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Abstract. We address kinship verification, which is a challenging problem in computer vision

and pattern discovery. It has several applications, such as organizing photoalbums, recognizing

resemblances among humans, and finding missing children. We present a system for facial kin-

ship verification based on several kinds of texture descriptors (local binary patterns, local ternary

patterns, local directional patterns, local phase quantization, and binarized statistical image fea-

tures) with pyramid multilevel (PML) face representation for feature extraction along with our

proposed paired feature representation and our proposed robust feature selection to reduce the

number of features. The proposed approach consists of the following three main stages: (1) face

preprocessing, (2) feature extraction and selection, and (3) kinship verification. Extensive experi-

ments are conducted on five publicly available databases (Cornell, UB KinFace, Family 101,

KinFace W-I, and KinFace W-II). Additionally, we provided a wide experiment for each stage to

find the best and most suitable settings. We present many comparisons with state-of-the-art

methods and through these comparisons, it appears that our experiments show stable and good

results. © 2020 SPIE and IS&T [DOI: 10.1117/1.JEI.29.2.023017]

Keywords: Kinship verification; pyramid multilevel; feature representation; feature selection;

support vector machines.
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1 Introduction

Automatic face analysis based on images has always been an important subject of study in the

communities of pattern recognition and artificial intelligence. Facial images contain much infor-

mation about the person they belong to, such as identity, age, gender, ethnicity, and expression.

For this reason, the analysis of facial images has many applications in real-world problems

such as face recognition, demographic estimation, facial expression recognition, and kinship

verification.

The recognition of kinship among people has mainly concentrated on studying the similarity

between human faces. Indeed, there are four main types of kinship relationships: father–daughter

(F–D), mother–son (M–S), father–son (F–S), and mother–daughter (M–D) relationships.

Recently, other kinship relationship types have emerged, such as the relationship between
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grandparents and grandchildren. The recognition of kinship is a very challenging topic since the

face conveys different facial features.

Currently, the recognition of the relationships between blood relatives has become an active

area of research, and it has many applications, such as organizing a photoalbum, annotating

images, and identifying lost or wanted people. Furthermore, the determination of kinship is no

longer limited exclusively to genetic analysis; it cannot be used in many situations, but it is now

extending to the field of biometrics and remote surveillance. The kinship verification problem has

many difficulties, such as variations in age, gender, ethnicity, resemblances between persons with-

out a real relationship, and differences in facial attributes between persons from the same family.

In this paper, we propose an automatic facial kinship verification system that is composed of

three parts: (1) face preprocessing, (2) feature extraction, and (3) kinship verification. In the face

preprocessing stage, we localize faces in images, rectifying the two-dimensional (2-D) pose of

each face and crop the region of interest. Then we extract the features by a texture descriptor

using a pyramid multilevel (PML) face representation to obtain two feature vectors. These two

feature vectors are transformed by the used features representation equation into a single features

vector. These are then selected using our proposed feature selection method to obtain the best

features and omit the bad features. The best features are fed to the support vector machines

(SVM) classifier to determine whether there is a kinship.

The main contributions of this paper are as follows.

• The evaluation of the performance of different texture descriptors: local binary patterns

(LBP), local ternary pattern (LTP), local directional pattern (LDP), local phase quantiza-

tion (LPQ), and binarized statistical image features (BSIF), along with the influences of

other steps in the feature extraction stage.

• We investigated the efficiency of three different face image representations when combined

with the above texture descriptors. The number of extracted features can be increased by

varying the geometric layout of the face image representation in multiblock (MB), multi-

level (ML), and PML.

• Our method shows the effectiveness of PML-based descriptors as a face descriptor in the

feature extraction stage and the superiority of the PML-based LPQ descriptor.

• We investigated the best pair fusion scheme allowing fusion of the image paired features.

• We introduce an innovative robust feature score for feature ranking. This feature score is

based on the use of the difference between two known weights. The new score can further

improve the result of the kinship verification system.

• Many experiments are performed on five public databases (Cornell, UB KinFace, Family

101, KinFace W-I, and KinFace W-II) with good and stable results of the proposed

approach compared with most of the state-of-the-art approaches.

The remainder of this paper is organized as follows. In Sec. 2, we summarize the existing

techniques of facial kinship verification. In Sec. 3, we introduce our approach. In Sec. 4, we

present the different databases and their protocols. The experimental results are given in Sec. 5.

In Sec. 6, we present the conclusion and some perspectives.

2 Related Work

Many computer vision researchers have investigated the problem of kinship verification. Many

approaches have been proposed and classified into two categories: kinship-verification-based

and metric-learning-based. In our research, we categorize these approaches into three categories:

image-texture-based, manifold-learning-based, and deep-learning-based.

2.1 Image-Texture-Based

Early kinship verification approaches usually extract handcrafted features using texture descrip-

tors from facial images and then train these features using a classifier. These approaches

have been used in many visual analysis applications. Among their strengths, they are suited

for real-time applications, fast and easy implementation, and have low computational cost.

Chergui et al.: Kinship verification through facial images using multiscale. . .

Journal of Electronic Imaging 023017-2 Mar∕Apr 2020 • Vol. 29(2)



On the other hand, they are vulnerable to profile faces and wild poses and are considered classic

approaches.

