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KIRCHHOFF ELASTIC RODS IN THE THREE-SPHERE
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Abstract. The Kirchhoff elastic rod is one of the mathematical models of thin elastic

rods, and is a critical point of the energy functional with the effect of bending and twisting.

In this paper, we study Kirchhoff elastic rods in the three-sphere of constant curvature. In

particular, we give explicit expressions of Kirchhoff elastic rods in terms of elliptic functions

and integrals. In addition, we obtain equivalent conditions for Kirchhoff elastic rods to be

closed, and give an example of closed Kirchhoff elastic rods.

1. Introduction. The mathematical models of thin elastic rods have been studied

since the days of Daniel Bernoulli and Leonhard Euler. One of the famous models is Eu-

ler’s elastica, which is a critical curve of the bending energy. The uniform symmetric case

of Kirchhoff elastic rods is a generalization of the elastica and is the simplest model with the

effect of bending and twisting.

Elasticae in Riemannian manifolds, except the Euclidean space, have been studied by

many authors in [1], [2], [4], [8], [13], [16], [17], [18], [21], etc. One of the motivations

of these papers is to investigate Willmore surfaces. Meanwhile, Kirchhoff elastic rods in

Riemannian manifolds, except the Euclidean space, are studied in [19], [10]. Langer and

Singer ([19]) derived the Hamiltonian systems associated to a class of variational problems,

including the Kirchhoff elastic rod in 3-dimensional space forms, R3, S3, H 3, and proved

their Liouville integrability.

In the case of the Euclidean 3-space R3, it is known that Kirchhoff elastic rods are ex-

plicitly expressed in cylindrical coordinates by Jacobi elliptic functions and integrals ([20],

[22]). By using these explicit expressions, Ivey and Singer ([7]) completely classified the

closed Kirchhoff elastic rods in R3 and determined their knot types.

In this paper, we study Kirchhoff elastic rods in the 3-sphere S3 of constant sectional

curvature. We give explicit expressions of Kirchhoff elastic rods in S3 in terms of Jacobi

elliptic functions and integrals, and obtain the equivalent conditions for Kirchhoff elastic rods

to be closed. Also, by using the closure conditions, we construct a smooth two-parameter

family of closed Kirchhoff elastic rods, including both helices and non-helices.

Let M be an n-dimensional Riemannian manifold. Let γ = γ (t) : [0, l] → M be a

smooth unit-speed curve, and M(t) = (M1(t),M2(t), . . . ,Mn−1(t)) a smooth orthonormal
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frame field in the normal bundle along γ . We consider the pair {γ,M} of γ and M . In

this paper, we call such a pair {γ,M} a curve with adapted orthonormal frame, and γ the

centerline of it. The frame field M describes the twisting of the material about the centerline

γ . We note that for each t , (γ ′(t),M1(t), . . . ,Mn−1(t)) is an orthonormal basis of the tangent

space to M at γ (t). Let ν be a positive constant, which is determined by the material of the

elastic rod. We define the energy T as follows:

T({γ,M}) =
∫ l

0

|∇tγ
′|2dt + ν

n−1
∑

i=1

∫ l

0

|∇⊥
t Mi |2dt .

Here, the first term of the right hand side is the bending (or elastic) energy of γ , and the

second term is the energy representing the effect of twisting.

In Section 2, we calculate the first variation formula for T and derive the Euler-Lagrange

equation. We call a solution {γ,M} of the Euler-Lagrange equation a Kirchhoff elastic rod.

In Section 3, we give explicit expressions of the curvature and torsion of the centerline of

a Kirchhoff elastic rod in M = R3, S3, H 3 of constant sectional curvature G, and then

parametrize the space of the congruent classes of Kirchhoff elastic rods by four real numbers

(Proposition 3.1). In the case of M = S3, we introduce another parametrization of the space

by four real numbers, which we will write as β, η, p, w.

Let M = S3 and {γ,M} a Kirchhoff elastic rod in M. Let ι : S3 → R4 be an isometric

embedding of S3 into R4, with the canonical coordinates (x1, x2, x3, x4), as the standard

sphere of radius 1/
√

G. For such an embedding ι, we take a local coordinate system (r, θ, ψ)

in S3 satisfying the following relations:

x1 = r cos θ , x2 = r sin θ , x3 = r̄ cos ψ , x4 = r̄ sin ψ ,

where r > 0 and r̄ =
√

(1/G) − r2. The coordinate system (r, θ, ψ) is analogous to the

system of cylindrical coordinates in R3, and each level surface of the coordinate r is a Clifford

torus instead of a cylinder.

To obtain the explicit expression for γ , we use the method of Killing vector fields used by

Langer and Singer ([15], [17], [20], [7]). In Section 4, we construct some Killing vector fields

associated to the Kirchhoff elastic rod {γ,M}. In Section 5, by using these Killing vector

fields, we give an appropriate orthogonal transformation P on R4 and take the coordinates

(r, θ, ψ) with respect to the embedding P ◦ ι : S3 → R4 instead of ι.

In Section 6, we give the explicit expressions of r , θ , ψ components of the centerline γ

in terms of Jacobi sn function and the incomplete elliptic integral of the third kind.

THEOREM 1.1 (cf. Theorem 6.1). Let {γ,M} be a Kirchhoff elastic rod in S3. Then

there exists an orthogonal transformation P on R4 satisfying the following: Let (r, θ, ψ) de-

note the coordinates as above with respect to the isometric embedding P ◦ ι : S3 → R4, and

r(t), θ(t), ψ(t) denote the r, θ, ψ components of γ . Then,

r(t) =
√

c1 sn2(c2t, c3) + c4 .
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Moreover, if there exist no points where r(t) = 0 or 1/
√

G (, a condition being satisfied by

generic Kirchhoff elastic rods), then

θ(t) = c5t + c6Π(c2t, c7, c3) ,

ψ(t) = c8t + c9Π(c2t, c10, c3) ,

where sn and Π denote Jacobi sn function and the incomplete elliptic integral of the third

kind, respectively. Also, c1, . . . , c10 are real constants, which are explicitly expressed by the

parameter (β, η, p,w) representing the congruent class of {γ,M}. Even when there exists a

point where r(t) = 0 or 1/
√

G, the explicit formulas of θ(t), ψ(t) are obtained in the same

way as above.

Here, we note that the elliptic modulus c3 satisfies 0 � c3 � 1. (In practice, c3 = p

holds. See below Section 3.) When c3 = 1, the shape of γ is quite different from the other

cases. The case of c3 = 1 is called the Hasimoto soliton case (see the last paragraph of

Section 4). Also, when c3 = 0, the centerline γ is a helix. Except these two special cases (the

helix case and the Hasimoto soliton case), r(t), θ ′(t), ψ ′(t) are periodic functions with the

same primitive period. Let ∆θ , ∆ψ denote respectively the changes in θ(t), ψ(t) through the

primitive period of r .

In Section 7, we express ∆θ , ∆ψ by the parameter (β, η, p,w) representing congruent

classes of Kirchhoff elastic rods (Proposition 7.1). We note that the functions ∆θ(β, η, p,w),

∆ψ(β, η, p,w) are explicitly expressed in terms of the complete elliptic integral of the first

and third kinds. We give an equivalent condition for {γ,M} to be a closed Kirchhoff elastic

rod, that is, a Kirchhoff elastic rod whose centerline is a periodic curve.

THEOREM 1.2 (cf. Theorem 7.2). Let {γ,M} be a Kirchhoff elastic rod in S3 corre-

sponding to (β, η, p,w). Assume that {γ,M} is neither of the helix case nor of the Hasimoto

soliton case. Then, {γ,M} is a closed Kirchhoff elastic rod if and only if ∆θ(β, η, p,w)/(2π)

and ∆ψ(β, η, p,w)/(2π) are both rational numbers.

In Section 8, by making use of this theorem, we give an example of closed Kirchhoff

elastic rods. Specifically, we construct a smooth two-parameter family of closed Kirchhoff

elastic rods including both helices and non-helices.

THEOREM 1.3 (cf. Theorem 8.1). There exists a smooth two-parameter family

{γ λ,ω,Mλ,ω} (0 � λ ≪ 1, |ω| ≪ 1) of closed Kirchhoff elastic rods satisfying the fol-

lowing. If λ = 0, then γ λ,ω is a helix, and if λ �= 0, then γ λ,ω is not a helix. Moreover, if λ1,

λ2 �= 0 and (λ1, ω1) �= (λ2, ω2) hold, then γ λ1,ω1 and γ λ2,ω2 are not congruent.

A closed Kirchhoff elastic rod whose centerline is a helix seems to be a relatively trivial

object. By the above theorem, we also see that there exist infinitely many non-trivial closed

Kirchhoff elastic rods.

2. The Euler-Lagrange equation. In this section, we calculate the first variation for-

mula for the energy T and derive the Euler-Lagrange equation. Unless otherwise specified,
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all manifolds, curves, vector fields, etc., are assumed to be smooth (= C∞). Let M be a

Riemannian manifold of dimension n (� 2). We denote by 〈 , 〉 the Riemannian metric of

M. Let γ = γ (t) : [0, l] → M be a regular curve. Let γ ′ be the tangent vector to γ ,

v(t) =
∣

∣γ ′(t)
∣

∣ =
〈

γ ′(t), γ ′(t)
〉1/2

the speed, and T (t) = (1/v(t))γ ′(t) the unit tangent vector.

