhibitors interacting

with overall quite similar kinases may vary a lot and

regression models can better explain this than the nearest

neighbour approach.

Dependence of modelling performance on the size of the 

dataset

Although both SVM, PLS, and k-NN models showed

good predictive ability they were based on more than

12,000 data points. It would thus be of obvious interest to



Lapins and Wikberg BMC Bioinformatics 2010, 11:339

http://www.biomedcentral.com/1471-2105/11/339

Page 6 of 15

know the robustness of the proteochemometric approach

when less data are available. We therefore assessed the

relationship between the sparseness of the data matrix

used and the performance of the model. To this end we

created models using 60, 40, 20, and 10 percent of all

data. For example, when 10% of the data was used to cal-

culate the P2
kin value, the set of 317 kinases was randomly

split into ten partitions of about equal size. Modelling

was then performed using only one of these partitions at

a time and the nine remaining partitions were used to

evaluate the model obtained. The procedure of splitting

the dataset was iterated ten times in order to assure

reproducibility of the results. The P2 and P2
kin measures

for models exploiting z-scale descriptors of aligned

kinase sequences are presented in Table 2, where the val-

ues for 80% the dataset size are in fact identical with the

above-presented results of 5-fold outer-loop cross-valida-

tion (cf. Table 1). The performance of the models

decreases only slightly when 40-60% of the whole dataset

is used for the model building, and the models are still

predictive when as few as 10% of all kinase-inhibitor

combinations or when 10% of all kinases are present in

the dataset (i.e., estimating P2 and P2
kin, respectively).

Moreover, the small margins between the P2 and P2
kin

parameters indicate that the reliability of predictions for

"new unassayed kinases" does not differ much from the

reliability of predictions for the kinases for which some

interaction data have been already assayed and used in

the modelling. Comparisons of the results for the three

data analysis methods also indicate that their perfor-

mance is more similar for larger datasets. For sparsely

populated datasets the performance of k-NN method

deteriorates faster than for the SVM and PLS methods.

Predicting interacting versus non-interacting kinase-

inhibitor pairs

Although all models predict interaction activities on a

continuous scale, they can also be used to predict

whether new inhibitors and kinases interact or not. In the

quantitative modelling we assigned the value pKd = 4 to

all inhibitor-kinase combinations that had been found

not to interact in the primary screen - the screen for

which the detection limit was pKd = 5. Hence if the activ-

ity predicted for an inhibitor-kinase pair falls below a pre-

specified threshold level, the pair could be classified as

non-interacting, while if it falls above this threshold it

could be classified as interacting. The selection of the

threshold value will affect the sensitivity and specificity of

the classification, which can be defined as:

A common measure for the classification quality is the

Receiver Operating Characteristic (ROC) curve, which is

plotted as sensitivity versus one minus specificity upon

varying the discrimination threshold value. The area

under the ROC curve (AUC) is a measure of the discrimi-

natory power of a classifier, which is insensitive to class

distributions and the costs of misclassifications; AUC = 1

indicates perfect classification, while AUC = 0.5 means

that the classifier does not perform better then random

guessing.

Figure 4 compares ROC curves for the k-NN, SVM, and

PLS models, built on the largest and on the smallest sets

of kinases as described in the previous section (i.e. using

80% and 10% of all 317 kinases). Inspection of Figure 4

shows, for instance, that at a sensitivity of 0.80 the SVM

model build on the largest set of kinases has a specificity

of 0.92. In other words, using a threshold that identifies

80% of truly active kinase-inhibitor pairs as being active,

the number of false-positives amounts to only 8%. The

performance of the PLS and k-NN models were slightly

worse, at the sensitivity of 0.80 the false-positives amount

to 11 and 13%, respectively.

The good performance of the classification is further

indicated from the ROC areas, which for the models built

on 80% of the kinases were 0.93, 0.92 and 0.91 for, respec-

tively, the SVM, PLS, and k NN model. Interestingly, the

models built on only 10% of the kinases also show good

classification performance, the ROC areas being, respec-

tively, 0.83, 0.82, and 0.79 for SVM, PLS, and k-NN mod-

els. This finding indicates that even in the cases when

quantitative models do not possess very high predictive

ability in terms of P2, they may still be able to separate

active and inactive kinase-inhibitor combinations.

Accordingly, our models should be useful for virtual

large-scale screening to select the promising objects prior

to their experimental testing, while sorting away objects

with a less probability of having the properties sought for

in a development project.

Discussion
Design of selective and multiselective medications

requires understanding of the properties of the biological

targets that distinguish the chosen target(s) from numer-

ous similar "anti-targets" encoded in the human genome.

