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ABSTRACT

We propose a new, challenging, problem in kinship classification:

recognizing the family that a query person belongs to from a set of

families. We propose a novel framework for recognizing kinship by

modeling this problem as that of reconstructing the query face from

a mixture of parts from a set of families. To accomplish this, we

reconstruct the query face from a sparse set of samples among the

candidate families. Our sparse group reconstruction roughly models

the biological process of inheritance: a child inherits genetic ma-

terial from two parents, and therefore may not appear completely

similar to either parent, but is instead a composite of the parents.

The family classification is determined based on the reconstruction

error for each family. On our newly collected “Family101” dataset,

we discover links between familial traits among family members and

achieve state-of-the-art family classification performance.

Index Terms— kinship classification, facial inheritance, spar-

sity, sparse group lasso, family

1. INTRODUCTION

Kin recognition is a new research arena in computer vision that has

attracted increasing attention in recent years [1, 2, 3]. In computer

vision, kin recognition is the task of training the machine to recog-

nize the genetic kin and non-kin based on features extracted from

digital images. In this paper, we are interested in the problem of

kinship family classification: Given a set of families, each with a set

of images of family members, the goal is to determine which family

that a person in a query image belongs to. We present the idea that

kinship classification from facial images is improved when we use

sparsity to model the genetic process of heredity of visible traits.

The computer vision facial representations do not answer ques-

tions about why people look the way that they do, or how a woman’s

face’s appearance is affected by her ancestors. To answer questions

along this vein, we must appeal to the field of genetics. Based on

work from the 1860’s, Gregor Mendel is credited with discovering

the laws of the inheritance of visible traits between generations of

offspring (specifically pea plants) in sexual reproduction. Mendel

produced offspring from various pea plants with different visible

traits (e.g. white or purple flowers), and observed the proportion

of offspring with each traits. From this evidence, he proposed the

idea of factors (i.e., alleles of a gene) that code for either dominant

or recessive traits.

Our main contributions are the following: First, we propose

a sparse group lasso that models the inheritance of facial features

(Fig. 1). We show that our model performs well at a new kinship

classification task: determining which family from a set of families

that a query person belongs to. Finally, we have created and will

share a large database of families, named “Family101”, which con-

tains 101 public families with cross-generation family structure, with

607 individuals and 14,816 facial images.

Fig. 1. We use facial parts of family members to reconstruct a query

person. Given a large number of facial parts from various families

as dictionary, as shown above, a query person’s image can be recon-

structed from a sparse group of facial part bases from the dictionary.

The height of a bar reflects the importance of this base in reconstruct-

ing the query person. Interestingly, the non-zero weights represent

the images of people from Obama’s family, while people from other

families get zero weights.

2. RELATED WORK

We review related work on sparsity, face recognition, and kinship

recognition.

Sparse group lasso: Group sparsity was introduced in [4, 5].

For a given a test image, the non-zero linear reconstruction coeffi-

cients should ideally only appear in one or a few classes. It aims

to select only a few classes to reconstruct the test data. To empha-

size the sparse characteristic on both the instance level and the group

level, sparse group lasso is a combination of group sparse coding and

sparse coding. Group sparsity has been applied to image annotation

[6] and region labeling [7]. Our work learns the sparse coefficients

with respect to the facial parts from the family dictionary, and the

resulting reconstruction residues from all parts are used to identify

the family and also relatives who have similar facial traits.

Face recognition: Numerous methods have been proposed to

tackle this long-standing challenge, including Eigenfaces [8], Fisher-

faces [9] and SVM [10]. Recently, Wright et al. [11] applied a sparse

representation-based classification (SRC) approach to frontal view

face recognition with varying expression and illumination, as well

as occlusions and disguise, and achieved impressive performance,

which was followed by several extensions [12]. All these methods

are restricted to face recognition problem, not kinship recognition,

and enforce sparsity on the entire dictionary, instead of group spar-

sity which enforces additional sparsity on the group level.

Work on face verification addresses the enormous variability in

which the same face presents itself to a camera. Kumar et al. [13]

explore face verification using attribute and simile classifiers. Yin et
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Fig. 2. An example of kinship classification task between two possi-

ble families with both candidate parents displayed. A direct one-to-

one appearance-based approach might classify the query to family

(a) due to the similarity between the query person and the mother.

However, the actual related family is (b). The query person is Shan-

non Lee, daughter of Bruce Lee and Linda Lee Cadwell.

al. [14] also achieves good verification accuracy using an associate-

predict model. These works, although related, are tackling the prob-

lem of verifying the same face with variability caused by pose, ex-

pression, hairstyle, etc. In contrast, our work involves different faces

from the same family, and therefore requires a new framework by

reconstructing the query face from a mixture of parts from a set of

family members

Kinship recognition: Human perception of kinship is an active

research area in psychology [15, 16, 17, 18, 19, 20]. The findings

from the psychological literature include that (1) humans are able to

recognize kinship even on unfamiliar faces; and (2) the mechanism

of kinship perception is probably different from identity recognition.