Fang et al.1 proposed a system for kinship verification based on a pictorial structure model

(PSM). Additionally, they introduced the Cornell database. First, they extracted 22 kinds of

facial features composed of colors, facial parts, facial distances, and histograms of gradient fea-

tures. Then they calculate the differences between feature vectors of the corresponding parents

and children and applied k-nearest neighbors and SVM classifiers. Zhou et al.2 introduced a new

private database and its images are under uncontrolled conditions. They proposed a spatial pyra-

mid learning-based feature descriptor that utilized both local and global information and they

used SVM for the classification phase. The obtained results were promising.

Another interesting work was proposed by Shao et al.,3 where they used version 2 of the UB

KinFace database to verify kinship based on robust local Gabor filters for extracting genetic-

invariant features. In other words, a metric and transfer subspace learning were adopted to bridge

the discrepancy between children and their old parents. Kohli et al.4 proposed encoding kinship

similarity through a self-similarity descriptor and formalized kinship verification as a two

classification problem. They applied their method on the IIITD kinship database, which was

annotated with respect to the particular kinship relation, ethnicity, and gender. Chergui et al.5

proposed an approach based on the ML-LPQ and ML-LDP features and they applied their

method on the Cornell and UB KinFac databases. Additionally, they proposed another approach

in Ref. 6 based on the LBP and BSIF feature descriptors and the PML feature representation;

they applied their method on both the Cornell and UB KinFace databases.

2.2 Manifold-Learning-Based

Manifold-learning-based approaches have been motivated by the idea of modeling high-

dimensional data using an approximate low-dimensional submanifold of the original space.

They have good performance, however, they have high computational costs.

Xia et al.7 used another database called UB KinFace, which contains images of child, young

parent, and old parent faces and used an extended transfer subspace learning method to mitigate

the enormous divergence of distributions between children and old parents. An intermediate dis-

tribution was used to close the bridge and reduce the divergence between the source distributions.

Lu et al.8 proposed a neighborhood repulsed metric learning (NRML) method for kinship

verification. In addition, they proposed a multiview NRML (MNRML) method to seek a common

metric distance to better use the multiple descriptor features and they applied their method on the

KinFaceW-I and KinFaceW-II datasets. Hu et al.9 proposed a large margin multimetric learning

method and applied their method on the KinFaceW-I and KinFaceW-II datasets.

Yan et al.10 proposed a discriminative multimetric learning (DMML) method for kinship

verification. First, they extracted multiple features using different face descriptors; then, they

jointly learned multiple distance metrics for those descriptor features under which the probability

of a pair of face images where the kinship relation had a smaller distance than the pair that had no

kinship relation. In their work, they applied their method to two databases: Cornell and UB

KinFace databases.

Zhou et al.11 proposed ensemble similarity learning (ESL). First, they introduced a sparse

bilinear similarity function to model the relative of the encoded properties in kin data. The sim-

ilarity function parameterized by a diagonal matrix enjoys superiority in computational efficiency,

making it more practical for real-world high-dimensional kinship verification applications.

Liang et al.12 developed a framework of weighted graph embedding-based metric learning

(WGEML) for facial kinship verification. They extract four types of features: LBP, histogram of

oriented gradients, scale-invariant feature transform, and visual geometry group face (VGG-

FACE). Then they constructed an intrinsic graph and two penalty graphs to characterize the

intraclass compactness and interclass separability for each feature representation. They con-

ducted extensive experiments on the KinFaceW-I, KinFaceW-II, and TSKinFace databases.

Yan et al.13 proposed a prototype-based discriminative feature learning (PDFL) method for

kinship verification. This method aims to learn discriminative mid-level features where they

constructed a set of face samples with unlabeled kinship relations from a wild dataset that is

considered as the reference set. Then each sample in the training face kinship dataset is

Chergui et al.: Kinship verification through facial images using multiscale. . .
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represented as a mid-level feature vector, where each entry corresponds to decision value from

one SVM. They applied their method on both the Cornell and UB KinFace databases.

2.3 Deep-Learning-Based

Deep learning approaches mainly use convolutional neural networks (CNN), which is a type of

feed-forward artificial neural networks in which the connectivity pattern between its neurons is

inspired by the organization of the animal visual cortex. Its strengths include achieving good and

stable results, suitability for real-time applications, and immunity against facial poses; the down-

side is the high computational cost.

Zhang et al.14 proposed extracting high-level features based on deep CNN. These features are

produced from the neuron activations of the last hidden layer and then fed into a softmax clas-

sifier to verify the kinship of two persons. They applied their method on the KinFaceW-I and

KinFaceW-II databases.

Kohli et al.15 proposed a hierarchical kinship verification via a representation learning frame-

work to learn the representation of different face regions in an unsupervised manner. They pro-

posed an approach for feature representation termed filtered contractive deep belief networks and

applied their method on five databases: Cornell, UB KinFace, KinFaceW-I, KinFaceW-II, and

WVU Kinship.

Dehghan et al.16 proposed an algorithm using deep learning that fuses the features and met-

rics discovered via gated autoencoders with a discriminative neural network layer. They further

analyzed the correlation between these automatically detected features and those found in

anthropological studies. They applied their method on the KinFaceW-I and KinFaceW-II data-

bases. Wang et al.17 proposed a deep kinship verification model in which they integrated a deep

learning architecture into metric learning to select nonlinear features, which can find the appro-

priate project space to ensure that the margin of negative pairs is as large as possible and the

margin of positive pairs is as small as possible. They applied their method to the KinFaceW-I and

KinFaceW-II databases.