Contemporary drug design has to a large extent been

focused to structure-based methods where ligands are

designed to fit into a binding pocket of the target. This

requires knowledge of the exact 3 D structures of the tar-

gets and anti-targets, which is a problem for protein-sensitivity
truepositives

truepositives false negatives
=

+

specificity
true negatives

true negatives false positives
=

+
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kinases as X-ray structures have been solved for only 124

human protein kinase domains [11].

Proteochemometrics, on the other hand, has a distinct

advantage when the studied proteins share the same

structural organization since primary amino acid

sequences can then be used without the need to have

high-resolution 3 D structures of the targets. Proteoch-

emometrics has also the advantage that multiple targets

and anti-targets can be encompassed in one single model.

Structural alignments of protein kinases have shown that

they all contain universal conserved subdomains whereas

their amino acid sequences still show quite notable varia-

tion. In fact, there is generally a much higher degree of

conservation of the 3D-structures among protein families

than of their primary sequences [12]. The average pair-

wise sequence identity over the kinase domains falls

below 30%, and only a small fraction of residues are

markedly conserved across the entire superfamily [13].

Use of sequence-derived descriptions can hence be con-

sidered to be a rational approach for kinase representa-

tion in multivariate modelling, stated that the sequence

descriptions are made in such a way that they are relevant

for the structural and functional organization of the

kinases. Descriptions can be derived based on prior

sequence alignments or in alignment independent ways,

the latter approaches are advantageous for less similar

sequences, when unambiguous alignments are impossible

to obtain.

In the first phase of this study we performed PCA and

PLS-DA, using one set of alignment based and five sets of

alignment independent descriptors of protein kinase

amino acid sequences. The purpose of this analysis was to

evaluate the ability of the different descriptions to sepa-

rate kinases into groups according to their functions.

PLS-DA for the best model (which exploited alignment

based z-scale descriptions) afforded excellent separation

of the seven groups of kinases; the cross-validated

squared correlation coefficients fell between 0.93-0.98 for

six of the groups, while for the more diverse tyrosine

kinase-like kinase group it was 0.89.

As explained in the Methods section, PLS-DA models

create regression equations for each of the modelled

classes and thus identify properties that are more typical,

or even unique, for a particular class compared to the

other classes. Thus, inspection of the alignment based

PLS-DA regression equation exploiting z-scale descrip-

tors reveals that in some cases the description of the

physico-chemical properties of very short sequence

stretches and even of single residues are sufficient to sep-

arate all members of one kinase group from all other

kinases. In one such example, when we inspected the

alignment based PLS-DA model we revealed that a con-

served proline residue located surrounded by two hydro-

phobic amino acids in the activation loop of the TKs

sequences is the sufficient pattern for class separation. In

the majority of the cases this triplet is embraced by two

positively charged lysine or arginine residues (e.g., the

sequence stretch being KFPIK in ABL1 kinase, KVPIK in

EGFR kinase, and RLPVK in KIT kinase). Analysis of the

Figure 3 Distribution of prediction errors in kinase-inhibitor in-

teraction activity models. Shown are prediction errors in models us-
ing three different data modelling methods, namely: support vector 
machines (Panel A), partial least-squares projections to latent struc-
tures (Panel B), and k-nearest neighbour approach (Panel C). Prediction 
errors are estimated by outer-loop cross-validation, iteratively exclud-
ing 1/5 of the kinases in the data set. The histograms represent the ab-
solute values of prediction errors (i.e. blue bars; labelling on the left side 
of panels); the cumulative plot of prediction errors is represented by 
red lines; labelling on the right side of panels).

Table 2: Results of k-NN, SVM, and PLS modelling using subsets of full kinase-inhibitor dataset

Data analysis 

method:

k-NN SVM PLS

Size of the 

dataset:
P2 P2

kin P2 P2
kin P2 P2

kin

80% 0.65 0.64 0.73 0.70 0.67 0.65

60% 0.60 0.59 0.70 0.67 0.64 0.62

40% 0.52 0.51 0.65 0.62 0.58 0.56

20% 0.44 0.43 0. 56 0.53 0.49 0.47

10% 0.32 0.30 0.47 0.42 0.41 0.37

For explanation of abbreviations see legend to Table 1.
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alignment independent PLS-DA model exploiting AAC-