Motivated by the psychological findings, several attempts have been

made to develop computational approaches to kinship recognition.

Fang et al. [1] tackles the kinship verification task by extracting dis-

criminative features from facial images and using the absolute differ-

ence between pairs of people to determine the existence of kinship.

Xia et al. [2] utilizes young parents as an intermediate distribution

to bridge the children and the old parents and reduce the divergence

caused by age via transfer learning. Unlike our approach, these

methods tackle the one-to-one verification problem without consid-

ering feature inheritance from multiple relatives, and do not model

facial parts specifically. In contrast, our kinship classification model

is one-to-multiple that better resembles the biological process of in-

heritance, as illustrated in Fig. 2. Our method models the feature in-

heritance across multiple individuals, and it is also able to estimates

which relatives have similar facial features to the query person.

3. APPROACH

We segment the query face into parts (eyes, nose, etc.) and recon-

struct each part as a linear combination of a set of database parts.

We assume that we have a training set of images of different fam-

ilies, and within each family there are several images of the same

person.

3.1. Notation

The traditional Lasso problem is formulated as:

min
α

‖y −Dα‖22 s.t.‖α‖1 ≤ σ (1)

where σ > 0 is a constant, y ∈ R
n is the signal to be coded, D =

[d1, . . . , dk] ∈ R
n×k is the dictionary with column vector dj ∈ R

n

as the jth atom, and α ∈ R
k is the coding coefficient vector.

In our problem of kinship classification, y is the feature vector

face cheeks nose mouth eyes side hair eyebrows forehead mustache chin top hair small hair 

Fig. 3. Twelve facial parts are selected to build the part-based dic-

tionaries.

computed from the query person’s image, D is the dictionary com-

posed of the training images from various families, and α is a sparse

coefficient vector to represent y with a combination of vectors from

D. The query person does not appear in any base of the dictionary

D, while the family relatives of the query person are in D.

3.2. Part-based Dictionary

We use parts of the face instead of the entire face to address the kin-

ship classification problem and model the process of facial feature

heredity. We segment the facial image into 12 parts, following the

approach in [13], as shown in Fig. 3. The location and the size of the

12 facial parts are determined from the annotation of one researcher

on a template face and applied to all the other facial images which

have been aligned to the same template. For each part p, we build

a dictionary D(p) from the training samples. The atom d
(p)
j is the

feature extracted from the part p of the training face sample j in the

dictionary D(p). This enables us to find the features in the dictionary

that best reconstruct each part in the query face, and each part is the

dynamic combination of the features from the part-based dictionary.

3.3. Kinship Classification with Sparse Group Lasso

We formulate the problem as a sparse group lasso, where we en-

force sparsity on both the group (family) and individual feature lev-

els. This is based on the observation that the query person inherits

features from related family members, thus the non-zero coefficients

in α tend to be in groups and indicate kinship. We only need a few

images of the related family members with similar expression, il-

lumination and pose to represent the features in the query image.

By taking advantage of the coefficients’ group structure, the perfor-

mance of kinship classification model can be improved. The prob-

lem is formulated as:

argmin
α

‖y −Dα‖22 + λ1

m∑

j=1

‖αGj
‖2 + λ2‖α‖1 (2)

where the training images are partitioned into m disjoint groups

G1, G2, . . . , Gm. α = [αG1
, αG2

, . . . , αGm ] and αGj
denotes the

group of weights corresponding to group Gj . In the kinship clas-

sification problem, the groups are naturally defined as the different

families linked by blood relation. λ1

∑m

j=1 ‖αGj
‖2 is the combina-

tion of L1 and L2 norms. The L2 norm is used for the weights inside

the same group, and the L1 norm is used to sum the results between

groups. Using the group structure ensures more robust and accurate

weights and still benefits from the sparsity. λ2‖α‖1 is the L1 norm

to enforce the sparsity on the coefficients in α, which benefits from

the sparsity by selecting only a few images with similar illumination,

pose and expression.