We denote the length of γ by L(γ ) =
∫ l

0
vdt . We denote by TM the tangent bundle of M,

and by ∇ the Levi-Civita connection in TM, and use the symbols ∇t = ∇∂/∂t = ∇γ ′ . Also,

we denote by T ⊥M the normal bundle along γ , and by ∇⊥ the normal connection in T ⊥M.

To describe how the elastic rod is twisted, we utilize an orthonormal frame field M =
(M1,M2, . . . ,Mn−1) in T ⊥M. We consider the pair {γ,M} of γ and M . In this paper, we

call such a pair {γ,M} a curve with adapted orthonormal frame, and γ the centerline of

{γ,M}. Note that (T (t),M1(t), . . . ,Mn−1(t)) is an orthonormal basis of Tγ (t)M for each t .

Now, let ν be a positive constant. We define the energy T as follows:

T({γ,M}) =
∫ l

0

|∇T T |2vdt + ν

n−1
∑

i=1

∫ l

0

|∇⊥
T Mi |2vdt .

Note that T is invariant under reparametrization of t .

Let P, Q ∈ M. Let X = (X0,X1, . . . , Xn−1) be an orthonormal frame of TPM, and

Y = (Y0, Y1, . . . , Yn−1) an orthonormal frame of TQM. We denote by B(0, P,X; l,Q, Y ),

or simply by B, the space of {γ,M} satisfying the following conditions:

γ (0) = P , T (0)= X0 , M(0)= (X1, . . . , Xn−1) ,

γ (l) = Q, T (l) = Y0 , M(l) = (Y1, . . . , Yn−1) .

We denote by UB(0, P,X; l,Q, Y ), or simply by UB, the space of all elements {γ,M} of

B(0, P,X; l,Q, Y ) satisfying v(t) ≡ 1, and by Bl(0, P,X; l,Q, Y ), or simply by Bl , the

space of all elements {γ,M} of B(0, P,X; l,Q, Y ) satisfying L(γ ) = l. Note that UB ⊂
Bl ⊂ B.

Now we consider a variation of a curve with adapted orthonormal frame. Let {γ,M} be

a curve with adapted orthonormal frame defined on [0, l], and λ0 a positive number. Con-

sider a map γ̃ : (−λ0, λ0) × [0, l] → M, and M̃ = (M̃1, . . . , M̃n−1) an ordered set of

n − 1 vector fields along γ̃ . We denote by γ λ the curve defined by γ λ(t) = γ̃ (λ, t), and

by Mλ the ordered pair of n − 1 vector fields along γ λ defined by Mλ(t) = M̃(λ, t) =
(M̃1(λ, t), . . . , M̃n−1(λ, t)). The pair {γ̃ , M̃}, or the family {{γ λ,Mλ}} (|λ| < λ0), is called

a variation of {γ,M} if {γ λ,Mλ} is a curve with adapted orthonormal frame for each λ ∈
(−λ0, λ0) and {γ 0,M0} = {γ,M}.

We denote B, Bl , or UB by C. Let {γ,M} ∈ C. A variation {γ λ,Mλ} (|λ| < λ0) of

{γ,M} is called a C-variation if {γ λ,Mλ} ∈ C for each λ ∈ (−λ0, λ0). Also, {γ,M} is called

a C-critical point of T if
d

dλ

∣

∣

∣

∣

λ=0

T({γ λ,Mλ}) = 0

for any C-variation {γ λ,Mλ} of {γ,M}. We consider the following variational problem:

PROBLEM. Determine the UB-critical points of the energy T.
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Here note that our configuration space is UB, because the elastic rod is assumed to be

inextensible. We do not treat directly the above boundary value problem, but derive the Euler-

Lagrange equation in the rest of this section. In the following sections, we solve it in the case

where M = S3.

We now introduce the “tangent space” to B. Let {γ,M} ∈ B, and {γ λ,Mλ} (|λ| < λ0)

a variation of {γ,M}. We denote the tangent vector, the speed, the unit tangent, and the

curvature of γ λ by V λ(t) = Ṽ (λ, t), vλ(t) = ṽ(λ, t), T λ(t) = T̃ (λ, t), and kλ(t) = k̃(λ, t),

respectively. Then, k̃(λ, t) = |(∇T̃ T̃ )(λ, t)|, where ∇T̃ = ∇ γ̃ −1TM

(1/ṽ)(∂/∂t)
. We define Λ̃ and f̃

j
i

as follows:

Λ̃(λ, t) = ∂γ̃

∂λ
(λ, t) ,

f̃
j
i (λ, t) = 〈∇

Λ̃
M̃i, M̃j 〉 , 1 � i � n − 1 ,

where ∇Λ̃ = ∇ γ̃ −1TM

∂/∂λ . Let F̃ (λ, t) be the (n − 1) × (n − 1) matrix with j i components

f̃
j
i (λ, t). We denote the restriction of Λ̃, f̃

j
i and F̃ to λ = 0 by Λ(t), f

j
i (t) and F(t),

respectively, and denote ∇Λ̃

∣

∣

λ=0
by ∇Λ. In the same way as in page 99 of [9], it is verified

that

〈∇ΛM̃i , T 〉 = −〈Mi ,∇T Λ〉 .

Thus, the tangential component of ∇ΛM̃i is determined by Λ. Therefore, there is a one-to-one

correspondence between the pair (Λ,∇ΛM̃1, . . . ,∇ΛM̃n−1) and the pair (Λ,F ). We call the

pair (Λ,F ) the variation vector field of the variation {γ λ,Mλ}.
We define the following vector space:

T{γ,M}B =







Λ is a vector field along γ : [0, l] → M satisfying

(Λ,F ) ; Λ(0) = Λ(l) = 0, (∇T Λ)⊥(0) = (∇T Λ)⊥(l) = 0 , and

F : [0, l] → so(n − 1) is a curve satisfying F(l) = F(0) = 0 .







,

where (∇T Λ)⊥ is the normal component of ∇T Λ, so that (∇T Λ)⊥ = ∇T Λ − 〈∇T Λ,T 〉 T ,

and so(n − 1) stands for the vector space of all (n − 1) × (n − 1) skew symmetric matrices.

Then the following lemma holds. Therefore, the vector space T{γ,M}B can be viewed as the

tangent space to B at {γ,M}. (The proof is similar to those of Lemma 2.8 of [9] and Lemma

3.1 of [10].)

LEMMA 2.1. Let {γ,M} ∈ B. If {γ λ,Mλ} (|λ| ≪ 1) is a B-variation of {γ,M}, then

the variation vector field (Λ,F ) belongs to T{γ,M}B. Conversely, for an arbitrary (Λ,F ) ∈
T{γ,M}B, there exists a B-variation {γ λ,Mλ} whose variation vector field is (Λ,F ).

In order to apply the Lagrange multiplier principle, we define a functional Tµ by

T
µ({γ,M}) = T({γ,M}) + µL(γ )

for a constant µ ∈ R. The first variation formula for Tµ is calculated as follows (cf. [9], [10],

[17]). We use the sign convention of the curvature tensor R corresponding to that of [12], that

is, R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.
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PROPOSITION 2.2. Let {γ,M} ∈ B, and {γ λ,Mλ} (|λ| ≪ 1) a B-variation of {γ,M}.
Let (Λ,F ) denote the variation vector field of the variation {γ λ,Mλ}. Then,

d

dλ

∣

∣

∣

∣

λ=0

T
µ({γ λ,Mλ}) =

∫ l

0

〈

∇T

[

2(∇T )2T +
(

3|∇T T |2 − µ + ν

n−1
∑

i=1

|∇⊥
T Mi |2

)

T

− 4ν

n−1
∑

i=1

〈∇T T ,Mi〉∇⊥
T Mi

]

+ 2R(∇T T , T )T + 2ν

n−1
∑

i=1

R(∇⊥
T Mi ,Mi)T , Λ

〉

vdt

− 2ν

n−1
∑

i,j=1

∫ l

0

(T 〈∇⊥
T Mi ,Mj 〉)f j

i vdt .

Since the functional T is invariant under reparametrization of t , we see that {γ,M} is

a UB-critical point of T if and only if {γ,M} is a Bl-critical point of T. Thus, by using the

Lagrange multiplier principle, we have the following lemma.

LEMMA 2.3. Let {γ,M} ∈ UB. Suppose that γ is not a geodesic. Then {γ,M} is

a UB-critical point of T if and only if there exists a constant µ ∈ R such that {γ,M} is a

B-critical point of Tµ.

Hence, by Proposition 2.2 and Lemma 2.3, we obtain

PROPOSITION 2.4. Let {γ,M} ∈ UB. Suppose that γ is not a geodesic. Then {γ,M}
is a UB-critical point of T if and only if {γ,M} satisfies the following equations for some real

constant µ.

∇T

[

2(∇T )2T +
(

3|∇T T |2 − µ + ν

n−1
∑

i=1

|∇⊥
T Mi |2

)

T − 4ν

n−1
∑

i=1

〈∇T T ,Mi〉∇⊥
T Mi

]

+ 2R(∇T T , T )T + 2ν

n−1
∑

i=1

R(∇⊥
T Mi ,Mi)T = 0 ,

(2.1)

d

dt
〈∇⊥

T Mi ,Mj 〉 = 0 , 1 � i, j � n − 1 .(2.2)

Also, the constant µ is uniquely determined.

In this paper, we define a Kirchhoff elastic rod as follows.

DEFINITION 2.5. Let {γ,M} be a unit-speed curve with adapted orthonormal frame.

Then {γ,M} is said to be a Kirchhoff elastic rod if {γ,M} satisfies (2.1) and (2.2) for some

µ ∈ R.