Chergui et al.18 proposed another approach based on the selected deep features of the VGG-

FACE descriptor using the Fisher score. They applied their approach on five databases (Cornell,

UB KinFace, Family 101, Kinface W-I, and KinFace W-II). Wang et al.19 proposed a young

cross-generation model for kinship verification. They used a deep architecture with a newly

designed sparse discriminative metric loss for features extraction and applied their method

on the (families in the wild) databases.

3 Kinship Verification Approach

The proposed approach of kinship verification is the operation of using two people’s faces to

determine whether there is a familial relationship between them. Our proposed method con-

sists of three stages: (1) face preprocessing: for detecting and cropping human faces from

an input image; (2) feature extraction: using different descriptors (LBP, LDP, LTP, LPQ, and

BSIF), and face representation: with different methods (MB, ML, and PML), (3) classification

stage: feature representation and normalization, feature selection (Fisher score, t-test, Kullback–

Leibler (KL), and the proposed feature selection), and the decision of the kinship verification

with an SVM classifier. Figure 1 illustrates the general structure of the proposed framework.

3.1 Face Preprocessing

Face preprocessing is a very important stage and it consists of three steps: (I) face detection, (II)

eye detection, and (III) face cropping.

(I) We apply the cascade object detector, which uses the Viola–Jones algorithm20 to detect

people’s faces. (II) We detect the right and left eye positions using the ensemble of regression

trees algorithm.21 For pose correction, we apply 2-D transformation based on the eye center to

correct the pose.22 (III) To crop the face region of interest, we rescale the face image via normal-

izing the distance between the new coordinates of the two eyes and then crop the image based on
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these coordinates.23 Finally, the cropped facial images are resized to 224 × 224. Figure 2 presents

the steps in this stage.

3.2 Feature Extraction

The feature extraction stage has been the most studied topic among the remaining stages due to

its effectiveness on facial kinship verification system performance. We divided our feature

Fig. 2 Face preprocessing steps.

Fig. 1 General structure of the proposed approach.
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extraction stage into two parts. In the first part, we present the different texture descriptors used

in our work. In the second part, the different face representations are illustrated.

3.2.1 Image texture descriptor

In the image classification field, there are many image texture descriptors that can be used in

facial kinship verification or that have already been used in this field. In our work, we use five

widely known image texture descriptors: LBP, LTP, LDP, LPQ, and BSIF.

A. LBPs. The LBP was proposed by Ojala et al.24 The LBP is one of the most well-known

descriptors, which has led to the development of many descriptors. The LBP is a local

descriptor that extracts the local features from image I by thresholding the value of each

pixel with its neighborhood pixels using the function SðzÞ, which is defined as

EQ-TARGET;temp:intralink-;e001;116;584SðzÞ ¼

�

1; z⩾0

0; otherwise
; (1)

where z is the the result of subtracting the center pixel value from the intended neighborhood

pixel value. The LBP is denoted by LBPP;R, where P is the number of neighborhoods that are

equally spaced on a circle of radius R from the center pixel. Each thresholding process

between the center pixel value and a neighberhood produces a binary value. The number

of bins is 2P, so the bin value is between 0 and 2P−1. After the thresholding of the pixel and

its neighborhoods, a histogram is used to accumulate the occurrence of the various bins over

a region by the following equation:

EQ-TARGET;temp:intralink-;e002;116;463LBPðic; jcÞ ¼
X

7

n¼0

Sðmn −mcÞ2
n; (2)

where ic, jc, mc, and mn are the coordinates of the intended pixel, the value of the intended

pixel, and the value of the neighborhood pixel. Figure 3 illustrates the LBP encoding process

for LBP8;1.
LBPUP;R is the uniform pattern extension of LBP. This extension is used to reduce the

length of the feature vector. It was inspired by the fact that some binary patterns occur more
commonly in textured images than others. LBP is considered uniform if the binary pattern
contains at most two binary transitions (0–1 or 1–0). The number of LBP histogram bins
(Nbins) can be calculated using the following equation:

EQ-TARGET;temp:intralink-;e003;116;328Nbins ¼ P · ðP − 1Þ þ 3: (3)

B. LTP. The LTP was proposed by Liao25 The LTP, a descriptor inspired by the LBP descriptor,

is a local descriptor that extracts the local features from image I by thresholding the value of

each pixel Iðx; yÞ with its neighborhood pixels. For the LBP descriptor, we have two pos-

sibilities when comparing pixels with a central pixel (>0 and <0), but in the LTP there are

three possibilities in a zone of width t, around mc pixels are quantified to zero, pixels above

this are quantified to þ1, and pixels below it to −1, i.e., the indicator SðzÞ is replaced with

a three-valued function using the following equation:

EQ-TARGET;temp:intralink-;e004;116;216S 0ðmc;mn; tÞ ¼

8

<

:

1; mn > mc þ t

0; mn > mc − t and mn < mc þ t

−1; mn < mc − t

; (4)

Fig. 3 Illustration of the basic LBP operator.
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and the binary LBP code is replaced by a ternary LTP code. Here, t is a user-specified thresh-

old—so LTP codes are more resistant to noise, but no longer strictly invariant to gray-level

transformations. The LTP encoding procedure is illustrated in Fig. 4. Here, the threshold t

was set to 5, so the tolerance interval is [40; 50].

