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Abstract

Automatic kinship verification from facial images is a relatively new and challenging research problem in computer vision. It

consists in automatically determining whether two persons have a biological kin relation by examining their facial attributes. In

this work, we compare the performance of humans and machines in kinship verification tasks. We investigate the state-of-the-

art methods in automatic kinship verification from facial images, comparing their performance with the one obtained by asking

humans to complete an equivalent task using a crowdsourcing system. Our results show that machines can consistently beat

humans in kinship classification tasks in both images and videos. In addition, we study the limitations of currently available

kinship databases and analyzing their possible impact in kinship verification experiment and this type of comparison.

Keywords Kinship verification · Face analysis · Biometrics · Crowdsourcing

1 Introduction

It is common practice for humans, to visually identify rel-

atives from faces. Relatives usually wonder which facial

attributes do a new born inherit from each parent. The

human ability of kinship recognition has been the object of

many psychological studies [21,24]. Inspired by these stud-

ies, automatic kinship (or family) verification [30,84] has

been recently considered as an interesting and open research

problem in computer vision and it is receiving an increasing

attention by the research community.

Automatic kinship verification from faces aims to deter-

mine whether two persons have a biological kin relation by

comparing their facial attributes. This is a difficult task that
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sometimes needs to deal with subtle similarities that often

escape the human eye.

Kinship verification has a role in numerous applications.

In addition to biological relation verification, kinship estima-

tion is an important feature in the automatic analysis of the

huge amount of photographs daily shared on social media,

since it helps understanding the family relationships in these

photographs. It can also be used for automatically organizing

family albums and generating family trees based on present

or historical photographs. In addition to image classification,

kinship verification proves also useful in cases of missing

children and elderly people with reduced cognitive capabil-

ities, as well as in kidnaping cases.

All these applications assume an automatic kinship veri-

fication system able to assess kin relationships from limited

input data. However, and despite the recent progress, kinship

verification from faces remains a challenging task. It inherits

the research problems of face verification from images cap-

tured in the wild under adverse pose, expression, illumination

and occlusion conditions.

In addition, kinship verification should deal with wider

intra-class and inter-class variations. Moreover, automatic

kinship verification can face new challenges since unbal-

anced datasets naturally exist in a family, and a pair of input

images may be from persons of different sex and/or with a

large age difference.
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This paper aims at answering one question: How do

humans compare against machines in kinship verification

tasks? Among the sizable literature in kinship verification,

studies on human perception of kinship remain sparse, and

they are often conducted with a small subset of the avail-

able data. In addition, many times, the experimental setup

for comparing human and machine performance in kinship

verification tasks is inherently different.

In this context, we investigate the state of the art of auto-

matic kinship verification approaches from both images and

videos and compare their performance with the one obtained

by asking humans to complete an equivalent task. To assess

the capability of the automatic methods, we use an equivalent

setup based in crowdsourcing that allows fair comparison of

machines and humans. In addition, we analyze for the first

time the possible sources of experimental bias when making

this type of comparison.

The main contributions of this paper include: (i) An

extensive review of the literature in kinship verification, cov-

ering psychological studies and computational models; (ii)

a crowdsourcing system for measuring human performance

in kinship verification tasks; (iii) analysis of the compara-

tive performance between humans and machines, showing

that machines can consistently beat humans in kinship clas-

sification tasks in both images and videos; (iv) a description

of the limitations of currently available databases and their

potential sources of bias.

2 Review of literature on kinship verification

2.1 Psychological aspects of kinship

The human ability to recognize members of our kin has posed

many evolutionary benefits. In fact, kin recognition and kin-

ship verification are a process that favors assessing the close

relations in groups and predicts an observable differential

treatment between members and non-members of the family

[34]. The recognition of offspring would be especially impor-

tant in the allocation of parental investment and in assessing

the investment of others [50]. The perception of resemblance

has shown to have an effect in paternal investment [58], where

self-resemblance is important for the fathers [71], or in the

probability of spouse/child abuse [16].

In addition to their own families, humans are also able

to match faces of siblings to whom they are not related

[14,49,54] and assess the relatedness of pairs of close and

distant. This ability is referred as allocentric kin recognition

and is the focus of human and automatic kinship verification

studies.

Already in 1984, Porter et al. [60] showed that strangers

are able to match photographs of mothers to their infants,

while mothers can recognize photographs of their babies

just a few hours after the birth. This suggests that there is

indeed facial resemblance among kin, a treat referred in some

contexts as a social mirror that can affect the behavior of indi-

viduals.

Since humans rely on visual information for many impor-

tant tasks, facial resemblance is expected to be an indicator

used by people to recognize kinship relationships. In fact,

there appear to be cues to genetic relatedness in facial

features. Since humans possess neural areas, such as the

fusiform gyrus, specifically trained to respond to faces, kin-

ship verification from facial information seems to have its

own recognition mechanism [59]. A human presented with a

face of someone kin-related, as opposed to a totally unknown

face, activate brain regions involved in self-face recogni-

tion (e.g., anterior cingulate gyrus and medial frontal gyrus).

In addition, when presented a face of a kin-related person

to someone we know, activates "friend" recognition areas

(posterior cingulate and cuneus), again suggesting a need to

process for identification [59].

In this context, there have been numerous psychological

studies that try to assess the human performance in kinship

recognition. In these studies, the participants are asked to

assess facial pictures of people belonging to the same fam-

ily, either between children and parents [4], pairs of siblings

[21] or even two adult faces [24]. The results of the previous

studies show some interesting consensus on the characteris-

tics of the human ability:

It develops with age. Many studies have focused on the

mechanisms of kin recognition in humans and other species.

However, a few have addressed the development of such

abilities. In humans, adults can match photographs of chil-

dren and parents faces [40], but children do not perform as

well [39]. For example, children aged 5–11 can match pho-

tographs of infants to parents at levels above chance, but not

parents to infants. Also a consistent finding is that people

show better performance on discriminating own age faces

[8,36].

