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Miguel Prudêncio1,2., Cristina D. Rodrigues1,2., Michael Hannus3, Cécilie Martin3, Eliana Real1, Lı́gia A.
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Abstract

Plasmodium sporozoites, the causative agent of malaria, are injected into their vertebrate host through the bite of an
infected Anopheles mosquito, homing to the liver where they invade hepatocytes to proliferate and develop into merozoites
that, upon reaching the bloodstream, give rise to the clinical phase of infection. To investigate how host cell signal
transduction pathways affect hepatocyte infection, we used RNAi to systematically test the entire kinome and associated
genes in human Huh7 hepatoma cells for their potential roles during infection by P. berghei sporozoites. The three-phase
screen covered 727 genes, which were tested with a total of 2,307 individual siRNAs using an automated microscopy assay
to quantify infection rates and qRT-PCR to assess silencing levels. Five protein kinases thereby emerged as top hits, all of
which caused significant reductions in infection when silenced by RNAi. Follow-up validation experiments on one of these
hits, PKCz (PKCzeta), confirmed the physiological relevance of our findings by reproducing the inhibitory effect on P. berghei
infection in adult mice treated systemically with liposome-formulated PKCz-targeting siRNAs. Additional cell-based analyses
using a pseudo-substrate inhibitor of PKCz added further RNAi-independent support, indicating a role for host PKCz on the
invasion of hepatocytes by sporozoites. This study represents the first comprehensive, functional genomics-driven
identification of novel host factors involved in Plasmodium sporozoite infection.

Citation: Prudêncio M, Rodrigues CD, Hannus M, Martin C, Real E, et al. (2008) Kinome-Wide RNAi Screen Implicates at Least 5 Host Hepatocyte Kinases in
Plasmodium Sporozoite Infection. PLoS Pathog 4(11): e1000201. doi:10.1371/journal.ppat.1000201

Editor: Kami Kim, Albert Einstein College of Medicine, United States of America

Received June 2, 2008; Accepted October 13, 2008; Published November 7, 2008
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Introduction

Although malaria has long been a devastating killer for the most

vulnerable populations in countries of sub-Saharan Africa and

other developing nations, our understanding of the early host-

parasite interactions underlying this infectious disease remains far

from complete. In fact, the first stage of a malaria infection, which

occurs in the liver once the Plasmodium parasite has been delivered

through the bite of an infected female Anopheles mosquito, is still

clearly under-studied today.

Once inside the mammalian host, Plasmodium sporozoites, the

motile form that is delivered in the mosquito’s saliva, display a

marked tropism for hepatocytes, the cells that enable the

remarkable replication process that will give rise to thousands of

merozoites from each invading parasite (reviewed in [1]). As a first

step towards infection, several hepatocytes are transiently

traversed by the sporozoite before one cell is productively invaded,

leading to the formation of a parasitophorous vacuole [2]. Within

this cytosolic vacuole, the subsequent development and asexual

replication of Plasmodium, constituting so-called exoerythrocytic

forms (EEFs), achieve one of the fastest growth rates among all

eukaryotic cells. The invaded hepatocyte eventually releases

thousands of mature merozoites into the bloodstream [3], where

these then invade erythrocytes, thereby initiating the so-called

blood stage of infection and triggering the well-known symptoms

of malaria. Both the strong tropism and obligate nature of the

events that take place during liver infection suggest an essential

requirement for hepatocyte-specific factors in enabling this

complex lead-up to the blood stage. It is therefore of primary

interest to identify and characterize the role of such host factors, as

these may contribute to the design of rational interventional

strategies for the development of novel prophylactic agents.

To this end, we have used a cultured cell-based assay to study

the process of liver infection by Plasmodium parasites at the cellular

and molecular level. Using human Huh7 hepatoma cells and

sporozoites of the rodent parasite P. berghei freshly isolated from

infected Anopheles mosquitoes, we have established a high

throughput assay system (Figure 1A) that, combined with high

content readouts using automated microscopy, and quantitative

RT-PCR (qRT-PCR), can be used for RNA interference (RNAi)

and/or drug screening experiments. Intracellular phosphorylation

and dephosphorylation events are enzymatically catalysed by
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kinases and phosphatases, respectively, and constitute the most

important signalling mechanisms known in eukaryotic cells [4].

The phosphorylation state of a protein can determine its activity

and, thereby, regulate the pathway(s) in which it is involved. Thus,

the present study probed the potential role of key components of

host hepatocyte signal transduction pathways, focusing on kinases

as key regulators for a wide range of cellular functions.

Results

Kinome-wide RNAi screen implicates at least 5 host
kinases in Plasmodium infection of human hepatoma
cells

We have used systematic RNAi screening to selectively silence

the expression of 727 genes encoding proteins with known or

putative kinase activity, as well as kinase-interacting proteins,

thereby covering the entire annotated kinome (Table S1). The

effect of each gene-specific knock-down on the infection of Huh7

cells by Plasmodium sporozoites was then monitored using the high-

throughput, high-content immunofluorescence microscopy-based

assay mentioned above (Figure 1A). Briefly, short interfering RNA

duplexes (siRNAs) targeting each of the chosen genes were

transfected into Huh7 cells 24 h after seeding in 96-well plates.

Forty-eight h later, cells were infected with P. berghei sporozoites.

Cells were fixed 24 h after infection and immuno-stained to detect

intracellular parasites (EEFs), as well as host cell nuclei and F-actin

to estimate cell numbers and confluency, respectively. Following

image acquisition, customized image analysis algorithms were used

to automatically quantify infection rates, normalizing the number

of EEFs against the cell confluency in each well. A plate-wise

normalization was also used to facilitate comparisons between

plates in the first pass of the screen, where the low rate of positive

hits yields minimal expectation of variability in the mean infection

values between different plates. To this end, the infection rate in

each experimental well was calculated as a percentage of the mean

infection rate from all experimental wells on that plate. In order to

assess possible siRNA effects on cell proliferation, infection rate

data were plotted against the number of nuclei, also expressed as a

percentage of the mean number of nuclei for that plate.

The RNAi strategy employed was validated by targeting 53

randomly chosen genes with 3 siRNAs each and performing

quantitative real-time PCR (qRT-PCR) analysis to determine the

level of knock-down achieved in each case. For 13 of these genes

either expression was too low to be correctly assessed or primer

specificity was insufficient. Most importantly, for 85% of the genes

whose expression could be determined, at least 1 of the siRNAs led

to an expression knock-down greater than 70% (Figure 1B).

