
KinWrite: Handwriting-Based Authentication Using Kinect

Jing Tian∗1, Chengzhang Qu ∗2, Wenyuan Xu†1 and Song Wang‡1

1Dept. of Computer Science and Engineering, University of South Carolina
2School of Computer Science, Wuhan University

Abstract

Password-based authentication is easy to use but its

security is bounded by how much a user can remember.

Biometrics-based authentication requires no memorization

but ‘resetting’ a biometric password may not always be pos-

sible. In this paper, we propose a user-friendly authenti-

cation system (KinWrite) that allows users to choose ar-

bitrary, short and easy-to-memorize passwords while pro-

viding resilience to password cracking and password theft.

KinWrite lets users write their passwords in 3D space and

captures the handwriting motion using a low cost motion

input sensing device—Kinect. The low resolution and noisy

data captured by Kinect, combined with low consistency

of in-space handwriting, have made it challenging to ver-

ify users. To overcome these challenges, we exploit the

Dynamic Time Warping (DTW) algorithm to quantify sim-

ilarities between handwritten passwords. Our experimen-

tal results involving 35 signatures from 18 subjects and a

brute-force attacker have shown that KinWrite can achieve

a 100% precision and a 70% recall (the worst case) for

verifying honest users, encouraging us to carry out a much

larger scale study towards designing a foolproof system.

1 Introduction

Authentication plays a key role in securing various re-

sources including corporate facilities or electronic assets.

Naturally, numerous authentication mechanisms have been

proposed in the past, and in general they can be divided

into three categories: (a) knowledge-based, (b) token-

based, (c) biometrics-based. Knowledge-based authentica-

tion (e.g., text passwords) has been widely utilized because

of its ease of use and ease of update. Unfortunately, text-

password-based authentication verifies the ownership of a

text password instead of a user and thus can suffer from

∗Jing and Chengzhang contributed equally to this work.
†Corresponding Author
‡Emails:{jing9, wyxu, songwang}@cec.sc.edu;

quchengzhang@whu.edu.cn

password theft [1]—anyone with the text password will pass

the authentication. It is also restricted by how much a hu-

man can remember—what is hard to guess is often hard

to remember [2]. Token-based authentication frees humans

from tedious memorizing. It authenticates users by exam-

ining their pre-assigned tokens, e.g., physical keys, RFID

tags, RSA SecureID tokens, smart cards, smartphones [3],

etc. However, such mechanisms are also vulnerable to to-

ken theft. Lost or stolen tokens can easily allow anyone pass

authentication. Finally, biometrics-based mechanisms that

utilize physiological biometrics, e.g., fingerprints, voice, fa-

cial and iris patterns, are less likely to suffer from iden-

tity theft. However, their applications have received resis-

tance from privacy-savvy users, who worry that they will be

tracked, based on their unique physiological biometrics [4].

In this paper, we propose a user-friendly authentication

system called KinWrite that allows users to choose short and

easy-to-memorize passwords while providing resilience to

password cracking and password theft. The basic idea is

to let a user write her password in space instead of typing

it. Writing in space adds behavioral biometrics to a pass-

word (e.g., personal handwriting characteristics) and cre-

ates a large number of personalized passwords that are dif-

ficult to duplicate. As a result, KinWrite inherits the ad-

vantages of both password-based and biometrics-based ac-

cess control: KinWrite authenticates “who you are” instead

of “what you own” or “ what you know,” and allows users

to update their passwords on demand. Hence, stolen pass-

words, shoulder surfing [5], and user tracking become less

of a threat.

To capture in-space handwriting (hereafter 3D-

signature), KinWrite utilizes Kinect [6], which is a

low-cost motion input sensor device capable of recording

3D depth information of a human body. Using the depth

information, we can detect and track fingertip motion to

obtain a corresponding 3D-signature. Kinect is well-suited

for this task and can be used in various authentication

scenarios including door access control, because it can op-

erate under almost any ambient light conditions, including

complete darkness [7]. Verifying a user’s identity utiliz-

ing 3D-signatures captured by Kinect seems simple yet

appealing. However, several issues make it a challenging

task. First, Kinect is known for its abundant errors and low

resolution [8], which may result in distorted 3D-signature

samples, as shown in Figure 1. Second, the same users

may produce different 3D-signatures over time. Third, the

requirement of user-friendly design limits the number of

3D-signatures needed for the initial ‘password’ enrollment,

and thus disqualifies many classification algorithms. Last

but not the least, an adversary may try to impersonate a

legitimate user. The proposed system has to be able to

reject such attempts virtually all the time.

We illustrate the aforementioned challenges in Figure 1:

All three signatures are captured using Kinect when a pass-

word of ‘ma’ was written in the space. In particular, Fig-

ure 1 (a-b) were written by the same user and Figure 1(c)

was generated by an adversary who observed the victim

four times and was given the spelling of the password.

Although the adversary was able to generate a signature

closely imitating the genuine one (shown in Figure 1 (a))

and the two genuine signatures appeared to be different, our

KinWrite system is able to correctly identify both genuine

signatures and reject the forged one.

KinWrite can verify legitimate users and reject attacks

well because it is based on the following intuition. Granted

that the shapes of signatures are important, they may change

over time and may be learned after being observed visu-

ally. In contrast, we believe several spontaneous gestures

that are embedded in the movement of in-space handwrit-

ing, can characterize each user better and are difficult to im-

itate, which we will show through our experiments. A user

may write letters in different sizes or shapes, but the accel-

eration at turning points and the transition of consecutive

points may not vary much. Thus, to verify a signature, Kin-

Write examines not only the shape but also several gesture-

related features. Lacking a large number of training signa-

tures, KinWrite utilizes Dynamic Time Warping (DTW) to

verify signatures, because DTW only requires the storage

of one known genuine signature as a template and can ac-

commodate differences in timing between 3D-signatures.

The main contributions of this paper are listed below.

• We propose a behavior-based authentication sys-

tem (called KinWrite) that combines the benefits of

both traditional password-based and biometrics-based

schemes. The underlying idea is letting a user write

passwords (including short ones) in 3D-space instead

of typing them. KinWrite utilizes 3D-signatures as

user ‘passwords’, and it verifies users with the Dy-

namic Time Warping algorithm.

• We have built a signature capturing system utilizing

Microsoft Kinect. With this system, we collected 1180
3D-signatures from 18 users over five months, and

with each, we selected up to two different passwords.

(a) genuine (b) genuine (c) forged

Figure 1. The same user may sign the pass­

word in 3D space differently while an adver­

sary with knowledge may be able to imitate

the shape of the genuine signature closely.

Our KinWrite system correctly verified the

genuine handwriting (a­b) and rejected the

forged one (c).

In addition, we modelled 5 types of attackers with an

increasing amount of information about the passwords

and collected 1200 3D-signatures from 18 attackers.

• We evaluated KinWrite using captured 3D-signatures.

The results show that KinWrite can effectively verify

honest users and is robust to various types of attackers,

including the one that observes victims multiple times

and is aware of the spelling of the passwords.

Compared with traditional online signatures that uses

tablets, KinWrite has the advantage of being contactless,

and signing in the 3D-space leaves no traces.

We organize the remainder of the paper as follows. We

discuss related work in Section 2. In Section 3, we present

the system design requirements and the attack models, in-

troduce Kinect, and overview the KinWrite architecture.

Then, we discuss data processing and feature extraction

in Section 4, and introduce the Dynamic Time Warping

(DTW)-based verification algorithm in Section 5. Finally,

we show that KinWrite is effective in verifying users and

rejecting various attackers in Section 6 and give our conclu-

sions in Section 7.