Both sexes are equally good at it. Matching kin-related

individuals seems to be more difficult when both individuals

in a kin relationship are of different sexes. Experiments show

that the percentage of verification success increases when

comparing mother and daughter or father and son, decreas-

ing for father and daughter or mother and son [58]. Also,

the detection of resemblance in children’s faces activates

different parts of the brain with different activation levels

in men and women. However, this is probably due to dif-

ferent decision mechanisms, since there is no evidence of

different assessment capabilities between men and women

[50,54].
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No general rule can be extended to all relationships or

family members. In 1995, Christenfeld et al. [20] implied

that the infants resemble more their fathers. This could be

because in social situations, mothers and their families and

friends are more likely to say a newborn resembles its father

more than its mother, perhaps to reassure the father of pater-

nity [4,52]. However, subsequent efforts to replicate this work

have found evidence claiming that humans are able to better

match infant with mothers [52], or to both parents equally

well [14,15]. Moreover, studies of child resemblance [57],

or of resemblance across the first years of a child’s life [4]

did not come to a common decision of precise similarity

measurement among members.

The whole face should be considered for facial resem-

blance analysis. This question was first raised by Dal

Martello and Maloney [21] which designed their study uti-

lizing children facial segments without considering their

gender. The upper half of the face, including the eye region,

seems to provide more information than the lower part, since

the mouth area changes across development and has fewer

stable cues to relatedness [6,21,31]. Experiments using only

the left and right halves of the face showed no statisti-

cal significance when compared with the whole face [22].

However, DeBruine et al. [24] continued Martello’s work

utilizing only adult faces, concluding that the performance

in the kinship assessment improves when using both halves

of the face. They claim that both halves provide independent

cues that can be optimally combined in the kin recognition

tasks.

The human assessment of facial similarities is usually

performed in “patches”. The feature types and cues that

provide information for kinship verification are still poorly

known [4,24]. Meissner and Brigham [53] concluded that

recognizing faces may indeed be the result of the processing

of shapes and distances of different facial parts or “patches.”

In line with this result, the spatial information such as the ratio

of the distance between these patches is not well processed in

the recognition tasks [5], since providing some of the facial

“patches” separately does not substantially decrease the ver-

ification performance [21].

2.1.1 Conclusion

Summarizing, this set of consensus findings show that facial

resemblance among the members of a family can be present

in different facial parts or patches, and manifest differently

across various family members, showing that the human

kinship verification process is learned in a way that is mem-

ber and patch specific. Based on these findings, we could

assume that an automatic verification system that wants

to mimic the human abilities should be constructed using

information of the different specific kinship relations among

different members and different facial parts evaluated sepa-

rately.

2.2 Computer andmachine learning approaches to
kinship verification

To the best of our knowledge, the attempts to design compu-

tational models based on psychological studies for automatic

visual kinship verification started in 2010 and is described

in the work of Fang et al. [30]. Using anthropometric meth-

ods, this work extracts a number of features that are then

ranked by feature performance, selecting the top 14 verifi-

cation factors. The study concluded that the best feature for

family (kinship) verification is the left eye grayscale patch,

with average accuracy of 72% on the collected dataset con-

taining 286 samples. However, with this approach, there is

no assurance that all fiducial patches are detected correctly

for holistic-based approaches or the presence of unique facial

features such as mole is not as dominant as other parts of the

face.

Since then, significant progress has been made in auto-

matic kinship verification, and a number of approaches have

been reported in the literature [3,10,11,13,25,28,31,33,38,43,

45,47,51,61,73,78,81,83–85]. Table 1 presents a summary of

the most relevant methods and reported results.

It can be seen that typical current best performing meth-

ods follow a similar structure in their methodology, com-

bining several face descriptors, applying metric learning

approaches to compute distances between pairs of fea-

tures and utilizing this distance to learn a threshold that is

able to perform a binary classification tasks. Here, we pro-

vide a review of the most significative findings of recent

research:

Handcrafted features. Handcrafted features designed for

facial representation have shown very good performance in

different face analysis tasks. This is also the case in kinship

verification, where some of the first approaches in the litera-

ture were based on low-level handcrafted feature extraction

and SVM or KNN classifiers. For instance, Zhou et al. [83]

used a spatial pyramid learning descriptor, later refined into

a Gabor gradient orientation pyramid [84], an approach also

used by Xia et al. [73,74], while Kohli et al. [43] used self-

similarity of Weber faces.

Local descriptors based on texture analysis such as

variants of HOG [23], LBP [1] or LPQ [2], have also

been exploited. The most recent well-performing methods

include different descriptors such as Weber local descriptor

(WLD) [18], three-patch-based LBPs (TPLBP) [70], over-
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complete LBP (OCLBP) [9] or Fisher vector faces (FV)

[64].

A typical methodology, based on the combination of hand-

crafted features, can be seen in the baseline systems used in

Kinship verification competitions [45,47]. Based on refer-

ence HOG and LBP implementations, faces are described and

encoded by dividing each frame into 8 × 8 non overlapping

blocks, extracting nine-dimensional HOG features and multi-

scale LBP features from each block. Finally, all the blocks’

features are concatenated to form a 2880-dimensional face

feature vector.

Learning deep features. Most of the kinship verification

work is mainly based on shallow handcrafted features and

hence is not associated with the recent significant progress

in the machine learning field that suggests the use of deep

features. Motivated by the increasing success of deep learn-

ing approaches in image representation and classification in

general [65] and face recognition in particular [67], Zhang

et al. [81] recently proposed a convolutional neural net-

work architecture for face-based kinship verification. The

proposed architecture is composed of two convolution max

pooling layers followed by a convolution layer and a fully

connected layer. A two-way soft max classifier is used as

the final layer to train the network. The network takes a

pair of RGB face images of different persons as an input,

checking the possible kin relations. However, their reported

results do not outperform the shallow methods presented in

the FG15 kinship competition on the same datasets [45].