Sporozoite infection assays inevitably have considerable levels of

variation, a problem that cannot currently be overcome and which

exacerbates difficulties generally associated with siRNA screens. In

order to reduce the risk of reporting false positives, a multi step

screening system was devised in which candidate genes were

subjected to three screening passes with increasingly stringent

selection criteria (Figure 2A). In the first pass, the 727 selected genes

were screened by targeting each with three distinct siRNAs used

individually (Table S1). In order to minimize the number of false

negative results, candidate gene hits were selected for follow-up in

pass 2 if any single one of the three siRNAs yielded an increase or

decrease on infection greater than 2 standard deviations (s.d.) of the

average of the infection of the whole data set, within a defined range

of nuclei number (640% of the average number of nuclei in each

experimental plate) (Figure 2B). The latter precaution, while

relatively inclusive, allowed us to exclude from further analysis

those siRNAs yielding strong effects on cell proliferation or survival.

As a result, 73 genes were selected to undergo a second pass of

confirmation screening, in which up to 2 additional siRNAs were

included to maximize the detection sensitivity for those genes that

had yielded only a single siRNA hit in pass 1 (Table S1). In this

round of analysis, siRNAs were noted as ‘‘positive candidates’’ if

they yielded infection rates more than 2 s.d. above or below the

mean of all the negative controls in this pass. Negative controls

replaced whole data set mean for s.d. calculation, since the selected

subset of genes in this pass 2 was expected to have a significantly

higher hit rate than in pass 1. To minimize the risk of false positives

due to siRNA sequence-dependent off-target effects, the selection of

candidate genes for follow-up beyond pass 2 required that at least

two independent siRNAs targeting the same gene be ‘‘positive

candidates’’ according to the above selection criteria (Figure 2C).

Furthermore, genes for which different siRNAs yielded conflicting

phenotypic results were also excluded from further analysis. In order

to further minimize any bias due to experimental variability, all pass

2 siRNAs were assayed in two independent experiments, and were

selected for follow-up only if the criteria were met in both

experiments (Figure 2D). It is worthwhile noting that while in Pass

1 only 3.6% of the siRNAs met the selection threshold, 18.4% of the

siRNAs tested for the first time in Pass 2 met similar criteria, while

the distribution of infection levels in controls is not statistically

different between pass 1 and pass 2 experiments, showing that a 5-

fold enrichment has taken place from Pass 1 to Pass 2.

The 16 genes thus selected for further verification in pass 3 were

targeted with the siRNAs yielding the strongest phenotypes in the

second pass. This third pass was used to further restrict our

selection to those genes showing clearest functionality, i.e. those

with at least two siRNAs yielding infection rates more than 3 s.d.

above or below the mean of all the negative controls in the assay,

respectively (Figure 2E). Secondly, target mRNA knock-down

levels attained for these genes were also assessed in this pass by

qRT-PCR. This allowed the selection of positive hit candidates to

be refined further yet by excluding genes for which a correlation

between phenotypic severity and decreased mRNA levels could

not be confirmed (Figure 2F, Table 1).

Author Summary

During a mammalian malaria infection, Plasmodium
sporozoites injected by an infected mosquito travel to
the liver where they invade hepatocytes and multiply into
thousands of new parasites. These newly formed merozo-
ites are then released into the bloodstream where they
infect red blood cells and cause the symptoms of the
disease. Although asymptomatic, the liver stage of malaria
is an obligatory step in the parasite’s lifecycle and
constitutes an appealing target for prophylatic interven-
tion. The marked tropism of sporozoites for hepatocytes
suggests the latter may provide the parasite with a
molecular environment that it can exploit to its own
benefit. The identification of host factors that influence
hepatic infection can thus provide clues for potential anti-
malarial strategies. To this end, we carried out an RNA
interference screen of the entire human kinome and
associated signaling molecules and assessed the effect of
knockdown of their expression in the infection of a human
hepatoma cell line by Plasmodium. This strategy identified
at least 5 kinases whose down-regulation leads to a
marked decrease in infection. Further characterisation of
one of these proteins, PKCf, confirmed that it plays a role
in infection by influencing the parasite’s invasion of the
host liver cells.

RNAi Screen of Host Factors in Malaria
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Based on these data, the following 5 genes have emerged from

our screen as the clearest and strongest positive hits, showing RNAi-

induced loss-of-function phenotypes with specific, reproducible and

marked effects on P. berghei infection rates in our Huh7-based assay:

MET, PKCf (PKCzeta), PRKWNK1, SGK2 and STK35. As

illustrated in Figure S1, knock-down of the expression of these genes

did not lead to any significant effects in terms of cell proliferation or

morphology (see also Table 1). It should also be noted that the

present data do not rule out the possible involvement of other genes

among those tested here, since negative results in RNAi screens are

generally inconclusive [5], and certain genes showing phenotypes

with lower than 3 s.d. from mean levels in our assays may provide

real, though perhaps more subtle, functionalities in this context. For

this reason, the reader is referred to Table S1 for a comprehensive

list of siRNAs employed throughout the screen and their

corresponding z scores (which measure the number of standard

deviations away from the mean for the whole normalized data set),

obtained throughout the screen.

Top screening hits classification
It may be noted that all five genes we identified as top hits

encode protein kinases belonging to 3 different classes, according

to the kinome classification [6]: ‘‘AGC’’, ‘‘other’’ and ‘‘TK’’

(Figure S2A). While it is tempting to draw conclusions from this,

we would advise against it since, as aforementioned, the

experimental methods and prioritization strategies used here

cannot conclusively rule out the involvement of other tested genes

which did not make the final selection. The range of cellular

processes implicated by the genes identified as top hits in the

present screen include cell cycle control, cytoskeleton regulation,

osmotic balance and stress/immune responses (Figure S2B). This

is consistent with the broad range of cellular functions similarly

implicated by Agaisse et al. [7] in the infection of Drosophila cells by

intracellular bacterial pathogens. However, when we performed

an hypergeometric test to identify which Gene Ontology (GO)

terms were significantly enriched in the analysis (p,0.05), not all

categories were equally represented in passes 2 and 3 with a major

Figure 1. RNA interference screen strategy for identification of host factors affecting Plasmodium infection. (A) Experimental design of
a high-throughput RNAi screen to identify host genes that influence Plasmodium sporozoite infection of host cells. (B) Validation of siRNA-mediated
knock-down in Huh7 cells. Knock-down efficiency of 53 genes was evaluated by qRT-PCR following Huh7 cell transfection with 3 independent siRNAs
per targeted gene.
doi:10.1371/journal.ppat.1000201.g001