2 Related Work

2.1 Authentication

The most widely used, text-based password authentication

schemes are known to be susceptible to shoulder surfing,

and their security is limited by what people can remem-

ber. Graphical passwords are claimed to be a better solution

because humans can remember pictures more easily than

a string of characters. Recognition-based graphical pass-

words [2,9] require users to choose their preselected images

from several random pictures for authentication, and some

schemes [10,11] have been designed to cope with the prob-

lem of shoulder surfing. Another class of graphical pass-

words asks users to click through several preselected loca-

tions on one image [12]. All those schemes authenticate

‘what you know.’ In comparison, biometrics-based schemes

verify ‘who you are.’ Traditional biometrics-based schemes

utilize physiological biometrics [13], including iris patterns,

retina patterns, fingerprints, etc. New approaches utilize be-

havioral biometrics, such as keystroke dynamics [14, 15] or

mouse movements [16, 17], for authentication. KinWrite

belongs to the same family of behavioral biometrics. How-

ever, most prior behavior-based methods were designed for

continuously verifying a user throughout the session as the

user operates the keyboard or mouse. KinWrite solves a

different problem and targets at authenticating a user once.

Hand-drawn pictures have been proposed as one type

of graphical passwords. For instance, Draw-a-Secret

(DAS) [18] requires a user to draw a simple picture on a 2D

grid, and the user is authenticated if he/she visits the same

sequence of grids. KinWrite can also use graphical draw-

ing instead of handwritten signatures as passwords. Nev-

ertheless, in this paper, we focus on studying handwritten

signatures. Compared with DAS, whose password space is

limited by the number of vertices, KinWrite captures the

exact trajectory of a 3D-signaure and thus enables a much

larger password space.

2.2 Online Signature Verification

With the development of digital equipment, online signa-

tures have gradually replaced offline signatures (images

of signatures) for user identification. For instance, pres-

sure sensitive tablets can record a sequence of 2D signa-

ture coordinates as well as pressure. Methods to verify

such signatures first extract features from either each sam-

ple point or the entire signature [19], and then compare the

features against the registered genuine one. The common

classification approaches used for comparison include the

following: the Bayes classifier [20], Support Vector Ma-

chine (SVM) [21, 22], Neural Networks (NN) [23], Hidden

Markov Models (HMM) [24, 25], Dynamic Time Warping

(DTW) [26, 27]. Several other systems have also been pro-

posed for classification: a pan-trajectory-based verification

system [28], verifying based on symbolic features [29], us-

ing camera-based signature acquisition [30], or an elastic

local-shape-based model [31], etc.

Both KinWrite and online signature utilize behavioral

biometrics: handwritten signature. Naturally, the two

systems share similarity. However, we believe that 3D-

signatures contain richer behavioral information than 2D

online signatures captured by tablets. For instance, ges-

ture features are embedded in 3D-signatures, but are dif-

ficult to include in 2D online signatures. We envision that

3D-signatures, if done well, can be a good biometric for

user authentication.

2.3 Gesture-Based Verification

A few systems have proposed to use hand gestures for user

verification. Those systems require users to hold a special

device in their hands, such as a phone [32] that captures

arm sweep action; a tri-axis accelerometer [33] that cap-

tures simple gestures; a biometric smart pen [34] that col-

lects grip strength, the tilt of the pen, the acceleration, etc.

KinWrite has the advantage of writing with an empty hand,

and such a no-contact method has its advantage to germ

conscious users.

2.4 Kinect Application

Kinect, because of its low cost and capability to provide

depth and human gesture information, has gained popu-

larity among researchers. It has been used to extract the

contour of human body for human identification [35], de-

tect human behavior [36] (e.g, walking, running, etc) uti-

lizing skeleton information, recognize sign language [37],

and track a head for augmented reality [38] or fingertips

and palms [39]. Kinect is also used in real-time robotics

control and building 3D maps of indoor environments [40].

Our system also utilizes the depth information provided by

Kinect to track fingertips, but the focus of our work is to

verify 3D-signatures.

3 KinWrite Overview

The KinWrite system consists of a Kinect for capturing 3D-

signatures, a secure storage for storing abstracts of enrolled

3D-signature templates, and a computing unit for process-

ing data and verifying users. KinWrite, as an authentica-

tion system, can be used for various authentication scenar-

ios. Considering that the range of a Kinect sensor is about

0.8m to 4m, KinWrite can work well for office building

access control. For instance, a Kinect can be installed at

the entrance of a building. To enter the building, a user

approaches the Kinect and signs her password towards it.

Then, KinWrite will process the captured raw 3D-signature,

and authenticate the user by comparing it with the already

enrolled genuine 3D-signature.

In this section, we discuss the design requirement of Kin-

Write, the attack model, the intuition of using a Kinect, and

the system architecture.

3.1 System Requirements

Around-the-Clock Use. Similar to most authentication

systems, KinWrite is expected to work around the clock,

regardless of the weather or lighting conditions.

Rapid Enrollment. Creating new user accounts or up-

dating existing user accounts should be quick, so that users

can set up and reset their 3D-signature passwords easily.

Rapid Verification. The authentication process should

require no more than a few seconds.

No Unauthorized Access. One key factor that deter-

mines the success of KinWrite is how likely an unautho-

rized user can pass the authentication. While a bullet-proof

system is costly to achieve and may degrade user experi-

ences, KinWrite should ensure that it takes a non-trivial

amount of effort for an adversary to impersonate a legiti-

mate user, at least be harder than guessing text-based pass-

words randomly.

Low False Negative. Users will become frustrated if it

takes several attempts to input an acceptable 3D-signature.

Thus, KinWrite should have a low false negative, despite

several variances that may occur over multiple authentica-

tion sessions. For instance, 3D-signatures of the same user

may change over time; the distance between a user and a

Kinect may vary, affecting the captured 3D-signatures.

3.2 Attack Model

Several mechanisms can be used to protect KinWrite. For

instance, opaque panels can be installed at the entrance of

a building to block shoulder surfing, and raw 3D-signatures

shall never be stored to avoid insider attacks. Nevertheless,

we study possible attacks for impersonating legitimate users

assuming those protection mechanisms are unavailable.

• Random Attack: With no prior knowledge of gen-

uine 3-D signatures, an attacker can randomly sign 3D-

signatures and hope to pass the authentication. This

is equivalent to a brute force attack against text-based

password schemes.

• Observer Attack: In an observer attack, an adversary

is able to visually observe how a user signs her pass-

word once or multiple times and then try to imitate her

3D-signature.

• Content-Aware Attack: In a content-aware attack, an

adversary knows the corresponding spelling of a legit-

imate user’s 3D-signature, but has not observed how

the user signs it in space. The correct spelling can be

obtained through social engineering or by an educated

guess based on the user’s name, hobbies, etc.

• Educated Attack: In an educated attack, an attacker

is aware of the spelling of a 3D-signature and has ob-

served multiple times how a user signs her password.

That is, an educated attack is the combination of an

observer attack and a content-aware attack.

• Insider Attack: An insider attacker can obtain the

spelling of a signature, the corresponding trajectory

(i.e., the one shown in Figure 2), and she can observe

how a user signs in space. That is, an insider attacker

(a) Ob-1 (b) Ob-4 (c) CA&Ob-4

(d) CA (e) CA (f) Insider

Figure 2. Signatures (‘ma’) signed by two
persons mimicking various attackers. User
1 signed (a)­(c), and user 2 signed (d)­(f).
(a) An observer attacker with one observa­

tion, (b) an observer attacker with four ob­

servations, (c) an educated attacker knowing

the spelling and observed four times, (d)­(e)

content­aware attackers with known spelling

but unaware of the shape of the signature,

(f) insider attacker knowing the shape of 3D­

signature.

is an educated attacker who knows the signature trajec-

tory. We note signature trajectories are difficult to ob-

tain, since in practice a KinWrite system should never

store such information permanently nor display 3D-

signatures. Although unlikely to happen, we include

this uncommon attack in order to evaluate the perfor-

mance of KinWrite under extreme attacks.

To obtain an intuition on how well the aforementioned

attackers can imitate 3D-signatures, we had two users act

as attackers and recorded their 3D-signatures when trying

to forge the genuine 3D-signature shown in Figure 1 (a).

For the first user, we demonstrated the motion of signing

‘ma’ four times, and then informed him what was written

in the space, i.e., we had him act as an observer attacker

first then as an educated attacker. For the second user, we

asked him to write ‘ma’ multiple times without demonstrat-

ing the motion but gave him the spelling, and then showed

the trajectory of the genuine 3D-signature, i.e., we had him

act as a content-aware attacker then as an insider attacker.