DC descriptors further identifies that groups of kinases

are often distinguished by the model by small sets of

dipeptides (for instance, each of dipeptides CW, VW, RN,

and GM is present in more than 90% of TKs compared to

only 15-35% of kinases from the six other groups). Such

identified specific sequence residues or patterns, which

may be identified by our models, could accordingly

potentially be addressed in the design of targeted and

multi-targeted drugs. In fact, a few such amino acids

(sometimes termed 'selectivity filters') have been previ-

ously exploited in drug design for kinases. This includes

the so-called gatekeeper residue, which is a bulky amino

acid present in most kinases, while 20% of the kinases

have a threonine at this position. The property was used

in design of selectivity for ABL kinase inhibitors. (How-

ever, unfortunately, the residue position is also a common

site for mutations that confer resistance to imatinib, gefi-

tinib, and erlotinib [14]). A study of Cohen et al. [15]

designed inhibitors for RSK family kinases by targeting

two selectivity filters in the ATP binding site, namely the

threonine gatekeeper and a cysteine residue, which is an

uncommon amino acid in the kinases' active site. These

two amino acids that distinguishes RSKs from other pro-

tein kinases were sufficient to confer high activity of the

designed inhibitor.

Although we here limited PLS-DA modelling to separa-

tion of seven major groups of the kinase superfamily the

analysis can be performed hierarchically at any resolu-

tion, e.g., to delineate particular families, subfamilies, and

even single kinases.

In the subsequent studies we created quantitative mod-

els for kinase-inhibitor interaction activities using the six

types of kinase descriptions and performing correlations

using SVM, PLS, k-NN, and decision trees. The small

molecule inhibitors were in all models represented by a

unified set of 3D-structural and physicochemical prop-

erty descriptors. Models that exploited z-scale descrip-

tions of the alignable parts of the protein kinase

sequences performed the best. However, using ACC or

MACC transformations gave only slightly inferior models

when correlations to the activity data were done by SVM

or PLS. ACC transformed descriptors performed worse

with the k-NN approach, while MACC transformations

resulted in a weaker model with use of decision trees. The

advantages of ACC and MACC transforms are that they

do not require prior alignment and that they are calcu-

lated from full-length sequences of kinase domains,

which in the present data set varied from 194 to 606 resi-

dues (albeit for about one half of kinases it ranged 240-

260 residues; for less than 30% kinases it exceeded 280

residues). Whereas ACCs reflect the covariances of

amino acid properties over whole sequences, MACCs

pinpoint individual pairs of residues with specific prop-

erty combinations. MACC based models may thus iden-

tify patterns that are not confined to the same location in

each and every protein and/or are situated in sequence

stretches that can not be aligned unambiguously over the

whole dataset. Consequently, models exploiting MACCs

may complement the alignment-based models in analysis

and prediction of kinase-inhibitor interactions. The three

other descriptions for the protein sequences used (CTD,

SO-PAA, and AAC-DC) showed inferior performances

compared to z-scale based descriptions and thus appear

less useful in proteochemometric modelling.

SVM outperformed the other data analysis methods,

including PLS, in both the prediction accuracy for the

active kinase-inhibitor combinations as manifested by P2

and P2
kin parameters (Tables 1 and 2) and in the ability to

distinguish interacting versus non-interacting kinase-

inhibitor pairs as revealed by the areas under the ROC

curves (Figure 4). Accordingly, SVM seems to be the opti-

mal choice for predicting full kinome-wide selectivity

profiles of the existing compounds, and for virtual

screening to find new hits with desired selectivities. How-

ever, an important point is that SVM is essentially a 'black

box' technique, which makes interpretations of its models

difficult. Thus, even if the performance of SVM in virtual

screening is superior to PLS, it is problematic to compre-

hend which of the molecular properties of kinases and

inhibitors that are important in the model. PLS contrasts

to 'black box' methods like SVM and to locally derived

kNN and DT models because it expresses the correlation

results in a single straightforwardly interpretable regres-

sion equation. Moreover, PLS provides additional tools

for model diagnostics, such as score and loading plots

and 'distance to model' parameters that allow identifica-

tion of outliers and assessment of reliability of extrapola-

tions outside the modelled chemical and interaction

Figure 4 ROC curves for SVM, PLS, and k-NN models. Shown are 
ROC curves for SVM, PLS, and k-NN models built on data for 80% (solid 
lines) and for 10% (dashed lines) of 317 protein kinases. The area under 
the ROC curve (AUC) is a measure of the discriminatory power of a clas-
sifier.
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spaces [16]. Consequently, the parallel use of PLS and

SVM modelling techniques may be advantageous when

one aims at obtaining models for both predictions and

interpretations, and cross-checking of model perfor-

mances. (In this context it ought to be mentioned that

several approaches have been recently suggested to give

SVM models some transparency [17-19], which may be in

the advantage for use of SVM in proteochemometric

modelling).