RNAi Screen of Host Factors in Malaria
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Figure 2. A kinome-wide RNAi screen identifies host genes that influence P. berghei sporozoite infection of Huh7 cells. (A) Schematic
illustration of the three screening passes with increasing stringency criteria. (B) Plot of pass 1 of the RNAi screen representing the effect of 2181
siRNAs targeting 727 human genes on Huh7 cell infection by P. berghei sporozoites and cell nuclei count. Infection rates for each experimental
condition were normalized against cell confluency. The horizontal lines represent 100%62.0 s.d. of the average of all infection data in the assay. Each
circle represents one siRNA (mean of triplicate values). Negative controls appear as blue and green circles. corresponding to untreated cells and cells
transfected with a non-specific control siRNA. respectively. Red circles highlight the siRNAs targeting the 73 candidate genes selected to undergo a
second screening pass. The shaded areas correspond to cell numbers outside the 640% interval centred on the average number of nuclei for the
whole dataset. (C) Plot of 2 independent runs of pass 2 of the RNAi screen representing the effect of 227 siRNAs targeting 73 human genes on Huh7
cell infection by P. berghei sporozoites and cell nuclei count. Shading and colour attributions are the same as in panel (B). with red circles representing
the siRNAs targeting the 16 genes selected to undergo a third screening pass. The horizontal lines represent 100%62.0 s.d. of the average of all the
negative controls in the assay. (D) Plot comparison of the 2 runs of pass 2 of the RNAi screen. Colour attributions are the same as in panels (B. C). The
comparison reveals a high correlation (R = 0.88) between the duplicate runs of pass 2 of the screen (diagonal line). The horizontal and vertical lines
represent 100%62.0 s.d. of the average of all the negative controls in the assay. (E) Plot of pass 3 of the RNAi screen representing the effect of 37
siRNAs targeting 16 human genes on Huh7 cell infection by P. berghei sporozoites and cell nuclei count. Remaining mRNA levels following RNAi were
determined for each of these genes by qRT-PCR (see text and Figure 2F). Colour attributions and shading are the same as in (B. C. D). Red circles
highlight siRNAs targeting the genes for which at least two independent siRNAs led to an infection increase or decrease above or below 63.0 s.d. of
the average of all the negative controls in the assay. respectively. The horizontal lines represent 100%63.0 s.d. of the average of all the negative
controls in the assay. (F) Effect of siRNA on infection rates versus remaining mRNA levels for the 7 genes targeted by the siRNAs highlighted in red in

RNAi Screen of Host Factors in Malaria
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proportion of genes involved in cytoskeleton regulation. Interest-

ingly, amongst the five final hits, we could observe a complete shift

of representation, as a 50/50 segregation was observed for genes

related to stress/immune responses and to cell cycle control

(Figure S2C).

PKCf inhibition leads to a decrease in host cell infection
by Plasmodium sporozoites

In order to further characterize the functionalities identified in

our cell-based infection model and to validate their relevance both

from a physiological point of view and in terms of human malaria,

we have initiated detailed follow-up studies for all 5 of the top hits

from our RNAi screen, and present herein results for PKCf, the

first of these to be prioritized due to its role in several liver

pathological processes [8,9]. PKCf is part of the large family of

PKCs, which has been implicated in a wide range of cellular

processes. PKC isotypes include 10–15 members, divided into 4

groups [10]. One of these groups, known as the atypical PKCs

(aPKCs) [11], comprises the PKCf [12] and PKCl/i (PKC

lambda/iota ) [13] isoforms. The aPKCs have been implicated in

numerous processes, including cell growth and survival, regulation

of NF-kB (NF-kappaB) activation and polarity (reviewed in

[11,14,15]).

All PKC isoenzymes have an autoinhibitory pseudosubstrate

domain sequence that can bind to the substrate-binding cavity and

prevent catalysis [16]. This inhibtory effect can be mimicked in

vitro by addition of a corresponding synthetic peptide [17]. Thus,

we used the cell-based assay described above for our screen to test

the effects of a myristoylated PKCf pseudosubstrate (myr-

SIYRRGARRWRKLYRAN), previously characterized as a

specific PKCf inhibitor (PKCfInh) [18,19], on P. berghei infection.

Further data on the specificity of PKCfInh is shown in Figure S3.

A scrambled myristolated peptide was used as control in all PKCf
inhibition experiments [18]. Treatment of cells with PKCfInh had

no obvious effects on nuclear or cell morphology and as well as on

the cell number and confluency (Figure 3A–C), as previously

observed for cells transfected with siRNA oligonucleotides

targeting PKCf (Figure S1, Table 1). Still, treatment of cells with

PKCfInh had a significant effect in the level of cell infection by P.

berghei sporozoites, as quantified using qRT-PCR-based measure-

ments of Plasmodium 18S rRNA levels found within Huh7 cells

(Figure 3D) and mouse primary hepatocyte extracts (Figure 3E)

harvested 24 and 48 h after P. berghei sporozoite addition,

respectively. Our results show that a 20 mM concentration of

PKCfInh leads to a ,80% and ,60% reduction in P. berghei

infection rates in Huh7 hepatoma cells and primary hepatocytes,

respectively (Figure 3D and E; p,0.01 and p,0.05), offering a

RNAi-independent confirmation of our present findings on the

role of PKCf in P. berghei infection.

Inhibition of PKCf impairs invasion of host cells by
Plasmodium sporozoites

In order to gain a better insight on the possible role of PKCf in

the infection process, the effects of PKCfInh on different periods

of hepatocyte infection were examined by flourescence activated

cell sorting (FACS) analysis of host cells infected with GFP-

expressing P. berghei parasites, measuring the proportion of GFP+

cells [20]. Indeed, FACS analysis of cells infected with GFP-

expressing parasites enables discerning whether the observed effect

on infection is due to a decrease in the number of infected cells or

to an impairment of Plasmodium development inside host cells [20].

Treatment of Huh7 cells with PKCfInh 1 h prior to addition of

GFP-expressing P. berghei sporozoites led to a marked, dose-

dependent decrease in infection rate, as measured by the

proportion of infected cells relative to control samples 24 h after

sporozoite addition (Figure 4A; p,0.05 for PKCfInh$5 mM).