Figure 2 illustrates the signatures signed by the two users,

from which we obtain the following intuition: Observing

the signing process alone seems to help an attacker to imi-

tate the shape of signatures. However, increasing the num-

ber of observations of the signing process does not neces-

sarily improve the forgery in this case. This is encouraging.

A larger-scaled experiment that were carried out over five

months will be reported in Section 6.

(a) an original image (b) a depth image

Figure 3. The RGB and depth images captured
by a Kinect.

3.3 3D-Signature Acquisition Using a Kinect

Basics of a Kinect. A Kinect is a motion input sensing

device launched by Microsoft for Xbox 360 and Windows

PCs. A Kinect has three sensors: an RGB camera, a depth

sensor, and a multi-array microphone. The depth sensor

consists of an infrared projector and a monochrome CMOS

sensor, which measures the distance between the object and

the camera plane at each pixel. With the depth sensor, a

Kinect can capture the 3D structure of an object under al-

most any ambient light conditions [7], including complete

darkness. Figure 3 shows example pictures captured by a

Kinect: an RGB image of a user who was signing his pass-

word and the corresponding depth image. A depth image is

shown as a grayscale image, where a darker pixel represents

a smaller depth. In this case, the hand of the user is closest

to the Kinect.

Why Kinect? We track the hand movement from the

captured 3D depth information of the body, with which we

can identify the underlying 3D-signatures for verification.

This is much more effective than using classical RGB sen-

sors which cannot capture the motion along the depth direc-

tion (perpendicular to the image plane). The motion along

the depth direction contains important gesture information

and can help distinguish 3D-signatures from different sub-

jects. Such information is usually difficult to track from a

2D RGB video, especially when the light is weak or the

hand and surrounding background bear a similar color. Be-

fore the release of Kinect, other commercialized depth sen-

sors had been used for human posture tracking and gesture

recognition [41]. However, these commercialized depth

sensors are usually too expensive and only applicable in re-

stricted lab environments [42].

Feasibility of Kinect. Kinect was originally designed

for gaming with the goal of capturing the body motion

of a player. Will a Kinect suffice for acquiring 3D-

signatures? There are two factors determining the appli-

cability of Kinect: the sampling rate and working range. A

Kinect can capture 30 frames per second; each frame has

a resolution of 240 × 320 pixels, which is lower than the

typical sampling rate (100Hz) in digitizing tablets (used for

capturing online signatures). However, the maximum fre-

quencies underlying the human body kinematics are always

under 20-30 Hz [43], and the Kinect sampling rate is suffi-

ciently dense for signatures [26]. The working range of the

Kinect depth sensor is between 0.8m to 4m (the new version

of Kinect can capture the depth from 0.4m to 8m), which

works well for the proposed application; For example, at

the door of the building, we can allocate an area within the

working range of a Kinect, in which a user can move her

hand towards the Kinect.

What to Track? One key question is which part of the

hand shall be tracked to generate 3D-signatures? For the

purpose of modeling, we usually require a signature to be

a temporal sequence of points with an infinitely small size.

Among the options for tracking, e.g., a fingertip, the whole

palm or fist, we found the whole palm or fist performs worse

than a fingertip because of its relatively large size, with

which we cannot find the motion center accurately enough

to create a 3D-signature with sufficient spatial resolution.

Thus, we track the finger tip, whose corresponding region

in the depth map is small, and we can simply take its ge-

ometry center as a point on a 3D-signature. As such, we

envision that a user will extend his hand in front of his body

and use one of his fingers to sign towards the Kinect, as

shown in Figure 3 (a). The regions with the smallest value

in the Kinect depth map will correspond to the positions of

the fingertip most of the time. Note that without a pen, peo-

ple usually move their fingertips to describe what they want

to write. Therefore, the proposed setting of using fingertips

for signatures should be natural and spontaneous to most

people.

Although Kinect produces depth images that greatly fa-

cilitate 3D-signature acquisition, the errors of the depth

measurements can be from several millimeters up to about

4cm [40], affecting the accuracy of acquired 3D-signatures.

We discuss the mechanisms to address such large measure-

ment errors in Section 4 .

3.4 KinWrite Architecture

Like other authentication systems, authenticating via Kin-

Write consists of two phases: enrollment and verification.

During an enrollment, a user will create an account and en-

ter a few 3D-signatures. Then, KinWrite will first process

these genuine 3D-signatures and select one sample as the

template for this user. During the authentication phase, a

user signs her password towards a Kinect. After preprocess-

ing the newly entered 3D-signature, KinWrite will compare

it with the stored template. A match means that the user is

genuine, and KinWrite will grant access, otherwise it will

deny access.

The computing unit of KinWrite consists of a data pre-

processor, a feature extractor, a template selector, and a ver-

R
aw

3
D

-S
ig

n
atu

re

S
caled

 &
 T

ran
slated

 3
D

-S
ig

n
atu

re

S
m

o
o
th

ed

3
D

-S
ig

n
atu

re

...

...

Finger-Tip

Position 1

Finger-Tip

Position 2

Finger-Tip

Position N

...

Initial User

Signature 1

User

Signature T
em

p
la

te S
electo

r

Verifier

Results

Initial User

Signature 2

Initial User

Signature n

Depth

Frame 1

Depth

Frame 2

Depth

Frame N

E
x
tracted

 F
eatu

re

N
o
rm

alized
 F

eatu
re

Attack

Signature

Data Preprocessor Feature Extractor

Figure 4. Flow chart of KinWrite. The computing component of KinWrite consists of a data prepro­

cessor, a feature extractor, a template selector, and a verifier.

ifier, as shown in Figure 4. The data preprocessor takes

frames captured by a Kinect and outputs a 3D-signature.

In particular, the data preprocessor identifies the position of

the fingertip that is used for signing a password in the space.

By sequentially connecting the fingertips in all frames, Kin-

Write constructs a raw 3D-signature. Since the size of the

raw 3D-signature depends on the distance between a user

and the Kinect, we add a data processing step to remove the

size difference. Then, a Kalman filter is applied to further

reduce the spatial noise in the 3D-signature, and features

are extracted for verification.

We discuss the technical details of the data preproces-

sor and the feature extractor in Section 4, and the template

selector and the verifier in Section 5.

4 Data Processing & Feature Extraction

In this section, we describe the techniques to construct a

refined 3D-signature from a raw depth image sequence, and

discuss feature extraction and its normalization.

4.1 Data Processing

A data preprocessor performs fingertip localization, signa-

ture normalization, and signature smoothing.

4.1.1 Fingertip Localization

Given N frames that capture a 3D-signature, in an ideal

case, at each frame t, t = 1, 2, · · · , N , the fingertip

(used for the signature) should have the minimum depth.

However, in practice, the minimum-depth pixel in a frame

may not always correspond to it because of various ran-

dom noises. To address this issue, we enforce the tem-

poral continuity of the fingertip position in a signature –

the fingertip position should only vary in a small range be-

tween two consecutive frames. We use the following prop-

agation technique – given the fingertip position pr(t) =
(prx(t), p

r
y(t), p

r
z(t))

T at the t-th frame, we only search

within a small region (40 × 40 pixels) centered at pr(t) in

frame (t+ 1) for the fingertip position. Specifically, in this

small region, we choose the pixel with the minimum depth

value as pr(t+ 1).