From now on, let M be R3, S3 or H 3 of constant sectional curvature G. We fix an

orientation of M, and denote by × the vector product. Then (2.2) is equivalent to that there
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exists a constant a ∈ R such that

〈∇⊥
T M1, T × M1〉 = a .(2.3)

Substituting (2.3) to (2.1) yields

∇T

[

2(∇T )2T + (3|∇T T |2 − (µ − 2G) + 2νa2)T − 4νaT × ∇T T

]

= 0 .(2.4)

Therefore, {γ,M} is a Kirchhoff elastic rod if and only if there exist two constants a, µ such

that (2.4) and (2.3) hold. In this paper, we call the constant a the twist rate of {γ,M}. (In [9],

the term “torsional parameter” is used.) When γ is not a geodesic, the constant µ is uniquely

determined, and is called the Lagrange multiplier of {γ,M}.
We denote by Rt (ϕ) the rotation on the normal vector space T ⊥

γ (t)M by angle ϕ. (Its

direction is determined by the requirement that Rt (π/2)(Y1) = Y2, where (T , Y1, Y2) is a

positive orthonormal frame of Tγ (t)M.) For a function ψ(t) and a normal vector field X(t)

along γ , R (ψ) X is defined by (R (ψ) X)(t) = Rt (ψ(t))X(t).

Let {γ,M} be a curve with adapted orthonormal frame, and W1 a unit normal along γ

satisfying ∇⊥
T W1 = 0. Suppose that M1 is expressed as M1 = R (ψ) W1. Then, in the same

way as in Proposition 2.2 of [9], we have T ψ = 〈∇⊥
T M1, T × M1〉. Therefore, if {γ,M} is a

Kirchhoff elastic rod with twist rate a, then M1 is expressed as M1 = R (at + ψ0) W1, where

ψ0 ∈ R. The physical meaning of (2.3) is that the twist of a Kirchhoff elastic rod is uniformly

distributed along the curve.

The equation (2.4) with ν = 0 is just the equation of elastica (cf. (1.1) of [17]). It is

easily verified that {γ,M} is a Kirchhoff elastic rod with twist rate 0 if and only if γ is an

elastica and M is parallel with respect to the normal connection along γ .

Finally, we note that if {γ (t),M(t)} is a Kirchhoff elastic rod in M = R3, S3 or H 3,

then both γ (t) and M(t) are real analytic in t . The proof is similar to that of Proposition 2.13

in [9].

3. Curvature and torsion of Kirchhoff elastic rods. In this section, we obtain ex-

plicit expressions of the curvature and torsion of the centerline of a Kirchhoff elastic rod in

M = R3, S3 or H 3 of constant sectional curvature G, and introduce a parametrization of the

space of congruent classes of Kirchhoff elastic rods (Proposition 3.1). In the case of S3, we

introduce, in the last of this section, another parametrization of the space, which is mainly

used in Sections 6, 7 and 8. From now on, we always assume that the centerline of a curve

with adapted orthonormal frame is a unit-speed curve.

We define a congruent class of curves with adapted orthonormal frames. Consider the

following transformations which transform {γ (t),M(t)} into

{γ (±(t − t1)),M(±(t − t1))}, where t1 ∈ R ,(3.1)

{S ◦ γ, S∗M}, where S is an isometry of M , and S∗ is the differential map of S,(3.2)

{γ,Mϕ}, where ϕ ∈ O(2) ,(3.3)
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respectively. A map of finite compositions of the above transformations (3.1), (3.2), and (3.3)

is called a congruent transformation. Two curves with adapted orthonormal frames {γ,M}
and {γ̃ , M̃} are called congruent if {γ,M} can be transformed into {γ̃ , M̃} by a congruent

transformation.

First, we examine a Kirchhoff elastic rod whose centerline is a geodesic. Let {γ,M} be

a curve with adapted orthonormal frame such that γ is a geodesic, and let W1(t) be a unit

normal along γ satisfying ∇⊥
T W1 = 0. Then (2.4) holds for any a, µ. Thus, {γ,M} is a

Kirchhoff elastic rod if and only if M1 is expressed as M1(t) = R (at + ψ0) W1(t), where a

and ψ0 are arbitrary two constants. A Kirchhoff elastic rod whose centerline is a geodesic is

a relatively trivial object.

In the rest of the paper, we always assume that the centerline of a Kirchhoff elastic rod

is not a geodesic, that is, the curvature of γ is not identically zero.

Let k denote the curvature of γ . Suppose that k is positive everywhere. We denote by τ

the torsion, and by (T ,N,B) the Frenet frame of γ , where the direction of B is determined

by the requirement B = T × N . Then the following Frenet formulas hold.

∇T T = kN , ∇T N = −kT + τB , ∇T B = −τN .(3.4)

Suppose that M1(t) is expressed as M1(t) = R (ϕ(t)) N(t), where ϕ(t) is a function of t .

Then, by a calculation similar to that in page 105 of [9], we have 〈∇⊥
T M1, T × M1〉 = ϕ′ + τ .

Thus, if {γ,M} is a Kirchhoff elastic rod, then

ϕ′ + τ = a .(3.5)

In the proposition below, we derive the equations of k and τ by substituting (3.4) to (2.4),

and solve them in terms of Jacobi sn function (cf. Lemma 4.1 of [9], Section 2 of [17]). Let

sn, cn, dn denote Jacobi sn, cn, dn functions, respectively (cf. [3]).

PROPOSITION 3.1. The space of all congruent classes of Kirchhoff elastic rods (except

geodesics) in M = R3, S3 or H 3 defined on R corresponds to the parameter space D =
D̃/∼, where

D̃ = {(a+, α1, α2, α3) ∈ R4 ; −α1 � 0 � α2 � α3, α3 > 0} ,

and the equivalence relation ∼ is defined as follows: If α1 = 0 or α2 = 0, then

(a+, α1, α2, α3) ∼ (−a+, α1, α2, α3).

An element [(a+, α1, α2, α3)] of D corresponds to the congruent class of Kirchhoff elas-

tic rods with twist rate ±a+, whose squared curvature u(t) and torsion τ (t) are expressed as

follows:

u(t) = α3(1 − q2 sn2(y(t − t0), p)) ,(3.6)

τ (t) = ±
(√

α1α2α3

2u(t)
+ νa+

)

,(3.7)
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where t0 ∈ R is a constant and

p =
√

α3 − α2

α3 + α1
, q =

√

α3 − α2

α3
, y =

√
α1 + α3

2
.(3.8)

Here the double sign of a+ and that of the right hand side of (3.7) are in the same order.

PROOF. Let {γ (t),M(t)} be a Kirchhoff elastic rod defined on R. Let a and µ denote

the twist rate and Lagrange multiplier of {γ,M}, respectively. We determine (a+, α1, α2, α3) ∈
D̃ by dividing the argument into three cases.

Case 1. Generic case: Nonvanishing and nonconstant curvature case.

We first consider the case that the curvature k of γ is not constant and k(t) > 0 for all t .

Substituting the Frenet formulas (3.4) to the Euler-Lagrange equation (2.4), we have

2k′′ + k3 + (2νa2 − (µ − 2G))k − 2kτ(τ − 2νa) = 0 ,(3.9)

k2(τ − νa) = b ,(3.10)

where b is a constant.

Using the substitution τ = b/k2 +νa and multiplication by k′ and integration, we obtain

(k′)2 + k4

4
+ 1

2
(2νa2 − (µ − 2G) + 2ν2a2)k2 + b2

k2
= c ,(3.11)

where c is a constant. For {γ,M}, the four constants µ, a, b, c are determined.

By the change of variable u = k2, we get

(u′)2 = −u3 − 2(2νa2 − (µ − 2G) + 2ν2a2)u2 + 4cu − 4b2 .(3.12)

Denote by Q(u) the right hand side of (3.12). Since Q(0) = −4b2 � 0, the minimum real

root of the cubic equation Q(u) = 0 is nonpositive, which we denote by −α1. Furthermore,

since u′ is not identically zero, there exists some u > 0 such that the cubic polynomial Q(u)

is positive. Therefore the equation Q(u) = 0 has at least one positive root. We denote by α3

the maximum of these positive roots, and by α2 the other root of the cubic equation. Since

Q(0) � 0, we have α2 � 0. Also, since there exists some u > 0 such that Q(u) > 0, we

see α2 �= α3. Hence, −α1 � 0 � α2 < α3. The real numbers α1, α2, α3 are related to the

parameters µ, a, b, c by

2(2νa2 − (µ − 2G) + 2ν2a2) = α1 − α2 − α3 ,(3.13)

−4c = −α1α2 + α2α3 − α1α3 ,(3.14)

4b2 = α1α2α3 .(3.15)

The solution of the ordinary differential equation (u′)2 = Q(u) is expressed in terms of

Jacobi sn function and the parameters α1, α2, α3 as (3.6), where t0 ∈ R and p, q , y are defined

by (3.8).

Since k(t) is assumed to be positive everywhere, we have

α2 �= 0 or α1 = α2 = 0 .(3.16)
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Let K(p) denote the complete elliptic integral of the first kind (cf. [3], [17]). If α2 �= 0,

then u(t) is a (2K(p)/y)-periodic function, that is, a periodic function with primitive period

2K(p)/y, and attains the maximum (resp. minimum) value α3 (resp. α2) at t0 + 2mK(p)/y

(resp. t0 + (2m + 1)K(p)/y), where m is an integer. If α1 = α2 = 0 (⇔ p = 1), then u(t)

becomes α3sech2(y(t − t0)), which is not periodic and attains the maximum value α3 at t0,

and converges to 0 as t → ±∞.