Treatment with PKCfInh did not affect Plasmodium development,

as shown by the similar GFP intensities of treated and control cells

(Figure 4B). Next, we sought to determine whether the decrease in

the number of infected cells observed at 24 h after sporozoite

addition was due to a decrease in invasion rate or to the

disappearance of infected cells throughout infection. Since, in the

infection assay employed, .95% of invasion events are known to

take place within the first 2 h after sporozoite addition [20], any

effects on invasion can be quantified by analyzing cells at this

timepoint. As shown in Figure 4C, the effect of PKCfInh in cells

analyzed 2 h after sporozoite addition is closely comparable to that

seen with the full 24 h treatment, indicating that PKCf likely plays

a role during host cell invasion by P. berghei sporozoites (p,0.05 for

PKCfInh$5 mM). In addition, when PKCfInh was added 2 h

after sporozoite addition, no significant effect was observed in

infection rate measured at 24 h (Figure 4D), not only showing that

the effect observed on the early steps of infection is not due to

PKCfInh toxicity to host cells but also strengthening the notion

that PKCf influences Plasmodium infection by playing a role during

cell invasion. Importantly, infection rates were not affected by pre-

incubation of Plasmodium sporozoites with PKCfInh for 1 hour

prior to their addition to hepatoma cells, showing that PKCfInh

has no direct effect on sporozoite viability (Figure 4E). Further

confirmation of the involvement of PKCf in sporozoite invasion of

Huh7 cells, but not on the parasite’s intracellular development was

obtained by employing qRT-PCR to quantify infection 24 h after

infection of cells incubated with PKCfInh either during the

invasion or the development periods, exclusively (Figure 4F).

These results show that a marked decrease in intracellular parasite

numbers is observed when cells are incubated with the inhibitor

during the first 2 hours after sporozoite addition (p,0.001),

whereas no effect is observed when the compound is added after

invasion is completed. Together, these data confirm the physio-

logical relevance of PKCf, identified in the RNAi screen, and

suggest that the latter plays a role during the invasion of hepatoma

cells by P. berghei sporozoites.

PKCf knock-down in mouse livers confirms the
physiological relevance of PKCf role in malaria infection
in vivo

Finally, we tested the in vivo physiological relevance of our cell-

based findings more thoroughly by using systemically-delivered,

liposome-formulated siRNAs designed to specifically silence PKCf
expression in adult mice, and infecting these with P. berghei

sporozoites. In vivo RNAi treatments using the same systemic

administration of siRNAs including the same formulation used

here have previously been shown to yield potent gene-specific

knock-downs in adult mice without major toxicity, nor any

detectable disruption of the endogenous microRNA pathway [21–

(E). Each circle represents one siRNA (mean of triplicate values). For all genes except GUK1 and HCK. represented in light grey. a positive correlation
between infection rate and remaining gene-specific mRNA levels is observed. Shading attributions are the same as in (B. C. E). The horizontal lines
represent the same as in E (100%63.0 s.d. of the average of all the negative controls in the assay). The axes on the bottom left of the panel denote
the scale of each of the plots in the panel.
doi:10.1371/journal.ppat.1000201.g002
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23]. In our present experiments, mice from the same litter were

given an initial intravenous (i.v.) injection of either test or control

siRNAs and, infection was initiated 36 h later by i.v. injection of

freshly isolated P. berghei sporozoites. Mice were sacrificed 40 h

after infection to permit parallel analyses of gene silencing and

infection load. In order to address the risk of sequence-dependent

off-target effects, three distinct siRNA sequences targeting PKCf
were tested individually, while a siRNA targeting luciferase, a

transcript known to be absent in these mice, was used to address

sequence-independent off-target effects that may arise from these

treatments. Under these conditions, no toxicity was observed

(Figure S4) and PKCf expression was reduced in adult mouse

livers when using each of the 3 distinct PKCf-specific siRNAs,

yielding an average of ,56–73% remaining PKCf mRNA, as

measured by qRT-PCR of liver extracts taken 76 h after siRNA

treatment, relative to the controls (Figure 5A; p,0.05). This

silencing was accompanied, for all three PKCf-specific siRNAs, by

significant reductions in liver infection, yielding an average per

siRNA of ,9–40% of control infection loads, as measured by

qRT-PCR of P. berghei 18S rRNA in liver extracts taken 76 h after

siRNA treatment, as described above (Figure 5A, p,0.05). The

reductions in liver infection load showed a broad correlation with

the level of PKCf silencing achieved by the siRNAs with siRNA

#1, which leads to the most significant reduction in PKCf,
showing the most striking difference in infection (Figure 5A;

p,0.01). In a further, parallel experiment, semi-quantitative

Western blotting analysis of liver extracts taken 76 h after siRNA

treatment, from mice injected with the PKCf siRNA yielding the

strongest reduction in liver infection, confirmed that PKCf
expression was significantly reduced at the protein level in these

mice (,55%; Figure S5, p,0.01). Additionally, another 3

independent groups of mice treated with the same 3 distinct

PKCf siRNAs showed a decrease in blood parasitaemia

(percentage of infected erythrocytes), relative to control mice

(Figure 5B). In fact, while by day 4 after sporozoite injection all 5

mice in the control group were positive for blood stages, none of

the 6 mice in the group pre-treated with the strongest PKCf-
specific siRNA were (Figure 5B; p,0.001). Although less striking,

both other siRNAs also led to a delay in the appearance of

parasites in the blood and siRNA #2 led to a significant reduction

in average blood parasitaemia (Figure 5B; p,0.05). Together,

these data strongly support the conclusion that PKCf is a

physiologically important host factor needed for the liver stage of

Plasmodium infection both in cultured cells in vitro and in animals in

vivo.

Discussion

The approach described here constitutes, to our knowledge, the

first report of a genome-scale RNAi screen for key host factors for

infection of human cells by a parasite. Plasmodium sporozoite

infection in vitro assays are fraught with specific biological

variability issues that enhance the difficulties inherent to any

high-throughput RNAi screening assay. Thus, in order to

minimize the chance of excluding false negative and identifying

false positive results, we have devised a multi-step strategy

employing increasingly stringent selection criteria throughout the

screen. Nevertheless, we cannot definitively rule out the possibility

of, in this process, having discarded candidates that may indeed

play a role during infection, but which did not ‘‘survive’’ the

criteria employed throughout the three stages of selection. For this

reason, we encourage the reader to consult Table S1, where details

of the screening process are presented and potentially relevant

genes can be identified.
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Our systematic analysis of the human kinome in the context of

the liver stage of malaria infection has directly implicated at least

five host kinases in this process: MET, PRKWNK1, SGK2,

STK35 and PKCf. By doing so through direct functional tests for

each of the genes assayed, this dataset establishes clear causal roles

in the processes examined and reveals novel key host molecules in

these pathways that significantly affect Plasmodium’s success in

infecting hepatocytes.