The performance of this frame-by-frame fingertip local-

ization depends highly on a correct fingertip position in the

first frame. To ensure the correct initial position, we con-

tinue to use the temporal continuity and adopt the following

initialization strategy. We choose a small number of the first

K = 3 frames, and find the pixel with the minimum-depth

value in each frame. If they show good temporal continu-

ity (i.e., the identified pixel in a frame is always located

in a 40 × 40 region centered at the pixel identified in the

previous frame), we consider them as the fingertip posi-

tions in these K frames and process all the other frames

−2

0

2

−2

−1

0

1

2

3
−5

0

5

x−axis
y−axis

z
−

a
x
is

Raw

Smoothed

(a) 3D

−2 −1 0 1 2
−2

−1

0

1

2

x−axis

y
−

a
x
is

(b) X-Y Plane

−2 −1 0 1 2
−2

−1

0

1

2

z−axis

x
−

a
x
is

(c) Z-X Plane

−2 −1 0 1 2
−2

−1

0

1

2

y−axis

z
−

a
x
is

(d) Y-Z Plane

Figure 5. A raw 3D­signature (a Chinese character) and the smoothed one using a Kalman filter.

by using the propagation technique described above. Other-

wise, we remove the first frame of these K frames and add

the next frame to repeat the initialization process until their

minimum-depth pixels show the required temporal continu-

ity, which reflects the reliability of the fingertip localization

in the initial frames.

4.1.2 Scaling and Translation

By connecting the fingertip points sequentially, we get a raw

signature, which is a 3D curve in the x− y − z space. One

global feature of a signature is its size, which can be de-

fined by the size of the bounding box around the signature.

The size of a signature in the x − y image plane may vary

when the distance between the user and the Kinect sensor

changes. In addition, users may intentionally sign in a larger

or smaller range during different trials, resulting in different

sizes of signatures. To achieve a reliable verification, we

scale the raw 3D-signatures into a 1× 1× 1 bounding box.

To make the different 3D-signatures spatially compara-

ble, we perform a global translation on each signature so

that the rear-right corner of its 3D bounding box becomes

its origin. Finally, we normalize each position such that

it follows a normal Gaussian distribution N (0, 1) over all

the frames. We denote the position of the fingertips after

the scaling, translation, and normalization to be ps(t) =
(psx(t), p

s
y(t), p

s
z(t))

T .

4.1.3 Signature Smoothing

As shown in Figure 5, the raw 3D-signature obtained by a

Kinect is usually highly jagged and noisy. Such jagged sig-

natures are caused by the limited resolution of the Kinect

depth sensor. For example, a small area around the finger-

tip may have similar depths. By selecting the minimum-

depth pixel, the above fingertip localization algorithm may

not capture the correct fingertip position.

To address this issue, we apply a Kalman filter to smooth

the raw 3D-signatures that have been normalized. For sim-

p(t-1)

p(t) p(t+1)
p(t+2)

p(t+3)
p(t+4)

α(t)

y-axis

x-axis

z-axis

1/κ

Figure 6. An illustration of path angle and cur­

vature.

plicity, we smooth the three coordinates of the raw 3D-

signature separately. Take the x-coordinate as an example.

We denote the prediction of the underlying fingertip posi-

tion to be p(t) = (px(t), py(t), pz(t))
T at the t-th frame

and define the state x(t) = (px(t), ṗx(t), p̈x(t))
T at the t-th

frame as a vector of the predicted fingertip position, velocity

and acceleration. The state transition of the Kalman filter is

then x(t) = Ax(t − 1) + wx(t). Based on the theory of

motion under a constant acceleration, we can define

A =





1 △t △t2

2
0 1 △t

0 0 1



 (1)

where △t is the time interval between two consecutive

frames. Given the typical rate of 30 frames per second for a

Kinect sensor, we have △t = 1
30 seconds.

For the observation in the x coordinate, we only have the

raw fingertip position psx(t) but no velocity or acceleration.

Thus, we can write an observation equation for the Kalman

filter as psx(t) = cx(t) + vx(t), where c = (1 0 0). We

model the process noise wx(t) and the measurement noise

vx(t) to be zero-mean Gaussian distributions. For the pro-

cess noise, we choose the same covariance matrix Qx for

all the frames. More specifically, Qx is a 3 × 3 diagonal

matrix with three identical diagonal elements, which equals

the variance of acceleration (along x coordinate) estimated

from psx(t), t = 1, 2, · · · , N . For the measurement noise,

0 50 100 150 200 250 300 350 400
100

120

140

160

180

200

220

240

260

280

300

Frame

X

SA
1

SA
2

USC

JASON

(a) X-axis

0 50 100 150 200 250 300 350 400
20

40

60

80

100

120

140

Frame

Y

SA
1

SA
2

USC

JASON

(b) Y-axis

0 50 100 150 200 250 300 350 400
1400

1450

1500

1550

1600

1650

1700

1750

1800

Frame

Z

SA
1

SA
2

USC

JASON

(c) Z-axis

Figure 7. The position comparison of four 3D­signature samples: two ‘SA’ 3D­signatures were signed

by the same user, ‘USC’ and ‘JASON’ were from different users. The two ‘SA’ 3D­signature samples

show a larger degree of similarity than the others.

we choose the time-independent variance vx as the vari-

ance of the fingertip positions (i.e., psx(t), t = 1, 2, · · · , N).

Following the same procedure, we set the state-transition

and observation equations for y and z coordinates. With

the state-transition equation and the observation equation,

we use the standard Kalman filter algorithm to calculate

a smoothed 3D-signature with refined fingertip positions

p(t), t = 1, 2, · · · , N . Figure 5 shows an example com-

paring the raw 3D-signature with the smoothed one.

4.2 Feature Extraction

4.2.1 Feature Selection

Based on the refined signature that connects p(t), t =
1, 2, · · · , N , we extract various features for verification. As

discussed earlier, one major advantage of KinWrite is to

use simple, easy-to-remember passwords as the basis of 3D-

signatures to provide a user friendly authentication method.

Given a simple-shape signature, global features, such as the

central position and the average velocity, usually do not

contain much useful information for distinguishing differ-

ent signatures. Thus, we extract the following six types of

local features at each point and obtain a feature vector of 14
dimensions, as summarized in Table 1.

1. Position and Position Difference between Frames. The

fingertip position in the t-th frame is denoted as

p(t) = (px(t), py(t), pz(t))
T ,

and the inter-frame position difference is defined as

d(t) = ‖p(t+ 1)− p(t)‖.

2. Velocity. The velocity of the position in the t-th frame

is defined as

ṗ(t) = (ṗx(t), ṗy(t), ṗz(t))
T .

3. Acceleration. The magnitude of acceleration for the

t-th frame is defined as

‖p̈(t)‖.

4. Slope Angle. The slope angles at the t-th frame are

defined as

θxy(t) = arctan
ṗy(t)

ṗx(t)
,

θzx(t) = arctan
ṗx(t)

ṗz(t)
.

5. Path Angle α(t) is the angle between lines p(t)p(t+1)
and p(t− 1)p(t), as shown in Figure 6.

6. Curvature. The last feature extracted for the i-th frame

is the log radius of curvature of the signature at p(t),
i.e., log 1

κ(t) , where κ(t) is the curvature in 3D space:

κ(t) =

√

c2zy(t) + c2xz(t) + c2yx(t)

(ṗ(t)2x + ṗ2y(t) + ṗ2z(t))
3/2

,

where

czy(t) = p̈z(t)× ṗy(t)− p̈y(t)× ṗz(t).

For each frame t, the feature extractor constructs a 14
dimensional feature vector; we denote it as f(t). Then, for

a 3D-signature sample p(t), t = 1, 2, · · · , N , the feature

extractor constructs a sequence of feature vectors f(t), t =
1, 2, · · · , N . Figure 7 shows some of the features along x,

y, and z coordinates for four 3D-signature samples. For

ease of reading, we show the feature vectors derived from

the raw 3D-signature samples prior to data processing. We

observe that the 3D-signature samples from the same user

did appear to be similar, which is the basis of verifying users

according to their 3D-signatures.

Table 1. The summary of six types
(14−dimension) of 3D features extracted from

smoothed 3D­Signatures.

Type Features

Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration ‖p̈(t)‖
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-

ferent ranges, but their relevancy towards the correct verifi-

cation are not necessarily determined by their ranges. For

example, a path angle has a range of [−π, π] while the po-

sition px(t) has been scaled to the range of [0, 1]. This does

not mean that a path angle is 3 times more relevant than

a position. Thus, we perform two-step feature processing:

normalization and weight selection.

First, we normalize each feature such that it conforms to

a normal Gaussian distribution N (0, 1) over all the frames.