The models built on small sub-parts of the dataset

showed the robustness of the proteochemometric model-

ling approach. Thus, even for the smallest dataset com-

prising only about 30 kinases the SVM and PLS models

showed acceptable predictive ability. The performances

of the models based on small data-sets were even more

impressive in prediction of interacting versus non-inter-

acting kinase-inhibitor pairs; the discriminatory power of

SVM and PLS models being, respectively, 0.83 and 0.82

for the models created on 30 kinases (compared to 0.93

and 0.92 for the largest dataset size). These results may

have a wide impact to the protein kinase field as they

mean that a relatively limited amount of experimental

work is needed to afford qualitative and quantitative

interaction models that will generalize for the whole

kinome.

Success of any empirical modelling depends on the

quality of data, which in proteochemometrics should

comprise accurate activity measurements and descrip-

tions of relevant physico-chemical and/or structural

properties of proteins and their ligands. Yet another pre-

requisite for proteochemometrics is an adequate compo-

sition of the dataset, which should be balanced and

include both interacting and non-interacting protein-

ligand combinations. Unfortunately, 'negative' results are

often omitted in study reports. Moreover, interaction

databases populated by data from multiple series, contain

typically activities for a fairly low fraction of all possible

ligand-protein combinations, which implies that a bulk of

the non-interacting entity pairs are absent. Modelling of

sparse data matrices with overrepresented high activity

data would inevitably give rise to false-positive predic-

tions. Hence, the success of any modelling study owes

most to using a well-balanced dataset, such as the here

used dataset comprising data for both active and inactive

kinase-inhibitor combinations for more than one half of

the human kinome.

Although the modelled dataset covered more than

12,000 interactions, the series of 38 kinase inhibitors can

not be considered as large, even though it included seven

of the eight presently approved anticancer agents as well

as other compounds with mutually dissimilar inhibition

profiles. One can thus expect to gain further improve-

ments by analyzing data for many more chemical com-

pounds providing wider and denser coverage of the

chemical and interaction spaces. In the present study the

dataset parts for modelling and validation were selected

randomly to assure objective assessment of the modelling

performances. However, it is possible to apply statistical

experimental design [20] to choose small representative

panels of kinases to be used for assaying and interaction

modelling. One technique is D-optimal design that could

be used to select kinases that cover most of the diversity

of the kinase sequence and activity space. Designed

molecular libraries have proven much more informative

than random collections, and they have been shown in

some cases to allow a 103-104 fold reduction of the exper-

imental work required, while still retaining the full gener-

alization ability of derived interaction models [21,21]. We

can hence conclude that the values in Table 1 are the low-

est limits of the predictive abilities, which would be sur-

passed in any models for datasets of the same size if

kinases were selected according to principles of statistical

experimental design. Hence, for any experimental work

to be undertaken in the kinase field following this study

we would strongly encourage the use of experimental

design. The final outcome will be kinome wide models

that can predict the interaction strength of a random

chemical over all known protein kinases.

Conclusions
In this study we developed kinome-wide proteochemo-

metric models for the prediction of kinase-inhibitor

interaction profiles. We compared several alignment-

based and alignment-independent approaches for the

description of protein kinases, evaluated the perfor-

mances of linear and non-linear correlation methods, and

investigated the relationship between the size of the data-

set and the predictive ability of the models obtained. Our

best models are highly predictive on a quantitative scale,

and can delineate interacting and non-interacting kinase-

inhibitor combinations. One of the findings of this study

is that models built on quite limited amount of kinase

data are still capable to generalize over the whole human

kinome. We thus foresee that the here shown routes to

concomitant proteochemometric kinome wide modelling

will markedly speed-up the discovery and optimization of

protein kinase targeted and multi-targeted drugs.

Methods
Interaction activity data

We used the dataset published by Karaman et al. [23]

comprising dissociation constants (Kd) of 38 small-mole-

cule kinase inhibitors tested against a panel of 317 human

kinases, in total 38 × 317 = 12,046 activities. All major

kinase groups, as defined by Manning et al. [1], were rep-

resented in the dataset, namely: AGC, CaMK, CK1,

CMGC, STE, TK, and TKL. The kinase inhibitor series

included approved drugs (dasatinib, erlotinib, gefitinib,
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imatinib, lapatinib, sorafenib, and sunitinib), trial drugs

and experimental compounds (flavopiridol, roscovitine,

and others), and the natural product staurosporine. For

24.8% of the inhibitor-kinase combinations an activity

better than 10 μM had been observed in a primary

screen, and the exact Kd values were then determined.

The dissociation constants found ranged from 10-5M to

2.4 × 10-11M and were expressed as negative logarithms

of the Kd values (pKd); the transformed values ranging

from 5 to 10.62. In order to obtain a full data matrix we

assigned a numerical value pKd = 4 to the inhibitor-kinase

pairs that had been identified as not interacting in the

primary screen; i.e., pKd was set one unit lower than the

threshold value (pKd = 5) of the primary screen. This was

a trade-off between two qualities of the conceived mathe-

matical models to be derived from the data: a very high

margin would prioritize discrimination between the

active and inactive kinase-inhibitor pairs on the expense

of the accuracy for the predictions for the active ones; on

the other hand, a low margin would reduce the model's

discriminative ability between interacting and non-inter-

acting pairs. Our selected value seemed reasonable since

it would allow achieving both goals, stated that the errors

of prediction of a model do not exceed one logarithmic

unit.