The reason behind this may be the scarcity of training data,

since deep learning approaches require the availability of

enough training samples which is not the case for avail-

able face kinship databases. Recently, Boutellaa et al. [13]

show that the combination of shallow and deep features can

be complementary and indeed improve the results of shal-

low features even further, while Robinson et al. showed that

the same approach of using deep features to describe the

face characteristics could be used even in very challenging

and complete datasets with reasonable accuracy [62] How-

ever, since deep learning approaches require large amounts

of training data, they might not be applicable in every situa-

tion.

Color information. The conversion of color images into

grayscale can simplify the classification process, but at the

same time, it eliminates useful characteristics with discrim-

inative power. Kin-related pairs tend to share facial features

related to structural or textural information, such as the

shapes of eyes, mouth and nose, but also others related to

chrominance information such as hair, eyes or skin color.

In addition, grayscale conversion can reduce edge informa-

tion, making it harder to distinguish even textural capabilities.

Recent work hints that the study of joint color–texture infor-

mation that utilizes information from three different channels

of digital images can better describe the characteristics of

kin-related pairs [72].

Feature selection and fusion. The combination of sev-

eral types of features, exploiting their possible comple-

mentarity, seems to show performance advantages in the

verification of kin relations. For example, in the last kin-

ship competition [45], all the proposed methods used three

or more descriptors while the best performing method

employed four different local features (LBP, HOG, OCLBP

and Fisher vectors). Since the combination of several fea-

tures at different scales generates very large feature vectors,

dimensionality reduction techniques have been extensively

used. Among the most used methods are principal com-

ponent analysis (PCA), independent component analysis

(ICA), variations such as the whitened principal component

analysis (WPCA) or learning the weight of each feature

component using sparse ℓ1 regularized logistic regres-

sion.

Typical methods for feature selection try to fuse several

features, while only keeping the most discriminative fea-

tures. Wang and Kambhamettu [69] combined texture and

facial geometry in a single classification system. They com-

bined a Gaussian mixture model of LBP features and the

projection of facial landmarks in the Grassman manifold.

The work of Bottino et al. [11] applied feature fusion on

four different textural features: LPQ, WLD, TPLBP and

FPLBP. For each feature, the difference between vectors

of a pair images is computed and normalized and the four

features are concatenated forming the pair descriptor. The

minimum redundancy maximum relevance (nRMR) algo-

rithm was applied to perform feature selection, and SVM

was utilized for classification.

Vote-based feature selection schemes are able to reduce

the model parameters [45]. An improvement in the robust-

ness has been demonstrated with the use of different fea-

tures that employ pyramid features extracted from different

scales and orientations [69,84], while the most recent meth-

ods focus on the extraction of high-density local features

[80].

Metric learning. Complementarily to dimensionality reduc-

tion and feature selection, various metric learning approaches

have been investigated to tackle the Kinship verification prob-

lem, showing major progress in the field. Metric learning

aims at automatically learning a similarity measure from

data rather than using handcrafted distances. This is in line

with the intuition that faces from member of the same fam-

ily should look similar, but not necessarily the same. As

a first attempt, Somanath and Kambhamettu [66] applied

ensemble metric learning. The training data are initially clus-

tered using different similarity kernels. Then a final kernel is
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learned based on the initial clustering. For each kin rela-

tion, the learned kernel ensures that related pairs have a

greater similarity than unrelated pairs. Lu et al. [48] learned

a distance metric where the face pairs with a kin relation

are pulled close and those without a kin relation are pushed

away. Recently, Zhou et al. [85] applied ensemble similarity

learning for solving the kinship verification problem. They

learned an ensemble of sparse bilinear similarity bases from

kinship data by minimizing the violation of the kinship con-

straints between pairs of images and maximizing the diversity

of the similarity bases. Yan et al. [77] and Hu et al. [38]

learned multiple distance metrics based on various features,

by simultaneously maximizing the kinship constraint (pairs

with a kinship relation must have a smaller distance than pairs

without a kinship relation) and the correlation of different fea-

tures. Other utilized methods include the triangular similarity

metric learning (TSML) [82] or distance metrics learn using

side information-based linear discriminant analysis (SILD)

[41], while the most recent methods rely on multi-metric

learning [37] or deep metric learning [46,68].

Classification methods. If the extracted face features are

discriminative enough, the classification can be simply per-

formed with a linear classifier. Cosine similarity distance and

thresholding have been used with mixed performance, while

K-nearest neighbor classifier that measures the second-order

distance of the features to find the nearest class seems to

offer better performance [30]. Model-based classification uti-

lizing a biclass support vector machine (SVM) has shown

superior performance when the amount of data allows the

partition into meaningful splits of training and testing data

[28,45].

If the amount of data is sufficient, a classification stage can

be learned together with facial descriptions using deep learn-

ing methodology and convolutional neural networks [81].

When this is not the case, other non-model-based classifica-

tion methods such as canonical correlation analysis [19] or

online sparse similarity learning [44] have been tried with

different results.

Facial dynamics from videos. The role of facial dynam-

ics in kinship verification is mostly unexplored, as most

existing work focus on analyzing still facial images instead

of video sequences. While most of the published work

copes with kinship problem from images, it has not be until

recently that kinship verification from videos has been con-

ducted, starting with the work of Dibeklioglu et al. [28].

In this seminal work, the authors combined facial expres-

sion dynamics with temporal facial appearance as features

and used SVM for classification. The combination of facial

dynamics and static features is able to exploit both the

textural and temporal information present in face videos,

improving the description of kin-related face pairs. Lately,

the apparition of other works incide on the use of more

advanced features [13,26] or on metric learning methods

[75,76] to improve the results obtained by simple facial

dynamics.

2.2.1 Conclusions

Summarizing, the published papers and organized competi-

tions dealing with automatic kinship verification have shown

some promising results over the last few years. From the

literature it can be extracted that exploiting combination of

several complementary features such as texture, color, facial

dynamics and deep information offers the best performance.

Feature selection, dimensionality reduction and metric learn-

ing descriptors utilized before classifiers based on model

training can improve the classification scores even further.