We set a+ = a if b � 0, and a+ = −a if b < 0. Then, by (3.10) and (3.15), we have

(3.7), where the upper sign is taken if b � 0, and the lower sign if b < 0.

For {γ,M}, (a+, α1, α2, α3) ∈ D̃ satisfying α2 �= α3 and (3.16) is determined as above.

The squared curvature and the torsion of γ are expressed as (3.6) and (3.7), and the twist rate

is ±a+.

Case 2. Constant curvature case.

We consider the case that k(t) is a positive constant. The constants µ, a, b, c are deter-

mined in the same way as in Case 1. By (3.10), the torsion τ (t) is also constant. Therefore, γ

is a helix. We formally define the parameters α1, α2, α3 in terms of the squared curvature u,

the torsion τ , and the twist rate a as follows.

α1 = 4 (τ − νa)2 , α2 = α3 = u .

We define a+ in the same way as in Case 1.

For {γ,M}, (a+, α1, α2, α3) ∈ D̃ satisfying α2 = α3 is determined as above, and the

squared curvature, the torsion, and the twist rate are expressed as (3.6), (3.7), and ±a+, re-

spectively, where the upper sign is taken if b � 0, and the lower sign if b < 0. Here we note

that it follows from (3.9) and (3.11) that

µ = u + 2νa2 − 2τ (τ − 2νa) + 2G , c = −u2

4
+ 2u(τ − νa)2 .

Therefore, α1, α2, α3 defined as above satisfy the relations (3.13), (3.14) and (3.15).

Case 3. The case that γ has inflection points.

We finally consider the case that γ has an inflection point, that is, a point where k(t)

vanishes. In this case, we restrict the argument of Case 1 to an open interval I on which k(t)

is positive. Then there exist α1, α2, α3 satisfying −α1 � 0 � α2 < α3, and the squared

curvature u is expressed as (3.6) on I . This expression is valid for the whole R, because u

is real analytic on R. Thus we can verify that the parameters α1, α2, α3 determined as above

are independent of the choice of the open interval I . Also, since there exists a point such that

u(t) = 0, we see q = 1 and p �= 1. Thus, α2 = 0 and α1 �= 0. Consequently, the curvature is

expressed as

k(t) = √
α3 |cn(y(t − t0), p)| ,

which vanishes at t = t0 + (2m + 1)K(p)/y, and the torsion τ is νa except at the inflection

points. We define a+ in the same way as in the other cases. Since b = 0, a+ = a.
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For {γ,M}, (a+, α1, α2, α3) ∈ D̃ satisfying α2 = 0 and α1 �= 0 is determined as above,

and the squared curvature, the torsion, and the twist rate are expressed as (3.6), (3.7), and a+,

respectively, where the upper sign is taken.

In each case, {γ,M} determines (a+, α1, α2, α3) ∈ D̃ as mentioned above. We can check

that the parameters µ, a, b, c, α1, α2 and α3 are invariant under the transformations (3.1) and

(3.3). Also, if S is an orientation-preserving isometry, then they are invariant under (3.2),

and if S is an orientation-reversing isometry, then they are transformed to µ, −a, −b, c, α1,

α2 and α3 by (3.2). Therefore, if b �= 0, then (a+, α1, α2, α3) is invariant under congruent

transformations. Also, if b = 0, that is, α1 = 0 or α2 = 0, then it is invariant or transformed to

(−a+, α1, α2, α3). Consequently, [(a+, α1, α2, α3)] ∈ D is determined only by a congruent

class of {γ,M}.
Conversely, we take an arbitrary [(a+, α1, α2, α3)] ∈ D. In the same way as in the

argument in pages 122–123 of [9], we can construct a unique Kirchhoff elastic rod {γ,M} (up

to congruent transformations) which yields [(a+, α1, α2, α3)]. Therefore the above map which

sends a congruent class of Kirchhoff elastic rods to [(a+, α1, α2, α3)](∈ D) is bijective. ✷

For the use in Lemma 6.3, we define the generalized Frenet frame along γ in the case

where γ has inflection points. In this case, the Frenet frame (T ,N,B) is not defined at in-

flection points. However, it is verified that there exists a real analytic orthonormal frame field

(T , N̂, B̂) along γ such that

∇T T = k̂N̂ , ∇T N̂ = −k̂T + τ B̂ , ∇T B̂ = −τN̂ ,(3.17)

where

k̂(t) = √
α3 cn(y(t − t0), p) , τ (t) = νa .

We call k̂ the signed curvature of γ , and (T , N̂, B̂) the generalized Frenet frame along γ .

Then, at a point where k̂(t) > 0 (resp. k̂(t) < 0), the curvature is equal to k̂(t) (resp. −k̂(t)),

and the (ordinary) Frenet frame (T ,N,B) is equal to (T , N̂, B̂) (resp. (T ,−N̂,−B̂)). Hence

we obtain that if γ (t1) is an inflection point, then limt→t1−0 N(t) = − limt→t1+0 N(t) and

limt→t1−0 B(t) = − limt→t1+0 B(t). Also, the torsion is equal to τ = νa except at the

inflection points.

Now, in the case of M = S3, that is, G > 0, we introduce the following parameters β,

η, p and w defined by

β = α3

G
, η = a+√

α3
, p =

√

α3 − α2

α3 + α1
, w =

√

α3

α3 + α1
.(3.18)

Then,

q = p

w
, y =

√
Gβ

2w
.

Also,

a+ = η
√

Gβ , α1 = Gβ(1 − w2)

w2
, α2 = Gβ(w2 − p2)

w2
, α3 = Gβ .(3.19)
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Under the relations (3.18) and (3.19), D̃ has a one-to-one correspondence with

P̃ = {(β, η, p,w) ∈ R4; β > 0, 0 � p � w � 1, w > 0} .

We set P = P̃/∼, where the equivalence relation ∼ is defined as follows: If p = w or w = 1,

then (β, η, p,w) ∼ (β,−η, p,w). Then, P is in one-to-one correspondence with D.

In Sections 6, 7 and 8, we often use the space P rather than D. We note that γ is a helix

if and only if p = 0, and γ has inflection points if and only if p = w �= 1. Also, k is not

periodic if and only if p = 1 (⇔ p = w = 1). The case of p = 1 is called the Hasimoto

soliton case (see the last paragraph of Section 4).

4. Construction of Killing vector fields. Let {γ,M} be a Kirchhoff elastic rod in

M = S3, H 3 or R3. (In what follows after Proposition 4.3, we assume M = S3.) In this

section, we construct some Killing vector fields associated to {γ,M}, which play an essential

role in Sections 5 and 6. Unless otherwise specified, we assume, in the rest of the paper, that

t0 in (3.6) is zero, and the orientation of the frame (T ,M1,M2) is positive.

Let J and H be the vector fields along γ defined by

J = 2(∇T )2T + (3k2 − µ + 2νa2)T − 4νaT × ∇T T ,

H = 2νaT + T × ∇T T .

Since γ is real analytic, so are J and H . We have the following proposition. (In the case of

G = 0, see [9], [20]. In the case of ν = 0, see [17], [15].)

PROPOSITION 4.1. The vector fields J, H along γ are uniquely extended to Killing

vector fields on M.

To prove this, we need the following lemma, whose proof is omitted.

LEMMA 4.2 ([17], [15]). Let M be R3, S3 or H 3 of constant sectional curvature G.

Let γ = γ (t) be a unit-speed C∞ curve in M whose curvature k(t) is positive everywhere.

Let Λ be a C∞ vector field along γ . Then Λ can be extended to a Killing vector field on M

if and only if Λ satisfies the following system of differential equations.

〈∇T Λ,T 〉 = 0 ,(4.1)

〈

(∇T )2Λ + GΛ,N
〉

= 0 ,(4.2)

〈

(∇T )3Λ − k′

k
(∇T )2Λ + (G + k2)∇T Λ − k′

k
GΛ,B

〉

= 0 ,(4.3)

where (T ,N,B) is the Frenet frame along γ . Moreover, the Killing vector field is uniquely

determined. (Such a vector field Λ is said to be a Killing vector field along γ .)

PROOF OF PROPOSITION 4.1. Since γ , J and H are real analytic, it suffices to show

that J and H satisfy (4.1), (4.2) and (4.3) on an open interval where k > 0. By using the
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Frenet frame, J, H are expressed as follows:

J = (k2 − µ + 2νa2)T + 2k′N + 2k(τ − 2νa)B ,(4.4)

H = 2νaT + kB .(4.5)

By (2.4), ∇T (J + 2GT ) = 0. Thus,

∇T J = −2GkN , (∇T )2J = −2G(−k2T + k′N + kτB) .

Therefore we see that J satisfies (4.1) and (4.2). Also,

〈(∇T )3J ,B〉 = −2G(2k′τ + kτ ′) ,

from which we have
〈

(∇T )3J − k′

k
(∇T )2J + (G + k2)∇T J − k′

k
GJ,B

〉

= −2G

k
[k2(τ − νa)]′ .

By (3.10), the right hand side of the above expression is equal to zero. Therefore J satisfies

(4.3). It is easy to verify that H satisfies (4.1). Also,

〈(∇T )2H,N〉 = −1

k
[k2(τ − νa)]′ = 0 .

Hence H satisfies (4.2). By (3.9), we have

〈(∇T )3H,B〉 = −1

2
[k3 + (2νa2 − (µ − 2G))k]′ ,

from which follows that
〈

(∇T )3H − k′

k
(∇T )2H + (G + k2)∇T H − k′

k
GH,B

〉

= −k′

2k
[2k′′ + k3 + (2νa2 − (µ − 2G))k − 2kτ(τ − 2νa)] = 0 .