Description of kinase inhibitors

The structures of kinase inhibitors were drawn by ISIS/

Draw and converted to 3 D by the Corina unit of the Tsar

3.3 (Accelrys, Inc.) software. Partial atomic charges were

derived using the Charge2 utility and the geometries were

optimized by energy minimization using the Cosmic util-

ity of Tsar 3.3. Compounds were then characterized by

various molecular descriptors using Dragon 2.1 software

(Talete S.r.l.). The following descriptor classes were cal-

culated: constitutional descriptors, counts of functional

groups and atom-centered fragments, geometrical

descriptors, charge and aromaticity indices, empirical

descriptors, and molecular properties. When two

descriptors were highly correlated (pairwise r2 > 0.9), we

excluded the one showing the highest correlation with

any other descriptor of the descriptor set. In this way, 150

molecular descriptors were obtained for each inhibitor

for the modelling. All descriptors were mean centred and

scaled to unit variance prior to use in modelling.

Description of protein kinases

The panel of protein kinases comprised 317 entities (i.e.,

more than a half the known human kinome). Of these 28

contained point or cassette mutations, and a few kinases

contained deletions of up to eight residue long sequence

stretches. The sequences for the kinases' kinase domains

were retrieved from KinBase database http://kinase.com/

kinbase. Although the length of the kinase domains var-

ied from 194 to 606 amino acids, almost 90% of them

were just between 240 to 300 amino acids long.
Alignment-based physico-chemical z-scale description of 

kinase sequences

We used two types of kinase sequence descriptions:

alignment based and alignment independent. For the

alignment based, a multiple sequence alignment was per-

formed over the entire sequence set by the ClustalW 2.0

software [24], using its default settings (GONNET 250

matrix) and applying ten iteration cycles to refine the

progressive alignment. Those parts of the alignment that

contained gaps for more than 50% of the kinase

sequences were removed from the alignment, which left

264 aligned positions. (These gaps corresponded to

sequence stretches that were quite unique among most

kinases and they were located far from the ATP binding

site). The aligned positions were then described by amino

acid physico-chemical properties encapsulated in the five

z-scales, z1-z5, derived by Sandberg et al. [25]. Z-scales

are quantitative descriptors obtained from principal com-

ponent analysis (vide infra) of 26 measured and com-

puted physico-chemical properties of the 20 naturally

encoded amino acids and 67 synthetic alpha amino acids.

The three first of these z-scales describe about 70% of the

variation in the original data, and all five describe more

than 95% of the variation. Being principal components, z-

scales are mean-centered and uncorrelated to each-other,

and can be tentatively interpreted as reflecting hydropho-

bicity (z1), steric properties (z2), polarity (z3) and other

electronic properties (z4, z5) of amino acids. In this way,

the differences in physico-chemical properties of the

aligned kinase sequences were represented by 264 × 5 =

1320 descriptors.
Auto- and cross-covariances (ACCs) of z-scale descriptors

Z-scales are directly useful for encoding proteins stated

that the proteins show substantial conservation in their 3

D structural organization and that their primary

sequences are conserved to the extent that alignments

can be done unambiguously. However, if sequences are

aligned wrongly our attempts to find similarities and dif-

ferences in the proteins' physico-chemical space would be

thwarted. Therefore, methods have been sought to avoid

the alignment step and transform sequence descriptions

directly into uniform matrices. One such method, the

auto- and cross-covariance (ACC) transform, describes

changes in some property or some property combina-

tions over sequence stretches of different lengths [26].

This is done according to the equations:

AC z,lag
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where AC represents auto-covariances of the same

property (z-scale) and CC the cross-covariances of differ-

ent z-scales, and where z = 1, 2, ..., Z (Z is 5, i.e. the num-

ber of z-scales), i = 1, 2, ..., N-lag (i is the amino acid

position in the sequence and N the total number of amino

acids), lag = 1, 2, ..., L (L is the maximum lag, i.e. the lon-

gest sequence stretch used, which can be up to the length

of the shortest sequence in the dataset), and V is the z-

scale value. The total number of ACC terms depends on

the chosen L and on the number of z-scales, and is L × Z2.