C. LDP. The LDP was proposed by Jabid et al.26,27 The LDP is a local texture pattern that

computes the edge response values in eight directions at each pixel position and encodes

the texture using Kirsch masks in eight different orientations centered on its position

M0;M1;M2;M3; : : : ;M7. Figure 5 shows these masks.

For each pixel of an input image, the obtained result is eight edge response values

m0; m1; : : : ; m7. Actually, not all the responses are equivalently important, where the k most

prominent directions are selected. The top k directional bit responses are set to 1, and the rest

of the directional bits become 0. Therefore, LDP code for each pixel is obtained using the

following equation:

EQ-TARGET;temp:intralink-;e005;116;407LDPk ¼
X

7

i¼0

Sðmi −mkÞ · 2
i; (5)

EQ-TARGET;temp:intralink-;e006;116;356SðzÞ ¼

�

1; if z ≥ 0

0; otherwise
: (6)

After obtaining the LDP code for all the pixels ði; jÞ, Eq. (7) gives the histogram obtained by

LDP:

EQ-TARGET;temp:intralink-;e007;116;308HðτÞ ¼
X

M

r¼1

X

N

c¼1

f½LDPkði; jÞ; τ�; (7)

EQ-TARGET;temp:intralink-;e008;116;246fða; τÞ ¼

�

1; if z ¼ τ

0; otherwise
; (8)

Fig. 4 Illustration of the LTP operator.

Fig. 5 Eight-directions Kirsch edge masks (LDPs).
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where τ is the LDP code value. Equation (9) gives the number of features (Nbins) extracted by

LDPk:

EQ-TARGET;temp:intralink-;e009;116;595Nbins ¼
8!

k! · ð8 − kÞ!
: (9)

Figure 6 illustrates the LDP encoding process for example k ¼ 3.

D. LPQ. LPQ was originally proposed by Ojansivu and Heikkila.28 LPQ is a texture descriptor

based on the application of short-time Fourier transform (STFT). It uses the short-term

Fourier transform STFT 2-D computed over a rectangularM ×M neighborhoodNx centered

at each pixel position x of the image fðxÞ defined by

EQ-TARGET;temp:intralink-;e010;116;485Fðu; xÞ ¼
X

y∈Nx

fðx − yÞe−j2πu
Ty ¼ wT

ufx; (10)

where wu is the basis vector of the 2-DDFT at frequency u (a 2-D vector) and fx is another

vector containing all M2 image samples from Nx.

In LPQ, only four complex coefficients are considered, corresponding to 2-D frequencies:

u1 ¼ ½a; 0�T, u2 ¼ ½0; a�T, u3 ¼ ½a; a�T, and u4 ¼ ½a;−a�T, where a is a sufficiently small scalar.

For each pixel, the vector obtained is represented by the following equation:

EQ-TARGET;temp:intralink-;e011;116;373Fx ¼ ½Fðu1; xÞ; Fðu2; xÞ; Fðu3; xÞ; Fðu4; xÞ�: (11)

The phase information in the Fourier coefficients is recorded by observing the signs of the

real and imaginary parts of each component in FðxÞ. This is done using a scalar quantization

defined by

EQ-TARGET;temp:intralink-;e012;116;305qj ¼

�

1; if gj ≥ 0

0; otherwise
; (12)

where gj is the j’th component of the vector GðxÞ ¼ ½RefFðxÞg; ImfFðxÞg�. The resulting eight

binary coefficients qj represent the binary code pattern. This code is converted to decimal num-

bers between 0 and 255. Froam that, the LPQ histogram has 256 bins. Figure 7 illustrates the

LPQ encoding process.

Fig. 6 Illustration of the LDP operator.

Fig. 7 Illustration of the LPQ operator
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E. BSIF. The BSIF is an image texture descriptor proposed by Kannala and Rahtu.29 The idea

behind BSIF is to automatically learn a fixed set of filters from a small set of natural images

instead of using hand-crafted filters. The set of filters is learned from a training set of natural

image patches by maximizing the statistical independence of the filter responses.

Given an image patch I of size L × L pixels and a linear filter Wk of the same size, the filter

response Sk is obtained by

EQ-TARGET;temp:intralink-;e013;116;440Sk ¼
X

i;j

Wkði; jÞIði; jÞ ¼ W 0T
k I 0; (13)

where W 0
k and I 0 are the vectors of size L × L (vectorized form of the 2-D arrays Wk and I).

The binarized feature bk is obtained by

EQ-TARGET;temp:intralink-;e014;116;379bk ¼

�

0; if Sk ≥ 0

1; otherwise
: (14)

The filters Wk are learned using independent component analysis by maximizing the stat-

istical independence of Sk. The number of histogram bins (Nbins) obtained by the BSIF descriptor

is calculated using the following equation:

EQ-TARGET;temp:intralink-;e015;116;303Nbins ¼ 2Nf ; (15)

where Nf is the number of the filters used by BSIF. Figure 8 illustrates the BSIF encoding

process.

3.2.2 Face representation
A. MB. The most common face representation in image processing is a regular grid of fixed size

regions that we call MB representation. MB face representation divides the image into n2

blocks where n is the intended level of MB. Figure 9 illustrates the MB face representations.

B. ML. Recently, a similar representation called ML was used in the age estimation and gender

classification topics.30ML face representation is a spatial pyramid representation constructed

by a sorted series of MB representations. The ML face representation level n is constructed

from level 1; : : : ; n MB representations. Figure 10 illustrates the ML face representations.