Therefore H satisfies (4.3). ✷

Let J̃ and H̃ denote the unique extensions of J and H as Killing vector fields on M. If

M = R3, then we see, with a few exceptions, that J̃ is a non-zero constant vector filed and

H̃ is a Killing vector field corresponding to a screw motion around an axis parallel to J̃ , so

that we can construct the cylindrical coordinates associated to J̃ and H̃ (cf. [9], [20]).

From now on, we always assume M = S3. Let I+ and I− be the vector fields along γ

defined by

I+ = J + 2
√

GH , I− = J − 2
√

GH .

PROPOSITION 4.3. The vector fields I+ and I− along γ are uniquely extended to

Killing vector fields on S3.

PROOF. It suffices to show that I+ and I− satisfy (4.1), (4.2) and (4.3) on an open

interval where k > 0. Since J and H satisfy (4.1), (4.2) and (4.3) and these differential

equations are linear, I+ and I− also satisfy these equations. ✷
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Let Ĩ+ and Ĩ− denote the unique extensions of I+ and I− as Killing vector fields on S3.

By using J̃ , H̃ , Ĩ+ and Ĩ−, we construct an appropriate system of local coordinates in Section

5. Now, we show that J , H , I+ and I− have the following property.

PROPOSITION 4.4. The functions 〈J,H 〉 , |I+| and |I−| on R are constant.

PROOF. Since these functions are real analytic, it suffices to show that they are constant

on an open interval where k > 0. By (4.4), (4.5) and (3.10), we have

〈J,H 〉 = 2b + 2(2νa2 − µ)νa = 2d = const. ,(4.6)

where we set

d = b + (2νa2 − µ)νa .

Also, by (3.10) and (3.11),

|J |2 = (4c − 4Gk2) + (2νa2 − µ)2 − 8νab .(4.7)

Thus we have

|I±|2 = |J |2 + 4G |H |2 ± 4
√

G 〈J,H 〉
= 4c + (2νa2 − µ)2 − 8νab + 16Gν2a2 ± 8d

√
G = const.

✷

In the rest of this section, we give a corollary of Proposition 4.1 relevant to the vortex

filament equation. (In the following sections, there is no need to use this corollary.) We

consider the following evolution equation for curves in a 3-dimensional oriented Riemannian

manifold M:

∂γ̃

∂λ
= ∂γ̃

∂t
× ∇t

∂γ̃

∂t
,(4.8)

where γ̃ = γ̃ (λ, t) : R × R → M and λ denotes the time and t the parameter along the

curve. The equation (4.8) is known as the vortex filament equation ([5], [6], [11], [14], [20]),

which is an idealized model of the evolution of vortex filaments in three dimensional inviscid

incompressible fluids. (This equation is also called the localized induction equation or the

Betchov-Da Rios equation.)

The definition of H and an easy calculation yield the following corollary, which extends

Corollary 4 of [20] to 3-dimensional space forms R3, S3, H 3.

COROLLARY 4.5. Let M = R3, S3 or H 3. Let γ be the centerline of a Kirchhoff elas-

tic rod in M with twist rate a. Then, γ̃ (λ, t) := (Exp λH̃ )◦γ (t −2νaλ) satisfies the equation

(4.8), where Exp λH̃ (λ ∈ R) is the one-parameter group of isometries on M generated by

the Killing vector filed H̃ .

Therefore, the centerline γ of a Kirchhoff elastic rod evolves under the equation (4.8)

without changing shape. When p = 1, the shape of γ is of the soliton type. In the case of

M = R3, this soliton solution was discovered by Hasimoto in [6] (see also [11]). For this

reason, the case of p = 1 is called the Hasimoto soliton case.
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5. Construction of the coordinates. In this section, we construct a local coordinate

system associated to the Killing vector fields J̃ , H̃ , Ĩ+ and Ĩ−. We embed S3 isometrically

into the 4-dimensional Euclidean space R4 as the standard sphere of radius 1/
√

G:

S3 = S3(1/
√

G) = {t (x1, x2, x3, x4) ∈ R4 ; x2
1 + x2

2 + x2
3 + x2

4 = 1/G} .

Let ι : S3 →֒ R4 denote the inclusion map. We denote the Euclidean inner product on R4 and

the Riemannian metric on S3 by the same notation 〈 , 〉.
For such an embedding ι, we take a local coordinate system (r, θ, ψ) in S3 satisfying the

following relations:

x1 = r cos θ , x2 = r sin θ , x3 = r̄ cos ψ , x4 = r̄ sin ψ ,

where r > 0 and

r̄ =
√

1/G − r2 .

Note that each level surface of the coordinate r is a Clifford torus. (When r = 0 or 1/
√

G, it

degenerates to a great circle.) The coordinate vector fields ∂/∂r , ∂/∂θ , ∂/∂ψ are orthogonal,

and the lengths of these are given by
∣

∣

∣

∣

∂

∂r

∣

∣

∣

∣

= 1√
Gr̄

,

∣

∣

∣

∣

∂

∂θ

∣

∣

∣

∣

= r,

∣

∣

∣

∣

∂

∂ψ

∣

∣

∣

∣

= r̄ .

Now, for a Killing vector field Y on S3, there exists a unique skew symmetric 4×4 matrix

A, called the matrix representation of the Killing vector field Y with respect to ι, satisfying

Y (x) = Ax , x = t (x1, x2, x3, x4) ∈ S3 .

It should be noted that ∂/∂θ , ∂/∂ψ are naturally extended to the Killing vector fields on S3

represented by the following skew symmetric matrices E1, E2, respectively.

E1 =









0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0









, E2 =









0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0









.

We denote the extensions of ∂/∂θ , ∂/∂ψ to S3 by the same notation.

In what follows, we give an appropriate P ∈ O(4) and construct (r, θ, ψ) with respect

to the embedding P ◦ ι. First, we consider the case where the parameter p > 0.

LEMMA 5.1. Suppose that p > 0. Then the functions 〈J̃ , H̃ 〉, |Ĩ+|, |Ĩ−| on S3 are

constant.

PROOF. Seeking a contradiction, we suppose that |Ĩ+| is not constant on S3. Let A

be the matrix representation of Ĩ+. Then there exists P ∈ O(4) such that PAP−1 is of the

canonical form, that is, PAP−1 = σ1E1 + σ2E2, where σ1, σ2 are real constants. Hence the

matrix representation of Ĩ+ with respect to P ◦ ι is σ1E1 + σ2E2. We rewrite P ◦ ι as ι. By

the assumption |Ĩ+| �≡ const., we see |σ1| �= |σ2|.
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Let r(t), θ(t), ψ(t) denote the r , θ , ψ components of γ (t). Then,

|I+(t)|2 = σ 2
1 r(t)2 + σ 2

2 r̄(t)2 = r(t)2(σ 2
1 − σ 2

2 ) + σ 2
2 /G ,

from which we obtain

r(t)2 =
|I+(t)|2 − (σ 2

2 /G)

σ 2
1 − σ 2

2

.

Therefore, by Proposition 4.4, r(t) is independent of t . If r = 0 or 1/
√

G, then γ is a

great circle, that is, a geodesic. Thus, r �= 0, 1/
√

G. Hence γ lies on the Clifford torus

{x ∈ S3 ; x2
1 + x2

2 = r2}.
It is easy to verify the following formulas:

∇∂/∂θ∂/∂θ = −Grr̄2∂/∂r , ∇∂/∂θ∂/∂ψ = ∇∂/∂ψ∂/∂θ = 0 ,

∇∂/∂ψ∂/∂ψ = Grr̄2∂/∂r .

By using these formulas and calculating the components of ∇T T with respect to the frame

(∂/∂r, ∂/∂θ, ∂/∂ψ), we see that the squared curvature u(t) is expressed as

u(t) = Gr2r̄2((θ ′)2 − (ψ ′)2)2 + (θ ′′)2r2 + (ψ ′′)2r̄2 .(5.1)

Note that (5.1) holds for a general unit-speed curve lying on the above Clifford torus.

By using the fact that {γ,M} is a Kirchhoff elastic rod, we are going to show that θ ′(t),
ψ ′(t), θ ′′(t) and ψ ′′(t) are expressed in terms of u(t), and derive an equation of u(t). First,

we show the following

LEMMA 5.2.

θ ′(t) = (u(t) − µ + 2νa2 + 4
√

Gνa)σ1r ± σ2r̄
√

D(u(t))

r(σ 2
1 r2 + σ 2

2 r̄2)
,(5.2)

ψ ′(t) = (u(t) − µ + 2νa2 + 4
√

Gνa)σ2r̄ ∓ σ1r
√

D(u(t))

r̄(σ 2
1 r2 + σ 2

2 r̄2)
,(5.3)

where D(u) = −(u − µ + 2νa2 + 4
√

Gνa)2 + σ 2
1 r2 + σ 2

2 r̄2.