Larger maximum lags L allow for more detailed

description accounting for interactions of amino acids at

distant parts in a sequence. However, even closely related

proteins differ often by sequence insertions/deletions. As

a result, the probability of assigning an interaction to the

same ACC term is inversely proportional to the distance

between the sequence positions. Long distance covari-

ances would hence be less helpful in finding physico-

chemical similarities in related sequences. We here calcu-

lated ACCs with maximum lags 10, 25, 50, and 100.
Maximums of auto- and cross-covariances (MACCs) of z-scale 

descriptors

ACC-transformations provide a uniform set of descrip-

tors that are independent of the length of each sequence

and which are able to capture characteristic physico-

chemical patterns of the protein. One limitation of ACCs

is that specific local sequence patterns may become con-

cealed by the overall properties of the given sequence.

Another drawback is the difficulties to make interpreta-

tions. For example auto-covariances of the z1-scale would

be similar for a sequence consisting of predominantly

hydrophilic amino acids (represented by positive values)

and a sequence consisting of predominantly hydrophobic

amino acids (negative values). In both cases multiplica-

tions give positive values. (ACz1 terms would, however,

separate such two sequences from sequences where

hydrophilic amino acids alternate with hydrophobic ones

with certain periodicities).

To cope with these limitations of ACCs, a modified

algorithm was suggested in [27], where the positive and

negative descriptor values are considered separately and

only the maximum values for all possible interactions at

each lag is used to describe the sequences. Of the two

algorithms developed in [27] we applied the MACC1

transformation giving 4 × L × Z2 terms; i.e. four times as

many descriptors as an ACC with the same maximum

lag. (The alternative MACC2 algorithm was not used as it

ignores the direction of a sequence and hence seemed

inappropriate for encoding proteins). We here calculated

MACCs with maximum lags 10, 25, 50, and 100.

It may be pointed out that, whereas each ACC term is

calculated from the whole protein sequence, the corre-

sponding four MACC1 terms represent extremes of par-

ticular physico-chemical property combinations

somewhere in the sequence. The MACC descriptions

thus retain full interpretability and can be traced back to

each residue pair. However, they may overstate the roles

of extreme physico-chemical properties for a protein

structure/function and depreciate the roles of 'moderate'

amino acids.
Composition, transition and distribution (CTD) of amino acid 

properties

The CTD alignment-independent descriptors were pro-

posed by Dubchak and coworkers [28], and are based on

seven amino acid properties (attributes): 1) hydrophobic-

ity, 2) normalized van der Waals volume, 3) polarity, 4)

polarizability, 5) charge, 6) secondary structure, and 7)

solvent accessibility. For each of these seven attributes,

amino acids are divided into three classes. E.g., for the

hydrophobicity attribute, class 1 comprises polar amino

acids (RKEDQN), class 2 neutral amino acids (GAST-

PHY), and class 3 hydrophobic amino acids (CLVIMFW).

The composition descriptors then represent the overall

percentage of each class in the sequence. Since there are

seven attributes and three classes, 7 × 3 = 21 composition

descriptions can be computed. The transition descriptors

represent frequencies with which an attribute changes

class along the sequence, e.g., a class 1 amino acid is fol-

lowed by a class 2 amino acid or vice versa. Since there are

three possible transitions between classes, 7 × 3 = 21

transition descriptors can be computed. The distribution

descriptors represent the distribution of each attribute in

the sequence. For each attribute and for each class, five

distribution descriptors are computed based on the fol-

lowing criteria: location of the first residue, 25% residues,

50% residues, 75% residues and 100% residues with a

given property. For instance, if the total length of a

sequence is N amino acids, and all polar amino acids (i.e.

members of hydrophobicity class 1) are among the first i

residues of the sequence, then the distribution descriptor

for 100% residues of the given class would be calculated

as i/N. Thus, the total number of distribution descriptors

is 5 × 7 × 3 = 121. CTD descriptors were computed by

using PROFEAT (Protein Feature) web server [29].
Sequence-order and pseudo-amino acid (SO-PAA) descriptors

The sequence-order and pseudo-amino acid descriptors

were proposed by Chou [30,31] and are used most suc-

cessfully to predict protein subcellular location. We here

used the PROFEAT web server to calculate 60 sequence-

order-coupling numbers, 100 quasi-sequence-order

descriptors, and 50 pseudo-amino acid descriptors. The

CC z z ,lag
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sequence-order-coupling numbers are derived from the

physico-chemical distance matrix between pairs of amino

acids. The coupling number of rank d is defined as the

sum of squared physico-chemical distances between all

amino acids being located d residues from each other.

This is mathematically described by the equation:

where di,i+d is the physicochemical distance between

the two amino acids at position i and i+d, and N is the

total length of the sequence. PROFEAT allows computing

these descriptors starting from rank d = 1 (i.e. neighbour-

ing residues) up to d = 30 and using two different distance

matrices (physico-chemical distance by Schneider-Wrede

and chemical distance by Grantham) [29].