Among our top hits, the MET gene, which encodes the

hepatocyte growth factor (HGF) receptor, is the only one to have

been previously shown to influence Plasmodium infection of

hepatocytes [24,25], an effect that has been proposed to occur

through inhibition of apoptosis [25]. It has been demonstrated that

transfection of hepatoma cells with a dominant-negative form of

MET leads to a reduction in Plasmodium infection while

transfection with a constitutively active form results in an infection

increase [24]. Thus, the emergence of MET as one of our top hits

whose knock-down consistently led to a decrease in infection

represents a validation of the screening methodology used here,

and strengthens the predictive value of the other hits. Among

Figure 3. PKCf inhibition by a pseudosubstrate decreases hepatocyte infection without affecting host cell viability. (A) Representative
pictures of cells treated with the PKCf pseudosubstrate inhibitor and a control peptide. The pictures depict nuclei (in blue) and actin (in red) and
show that cells are not affected by the inhibitor peptide. (B. C) Quantification of cell confluency (B) and number of nuclei (C) in 40 microscope fields of
cells treated with the PKCf pseudosubstrate inhibitor and a control peptide. (D. E) Effect of PKCfInh (20 mM) on P. berghei load in Huh7 cells (D) and
mouse primary hepatocytes (E). Parasite loads were measured by qRT-PCR 24 h or 48 h after sporozoite addition. respectively. Results are expressed
as the mean6s.d. of triplicate samples. Cells treated with a myristoylated scrambled peptide were used as controls in each experiment. Infection
loads are normalized to the corresponding control infection levels (100%).
doi:10.1371/journal.ppat.1000201.g003
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Figure 4. Inhibition of PKCf impairs invasion of host cells by Plasmodium sporozoites. (A) PKCf inhibition by PKCfInh decreases P. berghei
sporozoite infection of Huh7 cells in a dose-dependent manner. PKCfInh was added to Huh7 cells 1 h before addition of GFP-expressing P. berghei
sporozoites and infection rate was measured 24 h later by FACS. (B) PKCf inhibition by PKCfInh does not affect EEF development. PKCfInh was added
to Huh7 cells 1 h before addition of GFP-expressing P. berghei sporozoites and GFP intensity (proportional to EEF development) was measured 24 h
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those, both SGK2 and PRKWNK1 are serine/threonine kinases

that have been implicated in osmotic control through the

regulation of Na+ and K+ transport channels [26–29]. Down-

modulation of both of these osmotic and oxidative stress-

responsive proteins also led to a reduced infection in the present

screen. Although their role in Plasmodium infection remains

unclear, the present data may be highlighting the importance of

maintaining an optimal osmotic balance in the host cell to permit

successful infection. In addition, it has recently been shown that

exposure of sporozoites to the intracellular K+ concentration

enhances sporozoite infectivity [30]. Whether or not SGK2 or

PRKWNK1 act on infection through the control of K+

concentration will require further investigation. Concerning

STK35, it is known to interact with CLP-36, a PDZ-LIM protein,

and re-localize from the nucleus to actin stress fibres [31]. This has

led to the suggestion that STK35 may act as a regulator of the

actin-myosin cytoskeleton in non-muscle cells [31]. Indeed, there

are indications that the reorganization of the host cell actin

cytoskeleton may be important for Plasmodium infection [24]. Thus,

it is appealing to consider the hypothesis that recruitment of

STK35 may influence Plasmodium infection by playing a role in this

process.

Finally, the gene which we have characterized in most detail

here, PKCf, is part of the large family of PKCs that has been

implicated in numerous cellular processes. PKC isotypes include

10–15 members, divided into 4 groups [10,16]. One of these

groups, known as the atypical PKCs (aPKCs) [11], comprises the

PKCf [12] and PKCl/i (PKCiota/lambda) [13] isoforms. The

aPKCs have been implicated in numerous processes, including cell

growth and survival, regulation of NF-kB activation and polarity

(reviewed in [11,14,15]). In the present study, loss of PKCf
function both in vitro and in vivo, whether by RNAi silencing or by

pseudo-substrate inhibition, led to decreased infection rates. This

unequivocally establishes a key role of PKCf in host liver malarial

infection, thereby, giving confidence that the other genes identified

in the RNAi screen also play a relevant role during infection.

Furthermore, as we gain additional understanding of the pathway

defined by PKCf in this context, its potential biomedical value

may develop not merely as one, but rather also as the founding

member in an entirely novel class of anti-malarial drug target. In

addition, our data reveals a role for PKCf signaling in host cell

invasion by Plasmodium sporozoites. To our knowledge, this is the

first host cell signaling molecule to be identified as an important

player in Plasmodium invasion and paves the way to a better

understanding of this essential host-Plasmodium interaction in the

establishment of a malaria infection.

The interaction of a pathogen with its host cell activates

intracellular signaling cascades that regulate innate immune

responses and govern the outcome of infection (see [32] for a

recent review on this topic). These signaling pathways may also be

exploited by the pathogen to its own benefit as was recently

suggested for the interaction of hepatitis C virus, another major

liver pathogen, with its target cells [33]. While our present study

does not demonstrate any active exploitation or modulation of host

signal transduction pathways by Plasmodium, it does reveal novel

key host molecules in these pathways that significantly affect the

parasite’s success in infecting hepatocytes. Our efforts are thus

starting to yield crucial molecular details needed to build a

coherent picture of the key cellular events taking place during the

liver phase of malaria infection.

Altogether, these results contribute toward a better understand-

ing of host-pathogen interactions, which may help in accelerating

the rational design of prophylactic, therapeutic and/or diagnostic

strategies aimed to control malaria.

Methods

Cells, Mice and Parasites
Huh7 cells, a human hepatoma cell line, were cultured in RPMI

medium supplemented with 10% fetal calf serum (FCS, Gibco/

Invitrogen), 1% non-essential amino acid (Gibco/Invitrogen), 1%

penicillin/streptomycin (pen/strep, Gibco/Invitrogen), 1% gluta-

mine (Gibco/Invitrogen) and 1% HEPES, pH 7 (Gibco/Invitro-

gen) and maintained at 37uC with 5% CO2.

Mouse primary hepatocytes were obtained as previously

described [34]. Briefly, they were isolated by perfusion of mouse

liver lobule with liver perfusion medium (Gibco/Invitrogen) and

purified using a 1.12 g/ml; 1.08 g/ml and 1.06 g/ml Percoll

gradient. Cells were cultured in William’s E medium containing

4% FCS, 1% pen/strep, 50 mg/ml epidermal growth factor

(EGF), 10 mg/ml transferrin, 1 mg/ml insulin and 3.5 mM

hydrocortisone in 24 well plates coated with 0,2% Gelatine in

PBS. Cells were maintained in culture at 37uC and 5% CO2.

C57BL/6 mice, were bred in the pathogen-free facilities of the

Instituto de Gulbenkian de Ciência (IGC) and housed in the

pathogen-free facilities of the Instituto de Medicina Molecular

(IMM). All protocols were approved by the Animal Care

Committees of both Institutes.