PROOF. Since r(t) is constant, T = θ ′(∂/∂θ) + ψ ′(∂/∂ψ). Thus, by |T | ≡ 1, we see

r2(θ ′)2 + r̄2(ψ ′)2 = 1 .(5.4)

We now calculate 〈I+, T 〉 in two ways. By (4.4) and (4.5), we have

〈I+, T 〉 = u(t) − µ + 2νa2 + 4
√

Gνa

on an open interval where k > 0. Because of the real analyticity of 〈I+, T 〉, this expression

is valid for the whole R. On the other hand, it follows from Ĩ+ = σ1(∂/∂θ) + σ2(∂/∂ψ) that

〈I+, T 〉 = σ1r
2θ ′ + σ2r̄

2ψ ′. Thus,

σ1r
2θ ′ + σ2r̄

2ψ ′ = u(t) − µ + 2νa2 + 4
√

Gνa .(5.5)

Note that D(u(t)) = − 〈I+, T 〉2 + |I+|2 � 0. Hence, by (5.4) and (5.5), we obtain (5.2) and

(5.3). ✷
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We proceed with the proof of Lemma 5.1. Let W be an open interval such that u(t) �= α3,

α2 for all t ∈ W . If D(u(t)) = 0, then I+(t) is parallel to T (t), and k′(t) = 0 by (4.4) and

(4.5), so that u(t) = α3 or α2. Therefore, D(u(t)) > 0 on W . We assume that in (5.2) and

(5.3), the upper sign is taken. (The proof is similar, when the lower sign is taken.) In what

follows, we restrict the domain of t to W .

By Lemma 5.2 and (3.12), we have

(θ ′′(t))2 = 1

r2(σ 2
1 r2 + σ 2

2 r̄2)2

[

σ1r − σ2r̄(u(t) − µ + 2νa2 + 4
√

Gνa)√
D(u(t))

]2

Q(u(t)) ,(5.6)

(ψ ′′(t))2 = 1

r̄2(σ 2
1 r2 + σ 2

2 r̄2)2

[

σ2r̄ + σ1r(u(t) − µ + 2νa2 + 4
√

Gνa)√
D(u(t))

]2

Q(u(t)) ,(5.7)

where Q(u) is the right hand side of (3.12). Let F(u) be the expression obtained by substi-

tuting (5.2), (5.3), (5.6) and (5.7) to the right hand side of (5.1). Then we have

u(t) = F(u(t)) for all t ∈ W .(5.8)

Moreover, the function F(u) has the following property.

LEMMA 5.3. Let V denote the open interval defined by V = {u ∈ R ; D(u) > 0}.
Then the function F(u) − u is real analytic on V and not identically zero. Consequently, any

zero of F(u) − u in V is isolated.

PROOF. We set G(u) = F(u)−u. It is easy to see that G is real analytic on V . By (5.2),

(5.3), (5.6) and (5.7), we obtain

G(u)

u4
= r2

Gr̄2

(

(θ ′)2 − G

u2

)2

+ (θ ′′)2r2 + (ψ ′′)2r̄2

u4
− 1

u3
→ (σ1r ± σ2r̄

√
−1)4

Gr2r̄2(σ 2
1 r2 + σ 2

2 r̄2)4
�= 0

as u (∈ R) → +∞. (Here, the ± sign is determined up to the choice of the branch of
√

D(u).)

Therefore, G is not identically zero on V . ✷

On the other hand, by (5.8) together with the assumption that γ is not a helix, the set

of all roots of the equation u = F(u) (u ∈ V ) contains some open interval in R. This

contradicts Lemma 5.3. Therefore, |Ĩ+| is constant on the whole S3.

Similarly, we can see that |Ĩ−| is constant on S3. Since 〈J̃ , H̃ 〉 = (|Ĩ+|2−|Ĩ−|2)/(8
√

G),

it follows that 〈J̃ , H̃ 〉 is also constant on S3. This completes the proof of Lemma 5.1. ✷

PROPOSITION 5.4. Suppose that p > 0, that is, γ is not a helix. Then, there exist

P ∈ O(4) and positive numbers f, g such that the matrix representations of Ĩ+ and Ĩ− with

respect to the isometric embedding P ◦ ι : S3 → R4 are expressed as f E1 + f E2 and

−gE1 + gE2, respectively.

PROOF. Let AJ̃ , AH̃ , AĨ+
, AĨ−

denote the matrix representations of J̃ , H̃ , Ĩ+, Ĩ−,

respectively. Without loss of generality, we may assume that AJ̃ = ρ1E1 + ρ2E2, where ρ1,

ρ2 are real constants. By (4.7) together with the assumption that γ is not a helix, |J (t)|2 is

not constant, so that |ρ1| �= |ρ2|.
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We show that AH̃ , AĨ+
and AĨ−

are also canonical forms. Let

AH̃ =









0 −h1 −h2 −h3

h1 0 −h4 −h5

h2 h4 0 −h6

h3 h5 h6 0









,

where h1, . . . , h6 ∈ R. By Lemma 5.1 and (4.6), we have 〈AJ̃ x, AH̃ x〉 = 2dG 〈x, x〉 for all

x ∈ R4. Therefore,

tAJ̃ AH̃ + t (tAJ̃ AH̃ ) = (4dG)E,

where E is the identity matrix. Thus we have

(

ρ2 ρ1

ρ1 ρ2

)(

h3 h5

−h4 h2

)

= 0 .

Therefore, by |ρ1| �= |ρ2|, we obtain h2 = h3 = h4 = h5 = 0. Hence AH̃ is a canonical form.

Consequently, AĨ+
, AĨ−

are also canonical forms, because Ĩ+, Ĩ− are linear combinations of

J̃ , H̃ .

Let AĨ+
= f1E1 + f2E2, where f1, f2 ∈ R. By Lemma 5.1, |f1| = |f2|. Thus, there

exists an orthogonal transformation P1 on R4 permuting the coordinates x1, x2, x3, x4 such

that the matrix representation of Ĩ+ with respect to P1 ◦ ι is expressed as f E1 + fE2, where

f = |f1| = |f2|. If f = 0, then I+ ≡ 0, which contradicts the assumption that γ is not a

helix. Hence f > 0.

By Lemma 5.1, the matrix representation of Ĩ− with respect to P1 ◦ ι is gE1 + gE2 or

−gE1 + gE2, where g is a non-zero constant. In the case of gE1 + gE2, we see f I− = gI+.

Thus, by comparing the N components of the both sides, we have f = g , and hence I+ = I−.

Therefore, H = 0, which contradicts the assumption that γ is not a geodesic. Consequently,

the matrix representation of Ĩ− is −gE1 + gE2. Hence, in the case of g > 0, it suffices to

set P = P1. In the case of g < 0, it suffices to set P = P2 ◦ P1, where P2 ∈ O(4) is the

transformation sending t (x1, x2, x3, x4) to t (x3, x4, x1, x2), and to rewrite −g as g . ✷

Next, we consider the case of p = 0.

PROPOSITION 5.5. Suppose that p = 0, that is, γ is a helix. Then T is uniquely

extended to a Killing vector filed T̃ on S3, and the following holds. There exist P ∈ O(4) and

real numbers σ and ρ such that ρ � |σ | , the matrix representation of T̃ with respect to the

isometric embedding P ◦ ι : S3 → R4 is expressed as σE1 + ρE2, and the orientation of the

frame (∂/∂r, ∂/∂θ, ∂/∂ψ) with respect to P ◦ ι is negative.

PROOF. It is verified by a straightforward calculation that T is a Killing vector field

along γ . Therefore, T is uniquely extended to a Killing vector filed T̃ on S3. Hence there

exists P1 ∈ O(4) and real numbers σ and ρ such that ρ � |σ | and the matrix representation

of T̃ with respect to P1 ◦ ι is expressed as σE1 + ρE2.
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If the orientation of (∂/∂r, ∂/∂θ, ∂/∂ψ) with respect to P1 ◦ ι is negative, it suffices to

set P = P1. Otherwise, it suffices to set P = P2 ◦ P1, where P2 ∈ O(4) is the transformation
t (x1, x2, x3, x4) �→ t (x2, x1, x3, x4), and to rewrite −σ as σ . ✷

6. Explicit solutions in terms of elliptic functions and integrals. In this section, we

give the explicit expressions of the r , θ , ψ components of γ in terms of the parameters β, η,

p, w, and Jacobi sn function and the incomplete elliptic integral of the third kind (Theorem

6.1). We also show that the ∂/∂r , ∂/∂θ , ∂/∂ψ components of M are explicitly expressed.

First, we express various constants in the previous sections by (β, η, p,w)(∈ P̃). In

order to simplify the expressions of β, η, p and w, we introduce the following notation:

V =
√

1 − w2 , X =
√

w2 − p2 , Y1 = 1 + p2 − (1 + 4ν2η2)w2 − 4w2/β ,

R = V X − 2νηw2 , Y2 = Y1 − 4νηR , Z =
√

Y 2
1 + 4R2 ,

Ω = V/2w + νη , Γ = V/2w − νη , U = −βZ2 + 16w4(1 + 4ν2η2) ,

Λ =
√

64βw4Y 2
2 + U2 , S1 = X(1 − p2 − (1 − 4ν2η2 + 4/β)w2) − 4νηw2V .

Then it is verified by a straightforward calculation that the following equalities hold.