Quasi-sequence-order descriptors are thereafter com-

puted from coupling numbers and from protein amino

acid composition (see [29] for mathematical equations).

Fifty quasi-sequence-order descriptors can be derived

from each set of coupling numbers. The first 20 quasi-

sequence-order descriptors reflect the effects of the

amino acid composition and are calculated according to

the equation:

where a is one of the twenty natural amino acids, fa is

the normalized occurrence for this amino acid, and w is a

weighting factor (w = 0.1).

The thirty other quasi-sequence-order descriptors

reflect the effects of sequence order, and are defined as:

where the rank d is from 1 to 30.

Fifty pseudo amino acid descriptors were computed

similarly as quasi-sequence order descriptors. However,

the coupling numbers in the equations were replaced by

more complex correlation factors reflecting various phys-

ico-chemical properties of amino acids (see [31] for

details). The whole set of SO-PAA descriptors thus com-

prised 210 alignment independent descriptors encapsu-

lating both the quantitative (physicochemical) and

qualitative (amino acid letter code) sequence properties.

Amino acid and dipeptide composition (AAC-DC)

Amino acid composition descriptors represent the frac-

tions for each of the twenty natural amino acids in a pro-

tein sequence, while dipeptide composition descriptors

represent the fractions of 20 × 20 = 400 possible dipep-

tides in the sequence [32]. Despite its simplicity the

method has been applied successfully, e.g., for classifica-

tion of G-protein coupled receptors [33,34], nuclear

receptors [35], predictions of protein fold and predicting

the subcellular localization of proteins [36-38]. Amino

acid and dipeptide composition descriptors were com-

puted by using the PROFEAT server.

Data preprocessing

All descriptors were mean-centered and scaled to unit

variance prior to their use. In order to account for differ-

ences in the number of inhibitor and kinase descriptors,

block scaling was applied. This was done by assigning

each block the weight 1/sqrt(N), where N is number of

descriptors in the block. In this way, the total sum of vari-

ances of all descriptors in each block became equal to 1.

The response variable (pKd) was mean centered prior to

applying data analysis.

Data analysis

Principal component analysis (PCA)

PCA is a multivariate projection method, which provides

compression of datasets containing large numbers of

variables (see [39] for algorithms and geometrical inter-

pretation). Contrary to the original variables, which are

always multicollinear, the so-called principal components

(PCs) are orthogonal to each other; the first component

extracts the largest variance in the dataset, the second

component extracts the largest of the remaining variance,

and so on. The major patterns within the original data

can often be captured by a small number of components.

All the variance in a dataset with N objects is explained

by N-1 or less PCs. Thus, all descriptors of kinase inhibi-

tors in the present dataset could be transformed into 37

PCs without any loss of information, and with the preser-

vation of full interpretability. Similarly, any number of

descriptors of 317 kinases can be compressed to 316 PCs

(in fact, already half of this number explained over 90-

95% of the variance in any of the six sets of kinase

descriptions used herein).
Partial least-squares projections to latent structures (PLS)

PLS can be considered as an extension of PCA, which

along with the independent variables (X matrix) deals

with one or several dependent variables (Y vector or

matrix). PLS aims to find the relationship between the

two matrices and to develop a predictive model. This is

achieved by simultaneously projecting X and Y to latent

variables (PLS components), with an additional con-

straint to correlate them. (Thus, compared to PCs, the
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PLS components are tilted to maximize covariance

between projections of X and Y). PLS derives a regression

equation for each y variable where the regression coeffi-

cients reveal the direction and magnitude of the influence

of X-variables on y [16].

A special case of PLS is PLS discriminant analysis (PLS-

DA) where y variables are categorical and express the

class membership of objects (members of a given class

are numerically represented by the value 1 while non-

members are represented by 0).

Several algorithms have been developed for performing

PLS; here we used orthogonalized-PLS [40] as imple-

mented in Simca-P+ 11.5 (Umetrics AB) and NIPALS

[41] as implemented in Unscrambler-9.8 (CAMO Soft-

ware AS) (the latter algorithm was applied for PLS-DA

modelling). An important decision in PLS is the choice of

the number of PLS components. Each extracted compo-

nent increases the explained variation of both X and Y.

However, while the first components normally find real

correlations between the two blocks, increased model

complexity may give rise to chance correlations. To avoid

overfitting we applied five-fold inner-loop cross valida-

tion (see below).
Accounting for non-linear cooperative effects in PLS 

modelling

PLS is a linear correlation method. However, in proteoch-

emometrics there is a need to describe non-linear ligand-

protein interaction effects (i.e., those effects that are gov-

erned by the complementarity of the interacting moieties

and determine the selectivities for the interactions) [9].