The recent apparition of deep learning methods and their dis-

criminatory power shows already to be promising and could

push the computer accuracy further.

2.3 Comparing human and computer assessment

Until now, only a handful of studies have tried to compare

the performance of humans against automatic methods for

kinship verification. However, the experimental evaluation

present in the literature is mostly done in very controlled

conditions, with a small number of human participants all

belonging to the same groups and only across a reduced sub-

set of the available data utilized for the automatic assessment.

In the first automatic kinship study, Fang et al. [30] com-

pared an automatic kinship verification method against the

human performance. However, they utilized only 16 partici-

pants and a small random subset comprising only 20 image

pairs. Zhou et al. [84] used a small subset of 100 random

pairs presented to 20 participants, all with ages between 20

and 30, a setup repeated by Lu et al. [48].

3 Kinship verification by humans

To assess the performance of humans in kinship verification

tasks, we have gathered information by scoring a set of kin-

ship verification pairs using the Amazon Mechanical Turk

service (MTurk) crowdsourcing service [7]. MTurk allows to

crowdsource different human intelligence tasks (referred to

as HITs) to a group of human workers. Each HIT corresponds

to the assessment of one pair of images or videos by one per-

son. In our experiments, MTurk workers remain anonymous,

since personally identifying information ore demographics

were not collected. In total, 304 different individual workers

were included in the experiment, and 10 different annotations

from different users were made for each pair (HIT).
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Fig. 1 Crowdsourced human estimation of kinship using Amazon
Mechanical Turk. Overview of one HIT task

The experimental task was designed trying to keep the

HITs assigned to workers as simple as possible, in order to

reduce unintentional mistakes. The HITs consists on display-

ing a pair of face images (or videos) with a prompt question

asking if the individuals in both images have a kin relation,

with the following question: “Are these two people related

(i.e., part of the same family?)”. Along with the question, the

workers are presented with two buttons showing “Yes” and

“No” answers (see Fig. 1).

Using this setup, we have collected kinship verification

scores for three different datasets. Two datasets, Kinship

Face in the Wild I & II [48], including positive and negative

pairs, were used in their original form. The entire datasets

consist on 3066 image pairs, with a resolution of 64 × 64

pixels, and positive and negative kinship pairs are equally

distributed.

The third dataset, the UvA-Nemo Smile database [27],

comprises 550 video pairs, half containing deliberate (posed)

smiles and half of them containing genuine (spontaneous)

smiles. The videos were presented to the workers using a

rescaled resolution of 480 × 270 pixels. For this database,

the assessment scores were collected using two different

setups: showing the original videos or showing just the first

frame of the video, for a total number of 2200 pairs. Thus,

in total we used 5266 unique HITs to Amazon’s Mechanical

Turk.

A description of the datasets and other available databases

can be seen in Appendix A, included as supplemental mate-

rial.

Typically, crowdsourcing experiments present a subset of

the collected data that might be unreliable. To reduce this

effect, we implemented several quality assurance mecha-

nisms that have shown to be successful in literature. First,

we only allowed workers that had at completed at least

1000 HITs in the platform and had at least 99% or more

of these HITs approved by the requesters. Second, we col-

lected the time taken by the user to answer the question

and compared it with the average times. HITs that were

completed in an abnormally short amount of time were

rejected. Third, we used a common crowdsourcing quality

assurance mechanism called gold standard, which entails

the creation and inclusion of tasks that have known answers

to the requested crowdsourcing job [29]. The inclusion of

these pre-labeled questions allowed us to capture the reliabil-

ity of its workers. Therefore, all answers from workers that

performed badly on the pre-labeled tasks can be removed,

potentially improving the accuracy of the crowdsourced

results [32]. In this case, we added pairs of cartoon and

movie characters that are obviously not related (e.g., Bert

from Sesame Street and Jabba the Hutt from Star Wars). All

contributions from workers that answered these gold stan-

dard HITs incorrectly were rejected. Finally, all HITs were

answered by exactly 10 different workers in order to pro-

vide a more reliable crowd answer to each individual HIT.

Ultimately, a total of 55,643 HITs were completed out of

which 2983 were rejected and 52,660 were approved. The

payment of each approved HIT was 1 cent, for a total cost of

$526.66.

As kinship verification is essentially a problem with binary

classification, we decided to assign a value of 1 when an

MTurk worker identified the pair as having a kin relation and

0 otherwise. To compute the scores utilized for classification,

we have simply averaged the answers of the ten workers,

obtaining scores from 0 to 1, that represent the "confidence"

value of the humans for each individual pair. Since these

scores are analogous to the confidence values obtained by

automatic machine-based classification methods, this scor-

ing was preferred against other usual ones such as majority

voting.

4 Kinship verification bymachines

Based on our prior work [13], we propose a hybrid method-

ology for kinship verification from facial images and videos

that exploits the complementarity of deep and shallow fea-

tures. As illustrated in Fig. 2, our proposed approach consists

on five main steps. It starts with detecting, cropping and align-

ing the face images based on eye coordinates and other facial

landmarks. Then, two types of descriptors are extracted: shal-

low spatiotemporal texture features and deep features.

As spatiotemporal features, we extract local binary pat-

terns (LBP) [1], local phase quantization (LPQ) [2] and

binarized statistical image features (BSIF) [42]. These fea-

tures are all extracted from Three Orthogonal Planes (TOP)

of the videos. To take benefit of the multi-resolution repre-

sentation [17], the three features are extracted at multiple

scales, varying their parameters. For the LBP descriptor, the
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Fig. 2 Overview of the proposed hybrid methodology for automatic kinship verification

selected parameters are P = {8, 16, 24} and R = {1, 2, 3}.

For LPQ and BSIF descriptors, the filter sizes were selected

as W = {3, 5, 7, 9, 11, 13, 15, 17}.