Z2(1 + 4ν2η2) − 4(νηY1 + R)2 = Y 2
2 ,(6.1)

w2Y 2
2 − p2Z2 + 16p2w2

β
(X2 + 4ν2η2w2) = S2

1 ,(6.2)

Λ =
√

64βw2S2
1 + (U − 32p2w2)2 .(6.3)

We express a, b, µ, f and g by (β, η, p,w). In the rest of the paper, the upper sign is

taken when b � 0, while the lower sign is taken when b < 0. By (3.13), (3.14), (3.15) and

(3.19), we have

a = ±a+ = ±η
√

Gβ ,(6.4)

b = ±G3/2β3/2

2w2
V X ,(6.5)

µ = Gβ

2w2
[−Y1 + 2w2(1 + 2νη2)] .(6.6)

By Proposition 5.4, we have |Ĩ+(x)|2 = f 2 |x|2 = f 2/G, where x ∈ S3. Thus, f =√
G|Ĩ+| =

√
G |I+(0)|. Since

I+(0) = (α3 − µ + 2νa2 + 4νa
√

G)T (0) + 2
√

α3((b/α3) − νa +
√

G)B(0) ,

a straightforward calculation using (6.4), (6.5) and (6.6) yields

f = G3/2β1/2

2w2

√

(β1/2Y1 ± 8νηw2)2 + 4(β1/2R ± 2w2)2 .(6.7)
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In the same way, we see g =
√

G|Ĩ−| =
√

G |I−(0)|, and by a similar calculation, obtain

g = G3/2β1/2

2w2

√

(β1/2Y1 ∓ 8νηw2)2 + 4(β1/2R ∓ 2w2)2 .(6.8)

To state the first main theorem, we introduce the following notation:

ξ =

√

32p2w2

Λ + U
, ζ =

√

32p2w2

Λ − U
,

D1 = β[Y1 − 2w2(1 + 4ν2η2)]
w2

(

f − g

G3/2

)

+ (f − g)3

8G9/2
∓ 8νηβ1/2(f + g)

G3/2
,

D2 = β[Y1 − 2w2(1 + 4ν2η2)]
w2

(

f + g

G3/2

)

+ (f + g)3

8G9/2
∓ 8νηβ1/2(f − g)

G3/2
,

C1 = −4w5D1

β3/2(Λ + U)
, C2 = 4w5D2

β3/2(Λ − U)
,

Q1 =
√

β + (±
√

βΩ − 1)2 , Q2 =
√

β + (∓
√

βΩ − 1)2 .

By the definition of Λ and (6.3), we can check that if p > 0, then Λ + U > 0 and hence ξ

and C1 are well-defined. Also, we see that Λ − U � 0, where the equality holds if and only

if Y2 = 0 and U � 0. Thus, except the case where Y2 = 0 and U � 0 hold, ζ and C2 are

well-defined.

We denote by

Π(x, α, p) =
∫ x

0

dx

1 − α sn2(x, p)

the incomplete elliptic integral of the third kind, where α, p are real numbers satisfying α � 1,

0 � p � 1. When x = K(p), the integral is said to be complete.

THEOREM 6.1. Let r(t), θ(t), ψ(t) denote the r, θ, ψ components of γ (t).

Case 1. The case of p > 0.

(1) r(t) is given by

r(t) =

√

U + Λ − 32p2w2 sn2 (yt, p)

2GΛ
.(6.9)

(a) If p = 1, then r does not attain the minimum value. If p �= 1, then the minimum

value rmin of r is attained, and the condition rmin = 0 is equivalent to

S1 = 0 and U − 32p2w2
� 0 .(6.10)

(b) The maximum value rmax of r is attained, and the condition rmax = 1/
√

G is

equivalent to

Y2 = 0 and U � 0 .(6.11)

(2) θ(t) is given as follows:
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If (6.10) does not hold or p = 1, then

θ(t) = −(f − g)

8G
t + C1Π(yt, ξ2, p) + θ(0) .(6.12)

If (6.10) holds and p �= 1, then

θ(t) = −(f − g)

8G
t + mπ + θ(0) ,

(2m − 1)K(p)

y
< t <

(2m + 1)K(p)

y
,(6.13)

where m is an arbitrary integer.

(3) ψ(t) is given as follows:
If (6.11) does not hold, then

ψ(t) = −(f + g)

8G
t + C2Π(yt,−ζ 2, p) + ψ(0) .(6.14)

If (6.11) holds, then

ψ(t) = −(f + g)

8G

(

t − K(p)

y

)

+ mπ + ψ

(

K(p)

y

)

,

2mK(p)

y
< t <

(2m + 2)K(p)

y
,

(6.15)

where m is an arbitrary integer.

Case 2. The case of p = 0.

The constants σ and ρ in Proposition 5.5 are expressed as

σ =
√

G(Q1 − Q2)

2
, ρ =

√
G(Q1 + Q2)

2
,(6.16)

and r(t), θ(t) and ψ(t) are expressed as follows:

r(t) =

√

1 − (ρ2/G)

σ 2 − ρ2
,(6.17)

θ(t) = σ t + θ(0) , ψ(t) = ρt + ψ(0) .(6.18)

PROOF. First, we consider Case 1. By Proposition 5.4, we have

Ĩ+ = f
∂

∂θ
+ f

∂

∂ψ
, Ĩ− = −g

∂

∂θ
+ g

∂

∂ψ
,(6.19)

J̃ =
(

f − g

2

)

∂

∂θ
+
(

f + g

2

)

∂

∂ψ
,

H̃ =
(

f + g

4
√

G

)

∂

∂θ
+
(

f − g

4
√

G

)

∂

∂ψ
.(6.20)

Therefore,

|H(t)|2 = |H̃ (γ (t))|2 =
(

f + g

4
√

G

)2

r(t)2 +
(

f − g

4
√

G

)2(
1

G
− r(t)2

)

.
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On the other hand, by the definition of H , |H(t)|2 = u(t) + 4ν2a2. Hence we obtain

r(t) =
√

1

4f g

[

16G(u(t) + 4ν2a2) − (f − g)2

G

]

.

A straightforward calculation using (6.7), (6.8) and (6.1) then yields

2f g = G3βΛ

2w4
, 16G(α3 + 4ν2a2) − (f − g)2

G
= G2β

2w4
(Λ + U) .

By these expressions, we obtain (6.9).

We now show (a), (b) of (1). Let p �= 1. Then r is a periodic function with primitive

period 2K(p)/y, which attains the maximum value precisely when t = 2mK(p)/y, and the

minimum value precisely when t = (2m+ 1)K(p)/y, where m is an arbitrary integer. (There

are no critical points other than the maximum and minimum points.) Next, we investigate the

case p = 1. Then, S1 = 0. Also, it follows from (6.2) that U − 32p2w2 = −βY 2
2 − 16 � 0.

Hence (6.3) implies ξ = 1, and we have

r(t) =
√

U + Λ

2GΛ
sech(yt) .

Therefore, r attains the maximum value at t = 0, and does not attain the minimum value.

More precisely, r is strictly monotone decreasing (resp. increasing) on t > 0 (resp. t < 0),

and limt→±∞ r(t) = 0.

By (6.9), the minimum and maximum values of r are calculated as follows:

rmin =

√

U − 32p2w2 + Λ

2GΛ
, rmax =

√

U + Λ

2GΛ
.

Therefore, (6.3) completes the proof of (a). Also, the definition of Λ completes the proof of

(b).

Next, we show (2) and (3). By (6.19), it follows that
(

∂

∂θ

)

γ (t)

= 1

2f g
(gI+ − f I−) ,

(

∂

∂ψ

)

γ (t)

= 1

2f g
(gI+ + f I−) .

Thus, if r(t) > 0, then we have

θ ′(t) =
〈T , (∂/∂θ)γ (t)〉
|(∂/∂θ)γ (t)|2

= g 〈I+, T 〉 − f 〈I−, T 〉
2f gr(t)2

(6.21)

= −(f − g)

8G
+ −2G1/2w4D1

β[Λ + U − 32p2w2 sn2(yt, p)] .(6.22)

Thus, if r(t) > 0 for all t ∈ R, that is, if (6.10) does not hold or p = 1, then θ(t) is expressed

as (6.12).

Similarly, if r(t) < 1/
√

G, then we have

ψ ′(t) = 〈T , (∂/∂ψ)γ (t)〉
|(∂/∂ψ)γ (t)|2

= −(f + g)

8G
+ 2G1/2w4D2

β[Λ − U + 32p2w2 sn2(yt, p)] .(6.23)
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If r(t) < 1/
√

G for all t ∈ R, that is, if (6.11) does not hold, then Λ − U > 0, and so

ψ ′(t) = −(f + g)

8G
+
(

G1/2β1/2C2

2w

)(

1

1 + ζ 2 sn2(yt, p)

)

.

Hence ψ(t) is expressed as (6.14).

Next, we consider the case where rmin = 0 or rmax = 1/
√

G. We investigate the behavior

of θ(t) (resp. ψ(t)) around the points where r(t) = 0 (resp. r(t) = 1/
√

G).

LEMMA 6.2. Set t1 = (2m+1)K(p)/y and t2 = 2mK(p)/y, where m is an arbitrary

integer.

(1) Suppose that (6.10) holds and p �= 1. (Hence r(t1) = 0.) Then, both limt→t1+0 θ(t)

and limt→t1−0 θ(t) exist, and

lim
t→t1+0

θ(t) − lim
t→t1−0

θ(t) = π (mod 2π) .

(2) Suppose that (6.11) holds. (Hence r(t2) = 1/
√

G.) Then, both limt→t2+0 ψ(t) and

limt→t2−0 ψ(t) exist, and

lim
t→t2+0

ψ(t) − lim
t→t2−0

ψ(t) = π (mod 2π) .

PROOF. We show (1). Note that (x1, x2, ψ) is a local coordinate system on a neighbor-

hood of γ (t1). Let x1(t), x2(t), ψ(t) be the x1, x2, ψ components of γ (t). To prove (1), it

suffices to show that x ′
1(t)(∂/∂x1) + x ′

2(t)(∂/∂x2) does not vanish at t = t1. Except at t1, it

follows that
∣

∣

∣

∣

x ′
1

∂

∂x1
+ x ′

2

∂

∂x2

∣

∣

∣

∣

=
∣

∣

∣

∣

r ′ ∂

∂r
+ θ ′ ∂

∂θ

∣

∣

∣

∣

�

∣

∣

∣

∣

r ′ ∂

∂r

∣

∣

∣

∣

=
∣

∣r ′∣
∣

√
Gr̄

.