Second, we weigh each feature differently to achieve a bet-

ter performance. To obtain the weight for each feature (di-

mension), we selected a small set of training samples for

each signature (e.g., n = 4 samples for each signature), and

verified these training samples using the DTW classifier (to

be discussed in Section 5) based on one feature (dimension).

For each feature (dimension), we obtain a verification rate

for each signature, i.e., the percentage of genuine samples

in the top n = 4 ranked samples, and we simply consider

the average verification rate over all signatures as the weight

for this feature (dimension). The intuition is that a feature

that leads to a higher verification rate should be assigned a

larger weight. Our experimental results show that the pro-

posed feature normalization and weighting can substantially

improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,

based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately

without requiring a large number of training samples, be-

cause from the usability perspective, it is unpleasant to col-

lect a large number of training samples when a user enrolls

herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-

tical learning algorithms used in classical signature-based

verification systems and have shown good verification ac-

curacy. However, HMM usually requires a large training set

(i.e., representative signature samples) to construct an accu-

rate model. With the usability constraints, it is difficult to

perform well, as has been validated with our experiments.

Thus, we use Dynamic Time Warping (DTW), where one

good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-

signature samples. Instead of directly calculating the fea-

ture difference in the corresponding frames, DTW allows

nonrigid warping along the temporal axis. To some degree,

time warping can compensate the feature difference caused

by the signing speed. For instance, a user may sign her 3D-

signature slowly one day and quickly another day. Given

two 3D-signature samples, we denote their feature vectors

as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,

and construct a N1×N2 distance matrix D with an element

dts = ‖f1(t)− f2(s)‖, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.

DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2

, such that the total value of the el-

ements along this path is minimum. This minimum total

value is defined as the DTW distance between the two 3D-

signature samples; we denote it as d(f1, f2). Figure 8 illus-

trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-

rollment phase for a user u, we simply choose the most

representative 3D-signature sample fu from the training set,

which we call the template (3D-signature) of the user u.

With this template, we can verify a test 3D-signature sam-

ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-

fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the

+ + + - + - + - - -

D
T

W
 D

istan
ce

Upper bound of dT

Samples

Figure 9. An illustration of threshold selec­

tion.

choice of the template. To select a template for each user,

we use a distance-based strategy and consider only her own

training samples. In this strategy, given n training 3D-

signature samples f1, f2, · · · , fn for a user u, we calculate

the pairwise DTW distance d(fi, fj), i, j = 1, 2, · · · , n, and

choose the template that has the minimum total DTW dis-

tance to all these n samples, i.e.,

n
∑

j=1

d(fu, fj) ≤
n
∑

j=1

d(fi, fj), i = 1, 2, · · · , n. (2)

5.3 Threshold Selection

Another important issue for verifying a 3D-signature sam-

ple is threshold selection. The 3D-signatures from different

users may have different thresholds, and therefore we select

a threshold dT for each user. Since most verification sys-

tems prefer to reduce unauthorized accesses to minimum,

we aim to select a threshold that leads to a zero false pos-

itive rate for the training samples, i.e., training signature

samples that are not from a user u cannot pass the verifica-

tion. During the enrollment phase, we calculate the DTW

distance between the template of a user u and all the M

training samples (from all the users), and sort them. We find

the first training sample in the sorted list that is not from the

user u. Then, the DTW distance between this sample and

the template of the user u is the upper bound of dT , and we

select a dT that is smaller than the upper-bound to achieve

a higher level of security. Figure 9 shows an example of

M = 10 training samples. The x-axis gives the indices of

the training samples and the y-axis is their DTW distance

to the template of the user u. Along the x-axis, the samples

that are labeled ‘+’ are genuine training samples from the

user u while samples labeled ‘-’ are training samples from

other users. In this case, the upper-bound of dT is the dis-

tance between the template and the first ‘-’ sample along the

x-axis. In the experiment, we tried various threshold values

to construct the precision-recall curve and the ROC curve,

and hence to evaluate the system performance comprehen-

sively.

6 Experiment and Evaluation

In this section, we present experiment results to justify the

proposed verification method.

6.1 Data Acquisition

We use the Microsoft Kinect for data collection. In our col-

lected data, each sample is a short video clip that captures

the motion of signing one 3D-signature sample. The length

of the video clip may vary for each sample, but typically

is in the range of [2, 12] seconds. We set the frame rate to

the maximum allowed value (i.e., 30 frames per second),

and set the resolution of the depth image to 240× 320 pix-

els. The distance between the user and the Kinect was not

fixed, but was in the range of [1.5, 2.5] meters. We alter-

nated three Kinect sensors for data collection and did not

differentiate samples collected by different Kinect sensors

to validate that our algorithm is insensitive to individual

Kinect sensors.

In total, we studied 18 users, allowing each user to en-

roll up to two different 3D-signatures (e.g., ‘ma’ and ’Bry’

are from the same user). In total, these users provided 35
different 3D-signatures, which we call signatures hereafter.

For each signature, we collected 18 to 47 3D-signature sam-

ples over a period of five months so that we could capture

the possible 3D-signature variation over time. We collected

fewer samples for some signatures because the users were

not always available over the entire five months of data col-

lection. In total, we collected 1180 genuine 3D-signature

samples for 35 signatures, and hereafter we call these sam-

ples the genuine samples.

We further collected attack data to evaluate the security

performance of KinWrite against impersonation attempts.

In particular, we chose four signatures as the ‘victims’, and

for each victim, we collected five types of attack samples

that simulate five different attack models.

• CA. We chose six attackers to launch content-aware at-

tacks. We gave them the spelling of the victims’ pass-

words, without any hint of the passwords’ geometry or

shape. Then, each of these six attackers produced 10
forged 3D-signature samples for each victim. In total

we collected 6×10×4 = 240 CA attack 3D-signature

samples.

• Ob-1. We selected a different group of 12 attackers to

perform observer attacks. Each of them watched the

signing process of each victim once and then produced

five forged 3D-signature samples. Given the four vic-

tims, we collected 12× 5× 4 = 240 Ob-1 attack sam-

ples.

• Ob-4. The same 12 attackers continued to observe

the signing process of each victim three more times

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

n=2 n=3

n=4~12

(a) Precision-Recall curves

0 0.1 0.2 0.3 0.4
0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

n=2

n=3~12

(b) ROC Curves

Figure 10. Training performance of KinWrite with different n, the number of training samples for each

signature. For ROC curves, the range of x­axis is [0, 0.4] and the range of y­axis is [0.6, 1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

(a) Precision-Recall Curves

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(b) ROC Curves

Figure 11. The performance of KinWrite (by signatures) in normal cases. Each colored curve indicates
the performance of verifying one signature.

(in total four times) and then produced five forged 3D-

signature samples. In total, we collected 12× 5× 4 =
240 Ob-4 attack 3D-signature samples.

• CA-Ob4. After collecting the Ob-4 samples, we gave

the same 12 attackers the spelling of the passwords.

Then, each of these 12 attackers produced five new

forged 3D-signatures for each victim. In total we col-

lected 12× 5× 4 = 240 CA-Ob4 attack 3D-signature

samples.

• Insider. We told six attackers the spelling, showed

them three representative 3D-signature samples of

each victim (printout on papers), and let them watch

the signing process of each victim once. Each of these

six attackers then produced 10 forged 3D-signature

samples for each victim. This way, we collected

6 × 10 × 4 = 240 Insider attack 3D-signature sam-

ples in total.

Combining all five types of samples, we collected 240×
5 = 1, 200 attack 3D-signature samples. From CA sam-

ples to Insider samples, the attackers gained an increasing

amount of prior knowledge about the victims, representing

a broad range of security threats to KinWrite.

6.2 Evaluation Metrics

We adopted standard ROC curves and precision-recall

curves to evaluate the performance of KinWrite. For each

threshold dT , we tried m rounds. For round i, the classi-

fication results can be divided into the following four cate-

5 10 15 20 25 30 35
0

0.5

1

Siganatures

R
e

c
a

ll(
P

re
c
is

io
n

=
1

0
0

%
)

Figure 12. The performance of KinWrite in

normal cases: the averages and standard de­

viations of the achievable recall at a 100% pre­

cision.

gories: tpi, the number of true positives; tni, the number of

true negatives; fpi, the number of false positives, and fni,

the number of false negatives.