C. PML. PML face representation is an approach that extracts the local texture features using

different descriptors and adopts an explicit pyramid representation of the original image.

This pyramid represents the image at different scales. For each such level or scale, a cor-

responding MB representation is used. PML sub-blocks have the same size, which is deter-

mined by the image size and the chosen level. The main idea of the PML is to extract features

Fig. 8 Illustration of the BSIF operator.
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from different divisions of each pyramid level, assuming that the original image corresponds

to level n, and the pyramid levels (n; n − 1; n − 2; : : : ; 1) are built as follows:

EQ-TARGET;temp:intralink-;e016;116;259

�

w 0 ¼ w:
ðn − 1Þ

n
; h 0 ¼ h:

ðn − 1Þ

n

�

: (16)

At each level l, the obtained image is divided into l2 blocks. Figure 11 illustrates the PML

principle.

3.3 Classification

The last stage in our proposed approach is the classification stage where the decision for kinship

verification is made. It is composed of four steps:

3.3.1 Paired feature representation

In this step, the two feature vectors (child/parent) are fused into one feature vector using the

following equation:

Fig. 9 Multiblock example of four levels.

Fig. 10 A multilevel representation adopting four levels.

Fig. 11 PML example of four levels.
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EQ-TARGET;temp:intralink-;e017;116;735F ¼
Fchild þ Fparent

jFchild − Fparentj
; (17)

where Fparent and Fchild are the feature vectors of the parent and the child, respectively, and F is

the final feature vector. In Eq. (17), the operations are carried out element by element.

3.3.2 Normalization

After having the paired features representation vector, we normalized the final feature vector

based on the following equation:

EQ-TARGET;temp:intralink-;e018;116;613FnormðiÞ ¼
FðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
j¼1 FðjÞ

2
q : (18)

3.3.3 Feature weighting/selection

Due to the large number of features obtained from the different face representations, we propose

to reduce the number of features using different feature selections along with our proposed

approach.

The first feature selection is the Fisher score.31 It is a linear discriminant approach that quan-

tifies the discriminative power of features. This score is given by

EQ-TARGET;temp:intralink-;e019;116;477WFisher ¼
Nkðmk −mÞ2 þ Nnðmn −mÞ2

Nk:σ
2
k þ Nn:σ

2
n

; (19)

whereWFisher is the weight of feature i,m is the feature mean, NX is the number of samples in the

kinship class (k → kin∕n → nonkin), andmX and σ2X are the mean and the variance of the kinship

class in the intended feature. The features are sorted according to their weights.

Another feature selection scheme is given by the t-test. Its weights32 are based on the absolute

value two-sample t-test with a pooled variance estimate. The weight is given by

EQ-TARGET;temp:intralink-;e020;116;370Wt-test ¼

�

�

�

�

�

�

ðmk −mnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
k

Nk
þ σ

2
n

Nn

q

�

�

�

�

�

�

: (20)

The KL weight32 is given by

EQ-TARGET;temp:intralink-;e021;116;297WKL ¼

σ
2
k

σ
2
n
þ σ

2
n

σ
2
k

− 2

2
þ ðmk −mnÞ

2

1
σ
2
k

þ 1
σ
2
n

2
: (21)

Our proposed feature weighting approach uses the difference between the t-test and KL

weights. This is given by

EQ-TARGET;temp:intralink-;e022;116;223WðiÞ ¼ Wt-testðiÞ −WKLðiÞ; (22)

where WðiÞ is the weight of feature i.

This choice was based on a set of experiments with different mathematical relationships. We

found that the best feature weights were obtained when the t-test weight was very high and the

KL weight was very low. The experimental evaluation of the proposed weight [Eq. (22)] is pre-

sented in Sec. 5.

3.3.4 Decision

The last step in the classification uses the SVMs to determine whether there is kinship or not.

SVM constructs a hyperplane or set of hyperplanes in a high-dimensional space, which can be

used for classification or regression tasks. Intuitively, good separation is achieved by the
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hyperplane that has the largest distance to the nearest training data point of any class (the so-

called functional margin), since, in general, the larger the margin is, the lower the generalization

error of the classifier.33

We used the binary SVM classifier to train and test our proposed approach. The two binary

classes are either a kinship relationship or not, which are represented by 1 and 0, respectively.

The evaluation process has two steps. The first step consists of training the SVM models using

the training pairs. The second step predicts the class of all pairs in the test set.

We adopt a fivefold cross-validation scheme for evaluation. In this scheme, 80% of the data

are used for training and the remaining data are used for testing. Figure 12 illustrates the two

steps of the evaluation process.

K-fold cross validation is a standard protocol that allows the evaluation of a given algorithm

or a classifier.

It proceeds as follows. First, the whole dataset is split into k subsets. One subset is chosen as a

test set and the remaining k − 1 subsets are used for training. This process is repeated k times to

ensure that all data are used in the test. The final performance is set to the average performance

over the k folds.

Figure 13 illustrates the principle of k-fold cross validation when k is equal to five. The

classification algorithm is trained five times on as many different data segments and five inde-

pendent tests are conducted thereafter. The number of subsets can be modified to meet the par-

ticular needs of an experiment.

4 Databases and Protocols

In this section, we discuss the different publicly available databases and their related details.

Figure 14 shows some images with examples of positive and negative pairs from five databases

(Cornell KinFace, UB KinFace, KinFaceW-I, KinFaceW-II, and Family 101).