Deep features are extracted by convolutional neural net-

works (CNNs) [55]. In VGG-face, the input of the network

is an RGB face image of size 224 × 224 pixels. To extract

deep face features for kinship verification, we input the video

frames one by one to the CNN and collect the feature vector

issued by the fully connected layer fc7. (All the layers of the

CNN except the class predictor fc8 layer and the softmax

layer are used.) Finally, all the frames’ features of a given

face video are averaged, resulting in a video descriptor that

can be used for classification.

Two feature pairs corresponding to both components of a

kin relationship are then combined. The resulting vector is

used as an input to several support vector machines (SVM)

for classification. The scores of the classifiers are then fused

using a weighted sum. As research in both psychology and

computer vision revealed, since different kin relations render

different similarity features, all different kin relations are

treated differently during the model training.

5 Experimental results and analysis

Following our methodology for human and machine assess-

ment of kinship verification, we have conducted extensive

experiments in three datasets: KinFaceW-I, KinfaceW-II and

UvA-NEMO Smile, described in Appendix A. The experi-

ments are performed using the methods described in Sects. 4

and 3, following the evaluation protocols recommended in

the literature [28,48]. In this context, we have separated the

datasets in different kin relations (4 in KinFaceW, 7 in Smile),

used cross-validation (fivefold in KinFaceW, leave-one-out

in Smile) and utilized still images and video frames (aligned

low-resolution facial images in KinFaceW, first video frame

in Smile) for the evaluation. We report mean accuracy results

measured on the receiver operating characteristic (ROC)

curves. Table 2 summarizes the comparative performance of

humans and machines from facial images. Figure 3 depicts

the ROC curves of human assessment and different automatic

verification methods.

Table 2 Comparison of human and machine performance (accuracy) in
three datasets: KinFaceW-I and KinFaceW-II and UvA-NEMO Smile

Database
KinFaceW-I KinFaceW-II Smile

LBP 62.5 60.9 60.1

LPQ 65.7 67.1 71.7

BSIF 62.3 62.7 63.5

VGG 67.9 64.3 84.7

Deep+Shallow ours 68.4 66.5 87.8

State of the art 83.7 [45] 86.6 [45] 87.8 ours

Humans 78.6 83.5 80.2

Bold represents best result

The experiments show that different automatic methods

obtain varied results. On the KinFaceW-I and KinFaceW-II

datasets, composed of low-resolution images in uncontrolled

environments, the performance of simple textural (LBP, LPQ,

BSIF) and deep features (VGG) offers similar results, still

far from the performance offered by state-of-the-art methods

that use different metric learning and feature fusion tech-

niques [45]. This might be due to the low resolution of the

images, which is not a good match for VGG features, and

to the inherent bias in the experimental datasets caused by

collecting the cropped faces from the same images [10] (see

more details in Section 6).

On the other hand, in the UvA-NEMO Smile database,

composed of high-resolution video frames taken in con-

trolled conditions, deep features show state-of-the-art per-

formance [13]. The results obtained with VGG features can

be improved even further by combining them with shallow

features using score-level fusion. This shows that the char-

acteristics of the images in the dataset have a noticeable

influence in the performance of the automatic methods that

are still not able to generalize well across databases.

The experiments assessing the human performance show

results that range from 75 to 85%. These results show that

humans are still able to outperform many of the most recent

automatic methods. However, it can be seen that humans

show a slightly worse performance when compared against

automatic methods tailored for specific databases and partic-

ular conditions.
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Fig. 3 Comparing humans versus machine best performing methods on KinFace and Smile databases. a KinFaceW-I. b KinFaceW-II. c SmileDB

Table 3 Classification accuracy (percent) using fivefold validation on
the KinFaceW-I dataset

Method F-S F-D M-S M-D Mean

LBP 62.5 51.5 61.5 61.5 59.2

LPQ 65.7 69.9 64.4 65.3 66.3

BSIF 62.3 68.0 63.0 60.3 63.4

VGG 67.9 64.6 69.8 64.6 66.7

Deep+Shallow ours 68.8 68.8 70.5 65.5 68.4

State of the art [45] 83.0 80.6 82.3 85.0 82.7

Humans 78.2 75.8 74.6 85.8 78.6

Table 4 Classification accuracy (percent) using fivefold validation on
the KinFaceW-II dataset

Method F-S F-D M-S M-D Mean

LBP 65.4 56.6 60.6 61.0 60.9

LPQ 68.1 70.2 64.3 65.8 67.1

BSIF 63.4 68.7 55.8 63.2 62.7

VGG 65.6 62.6 64.8 64.4 64.3

Deep+Shallow ours 66.5 68.8 65.4 65.4 66.5

State of the art [45] 89.4 83.6 86.2 85.0 86.0

Humans 86.0 76.8 84.4 86.6 83.5

5.1 Kinship verification for different relationships

When considering different kin relationships, the perfor-

mance of humans and machines shows some interesting dif-

ferences. Tables 3, 4 and 5 summarize the comparative results

of automatic methods versus human assessment in separated

kin relationships. Figure 4 shows the ROC curves for each

different kin relationship. The kin relations are coded as fol-

lows: father–son (F-S), father–daughter (F-D), and so on.

The results show that humans are noticeable better when

assessing people of the same gender, especially mothers and

daughters. This can be seen across all three databases and is

in line with previous psychological studies [58]. However,

automatic methods seem to offer similar performance for all

types of relationships, although a small tendency to better

results can be observed for the father–son relationship.

When considering the age difference, it can be seen that

humans show a tendency to assess better brothers and sisters,

especially when they are of the same gender, than parents and

children. This is expected, since different distinctive features

might appear with the age advances. For computers, this

difference is not as significant, and no clear trends can be

perceived.

5.2 Kinship verification from smile videos

To examine the role of facial dynamics in the assessment

of kinship for both humans and machines, we have carried

out an experiment that quantifies the difference of verifying

kinship relations from videos against still images. For this, we

compare the results obtained employing the first frame from

each video of the database against the full 10-second videos.

Figure 5 shows the ROC curve comparing the performance

of videos against still images for the pool of all relationships.