Green fluorescent protein (GFP) expressing P. berghei (parasite

line 259cl2) sporozoites [35] were obtained from dissection of

infected female Anopheles stephensi mosquito salivary glands.

siRNA design, siRNA library and screening controls
All siRNAs were purchased from Ambion’s Silencer genome wide

library (Ambion/Applied Biosystems, Austin USA). Each gene was

targeted by using distinct siRNAs used individually in all cases.

Negative control samples included untransfected cells, and cells

transfected with a negative control siRNA not targeting any

annotated genes in the human genome. A full list of gene names,

siRNA ID numbers and sequences, and associated screening data

are shown in Table S1.

High-throughput siRNA screening of Plasmodium
infection

Huh7 cells (4500 per well) were seeded in 100 ml complete

RPMI medium in optical 96-well plates (Costar) and incubated at

37uC in 5% CO2. Twenty-four h after seeding, cells were

transfected with individual siRNAs in a final concentration of

100 nM per lipofection. Each siRNA was transfected in triplicate.

later by FACS. (C) PKCf inhibition by PKCfInh decreases P. berghei sporozoite invasion of Huh7 cells in a dose-dependent manner. PKCfInh was added
to Huh7 cells 1 h before addition of GFP-expressing P. berghei sporozoites and infection rate was measured 2 h later. by FACS. (D) PKCf inhibition
does not affect infection after invasion has occurred. PKCfInh was added to Huh7 cells 2 h after addition of GFP-expressing P. berghei sporozoites and
infection rate was measured 24 h later. by FACS. (E) PKCfInh does not affect infection by acting on sporozoites directly. Sporozoites were pre-treated
with PKCfInh for 1 hour before addition to the cells and infection rate was measured 24 h later by FACS. All results are expressed as the mean6s.d. of
GFP+ cells (%) in 3 independent infections. (F) PKCf inhibition during the period of cell invasion by sporozoites. but not during their intracellular
development period. leads to a decrease in infection. The infection rate was determined by qRT-PCR in Huh7 cells incubated with PKCfInh
throughout different periods of the infection process. namely 21 to 2 h and 2 h to 24 h relative to sporozoite addition.
doi:10.1371/journal.ppat.1000201.g004
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Briefly, for each well, cell supernatant was replaced by 80 ml of

serum-free culture medium without antibiotics. One ml of 10 mM

siRNA diluted in 16 ml of Opti-MEM (Invitrogen) was complexed

with 0.4 ml Oligofectamine (Invitrogen) diluted with 2.6 ml Opti-

MEM and added onto the cells following the manufacturer9s

protocol. Four h after addition of the complex, 50 ml of fresh RPMI

medium, supplemented with 30% FCS, 3% pen/strep, 3% non-

essential amino acid, 3% glutamine and 3% HEPES were added to

the cells. Two d after siRNA transfection, cells were infected with

104 P. berghei sporozoites/well. Twenty-four h after infection, cells

were fixed with 4% paraformaldehyde (PFA) in PBS and

permeabilized with 0.2% saponin in PBS. Cell nuclei were stained

with Hoechst-33342 (Molecular Probes/Invitrogen), filamentous

actin was stained with Phalloidin AlexaFluor488 (Molecular

Probes/Invitrogen), EEFs were detected using the mouse mono-

clonal antibody 2E6 and an AlexaFluor555 labeled goat anti-mouse

secondary antibody (Molecular Probes/Invitrogen).

Automated image acquisition and analysis
Plates were acquired with a Discovery1 automated fluorescence

microscope (Molecular Devices Corporation, CA, USA) using a

106 lens. In each well, cell nuclei, actin and EEFs were imaged in

9 fields covering a total area of 2.762.0 mm. Image data was

analyzed using a custom MetaMorph (Molecular Devices

Corporation, CA, USA) based algorithm extracting the following

values for each imaged field: cell proliferation as measured by the

number of nuclei per imaged field (Hoechst staining), cell

confluency as measured by the percentage of the imaged field

covered by actin staining and number of EEFs as number of

compact, high contrast objects in a size range from 16 to 150 mm2.

Within each field, the number of EEFs was normalized to the cell

confluency. Normalized EEF numbers and number of nuclei were

averaged between the 9 imaged fields within each well. Mean and

standard deviations were calculated for each experimental

triplicate.

Gene-specific expression and infection quantification by
qRT-PCR

For gene-specific expression in vitro, total RNA was isolated from

Huh7 cells 48 h post-transfection (Invitek Invisorb 96-well plate

kit) and converted into cDNA (ABI’s HighCapacity cDNA

reagents) with random hexamers, following the manufacturer

recommendations. qRT-PCR used the SybrGreen method with

Quantace qPCR mastermix at 11 ml total reaction volume,

containing 500 nM of the target-specific primers, and primers

that were designed to specifically amplify a fragment of the

selected genes. Real-time PCR reactions were performed on an

ABI Prism 7900HT system. Relative amounts of remaining

mRNA levels of RNAi targets were calculated against the level

of RPL13A or 18S rRNA, as housekeeping genes. Remaining

mRNA levels of RNAi-treated samples were compared with those

of samples transfected with Negative unspecific siRNA. RPL13A-

specific primer sequences were: 59-CCT GGA GGA GAA GAG

GAA AGA GA-39 and 59-TTG AGG ACC TCT GTG TAT

TTG TCA A-39. 18S rRNA-specific primer sequences were: 59-

CGG CTT AAT TTG ACT CAA CAC G-39 and 59-TTA GCA

TGC CAG AGT CTC GTT C-39.

For infection determination in vivo or ex vivo, total RNA was

isolated from livers or primary hepatocytes using Qiagen’s RNeasy

Mini or Micro kits, respectively, following the manufacturer’s

instructions. The determination of liver parasite load in vivo, was

performed according to the method developed for P. yoelii

infections [36]. Livers were collected and homogenized in

denaturing solution (4 M guanidine thiocyanate; 25 mM sodium

citrate pH 7, 0.5% sarcosyl and 0.7% b-Mercaptoethanol in

DEPC-treated water), 40 h after sporozoite injection. Total RNA

was extracted using Qiagen’s RNeasy Mini kit, following the

manufacturer’s instructions. RNA for infection measurements was

converted into cDNA using Roche’s Transcriptor First Strand

cDNA Synthesis kit, according to the manufacturer’s protocol.