This is typically done by deriving cross-terms between

ligand and protein descriptors. Since the number of

cross-terms is equal to the product of ligand and protein

descriptors it may be unfeasible to calculate them

directly. E.g., having at hand 150 inhibitor and 1,320 z-

scale descriptors, computing cross-terms would result in

198,000 new variables, which would make any further

analysis highly resource consuming. A practical approach

is rather to compute the cross-terms from the principal

components of the original descriptors. For calculation of

cross-terms we here used all 37 PCs of the ligand descrip-

tors, but only as many of PCs of kinase descriptors that

explained 95% of their total variance (this allowed us to

further reduce the size of the datasets by a factor of two).

Cross-terms were scaled to Pareto variance; the block

weight for cross-terms was initially set to 0 and thereafter

increased by a regular step size until an optimal PLS

model (according to inner loop cross-validation) was

obtained. We have earlier shown that this approach

exerts no negative influence on the final modelling results

[42].
Support vector machines (SVM)

SVM is a machine learning technique for classification

and regression that uses linear or non-linear kernel-func-

tions to project the data into a high-dimensional feature

space. Correlation is then performed in this hyperspace

based on the structural risk minimization principle; i.e.,

aiming to increase the generalization ability of a model

[43,44]. We induced non-linear proteochemometric

regression models using the epsilon-SVR method and

radial basis function kernel as implemented in the lib-

SVM 2.88 software [45]. Five-fold inner-loop cross vali-

dation was performed to find optimal values for the width

of the kernel function γ and error penalty parameter C.
K-nearest neighbour method (k-NN)

The k-NN algorithm predicts y values for a test set object

as the average (or weighted average) of the y values of its k

nearest neighbours in the training-set. k-NN models were

induced using the Weka 3.6 software [46]. We character-

ized the similarity between inhibitor-kinase pairs from

the Euclidian distance in the X descriptor space and

applied 1/distance weighting, as described [47]. In con-

trast to PLS and SVM modelling, where the inhibitor and

kinase descriptor blocks were scaled to equal total vari-

ance, the relative scaling of the descriptor blocks was var-

ied systematically in the k-NN modelling by multiplying

the block weight for kinase descriptors by factors 0.25,

0.5, 1, 2, and 4; (in this way, kinase descriptors obtained

lower or higher importance than inhibitor descriptors in

assessing inhibitor-kinase complex similarity). Five-fold

inner-loop cross validation was applied to find the opti-

mal scaling and number of nearest neighbours for predic-

tion.
Decision trees

Decision trees were created using the M5P algorithm [48]

as implemented in Weka 3.6. This algorithm derives lin-

ear regression models at the terminal nodes (leaves) of

the tree. After building the tree, it was pruned and

smoothing was performed. The optimal value for the

minimum number of objects, allowing a new leaf, was

determined using five-fold inner-loop cross validation.
Double cross validation of kinase-inhibitor interaction 

models

The predictive ability of models is commonly quantified

by the cross-validated squared correlation coefficient, Q2.

In cross-validation the objects are divided into a number

of groups. Models are then developed from the dataset,

which has been reduced by one of the groups, and predic-

tions for the excluded objects are calculated. The process

is then iteratively repeated until all groups have been

omitted once. The Q2 is then calculated as:

Q
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where  is the average of the measured outcome values

for the N objects in the dataset.

A Q2 > 0.4 is generally considered acceptable for model-

ling biological data [21]. However, some studies have

pointed out that Q2 may give an overly optimistic assess-

ment of model performance in the case that the cross-

validation results are used to optimize model parameters

or to select the best among many alternative models

[49,50]. To remedy this we applied double cross-valida-

tion (also called double-loop or nested cross-validation)

[51] where the dataset was split into totally 25 parts. In

each round of inner cross-validation a model was built on

16/25 of the whole dataset and evaluated on 4/25 of it,

while the remaining data were put aside for the outer

loop. Once the inner loop cross-validation had found the

optimal model, its true performance was verified against

5/25 of data that had never been used during the optimi-

zation.

We wanted to evaluate the predictive ability for both

new kinase-inhibitor combinations and for new kinases

with no measured interaction data. In the former case

each part of randomly split dataset comprised about 1/25

of 12,046 kinase-inhibitor pairs and in the latter case it

comprised all data for approximately 1/25 of 317 kinases.

The squared correlation coefficients from the outer loop

of cross-validations for these two different selections are

in the following denoted as P2 and P2
kin, respectively (let-

ter P is used instead of Q as in previous studies [51] to

emphasize that these are unbiased performance estimates

based on external predictions).
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