4.1 Cornell KinFace (2010)

The Cornell KinFace database is the first database that was used for kinship verification. It was

created by Fang et al.1 from the University of Cornell. They collected 150 pairs (300 images)

Fig. 12 Evaluation process.

Fig. 13 Fivefold cross validation.
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with variations in demographic attributes. The distribution of the kinship pairs is as follows: 40%

(F–S), 22% (F–D), 13% (M–S), and 26% (M–D).

4.2 UB KinFace (2011)

The UB KinFace database was created by Shao et al.3 and was collected from 400 persons and

produced 600 static images that were divided into 200 groups where each group was composed

of child, young parent, and old parent images. The UB KinFace database was the first database

designed for kinship verification with children of different ages and their parents. This database

is composed of the following kinship relations: (F–S), (F–D), (M–S), and (M–D).

4.3 Family 101 (2013)

The family 101 database was created by Fang et al.;34 this database contains 101 families, includ-

ing 206 nuclear families and 607 persons, and contains a total of 14,816 images that were col-

lected from public families but with changes in real family names. It has four kinship relations as

follows: 213 (F–S), 147 (F–D), 184 (M–S), and 148 (M–D).

4.4 KinFaceW-I (2014)

KinFaceW-I was created by Lu et al.8 The images in this database were collected from the web

and captured under uncontrolled environments in terms of gestures, demographic attributes,

lighting, backgrounds, expressions, and partial occlusions. This database contains four kin

relations, 156 (F–S), 134 (F–D), 116 (M–S), and 127 (M-D) kinship pairs. The images in this

database were aligned and cropped manually.

Fig. 14 Examples of positive and negative pairs from used databases.
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4.5 KinFaceW-II (2014)

KinFaceW-II was created by Lu et al.8 The images in this database include some celebrity face

images as well as their children or parents. These images were collected from the Internet. The

KinFaceW-II dataset contains four kin relations (F–S), (F–D), (M–S), and (M–D), 250 pairs of

kinship images for each kin relation, and the images in this database were aligned and cropped

manually (Table 1).

5 Experimental Results and Discussion

We conducted many experiments using a set of texture descriptors with different face represen-

tations (MB, ML, and PML). Furthermore, we quantified the performance using different pair

fusion schemes as well as different feature selection schemes including our proposed selection

scheme. The experiments were conducted on the kin datasets that are publicly available (Cornell,

UB KinFace, Family 101, KinFaceW-I, and KinFace-II) to verify the effectiveness of our

proposed kinship verification approach. We present the experimental results in the following

sections.

5.1 Effect of Descriptor Type

With regard to the feature extraction step, we investigated the effectiveness of the proposed

method with different feature descriptors using the PML face representation adopting seven

levels. This face representation achieved good results in the facial age estimation problem.35

Table 2 shows the results obtained for each descriptor on the used databases. From these

obtained results, we can observe that the LPQ descriptor achieved the highest accuracy. It was

followed by the BSIF descriptor. The LTP and LDP descriptors achieved low accuracy compared

to the first descriptors (LPQ and BSIF). The LBP descriptor achieved good accuracy, yet its

accuracy was still lower than that of the LPQ and BSIF descriptors and much better than that

of the LTP and LDP descriptors.

LPQ was originally linked to the spectral analysis of the image content. The use of the PML

face representation on the spectral information coded in the LPQ descriptor seemed to be more

Table 1 Kinship verification databases used and their related details.

Databases Images Pairs Controlled condition Year

Cornell KinFace 286 286 No 2010

UB KinFace 600 800 No 2011

Family 101 14,816 2000 No 2013

KinFace W-I 1066 2000 No 2014

KinFace W-II 2000 2000 No 2014

Table 2 The accuracy (%) on the different descriptors for the used databases.

LDP LTP LBP BSIF LPQ

Cornell KinFace 56.10 64.34 88.46 94.41 95.21

UB KinFace 57.88 73.38 90.50 93.13 94.46

KinFace W-I 60.63 66.94 90.15 92.21 93.20

KinFace W-II 59.16 64.45 87.30 89.15 91.40

Family 101 57.47 61.41 76.24 84.67 90.38
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useful than other descriptors such as LBP, LDP, and BSIF that directly encode local texture

patterns. Based on these results, we conclude that the LPQ descriptor is the best for the feature

extraction stage. Thus we use it in the following experiments.

5.2 Effect of Face Representation

To study the effect of face representation, we compared the performance obtained by three face

representations: MB, ML, and PML. Each was tested with a level number that varied from 1 to

10. The descriptor used was the LPQ descriptor. Figure 15 summarizes the performance

associated with different face representations. It also presents the number of features as a

function of the number of levels of the face representation. These results were obtained from

the KinFace W-II database. The curves associated with the other databases have a similar

shape.

According to our experiments, we observe that by increasing the number of levels of the face

representation, the number of features of the final descriptors increases. In return, the perfor-

mance improves and the feature extraction stage becomes time consuming. For each level, the

number of features for the PML and ML representations are identical and larger than that asso-

ciated with the MB representation, which achieved a lower performance compared to that of ML

and PML. Despite the fact that the ML and PML face representations have the same number of

features for a given number of levels, the PML representation achieved better results than the ML

representation due to the advantage of PML in terms of feature weight balance. We also observe

that after level 7, the results improved slightly despite the increase in the number of features. We

conclude that the use of PML with seven levels achieves good results with a reasonable number

of features and computational cost.