The superiority of the performance obtained with videos

compared with still images is observed for both humans and

machines (using both shallow and deep features). This clearly

demonstrates the importance of face dynamics in verify-

ing kinship between persons. Again, deep features extracted

from still face images demonstrate high discriminative abil-

ity, outperforming both the spatial texture features extracted

from images and the spatiotemporal features extracted from

videos.

However, observing carefully, it can be seen that the dif-

ference between images and videos seems to be even more

significant for computers. For example, using still images,

humans seem to have a significantly better performance when
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Table 5 Classification accuracy
(percent) using leave-one-out
validation on the UvA-NEMO
Smile dataset

Method F-S F-D M-S M-D B-B S-S B-S Mean

LBP 58.0 65.5 60.3 63.5 57.1 56.4 59.9 60.1

LPQ 60.6 68.1 73.2 71.1 67.9 86.1 75.0 71.7

BSIF 56.4 66.4 64.6 54.9 73.2 65.7 63.6 63.5

VGG 84.0 92.2 80.5 84.6 83.9 89.8 78.0 84.7

Deep+Shallow ours 86.6 94.1 85.3 87.0 86.5 92.2 83.3 87.8

Humans 73.7 66.7 71.7 81.5 96.2 88.7 82.8 80.2
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Fig. 4 Human and machine performance across different kin relationships, measured on KinFaceW-I &II and Smile databases. a Humans KinFaceW-
I. b Humans KinFaceW-II. c Humans SmileDB. d Machine KinFaceW-I. e Machine KinFaceW-II. f Machine SmileDb

compared against automatic methods based on shallow tex-

tural features. However, when we compare the performance

obtained using videos, machine methods increase their per-

formance to levels comparable to humans, even when using

only shallow spatiotemporal features. If the automatic meth-

ods take deep features into account, the machines are able

to outperform humans even further. In addition to the impor-

tance of spatiotemporal information, these results suggest

that increasing the available information for training also has

an impact in the performance of the automatic methods.

5.3 Kinship verification from spontaneous and
posed smiles

Facial expression seems to have a hereditary component that

is able to tie kin-related people. For example, Peleg et al. [56]

demonstrated the similarities of spontaneous facial expres-

sions such as smiles between born-blind people and their

sighted relatives. To test the influence of spontaneous expres-

sion against deliberate or posed ones, we have conducted

experiments on the smile database, separating the dataset in
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Fig. 5 Performance (accuracy) comparison of humans and machines
measured from still images and videos in the UvA-NEMO Smile
database

two different groups. In the first one, the videos show subjects

that were instructed to pose with a smile. In the second one,

the subjects were exposed to an external stimulus that was

able to produce an spontaneous smile. Figure 6 shows ROC

curves comparing the performance in kinship verification of

humans and machines for both types of pairs, depicting posed

and spontaneous smiles.

The results show that both posed and spontaneous smiles

provide humans and machines with information that increases

their classification performance compared with still images.

However, as intuitively expected, spontaneous smiles provide

more information than posed ones. This is the case for both

humans and machines and can be explained by the learned

characteristics of the posed expressions, which make them

less specific to particular subjects and their family members.

6 Limitations, open issues and future
directions

The comparison of the performance of humans and comput-

ers in kinship verification requires the careful design of a

set of experiments that guarantee the most possible fairness

and the accounting for all types of bias. These experiments

usually rely on collections of images compiling a database

where positive and negative examples of kin relationships are

depicted. Available datasets usually provide images, annota-

tions and verification protocols for separate kin relationships,
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Fig. 6 Performance (accuracy) comparison of humans and machines
measured from videos containing posed and spontaneous smiles in the
UvA-NEMO Smile database

such as father–son, father–daughter, mother–son or mother–

daughter. With this setup, kinship verification can be viewed

as a typical binary classification problem.

However, the particularities of these sets of images can

have an effect on the verification accuracy and the exploita-

tion of possible knowledge on the data not related to kinship

can lead to biased results. Both computers and humans

are able utilize this information together with the kinship-

specific features to create a more accurate (but biased)

confidence value. In this context, the possible database bias

that can be subject to exploitation can be divided in two types:

Use of privileged information and use of prior knowledge.

6.1 Use of privileged information

When humans are faced with the task of determining if a pair

has a kin relationship, prior knowledge on the nature of these

kind of relationships can be used. For example, many kin-

ship verification databases contain images that are easier to

classify for humans since they consist of pictures taken from

famous people. For a trained human, knowing the identity

of both persons greatly simplifies the classification of pos-

itive examples. The problem is reduced to the verification

of two well-known faces, and no attention has to be paid to

kin-related features.

In addition, many negative examples of kinship pairs can

be deducted by guessing the relative age, gender or ethnicity

of both components of the pair. Pairs that depict proposed
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Fig. 7 Examples of image pairs from the Cornell dataset. Positive
kin pairs can be deducted by humans that know the identity of the
famous subjects, without paying attention to kin-related features. Neg-
ative examples can be easily discarded for differences in age or ethnicity
or known identity

parents and children of very different ethnicities or children

noticeably older than the parents can be easily discarded by

a human. In case of annotated databases that include the age

or ethnicity of the subjects, machines can also exploit the

information by including it as a feature for the classification

task.

An example of this source of bias can be seen in Fig-

ure 7 that shows positive and negative kinship pair examples

obtained from the Cornell databases. The well-known iden-

tity of the subjects simplifies the human classification of

positive examples. The discrepancies in the expected age and

ethnicity of parents and children simplify the classification

of negative examples.

When utilizing annotated databases for training, the same

classification strategy utilized by the humans, inferring bio-

metric traits to aid the classification, could be as well

exploited by carefully designed automated systems. Auto-

matic verification methods that try to assess a set of biometric

traits such as the age and ethnicity of the subjects could

improve a kinship verification system where the same data

is used during training, making use of all available priors.