Precision is the percentage of honest users out of all the

users that have passed verification, and it reflects how cau-

tious the system is to accept a user. A secure system should

have a precision of 100% and will only let honest users pass

the verification. Formally,

Precision =

∑m
i=1 tpi

∑m
i=1 tpi +

∑m
i=1 fpi

.

Recall is the number of true positives over the sum of

true positives and false negatives. It quantifies the fraction

of honest users that have been granted access out of all hon-

est users, and it affects the user experience. Formally,

Recall =

∑m
i=1 tpi

∑m
i=1 tpi +

∑m
i=1 fni

.

A recall of 100% indicates that an honest user can always

pass the verification at her first trial. A recall of 50% indi-

cates that an honest user has a 50% probability of gaining

access. On average it takes 2 trials to pass the verification.

ROC curve stands for receiver operating characteristic

curve and is a plot of true positive rate (TPR) over false

positive rate (FPR). An ideal system has 100% TPR and

0% FPR, i.e., all honest users can pass the verification while

none of the attackers can fool the system.

TPR =

∑m
i=1 tpi

∑m
i=1 tpi +

∑m
i=1 fni

FPR =

∑m
i=1 fpi

∑m
i=1 fpi +

∑m
i=1 tni

.

By varying the threshold dT , we can achieve varied pre-

cision, recall, TPR and FPR values with which we can draw

precision-recall curves and ROC curves.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

Feature Index

R
a
te

All Samples

Training Samples

Figure 13. The impact of the sample size on

the feature weight selection: The weights ob­

tained over a randomly selected training set

with 4 samples are similar to the one obtained

over all samples.

6.3 Evaluation Results

We performed two sets of experiments utilizing the 3D-

signature samples collected over five months. The first set

of experiments studied the performance of KinWrite in a

normal scenario, where honest users want to authenticate

themselves. The second set of experiments studied the per-

formance of KinWrite under various attacks.

6.3.1 Normal Case Performance

In our first set of experiments, we divided the genuine sam-

ples into two sets: a training set and a test set. We randomly

selected a subset of n genuine samples for each of the 35
signatures as their training samples and let the remaining

samples be the test set. KinWrite selected a template for

each signature from the training samples, and then used the

test samples to evaluate the verification performance. To

study the statistical performance of KinWrite, we conducted

30 rounds of random folding, where for each round, a differ-

ent set of n samples were selected as training samples. We

reported the performance over the 30 rounds of experiments

and for all 35 signatures.

Training Size. We first conducted experiments to evalu-

ate the impact of training size n on the verification perfor-

mance. In each round, we randomly selected n samples as

the training samples. In total, M = 35 · n training sam-

ples were selected for all signatures. For each signature,

our template selector chose one template and sorted all M

training samples according to the DTW distances, as shown

in Figure 9. By varying the threshold dT , we obtained a

ROC curve and a precision-recall curve. As we tried n in

the range of [2, 12], we obtained a set of ROC curves and a

set of precision-recall curves, as shown in Figure 10, where

performance for each value of n is over 30 rounds and 35
signatures. We observe that the performance is not too sen-

sitive to the selection of n as long as n > 2, and when

n > 2, KinWrite can almost achieve a precision of 100%

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

(a) Equally weighted

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

(b) Without time warping

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

(c) Feature normalized to [0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

(d) Without Kalman filtering

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(e) Equally weighted

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(f) Without time warping

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(g) Feature normalized to [0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(h) Without Kalman filtering

Figure 14. The performance comparison of various methods (by signatures) in normal cases. Each

colored curve indicates the performance of verifying one signature. The top row shows the precision­

recall curves, and the bottom one shows the ROC curves.

and a recall of 90%. Thus in the remainder of our experi-

ments, we chose n = 4.

KinWrite Performance. Figure 11 shows the test per-

formance (ROC and precision-recall curves) of the 35 sig-

natures when the training sample size is 4. As before,

we tried 30 rounds of random folding for each signature,

and each curve represents the performance result averaged

over all 30 rounds for a signature. Our experimental re-

sults show that given a requirement of a 100% precision,

we can achieve at least a 70% recall or a 99% recall on

average. Assuming that 3D-signature samples are indepen-

dent, the probability that an honest user passes verification

is about 70%. Since the number of successes of n trials

can be considered as a Binomial distribution, the average

number of trials for a user to pass the verification is 1
70% .

In Figure 12, we show the averages of maximum achiev-

able recall for each signature when the precision was 100%,

from which we observed the following: 17 out of 35 signa-

tures can achieve a 100% recall; 13 signatures achieved a

recall higher than 95%, and the rest achieved a recall higher

than 85%. The results suggest that as with text passwords,

some 3D-signatures are better then others. Nevertheless in

our experiments, KinWrite can verify an honest user by 1.4
trials on average without false positives.

Feature Weight Selection and Its Impact. Since the

relevancy level of each feature (dimension) varies for veri-

fying a 3D-signature, we weigh each feature differently in

order to achieve a high verification performance. Weights

are selected based on the verification rate obtained purely

on a small training set. To understand how sensitive weight

selection is to training samples, we calculated weights when

different sets of the samples were used. In the first set of ex-

periments, we randomly selected 4 samples from each sig-

nature as the training samples. In total, M = 140 training

samples were selected for all signatures. For each signature,

we calculated the DTW distance between training samples

based on only a single feature. We chose the weight of that

feature as the average verification rate of all 35 signatures

(i.e., the percentage of true samples out of the top-ranked 4
samples, when verifiying each signature using all M sam-

ples). We repeated the process 10 rounds by selecting 10
different training sets for each signature, and depicted the

derived weights in Figure 13. We observed that the weights

obtained over training sample sets are similar to each other.

We also calculated the weights by considering all the avail-

able samples (shown in Figure 13). The resulting weights

are similar to the ones derived based on training sets, sug-

gesting that weight selection over a small training set suf-

fices.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

CA

Ob−1

Ob−4

CA&OB−4

Insider

Random

(a) Precision-Recall curves

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

CA

Ob−1

Ob−4

CA&OB−4

Insider

Random

(b) ROC Curves

Figure 15. The average performance (by signatures) in various attack scenarios.

0

0.2

0.4

0.6

0.8

1

CA Ob−1 Ob−4 CA&Ob−4 Insider Random

R
e
c
a
ll

(P
re

c
is

io
n
=

1
0
0
%

)

Bry
Jy

ma
Tj

(a) Achievable recall at a 100% precision

0

0.2

0.4

0.6

0.8

1

CA Ob−1 Ob−4 CA&Ob−4 Insider Random

P
re

c
is

io
n
 (

R
e
c
a
ll=

7
5
%

)

Bry
Jy

ma
Tj

(b) Achievable precision at a 75% recall

Figure 16. The performance (by signature) in various attack scenarios.

To evaluate the impact of weighted features on verifica-

tion performance, we modified KinWrite so that all 14 di-

mensions of the features were equally weighted. Figure 14

(a, e) show the verification performance on all 35 signa-

tures of this modified KinWrite. The results demonstrate

that the proposed weighting features can improve the veri-

fication performance.

The Role of Dynamic Time Warping. The proposed

DTW allows nonrigid warping along the temporal axis

when measuring the difference between two signatures. To

understand the impact of nonrigid warping on the verifica-

tion performance, we defined the difference between two

signatures (in the form of features) f1(t), t = 1, 2, · · · , N1

and f2(t), t = 1, 2, · · · , N2 as follows. We re-sampled the

signature features so that they had the same length, e.g.,

N = 50 points, and then calculated the Euclidean distance

between the two signature feature vectors. Figure 14 (b,

f) shows the verification performance (on all 35 signatures)

when using this difference metric without warping along the

temporal axis. The results show that the use of nonrigid

warping in DTW can substantially improve the verification

performance.

Impact of Kalman Filter and Feature Normalization.