5.3 Effect of the Image Paired Feature Representation

Since the input to the system is a pair of images, it is worth studying different schemes to fuse the

features of the two images into a single feature descriptor. We conducted several experiments for

the paired feature representation step using different combinations such as absolute difference

[Eq. (23)], sum [Eq. (24)], division [Eq. (25)], and multiplication [Eq. (26)]. We tested the

following pair fusion schemes:

EQ-TARGET;temp:intralink-;e023;116;350F1 ¼ jFchild − Fparentj; (23)

EQ-TARGET;temp:intralink-;e024;116;306F2 ¼ Fparent þ Fchild; (24)
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Fig. 15 The accuracy (%) and number of features on the different levels of the face representation.
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EQ-TARGET;temp:intralink-;e025;116;574F3 ¼
Fparent

Fchild

; (25)

EQ-TARGET;temp:intralink-;e026;116;539F4 ¼ Fparent × Fchild; (26)

EQ-TARGET;temp:intralink-;e027;116;516F5 ¼
Fparent × Fchild

jFchild − Fparentj
; (27)

EQ-TARGET;temp:intralink-;e028;116;480F6 ¼
Fparent þ Fchild

jFchild − Fparentj
: (28)

In the above equations, the fusion operates in an element-wise fashion.

Table 3 summarizes the performance of the different pair fusion schemes obtained with the

five descriptors: LDP, LTP, LBP, BSIF, and LPQ. The results were obtained on the KinFace-WII

database. From this table, we can see that the fusion scheme that used the element-wise absolute

difference achieved the best results compared with the fusion schemes: sum, division, and multi-

plication. For that reason, we included this distance in the two other fusion schemes F5 and F6.

The performance is significantly increased when using the F6 scheme with the LBP, BSIF, and

LPQ descriptors. It was the best fusion scheme for the LPQ descriptor.

5.4 Effect of Feature Weighting/Selection

In this group of experiments, we used and compared different functions (Fisher score, KL score,

t-test score, and the proposed score) for the feature weighting step. After feature weighting, the

fused features were ranked in descending order. Table 4 summarizes the obtained performances

using feature weighting and selection for the KinFace W-II database. The original features cor-

respond to LPQ-PML adopting seven levels.

The proposed feature weighting outperformed Fisher weighting, KL weighting, and t-test

weighting. To have a good idea about the choice of the proposed feature weighting [Eq. (22)],

we conducted the following experiment. First, we ranked the KinFace W-II features according to

the Fisher weight. Second, we retained the first 1000 ranked features. At this stage, we had 1000

relevant features. Third, for each such feature, we computed its weight according to four different

functions: t-test, KL, t-test + KL, and our proposed weight t-test − KL. Figure 16 illustrates the

four weights for the retained 1000 features. We can observe that the weight t-test − KL [i.e.,

Eq. (22)] had the largest spread, which indicates that the proposed weight is very sensitive to the

feature relevance. However, the spreads associated with either the t-test weight alone or the KL

weight alone were small explaining their lower performances in detecting the most relevant

features.

The Fisher score and t-test achieved good performances despite the slight superiority of the

Fisher score, which is a well-known feature weighting technique. KL achieved a poor perfor-

mance compared to that of the other feature weighting schemes. Our idea was to generate a more

sensitive feature weight function that was derived from the t-test weight and the KL weight, as

shown in Eq. (28). The performance is significantly improved when using our proposed feature

Table 3 Accuracy (%) obtained with different pair fusion schemes for the KinFace-WII database.

F 1 F 2 F 3 F 4 F 5 F 6

LDP 66.10 51.86 64.05 59.10 59.60 56.16

LTP 72.35 52.64 71.25 70.15 71.35 62.45

LBP 80.40 55.15 76.65 69.90 71.55 87.30

BSIF 78.30 57.98 73.30 73.30 65.40 89.15

LPQ 74.30 58.69 77.50 65.85 68.70 91.40
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weighting function. Figure 17 shows the superiority of our proposed feature selection in terms of

accuracy compared with the other feature weighting schemes.

5.5 Number of Features Used and CPU Time

As a first experiment, we used the LPQ descriptor with PML representation adopting seven

levels. The corresponding fused descriptor had 38,500 features. We used the total data of 2000 ×

38;500 for the KinFaceW-II database without using a feature selection function. We obtained an

accuracy of 90.12% in 320.6213 s (CPU time) for the training phase and 11.2164 s (CPU time)

for the testing phase. Then we used our proposed feature weighting function to sort the features

according to their weight. Finally, we tested several feature dimensions to select the best number

of features.

Figure 18 shows both the accuracy of the kinship verification and the CPU time (in seconds),

which was needed for training the model and testing as a function of the number of retained

features that were obtained after using our proposed feature weighting scheme. The CPU time

(training/testing) of the proposed approach increases linearly with the increase in the number of

features. Additionally, the accuracy increased exponentially up to 1000 features and then varied

as a logarithmic function. Based on that, the choice of 1000 features can be considered a good

trade-off between accuracy and computational complexity. These results were obtained with the

KinFace W-II database. The curves associated with the other databases have a similar shape. The

experiments were carried out on a laptop DELL 7510 Precision (Xeon Processor E3-1535M v5,

8M Cache, 2.90 GHz, 64 GB RAM, GPU NVIDIA Quadro M2000M, Windows 10 using

MATLAB R2018b.)

Table 4 The accuracy (%) using different feature weighting schemes.