To illustrate the possible use of privileged information

in automatic verification and its effect, we have performed

classification tasks in the UvA–Smile database utilizing only

the provided ages of the subjects in the videos. Calculating

the age difference between the members of the pairs, we

utilize this result to train a set of SVM classifiers that try to

estimate if both members of the pair are kin-related based

solely on their ages. Table 6 shows the classification result

of this strategy compared with the automatic classification

based on visual features.

Table 6 Classification accuracy (percent) using age differences on the
UvA–Smile dataset and comparison against visual features

Method Mean

Age difference 70.8

Visual (deep + shallow) 90.9

Fusion (visual + age) 92.2

Bold represents best result

Fig. 8 Examples of video frames from the Smile dataset. All videos
are obtained under controlled conditions, showing similar very similar
characteristics

The results show that, while not being a definitive clas-

sification strategy, the age of the components of a potential

kin-related couple is indeed of importance in the estimation

of kinship. In addition, in many cases, the fusion of the classi-

fication scores obtained by age difference alone can improve

the results of visual classification even further.

6.2 Use of prior knowledge

When exposed to significant amount of training data belong-

ing to a particular dataset, both humans and computers can

take advantage of the limitations on the image capturing

conditions of the dataset. In many datasets related to face

analysis, the capturing conditions of the images are simi-

lar, utilizing the same camera, pose and illumination, a fact

that simplifies greatly the problems for computers, while not

posing a great advantage for humans. For example, some

databases capture images or videos in a restricted environ-

ment, where the background stays the same and the subjects

are assured to remain with a frontal pose and unoccluded,

while the image quality and resolution are constant and very

high. In this context, the automatic classification problem is

simplified by the invariant conditions. Figure 8 shows two

images of the Smile database, showing the constant captur-

ing conditions and a color palette to help in the luminance

and color normalization and other preprocessing tasks.

To simulate real-world conditions, other existing datasets

are obtained under uncontrolled environments with no

restrictions in terms of resolution, pose, lighting, back-

ground, expression, age, ethnicity or partial occlusion. These

datasets expose a more difficult challenge for the comput-

ers, since they require the utilization of robust features that

are able to cope with the variation in the conditions, while
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Fig. 9 Examples of image pairs from the KinFaceW and UBI-Kin
datasets. Images are taken in very different conditions regarding pose,
background and occlusion and depict very different ages, ethnicities
and expressions

Fig. 10 Examples of six image pairs (3 on the top row and 3 on the
bottom row) obtained from the KinFaceW-II dataset. Kinship pairs are
cropped from the same image and show very similar characteristics

humans are able to overcome this variability easier. Figure 9

shows examples from KinFaceW-I and UBI-Kin datasets,

depicting images captured under very different conditions.

On the other hand, the selection of the face images that

compose the kinship relationship database can also cause

bias. For example, the KinFaceW and TSKinFace datasets

contain face images collected from the internet depicting four

classes of family relationships, including images obtained

under uncontrolled and unrestricted environments. However,

both images in a positive kin pair are cropped from the same

original photographs, a fact that is usually not mentioned

in research articles, and which implications are rarely dis-

cussed. As an example of this source of bias, Figure 10 shows

images taken from the KinFaceW-II dataset where both

images of the kinship pair are cropped from the same image.

6.2.1 Experiments on database bias

We have conducted a set of experiments that take advantage

of the prior knowledge of the image capturing conditions

to obtain competitive but biased results in kinship verifica-

tion tasks. As expected, knowing the image characteristics

such as that both images of a positive pair were cropped

from the same image can significantly bias and simplify the

classification problem. A classification strategy that tries to

determine whether both images in a pair are cropped from the

same photograph will show improvements when compared

to approaches focusing only on facial features. To illustrate

this anomaly, an extremely simple classification method that

Table 7 Classification accuracy (percent) of different methods on the
different subsets of KinFaceW-II dataset, including biased simple scor-
ing

Method F-S F-D M-S M-D Mean

LBP [48]1 75.4 66.6 70.6 66.0 69.6

HOG [48]1 74.2 66.6 70.6 67.0 69.6

NRMLL B P [48]2 79.2 71.6 72.2 68.4 72.8

BIUH OG [45]2 87.5 80.8 79.8 75.6 80.9

Polito [45]3 84.0 82.2 84.8 81.2 83.1

LIRIS [45]3 89.4 83.6 86.2 85.0 86.0

Simple scoring1,2,3 78.2 73.2 84.2 88.2 80.1

Bold represents best result
1 Unsupervised, 2 Image-Unrestricted, 3 Image-Restricted

Table 8 Classification accuracy (percent) of simple scoring methods
on the different subsets of KinFaceW-II dataset

Method F-S F-D M-S M-D Mean

SSIM 65.8 63.8 67.4 67.4 66.1

RGB distance 72.2 71.8 75.0 74.6 73.4

Luminance distance 68.4 68.2 68.8 70.4 68.9

Chrominance distance 78.2 73.2 84.2 88.2 80.1

requires no training and offers comparable results to the ones

obtained with sophisticated methods under the same experi-

mental protocol was presented [10].

In this method, measuring the chrominance distance

between the images of a kinship pair produces directly the

classification score. Image pairs with smaller distance are

more likely to be part of the same photography and hence

more likely to be a positive kinship pair. Table 7 shows our

obtained results using the simple scoring approach on Kin-

FaceW & II dataset under the three evaluation protocols. A

comparison against other reported methods under the same

evaluation protocols is also reported. It can be seen that a

simple strategy that focuses solely on the source of bias

produces results comparable with sophisticated methods. In

addition, this simple method has the capability of being com-

plementary to any other method that focuses only in pure

kinship-related features.

Besides the difference in average chrominance, any other

method that is able to take into account the characteristics

of the captured images is suitable to present discrimination

power and can be utilized to compute the simple scoring.

Table 8 summarizes the scores obtained on the KinFaceW-

II dataset utilizing different methods not related to kinship

such as Structural Similarity Measurements (SSIM), distance

in the RGB color space, luminance distance in the CIELAB

color space and the distance of the chrominance in the Lab

color space.