In Eq. 2, the sparse factorization coefficient α indicates the dis-

tribution of y on all the bases in D, each of which encodes a specific

feature vector of the candidate family member. A child inherits ge-

netic material from two parents, and therefore may not appear com-

pletely similar to either parent. Ideally, the person that corresponds



to the same family should have high coefficients from related family

members and low or zero coefficients from unrelated persons. To

classify the family that a query person belongs to, we reconstruct the

facial part p of the query face y, y(p), with the bases for facial part

p from the family j, D
(p)
j , and the weights in α that correspond to

family j, α
(p)
Gj

. The reconstruction error of facial part p for family j

is R
(p)
j = ‖y(p) −D

(p)
Gj

α
(p)
j ‖22. R is then normalized by the size of

the facial part.

From the genetic perspective, not all traits inherited from the

parents to the child are dominant. The recessive trait may be ex-

pressed as a phenotype if the child inherits two copies of the gene

from the parents. In this case, the child may have some facial traits

distinct from both parents. So the reconstruction error of these parts

will be large even for the related family. On the other hand, some

dominant traits are representative for the family. A few character-

istic traits passed from the parents to the child could help people to

identify the kinship between the people easily. Thus, instead of us-

ing all the facial parts to classify kinship, we choose the three facial

parts of the query person with the smallest possible residues among

all R
(p)
j , j = 1, 2, . . . , k. We rank the normalized reconstruction er-

ror for all candidate families for these three facial parts, and sum the

ranks for each family. The kin related family is decided as the one

with the smallest rank sum.

3.4. Familial Traits Tracing

By learning the sparse coefficient α(p) from the part-based dictio-

nary D(p) for each query image, we determine which family mem-

bers have similar facial parts. We first find the family that the query

person most likely belongs to by computing the rank-sum of the

three facial parts with least reconstruction error as described in Sec-

tion 3.3. Then we pick up the top three images in the part-based dic-

tionary D(p) with the largest coefficients. These images are regarded

as the images of family relatives who have similar facial traits.

4. DATASET

We assemble a new dataset called “Family 101” containing 101 dif-

ferent family trees, including 206 nuclear families, 607 individuals,

with 14,816 images. The dataset includes renowned public families.

The structure of the Family 101 dataset is illustrated in Fig. 4. To the

best of our knowledge, it is the largest dataset with structured famil-

ial relationship. We will publish our dataset upon the publication of

the paper.

We used Amazon Mechanical Turk to assemble the dataset by

asking workers to upload images of family members that we spec-

ify. The identities of the individuals are then verified. Each fam-

ily contains 1 to 7 nuclear families. In total there are 206 nuclear

families (both parents and their children), each with 3 to 9 family

members. The final dataset includes around 72% Caucasians, 23%

Asians, and 5% African Americans to guarantee a widespread dis-

tribution of facial characteristics that depend on race, gender, age.

We attempted to exclude non-biologically related parents-children

by checking the familial relationships using public information avail-

able online. For pair-wise relationships, there are 213 father-son re-

lations, 147 father-daughter relations, 184 mother-son relations, and

148 mother-daughter relations. For some of the family members in

Family 101 dataset the Internet search returns relatively few unique

photographs. For all experiments in this paper we use only 546

family members for which there are at least 5 unique photographs.

The comparison between our dataset and the existing family image

(a) Kennedy family tree from FamNet dataset

(b) All 48 images of Caroline Kennedy

Fig. 4. Our Family 101 database contains 14,816 images of 607

public figures from 206 nuclear families from 101 renowned root

families. Here, we show one of the 101 families: the Kennedy family

tree with three generations. The variability in appearance captured

by Family 101 can be seen in (b), which shows all 48 images of

Caroline Kennedy.

Table 1. Comparison of our Family 101 dataset and other existing

family image datasets of human faces. “Age” variation refers to the

variation of age of the same individual, e.g. people when they are

young and old. “Family structure” refers to the existence of cross-

generation and family tree relationship in the dataset. Bold font in-

dicates relatively larger scale datasets or more information.

Dataset No.

Family

No.

People

No. Im-

ages

Age

varies?

Family

struc-

ture?

CornellKin[1] 150 300 300 No No

UB KinFace[2] 90 180 270 Yes No

Family 101 206 607 14,816 Yes Yes

datasets are summarized in Table 1. Next, a commercial face de-

tection package was used find faces six fiducial points per face: the

corners of both eyes and the corners of the mouth, used for facial

alignment.

5. EXPERIMENTS

5.1. Experiment Setup

We evaluate our approach on the “Family101” dataset. We use a

dense SIFT descriptor on rescaled facial images of size 61×49 pixels

as our image feature. The SIFT descriptors extracted from 16 × 16
pixel patches are densely sampled from each image on a grid with

step size 6 pixels. The images were all preprocessed to gray scale.

The parameters controlling the sparsity of the coefficients λ1 and

λ2 are determined on a separate validation dataset of 20 families

which do not overlap with the testing data. The parameters are set as

λ1 = 0.1, λ2 = 0.1.