KL t -test Fisher score Proposed

Cornell KinFace 62.01 92.36 94.19 95.21

UB KinFace 60.41 88.47 93.46 94.46

KinFace W-I 59.78 87.71 92.13 93.20

KinFace W-II 58.92 82.61 89.70 91.40

Family 101 56.35 76.24 88.97 90.38
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Fig. 16 The estimated weights for 1000 retained featured functions are: t -test, KL, t -test + KL, and

our proposed weighting function t -test − KL.
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5.6 Best Results and Settings

Finally, we obtained the best results using PML-LPQ level 7 with the proposed paired feature

representation and the proposed feature selection approach. Table 5 shows the performance of

the proposed approach with different relationships (F–S), (F–D), (M–S), and (M–D). We
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Fig. 18 The accuracy (%) and CPU time (training/test).
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Fig. 17 Obtained accuracy (%) using different weighting schemes: t -test, KL, t -test + KL, and our

proposed feature selection t -test − KL.

Table 5 The accuracy (%) on the four relationships of the used database

F_S F_D M_S M_D Mean

Cornell KinFace 97.56 96.97 96.97 89.36 95.21

UB KinFace 95.84 95.58 93.84 92.59 94.46

KinFace W-I 93.91 93.30 92.91 92.67 93.20

KinFace W-II 92.00 92.00 91.60 90.00 91.40

Family 101 91.81 90.29 89.85 89.85 90.38
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Fig. 19 ROC curves of different effects on the KinFace W-II database. (a) Texture descriptors.

(b) Face representation approaches. (c) Features representation approaches. (d) Feature selec-

tion approaches.

Table 6 A comparison of the proposed approach with other approaches

Approaches Cornell UB KinFace KinFace W-I KinFace W-II Family 101

PSM 20101 70.67 — — — —

TSL 20113 — 69.67 — — —

SSRWF 20124
— 69.67 — — —

MNRML 20148 — — 69.90 76.50 —

DMML 201410 73.50 74.50 72.00 78.00 —

RSBM 201536
— — — — 69.6

ESL 201511 — — 78.60 75.70 —

PDFL 201513 71.90 67.30 70.10 77.00 —

CNN-pnt 201514 — — 77.50 88.40 —

SSML 201637 — — 79.55 80.15 —

S.scoring 201638 81.40 52.20 71.40 80.10 —

EHRMFS 201739 — — 80.20 80.16 —

NRML 201740
— — 66.30 78.70 —

DDMML 201741 — — 83.50 84.30 —

DIEDA 201842 — — 80.60 88.60 —

DCTNet 201843 — — 84.75 89.25 —

PML-COV 201844
— 84.5 88.20 88.20 —

LTP*ML 201845 90.02 87.16 82.84 79.06 77.32

WLD*RGB 201846 92.06 87.97 — — 83.20

VGG-FACE 201918 92.74 90.39 86.49 79.37 84.67

MSIDA 201947 86.87 83.34 — — —

WGEML201912
— — 81.90 82.80 —

(Mixed-D)*MB 201948 84.74 82.89 81.69 80.12 78.16

KML 201949 81.40 75.50 82.80 85.70 —

Proposed 95.21 94.46 93.20 91.40 90.38
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observe that: (i) the easiest relationship to classify is the relationship in which there is a male,

whether a child or father. Thus the relationship (F–S) is easier than (F–D), and (M–S) is easier

than (M–D). (ii) The hardest relationship to classify is the relationship in which there is a

female, whether daughter or mother. Thus (M–S) is harder than (F–S) and (M–D) is harder

than (M–S). Thus the easiest relationship to classify is (F–S) and the hardest one to classify is

(M–D).

To better visualize the best results and the performance of our approach, the receiver oper-

ating characteristic (ROC) curves of different descriptors are shown in Fig. 19. This figure

summarizes the ROCs obtained by (a) different descriptors, (b) different face representations,

(c) different feature fusion schemes, and (d) different feature weighting schemes. This figure

illustrates the ROC curves of the classification results on the KinFace W-II database.

We observe that the use of the LPQ descriptor with PML-7 face representation and the pro-

posed pair fusion scheme that adopted the proposed feature weighting scheme yielded the best

performance in terms of the ROC curve. The curves associated with the other databases had

similar shapes.

5.7 Comparison with State-of-the-Art Approaches

The performance evaluation on several publicly available benchmark databases validates that

our approach outperforms existing state-of-the-art approaches. Table 6 illustrates the perfor-

mance of our proposed kinship verification approach as well as that of some competing

approaches. As can be seen in this table, we obtain 95.21%, 94.46%, 93.20%, 91.40%, and

90.38% kinship verification accuracy on Cornell, UB KinFace, KinFace-I, KinFace-II, and

Family 101, respectively. This confirms the robustness of our approach on all the databases

that were used.

6 Conclusion

In this paper, we described a approach for facial kinship verification based on different descrip-

tors with PML face representation. We also introduced a new paired feature representation

and a new feature weighting. We investigated different kinds of effects, including image

texture descriptors and face and feature representations. The experimental results showed that

our approach provides good performance and stable results on five publicly available data-

bases compared to the previous approaches. In future work, we propose using deep features

provided by models such as VGGNet, AlexNet, ResNet, and ImageNet. Moreover, we envision

developing CNN architectures for multitask estimation. Additionally, we envision the use

of other soft biometric traits, such as age and gender, to improve the kinship verification

accuracy.
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