We conducted experiments to justify the choice of Kalman

filter and feature normalization. First, we modified our Kin-

Write so that the Kalman filter was not included, or a dif-

ferent feature normalization method was used by the data

preprocessor, and then we conducted the experiment as be-

fore. Figure 14 (c, g) show the verification performance

on all 35 signatures when features were normalized linearly

to the range of [0, 1]. The results show that the proposed

feature normalization method based on N (0, 1) distribution

leads to a better performance. Figure 14 (d, h) show the

verification performance on all 35 signatures when the sig-

natures were not smoothed by the proposed Kalman filter.

From the results, we can conclude that the use of a Kalman

filter can improve the verification performance.

6.3.2 Attack Performance

In the attack experiments, we evaluated how robust Kin-

Write is against various types of attackers. We selected

four signatures as the victims with the spelling being “Bry”,

“Jy”, “ma”, and “Tj”, respectively. We considered the other

31 signatures acquired for the first set of experiments as ran-

dom attackers and collected forged data for all types of at-

tackers described in Section 6.1. Similar to the first set of

experiments, we divided samples into two sets: a training

set and a test set. For each type of attack, the training set of

a victim signature consists of 4 randomly chosen samples

from each victim signature and this type of attacker sam-

ples. The test set contains the rest of the samples from all

victims and this type of attacker.

For each type of attacker, we performed 30 rounds of

random folding. We averaged precision-recall curves and

ROC curves over 30 rounds for each victim and showed per-

formance results in Figure 15, where each type of attacker

has four identical-colored curves with each corresponding

to one of the four victims. The results show that KinWrite

can with a high probability reject random attackers. ‘Ran-

dom’ indicates a brute force attack– an attacker who has no

clue about the 3D-signatures and signs random texts hoping

to pass the verification. The results suggest that KinWrite is

robust against brute force attacks. For other types of attacks,

Kinwrite did not perform as well as for the random attacks,

which is not surprising since these types of attackers had

partial information about the signatures.

In Figure 16 (a), we summarized the maximum achiev-

able recall for each victim under all attack models, when

the precision is required to be 100%. This figure provides

insight on the trade-off between security and usability. For

instance, operator #1 may aim to tune KinWrite so that it

can prevent random attackers from passing verification with

a high confidence, while operator #2 may tune KinWrite to

block insider attackers. As a result, on average fewer tri-

als are required for an honest user to pass verification in the

first system than in the second system. Figure 16 (b) shows

the precision when the recall was 75%. This figure illus-

trates how easily an attacker can pass verification, when an

operator decides to tune KinWrite so that users can pass ver-

ification by 1
75% trials on average. In our experiments, we

observed that CA attackers, Ob attackers, and CA&Ob-4 at-

tackers had a slightly higher chance to pass verification than

random attackers, but KinWrite would reject all of them (5
types) with a probability of 97% on average and reject in-

sider attackers with a 75% probability on average.

In addition, the results suggest that the choice of signa-

ture affects the performance of KinWrite, since some sig-

natures are more robust to shoulder surfing than others. For

instance, the signature ‘Tj’ is the hardest to imitate among

all four signatures, and watching the signing motion mul-

tiple times did not improve the imitation. In comparison,

the signature ‘Bry’ was the easiest to mimic, and observ-

ing multiple times helped. The feedback from ‘attackers’

reveals the reason: ‘Bry’ was signed much more slowly

than ‘Tj’. Hence, the slow motion of ‘Bry’ made imita-

tion easier while the fast motion and the ambiguous shape of

the signature ‘Tj’made the task difficult. Interestingly, af-

ter we gave the spelling of the signatures ‘Bry’ and ‘Tj’

to the Ob-4 attackers, they could no longer mimic as well as

they used to, because they started to write the text in their

own style instead of purely emulating the signature motion.

In summary, our experiments show that KinWrite can

reject most attackers with a high probability. Even with a

strong attacker (i.e., an insider attacker), KinWrite perform

gracefully. In real application scenarios, many of these at-

tacks, especially Insider attacks, can be prevented by phys-

ical protection or by a good system design. For instance,

knowing the exact shape of a 3D-signature will increase the

chances of a successful attack, and thus KinWrite does not

display the signed 3D-signature in real time and only stores

the normalized feature vectors of templates.

7 Conclusion

We have designed a behavior-based authentication system

called KinWrite that can be used for building access control.

By letting users sign their passwords in 3D space, we turned

short and easy-to-crack passwords into behavioral biomet-

rics, i.e, 3D-signatures. KinWrite utilizes Kinect, a low-cost

motion input sensor, to capture fingertip movement when

a user signs her password in space, and constructs a 3D-

signature. To verify a user, based on her 3D-signatures

that may change over time, we extracted features that are

likely to contain personal gesture information, and we used

Dynamic Time Warping to calculate the similarity between

samples. One advantage of using DTW is that KinWrite

only needs to store one template for each user.

To evaluate the performance of KinWrite, we collected

1180 samples for 35 different signatures over five months.

In addition, we modelled 5 types of attackers who tried

to impersonate a legitimate user, and collected 1200 3D-

signature samples from 18 ‘attackers’. The evaluation re-

sults obtained using these samples show a 100% precision,

and a 99% recall on average in the presence of random at-

tackers, e.g., an attacker trying to impersonate a legitimate

user in a brute force manner; a 100% precision and a 77%
recall on average for all attackers. These results suggest

that KinWrite can deny the access requests from all unau-

thorized users with a high probability, and honest users can

acquire access with 1.3 trials on average.

Acknowledgement

The authors would like to thank all volunteers for their

help collecting data and Carter Bays for improving the pa-

per. This work has been funded in part by NSF CNS-

0845671, NSF GEO-1124657, AFOSR FA9550-11-1-0327,

NSF-1017199, and ARL W911NF-10-2-0060.

References

[1] Y. Zhang, F. Monrose, and M. K. Reiter, “The se-

curity of modern password expiration: an algorithmic

framework and empirical analysis,” in Proceedings of

the 17th ACM conference on Computer and communi-

cations security, 2010, CCS ’10, pp. 176–186.

[2] X. Suo, Y. Zhu, and G. S. Owen, “Graphical pass-

words: A survey,” in Proceedings of the 21st Annual

Computer Security Applications Conference, 2005,

ACSAC ’05, pp. 463–472.

[3] J. Cornwell, I. Fette, G. Hsieh, M. Prabaker, J. Rao,

K. Tang, K. Vaniea, L. Bauer, L. Cranor, J. Hong,

B. McLaren, M. Reiter, and N. Sadeh, “User-

controllable security and privacy for pervasive com-

puting,” in IEEE Workshop on Mobile Computing Sys-

tems and Applications (HotMobile), Feb 2007, pp. 14–

19.

[4] NSTC Subcommittee on Biometrics and Identity

Management, “Privacy & biometrics: Building a con-

ceptual foundation,” pp. 1–57, 2006.

[5] F. Tari, A. A. Ozok, and S. H. Holden, “A comparison

of perceived and real shoulder-surfing risks between

alphanumeric and graphical passwords,” in Proceed-

ings of the second symposium on Usable privacy and

security, 2006, SOUPS ’06, pp. 56–66.

[6] “Kinect,” http://www.xbox.com/en-US/KINECT.

[7] Z. Zhang, Chen Z, J. Shi, F. Jia, and M. Dai, “Sur-

face roughness vision measurement in different ambi-

ent light conditions,” Int. J. Comput. Appl. Technol.,

vol. 39, no. 1/2/3, pp. 53–57, Aug. 2010.

[8] K. Khoshelham, “Accuracy analysis of kinect depth

data,” GeoInformation Science, vol. 38, no. 5/W12,

pp. 1, 2010.

[9] R. Dhamija and A. Perrig, “Deja vu: a user study

using images for authentication,” in Proceedings of

the 9th conference on USENIX Security Symposium,

Aug. 2000, SSYM’00.

[10] S. Wiedenbeck, J. Waters, L. Sobrado, and J-C. Bir-

get, “Design and evaluation of a shoulder-surfing re-

sistant graphical password scheme,” in Proceedings of

the working conference on Advanced visual interfaces,

2006, AVI ’06, pp. 177–184.