We compare our part-based reconstruction to three baselines:

Baseline: Our first two baselines are the widely used discrimi-

native classifiers, K-nearest-neighbors and support vector machine.

For these two baselines, we tune the parameters to reach the best

possible performance for kinship classification. Our third baseline

sparse representation based recognition (SRC) proposed by Ma et
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Fig. 5. Left: Our proposed sparse reconstruction method is the

most robust at classifying the family that a query face belongs to.

When there are more families to choose from, overall performance

decreases, but the improvement margin of our proposed method in-

creases. Right: Performance improves as the number of training

exemplars per family increases.

al. [11] for robust face recognition, which uses L1 regularization on

the whole face. All four classification algorithms (3 baselines and

our proposed method) use the same features, i.e. the dense SIFT

features described above, for fair comparison. SRC in our baseline

also uses the dense SIFT feature instead of the pixel intensity, but

the classification framework is same as [11].

Setup: We compare all methods in several different scenarios.

Unless specified in each scenario, for each family, we use 3 fam-

ily members for training (i.e., the training individuals comprise the

sparse dictionary) and 2 for testing. 20 families are randomly se-

lected from the Family101 dataset for evaluation in every scenario.

Families with fewer than 5 family members are not used. We use

30 images of each individual for both training and testing, and re-

port mean per-family accuracy over 10 random family selected for

training and the remaining 10 for testing.

5.2. Experimental Results

We validate our propose sparse group lasso method for kinship clas-

sification in three different scenarios, by tuning the number of fami-

lies for evaluation, number of family members for training and trac-

ing the facial traits.

Number of families: We first study kinship classification as the

number of families (or categories) increases. Fig. 5 (left) shows the

results where our proposed method surpasses the baselines for the

problem of kinship classification.

First, we see that all of the four methods perform much better

than chance, while our proposed method consistently performs better

than other three algorithms. This validates the power of part-based

reconstruction. In addition, SRC and our proposed methods gains

over KNN and SVM with larger number of families demonstrate the

benefit of sparse reconstruction modeling.

As one would expect, accuracy for all four approaches decreases

with more families in the gallery. Our method surpasses the base-

lines for the whole range, and the gain of our method compared to

the baselines grows as the number of families increase.

Number of family members for training: We next study the

impact of varying number of family members for training. How

many members from one family does the computer need to see be-

fore it can classify an unknown person to one of the families with

reasonable accuracy? We keep the total number of family members

same for each family, while varying the number of family mem-

bers who are to be classified. Fig. 5 (right) shows the results as

we increase the number of family members for training, where for

each family, we randomly select n training individuals from avail-

able family member, and then use 5− n for testing, to keep the total

number of family members for both training and testing the same.
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Fig. 6. Visualization of the sparse representation from a family fa-

cial parts. Each row in the left-most matrices corresponds to one

reconstruction coefficient for a test image with respect to 50 people

from 10 families. Red indicates large magnitude in the coefficient

while blue indicates low magnitude. We observe that the bases are

indeed very sparse. For a query image of Martin Sheen, the three

parts with the least reconstruction errors are hair, eyes and mouth.

In the middle column, red bars indicate reconstruction from related

family members, while the blue bars indicate reconstruction from

unrelated people. We show the actual images that are used to re-

construct the parts above the axis. Typically, reconstruction error is

higher when a part is reconstructed from unrelated people (versus

family members).

For all approaches, performance improves as the number of train-

ing people increases. Our proposed method performs better than the

baselines over most of the spectrum.

When using more than two individuals for training, our method’s

advantage of utilizing the combinatorial information from multiple

family members is shown by the faster increase of accuracy, which

makes sense because the children inherit features not only from one

parent or a single relative family member, and share features in com-

mon with other relatives (besides parents).

Facial traits tracing: A visualization of the sparse coefficients

of query images with respect to a set of families is shown in Fig. 6.

We observe that non-zero coefficients tend to cluster in groups, and

typically come from individual family members who have similar fa-

cial traits with the query person. However, due to the noise caused by

various factors and potential similarity between people who are not

related by family linkage, e.g., Martin Sheen may has similar eyes

as Cynthia Lennon in this photo, but most of non-zero coefficients

(e.g., for hair, nose, mouth) are from the Sheen family.

6. CONCLUSION

We propose a novel framework for recognizing kinship by modeling

this problem as that of reconstructing the query face from a mixture

of parts from a set of families, which allows for a richer utilization

of family members’ information and family structure than the com-

monly one-to-one kinship verification. Our model is motivated by

the biological process of inheritance. Various experiments on our

newly collected dataset “Family101” demonstrate the advantages of

our idea.
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