The qRT-PCR reactions used Applied Biosystems’ Power SYBR

Green PCR Master Mix and were performed according to the

maunufacturer’s instructions on an ABI Prism 7000 system

(Applied Biosystems). Amplification reactions were carried out in

a total reaction volume of 25 ml, containing 0,8 pmoles/ml or

0,16 pmoles/ml of the PbA 18 S- or housekeeping gene-specific

primers, respectively. Relative amounts of PbA mRNA were

calculated against the Hypoxanthine Guanine Phosphoribosyl-

transferase (HPRT) housekeeping gene. PbA 18 S-, mouse and

human HPRT-specific primer sequences were 59- AAG CAT

TAA ATA AAG CGA ATA CAT CCT TAC – 39 and 59 - GGA

GAT TGG TTT TGA CGT TTA TGT G – 39 and 59 – TGC

TCG AGA TGT GAT GAA GG – 39 and 59 – TCC CCT GTT

GAC TGG TCA TT – 39 and 59 – TGC TCG AGA TGT GAT

GAA GG – 39 and 59 – TCC CCT GTT GAC TGG TCA TT –

39, respectively. For PKCf mRNA level determination by qRT-

PCT, PKCf-specific primers were used (RT2 qPCR Primer Assay

for Mouse Prkcz, SuperArray Bioscience Corporation).

Pseudosubstrate inhibition of PKCf
Inhibition of PKCf was carried out by incubation of the cells

with a myristoylated PKCf peptide (myr-SIYRRGARRWRK-

LYRAN), whose sequence corresponds to that of a pseudosub-

strate inhibitor of the enzyme. A myristoylated scrambled peptide

(myr- RLRYRNKRIWRSAYAGR) was used as a control in these

experiments.

In order to determine the specificity of the pseudosubstrate

inhibitor, Huh7 cells were incubated overnight with either

scrambled or pseudosubstrate peptides and then harvested in

modified RIPA buffer (150 mM NaCl; 50 mM Tris, pH 7.5; 1%

Triton X100; 50 mM NaF; 1 mM Na3VO4; complete EDTA-free

protease inhibitor cocktail). After migration on a 10% Tris-glycine

gel, proteins were transferred to a nitrocellulose membrane (BIO-

RAD), which was probed with anti-phospho-PKC (pan) (bII

Ser660) (Cell Signaling Technology) or anti-phospho-aPKC

(Thr555/PKCi; Thr560/PKCf) (Upstate) plus HRP-conjugated

Figure 5. In vivo PKCf down-modulation reduces liver infection by Plasmodium sporozoites confirming the physiological relevance
of RNAi screen results. (A) Effect of siRNA-mediated in vivo silencing of PKCf on mouse liver infection by P. berghei (solid bars) and on PKCf mRNA
levels (dashed bars). measured by qRT-PCR analysis of liver extracts taken 40 h after sporozoite i.v. injection. Mice were infected 36 h after RNAi
treatment. Results are plotted as the percentage of the mean of negative control samples. ‘‘C’’. The remaining mRNA levels for PKCf were measured
by qRT-PCR in the same liver samples. Results are expressed as the mean6s.d. of all mice in each group. Black bars represent the negative control (5
mice treated with luciferase-targeting siRNA). Red bars represent mice treated with the 3 independent siRNAs targeting the PKCf gene (6 mice per
siRNA). (B) Knock-down of PKCf expression by RNAi delays the onset of blood stage infection. as measured by parasitemia (percentage of infected red
blood cells. iRBC) quantification using flow cytometry. Each symbol represents one mouse. Black circles represent the negative controls (5 mice
treated with luciferase-targeting siRNA). Red symbols represent the 6 mice treated with the 3 independent siRNAs targeting the PKCf gene (6 mice
per siRNA).
doi:10.1371/journal.ppat.1000201.g005
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anti-rabbit (Amersham). The membrane was developed with the

SuperSignal West Pico Chemiluminescent Subtrate (Pierce).

To further evaluate the specificity of the pseudosubstrate

inhibitor towards PKCf versus PKCi, Huh7 cells were transfected

(Lipofectamine 2000, Invitrogen) with plasmids encoding GFP-

PKCf or GST-PKCi . Forty eight hours after transfection the cells

were incubated with either scrambled or pseudosubstrate peptides

for 1 hour and then harvested as before. The relative expression

levels of GFP-PKCf and GST-PKCi were determined by probing

the membrane with anti-aPKCf (C20, Santa Cruz Biotechnology),

which recognizes the two isoenzymes. The % of inhibition of

PKCf versus PKCi was calculated from the anti-phospho-aPKC

signals. All signals were normalized to those of actin.

Fluorescence Activated Cell Sorting (FACS) analysis
FACS analysis at 2 and 24 after sporozoite addition was

performed to determine the percentage of parasite-containing cells

and parasite-GFP intensity within infected cells. For infection level

measurement at 2 h, 1 mg/ml Dextran tetramethylrhodamine

10,000 MW, lysine fixable (fluoro-ruby) (Molecular Probes/

Invitrogen) was added to the cells immediately prior to sporozoite

addition. Cell samples for FACS analysis were processed as

previously described [20].

In vivo RNAi
C57Bl/6 mice (male, 6–8 weeks) were treated with a single

intravenous (i.v.) administration of 5 mg/kg of siRNA formulated in

liposomal nanoparticles (Alnylam). Three different modified siRNAs

targeting PKCf were used: siRNA#1 – 59-GGGAcAGcAAcAA-

cuGcuudTsdT-39; siRNA#2 – 59-GGccucAcAcGucuuAAAAd-

TsdT-39; siRNA#3 – 59-cccuuAAcuAcAGcAuAuGdTsdT-3. A

modified siRNA targeting luciferase was used as control (59-

cuuAcGcuGAGuAcuucGATsT-39). Lower case letters represent

2’OMe nucleotides and ‘‘s’’ represents phosphorothioate linkage.

Thirty-six h after siRNA administration mice were infected by i.v.

injection of 26104 P. berghei sporozoites. Remaining PKCf mRNA

levels, parasite load in the livers of infected mice were determined by

qRT-PCR 40 h after sporozoite injection, 76 h after siRNA

administration. Infection of mice treated with one PKCf siRNA

was allowed to proceed onto the blood stage and parasitemia (% of

infected red blood cells) was measured daily. The PKCf protein level

in the liver of siRNA-treated mice was determined by Western blot.

Quantification of host PKCf protein expression in the
liver

PKCf protein level in the liver of mice treated with a PKCf
siRNA was quantified by Western blot using the primary antibody

(rabbit anti-PKCf (C20): sc-216, Santa Cruz Biotechnology) and

normalised against actin level detected using rabbit anti-actin

(A2066, Sigma). Anti-rabbit horseradish peroxidase-conjugated

(NA934V, GE Healthcare, UK Ltd.) was used as secondary

antibody. The membrane was developed using the ECL Western

Blotting Analysis System, according to the manufacturer’s instruc-

tions (Amersham Bioscience, Germany). Signal quantification was

performed using the ImageJ software package (NIH, USA).