[11] A. Forget, S. Chiasson, and R. Biddle, “Shoulder-

surfing resistance with eye-gaze entry in cued-recall

graphical passwords,” in Proceedings of the 28th in-

ternational conference on Human factors in comput-

ing systems, 2010, CHI ’10, pp. 1107–1110.

[12] L. D. Paulson, “Taking a graphical approach to the

password,” Computer, vol. 35, 2002.

[13] N. K. Ratha, J. H. Connell, and R. M. Bolle, “En-

hancing security and privacy in biometrics-based au-

thentication systems,” IBM Syst. J., vol. 40, no. 3, pp.

614–634, 2001.

[14] K. Revett, “A bioinformatics based approach to user

authentication via keystroke dynamics,” International

Journal of Control, Automation and Systems, vol. 7,

no. 1, pp. 7–15, 2009.

[15] F. Monrose, M. K. Reiter, and S. Wetzel, “Password

hardening based on keystroke dynamics,” in Proceed-

ings of the 6th ACM conference on Computer and

communications security, 1999, CCS ’99, pp. 73–82.

[16] N. Zheng, A. Paloski, and H. Wang, “An efficient

user verification system via mouse movements,” in

Proceedings of the 18th ACM conference on Com-

puter and communications security, 2011, CCS ’11,

pp. 139–150.

[17] A. A. E. Ahmed and I. Traore, “A new biometric tech-

nology based on mouse dynamics,” IEEE Transaction

on Dependable and Security Computing, vol. 4, no. 3,

pp. 165–179, 2007.

[18] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and

A. D. Rubin, “The design and analysis of graphi-

cal passwords,” in Proceedings of the 8th conference

on USENIX Security Symposium, Aug. 1999, vol. 8 of

SSYM’99, pp. 1–14.

[19] J. Richiardi, H. Ketabdar, and A. Drygajlo, “Local

and global feature selection for on-line signature veri-

fication,” in Proceedings of the 8th International Con-

ference on Document Analysis and Recognition, 2005,

ICDAR ’05, pp. 625–629.

[20] J. Fierrez-Aguilar, L. Nanni, J. Lopez-Pe nalba,

J. Ortega-Garcia, and D. Maltoni, “An on-line signa-

ture verification system based on fusion of local and

global information,” in Proceedings of the 5th inter-

national conference on Audio- and Video-Based Bio-

metric Person Authentication, 2005, AVBPA’05, pp.

523–532.

[21] H. Byun and S-W. Lee, “Applications of support vec-

tor machines for pattern recognition: A survey,” in

Proceedings of the First International Workshop on

Pattern Recognition with Support Vector Machines,

London, UK, 2002, SVM ’02, pp. 213–236, Springer-

Verlag.

[22] N. Cristianini and J. Shawe-Taylor, An introduction

to support Vector Machines: and other kernel-based

learning methods, Cambridge University Press, New

York, NY, USA, 2000.

[23] S. Haykin, Neural Networks: A Comprehensive Foun-

dation, Prentice Hall PTR, Upper Saddle River, NJ,

USA, 2nd edition, 1998.

[24] J. Fierrez, J. Ortega-Garcia, D. Ramos, and

J. Gonzalez-Rodriguez, “Hmm-based on-line sig-

nature verification: Feature extraction and signature

modeling,” Pattern Recognition Letters, vol. 28, pp.

2325–2334, 2007.

[25] D. Muramatsu and T. Matsumoto, “An hmm on-line

signature verifier incorporating signature trajectories,”

in Proceedings of the 7th International Conference on

Document Analysis and Recognition, 2003, vol. 1 of

ICDAR ’03, pp. 438–442.

[26] A. Jain, “On-line signature verification,” Pattern

Recognition, vol. 35, no. 12, pp. 2963–2972, Dec.

2002.

[27] A. Kholmatov and B. Yanikoglu, “Identity authen-

tication using improved online signature verification

method,” Pattern Recognition Letters, vol. 26, no. 15,

pp. 2400–2408, Nov. 2005.

[28] T. Ohishi, Y. Komiya, and T. Matsumoto, “On-line

signature verification using pen-position, pen-pressure

and pen-inclination trajectories,” in Proceedings of

the International Conference on Pattern Recognition,

2000, vol. 4, pp. 547–550.

[29] D. S. Guru and H. N. Prakash, “Online signature ver-

ification and recognition: An approach based on sym-

bolic representation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 31, pp. 1059–

1073, 2009.

[30] D. Muramatsu, K.K. Yasuda, and T. Matsumoto, “Bio-

metric person authentication method using camera-

based online signature acquisition,” in Proceedings of

the 2009 10th International Conference on Document

Analysis and Recognition, 2009, ICDAR ’09, pp. 46–

50.

[31] V. S. Nalwa, “Automatic on-line signature verifica-

tion,” in Proceedings of the IEEE third Asian Confer-

ence Computer Vision, 1997, pp. 215–239.

[32] A. Kubota., Y. Hatori., K. Matsuo, M. Hashimoto,

and A. Koike, “A study on biometric authentication

based on arm sweep action with acceleration sensor,”

in Proceedings of International Symposium on Intelli-

gent Signal Processing and Communication, 2006, pp.

219–222.

[33] J. Liuand L. Zhong, J. Wickramasuriya, and V. Va-

sudevan, “User evaluation of lightweight user au-

thentication with a single tri-axis accelerometer,” in

Proceedings of the 11th International Conference on

Human-Computer Interaction with Mobile Devices

and Services, 2009, MobileHCI ’09, pp. 15:1–15:10.

[34] M. Bashir, G. Scharfenberg, and J. Kempf, “Person

authentication by handwriting in air using a biometric

smart pen device.,” BIOSIG, pp. 219–226, 2011.

[35] L. Xia, C-C. Chen, and J. K. Aggarwal, “Human

detection using depth information by kinect,” in

Workshop on Human Activity Understanding from 3D

Data in conjunction with CVPR (HAU3D), Colorado

Springs, USA, 2011.

[36] C-C. Cko, M-C. Chen, T-F. Wu, S-Y. Chen, and C-

C. Yeh, “Cat motor: an innovative system to detect

the behavior of human computer interaction for peo-

ple with upper limb impairment,” in Proceedings of

the 4th international conference on Universal access

in human-computer interaction: applications and ser-

vices, Berlin, Heidelberg, 2007, UAHCI’07, pp. 242–

250, Springer-Verlag.

[37] D. Uebersax, J. Gall, M. V. den Bergh, and L. V. Gool,

“Real-time sign language letter and word recognition

from depth data,” in ICCV Workshops, 2011, pp. 383–

390.

[38] J. Garstka and G. Peters, “View-dependent 3d pro-

jection using depth-image-based head tracking,” in

Proceedings of the 8th IEEE International Workshop

on ProjectorCamera Systems (PROCAMS), 2004, pp.

52–57.

[39] J. L. Raheja, A. Chaudhary, and K. Singal, “Tracking

of fingertips and centers of palm using kinect,” Com-

putational Intelligence, Modelling and Simulation, In-

ternational Conference on, vol. 0, pp. 248–252, 2011.

[40] K. Khoshelham and S. O. Elberink, “Accuracy and

resolution of kinect depth data for indoor mapping ap-

plications,” Sensors, vol. 12, no. 2, pp. 1437–1454,

2012.

[41] P. O. Kristensson, T. Nicholson, and A. Quigley,

“Continuous recognition of one-handed and two-

handed gestures using 3d full-body motion tracking

sensors,” in Proceedings of the 2012 ACM interna-

tional conference on Intelligent User Interfaces, New

York, NY, USA, 2012, IUI ’12, pp. 89–92, ACM.

[42] E. Stone and M. Skubic, “Evaluation of an inexpen-

sive depth camera for in-home gait assessment,” Jour-

nal of Ambient Intelligence and Smart Environments.

[43] R. Plamondon and G. Lorette, “Automatic signature

verification and writer identification - the state of the

art,” Pattern Recognition, vol. 22, no. 2, pp. 107–131,

1989.