To illustrate that image similarity classification only works

on databases with pairs cropped from the same image, we
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Table 9 Mean classification accuracy (percent) of the simple scoring
method on different databases

Database Simple Scoring State of the art Cropped

UBKinFace 52.2 67.3 [78] No

Smile 57.7 91.0 [13] No

KinFaceW-I 71.4 86.3 [12] Partially

KinFaceW-II 80.1 88.4 [81] All

TSKinFace 80.2 82.0 [61] All

CornellKin 81.4 73.8 [77] All

Bold represents best result

have used the same method across most of the available

databases. Table 9 depicts the results of the experiment. As

expected, the classification results based on chrominance

difference show diminished discrimination power when no

assumption can be made on the image pairs. That is the case

of datasets such as UvA-NEMO Smile or UBKinFace.

A possible implication of the limitations in the image

capturing processes is that even if the design of the kin-

ship verification methodology does not explicitly target the

image capturing conditions as discrimination features, many

learning-based methods applied in these datasets could inad-

vertently be learning features not related to kinship but to

the very nature of the images and their conditions, such as

background, resolution, luminance or average color. In this

context, to minimize the learning bias, we believe that future

methods that report results in kinship analysis should be ver-

ified and evaluated on several different publicly available

datasets, even considering the utilization of cross-database

verification strategies.

6.3 Discussion

As seen in the experiments reported above, because of the

nature of many of the kinship datasets, there is a high poten-

tial for biased results and confusing interpretations when

comparing different kinship verification methods. It is highly

recommendable that the publications reporting kinship ver-

ification results disclose all possible sources of bias in their

datasets and the possible implications of them on the reported

performance.

In addition, most of the existing visual kinship datasets

used for kinship verification purposes contain a relatively

small number of images, usually well below 1000 total

training image pairs. This number is reduced further if we

consider that most of the experiments are performed sep-

arately in many different family relationships. The lack of

sufficient data results in models that are prone to overfitting

in the training data. The generalization capabilities to unseen

data, captured in different conditions than the one utilized

for training, could potentially lead to unstable predictions.

Table 10 Cross-database performance using VGG features. Classifica-
tion accuracy training in one database and testing in another

Training/testing KFW-I KFW-II Smile TSKin

KFW-I 66.7 57.3 59.2 62.0

KFW-II 61.6 63.8 59.0 59.8

Smile 53.5 52.3 88.6 52.3

TSKin 66.0 61.0 57.6 66.3

Table 10 shows the classification accuracies obtained for

cross-database performance. The results are obtained using

deep features (VGG), training in one database and testing in

the other. The diagonal (in bold) shows intra-database results

obtained using fivefold validation.

As expected, given the similarity of the data between Kin-

FaceW and TSKin datasets, the results show that the models

obtained generalize relatively well, although they offer a

slightly lower performance. However, the model trained with

the Smile database, which is captured in controlled condi-

tions, is not able to offer high classification accuracies in

other databases and viceversa. This suggests that data vari-

ability during the training of kinship verification models is

indeed of importance.

7 Conclusions

This article focuses on the comparison of human and machine

performance on the task of kinship verification. The study of

different types of dataset bias and their effects on the exper-

imental accuracy complements the evaluation and offers a

guideline for the conduction of future studies.

From the human perspective, psychological studies show

that recognizing family members of different subjects is an

ability based on facial similarity. Humans are able to guess

with certain probability above chance if a pair of persons are

part of the same family. Automatic kinship verification meth-

ods have helped machines to attain this ability by checking

the similarity of features obtained from facial images and

videos.

In our work, the human ability to assess kinship has been

evaluated using a crowdsourced approach based on the Ama-

zon Mechanical Turk service. We have extensively studied

the state of the art in automatic kinship verification meth-

ods. We compared the human assessment with a method

that combines both shallow textural features and deep fea-

tures obtained using deep learning. Experiments for both

humans and machines were conducted in three whole datasets

(NEMO Smile, KinFaceW-I and II). Human and machine

results have been compared in a meaningful way, over the

same data showing some interesting insights.

From the computer perspective, the ability of machines

in kinship verification seems to have surpassed the human
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ability. Humans show improved ability when comparing sub-

jects of same sex and similar age, while machines seem to be

able to assess all relations equally. Spatiotemporal informa-

tion obtained from video sequences of kin-related subjects is

shown to be of vital importance in kinship verification, while

the use of spontaneous expressions as opposed to posed ones

facilitates the kinship assessment even further.

However, the machine capabilities are closely related to

the training material utilized in the benchmark databases.

While humans are able to perform similarly in all types of

conditions, the machines’ performance is tied to the particu-

lar characteristics of the used dataset and automatic kinship

verification methods do not generalize always well. Current

kinship datasets have undeniably contributed to the kinship

verification research to some extent. However, we discussed

that the nature of the images in these datasets have a high

potential for biased results. This calls the research com-

munity for joint efforts to design new and more reliable

databases that pay careful attention to the possible sources

of bias, trying to minimize them.

The exploitation of deep learning methods when con-

structing kinship verification models have been proven

useful, providing results that already surpass human ability.

The use of more sophisticated network architectures (e.g.,

ResNet [35]) and more complex databases that help modeling

faces (e.g., CASIA-WebFace [79]) could lead to improved

results in kinship verification from images.

The recent apparition of new larger datasets [62], includ-

ing new methodologies based on it [68] and a workshop

that provided extensive evaluation [63], can already provide

for the opportunity of performing extensive cross-database

experiments that assess the portability and generalization of

the models.

However, future directions for kinship verification should

also take into account more diverse types of data. Until now,

the lack of large databases with different modalities (e.g.,

images and videos) and annotated with multiple traits (e.g.,

ethnicity, age, and kinship) has been hindering the progress

of the field and could constitute the bulk of the future efforts

on the research field. These types of datasets would not only

improve the robustness of automatic methods, but will in

turn increase the accuracy of the assessment of the human

abilities, especially if the possible relationships between sub-

fields of facial analysis and soft biometrics can be taken into

account.
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