Statistical analysis
For samples in which n.5, statistical analyses were performed

using unpaired Student t or ANOVA parametric tests. Normal

distributions were confirmed using the Kolmogorov-Smirnov test.

For samples in which n,5, statistical analyses were performed using

Kruskall-Wallis or Wilcoxon non-parametric tests. p,0.05 was

considered significant, p,0.001 was considered highly significant.

Supporting Information

Table S1 List of siRNAs used throughout the RNAi screen.

siRNAs that led to an increase or a decrease in infection are

marked in red or in green, respectively. CN denotes the

normalised number of nuclei in each condition. Genes in italics

are those for which one siRNA met the selection criteria but all

three siRNAs used in Pass 1 gave a statistically significant (p,0,05)

difference in terms of infection rate. For these genes, the three

siRNAs used in Pass 1 were used again in Pass 2.

Found at: doi:10.1371/journal.ppat.1000201.s001 (0.07 MB PDF)

Figure S1 Infected cells following knock-down of hit genes

identified in the RNAi screen. Representative pictures of cells

transfected with siRNAs targeting MET, PRKWNK1, SGK2,

STK35, PKCf and a Negative control siRNA, 24 hours after

infection with P. berghei sporozoites. The pictures depict nuclei (in

blue), actin (in red) and EEFs (in green) and show that cell

confluency and morphology are not affected by gene knock-down

whereas infection is decreased in all cases.

Found at: doi:10.1371/journal.ppat.1000201.s002 (0.68 MB PDF)

Figure S2 RNAi screen data analysed in terms of gene

classification and gene ontology. (A) Data analysis according to

distribution through kinase and kinase-related families. (B) Data

analysis according to gene ontology and molecular function. (C)

Gene ontology enrichment analysis of 3 RNAi screens showing

only significantly enriched kinases (p,0.05). Spheres on Pass 3 pie

plots denote the 5 kinases identified in the RNAi screen.

Found at: doi:10.1371/journal.ppat.1000201.s003 (0.13 MB PDF)

Figure S3 Specificity of inhibition by PKCzInh. (A) Specificity

of inhibition of atypical PKCs versus conventional and novel

PKCs by PKCzInh. Cells treated with PKCzInh or with an

equivalent amount of a scrambled peptide control, were probed

with an antibody that specifically recognises the autophosphori-

lated form of atypical PKCs (Thr560 on PKCf; Thr555 on PKCi)
(top). In parallel, treated cells were incubated with phospho-PKC

(pan), an antibody that specifically recognises the autopho-

sphorilated form of conventional and novel PKCs (Ser660 on

the hidrophobic site) (bottom). When at least 10 mM PKCzInh

were used, a clear decrease in the intensity of the band

corresponding to the atypical PKCs is observed while no

difference is observed in the bands corresponding to the

conventional and novel PKCs, showing that PKCzInh specifically

inhibits atypical PKCs and has no effect on other PKCs. (B)

Specificity of inhibition between atypical PKCs (PKCf versus

PKCi) by PKCzInh. To distinguish between PKCf and PKCi,
Huh7 cells were transfected with plasmids expressing either a

tagged version of PKCf or a tagged version of PKCi. The tag in

either construct enables the overexpressed protein to be distin-

guished from the endogenous ones on SDS-PAGE, and the degree

of autophosphorilation of each of the atypical PKCs to be analysed

independently. The expression level of PKCf is approximately 5-

fold higher than that of PKCi, as shown by quantification of signal

intensity of the two proteins following probing with an antibody

that recognises both isoforms (left). Inhibition on those cells was

only observed when 60 mM PKCzInh was used. Inhibition levels

of PKCf (middle) and PKCi (right) were assessed by probing with

an antibody that specifically recognises the autophosphorilated

form of atypical PKCs. The relative specificities of PKCzInh for

the two isoforms were determined by calculating the percentage of

inhibition of autophosphorilation of each of them and correcting

for the difference in their expression levels. Our results show that

the inhibitory effect on PKZf is approximately 2-fold that

observed for PKCi.
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Found at: doi:10.1371/journal.ppat.1000201.s004 (0.16 MB PDF)

Figure S4 PKCf in vivo knock-down does not cause any

detectable or significant signs of Interferon or toxicity response on

mouse livers. Effect of siRNA-mediated in vivo knock-down of

PKCf on expression of interferon or toxicity-related genes

measured by qRT-PCR. Each individual graph shows expression

data for one gene indicated on top. For each siRNA, RNA extracts

from liver samples of 3 different mice were tested in duplicate. The

same set of samples, taken 48 h after sporozoite i.v. infection was

used for the entire data set. Average and SD were normalized to

the expression level of Rpl13a as housekeeper. Interferon response

markers: Ifna1,interferon alpha1; ifnb1, interferon beta1; Ifi44,

interferon-induced protein 44; Ifit1 and 2, interferon-induced

protein(s) with tetratricopeptide repeats 1 and 2; Irf7, interferon

regulatory factor 7; Mx1, myxovirus resistance 1; Oas2,

oligoadenylate synthetase 2; Stat1, signal transducer and activator

of transcription 1. Toxicity response markers: Bax, Bcl2-associated

X protein; Bcl2l11, BCL2-like 11; Fos, FBJ osteosarcoma

oncogene; Fosl1; fos-like antigen 1; Fyb, FYN binding protein;

Gadd45a, growth arrest and DNA-damage-inducible 45 alpha;

Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Hspa5, heat

shock protein 5; Il18, interleukine 18; Jun, Jun oncogene; Mapk3,

mitogen activated protein kinase 3; Myc, myelocytomatosis

oncogene.

Found at: doi:10.1371/journal.ppat.1000201.s005 (0.07 MB PDF)

Figure S5 Effect of siRNA-mediated in vivo silencing of PKCf
on PKCf protein levels. The PKCf protein levels were measured

by Western blot analysis of liver extracts collected 40 h after

sporozoite i.v. injection. Mice were infected 36 h after RNAi

treatment with siRNA #1. The plot shows the quantification of

the amounts of PKCf normalised to those of actin (used as a

housekeeping control protein) in liver samples of mice treated with

the siRNA targeting the PKCf gene, relative to the normalised

amounts of PKCf in control samples.

Found at: doi:10.1371/journal.ppat.1000201.s006 (0.03 MB PDF)
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