Hence it is sufficient to verify that the right hand side of the above expression approaches a

positive number as t → t1. The expression (6.9) together with the assumption (6.10) yields

r(t) = 4pw

G1/2Λ1/2
|cn(yt, p)| .

Thus,

|r ′(t)| = 2β1/2p

Λ1/2
|sn(yt, p)| dn(yt, p) → 2β1/2p(1 − p2)1/2

Λ1/2
> 0

as t → t1.

By using the local coordinate system (x3, x4, θ) around γ (t2), we can verify (2) in the

same way as (1). ✷

Suppose that (6.10) holds and p �= 1, that is, rmin = 0. Then Λ + U = 32p2w2. Since

r(t) > 0 on the interval (−K/y,K/y), we have

θ(t) =
∫ t

0

θ ′(t)dt = −(f − g)

8G
t + −G1/2w2D1

16βp2

∫ t

0

dt

cn2(yt, p)

for t ∈ (−K/y,K/y). If D1 �= 0, then the right hand side of the above expression diverges

as t → K/y − 0, which contradicts Lemma 6.2. Thus, D1 = 0. Therefore, by Lemma 6.2,
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we have (6.13). Similarly, we see that if (6.11) holds, then D2 = 0. Hence (6.15) follows.

The proofs of (2) and (3) are completed.

We now consider Case 2. We first suppose that 0 < r(t) < 1/
√

G for all t ∈ R. Since

T = σ
∂

∂θ
+ ρ

∂

∂ψ
,(6.24)

we see 〈T , ∂/∂r〉 = 0, and hence r(t) is constant. Set r(t) = r0. Then γ lies on the Clifford

torus {x ∈ S3 ; x2
1 + x2

2 = r2
0 }. We also see that if r(t) = 0 (resp. 1/

√
G) for some t , then

r(t) = 0 (resp. 1/
√

G) for all t , and γ is a geodesic. Thus, in what follows, we may assume

that 0 < r(t) < 1/
√

G for all t ∈ R.

It follows from (6.24) that θ ′(t) = σ , ψ ′(t) = ρ. Hence we obtain (6.18). By (6.24) and

|T | = 1, we have

(σ 2 − ρ2)r2
0 + ρ2/G = 1 .(6.25)

Now, we show σ 2 − ρ2 �= 0. By (5.1), the squared curvature of γ is expressed as

α3 = Gr2
0 r̄2

0 (σ 2 − ρ2)2 .(6.26)

Hence the assumption that γ is not a geodesic implies σ 2 − ρ2 �= 0. Consequently, (6.25)

yields (6.17).

Finally, we express the constants σ , ρ by β, η, w. By (6.24) together with the assumption

that the orientation of (∂/∂r, ∂/∂θ, ∂/∂ψ) is negative, we have

N =
√

G r̄0
∂

∂r
, B = −ρr̄0

r0

∂

∂θ
+ σr0

r̄0

∂

∂ψ
,

which implies that the torsion of γ is given by

τ = 〈∇T N,B〉 = −ρσ/
√

G.(6.27)

Substituting (6.17) to (6.26) yields

σ 2 + ρ2 = Gβ + τ 2 + G .(6.28)

Also, by (3.10), (6.4) and (6.5), the torsion is expressed by β, η, w as

τ = ±
√

Gβ Ω.(6.29)

Therefore, by (6.27), (6.28), (6.29) and ρ > |σ |, we obtain (6.16). ✷

We show that the ∂/∂r , ∂/∂θ , ∂/∂ψ components of M1(t), M2(t) are explicitly ex-

pressed. First, we express M1, M2 in terms of the Frenet frame.

LEMMA 6.3. If p �= w or p = w = 1, then

M1(t) = (cos ϕ(t))N(t) + (sin ϕ(t))B(t) ,(6.30)

M2(t) = −(sin ϕ(t))N(t) + (cos ϕ(t))B(t) ,(6.31)

where

ϕ(t) = ±
[−V X

w
Π(yt, q2, p) + (1 − ν)ηG1/2β1/2t

]

+ ϕ(0) .(6.32)
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If p = w �= 1, then

M1(t) = (cos ϕ(t))N̂(t) + (sin ϕ(t))B̂(t) ,

M2(t) = −(sin ϕ(t))N̂(t) + (cos ϕ(t))B̂(t) ,

where

ϕ(t) = ±(1 − ν)ηG1/2β1/2t + ϕ(0) ,

and N̂(t), B̂(t) denote the generalized Frenet vectors defined by (3.17).

PROOF. Let p �= w or p = w = 1. Since the orientation of (T ,M1,M2) is positive,

there exists a smooth function ϕ(t) such that M1(t) and M2(t) are expressed as (6.30) and

(6.31). By substituting (3.7) to (3.5), we have (6.32). Similarly, we get the expression of the

case where p = w �= 1. ✷

PROPOSITION 6.4. Suppose that r(t) �= 0, 1/
√

G and k(t) �= 0. Then the ∂/∂r, ∂/∂θ,

∂/∂ψ components of M1(t) and M2(t) are explicitly expressed in terms of Jacobi sn, cn and

dn functions.

PROOF. By Lemma 6.3, it suffices to seek for the explicit expressions of the ∂/∂r , ∂/∂θ ,

∂/∂ψ components of N(t), B(t), N̂(t) and B̂(t). We express them by r(t), θ ′(t), ψ ′(t) and

their derivatives.

Substituting T = r ′(∂/∂r) + θ ′(∂/∂θ) + ψ ′(∂/∂ψ) to N = (1/k)∇T T yields

N = h1
∂

∂r
+ h2

∂

∂θ
+ h3

∂

∂ψ
,

where

h1 = 1

k

(

r ′′ + (r ′)2r

r̄2
+ Grr̄2((ψ ′)2 − (θ ′)2)

)

,

h2 = 1

k

(

θ ′′ + 2θ ′r ′

r

)

, h3 = 1

k

(

ψ ′′ − 2ψ ′r ′r

r̄2

)

.

Also, by substituting (6.20) to B = (1/k)(H − 2νaT ), we obtain

B = 1

k

[

−2νar ′ ∂

∂r
+
(

f + g

4
√

G
− 2νaθ ′

)

∂

∂θ
+
(

f − g

4
√

G
− 2νaψ ′

)

∂

∂ψ

]

.

Now, the explicit expressions of r(t), θ ′(t) and ψ ′(t) in terms of Jacobi sn function are

given by (6.9), (6.22) and (6.23). Hence r ′, r ′′, θ ′′, ψ ′′ are explicitly expressed in terms of

Jacobi sn, cn, dn functions. Consequently, the ∂/∂r , ∂/∂θ , ∂/∂ψ components of N(t), B(t)

are also explicitly expressed in terms of Jacobi sn, cn, dn functions. Since N̂(t) = N(t) or

−N(t), this also holds for N̂ . Similarly, this holds for B̂ . ✷

7. Closure conditions. We call {γ,M} a closed Kirchhoff elastic rod if {γ,M} is

a Kirchhoff elastic rod and γ is periodic. In this section, we investigate the condition that

{γ,M} be a closed Kirchhoff elastic rod in terms of (β, η, p,w).
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We define two functions ∆θ , ∆ψ on P̃ as follows. Let {γ,M} be a Kirchhoff elastic rod

in S3 corresponding to (β, η, p,w) ∈ P̃. We may assume that the constant b (= k2(τ − νa))

for {γ,M} is positive or zero. By Theorem 6.1, if 0 < p < 1, then r(t) is a (2K(p)/y)-

periodic function and θ ′(t), ψ ′(t) are (2K(p)/y)-periodic or constant functions. We set

∆θ = θ(2K/y) − θ(0) , ∆ψ = ψ(K/y) − ψ(−K/y) .(7.1)

That is, ∆θ and ∆ψ are the changes in θ(t) and ψ(t), respectively, through the primitive

period of r . By Theorem 6.1, ∆θ and ∆ψ are expressed by (β, η, p,w) as follows.

PROPOSITION 7.1.

∆θ =















−(f − g)K(p)

4Gy
+ 2C1Π(K(p), ξ2, p) if (6.10) does not hold ,

−(f − g)K(p)

4Gy
+ π if (6.10) holds ,

(7.2)

∆ψ =















−(f + g)K(p)

4Gy
+ 2C2Π(K(p),−ζ 2, p) if (6.11) does not hold ,

−(f + g)K(p)

4Gy
+ π if (6.11) holds ,

(7.3)

where we take the upper sign in f, g, C1, C2.

We regard ∆θ and ∆ψ as functions of (β, η, p,w)(∈ P̃) defined by the right hand sides

of (7.2) and (7.3). We write them as ∆θ(β, η, p,w) and ∆ψ(β, η, p,w). Then we have the

following

THEOREM 7.2. Let {γ,M} be a Kirchhoff elastic rod in S3 corresponding to

(β, η, p,w) ∈ P̃ . Then {γ,M} is a closed Kirchhoff elastic rod if and only if either the

following (1) or (2) holds, where Q denotes the set of all rational numbers.

(1) 0 < p < 1 and ∆θ(β, η, p,w)/(2π), ∆ψ(β, η, p,w)/(2π) ∈ Q.

(2) p = 0 and (Q1 − Q2)/(Q1 + Q2) ∈ Q.

PROOF. Without loss of generality, we may assume that the constant b for {γ,M} is

positive or zero. Suppose that γ is periodic. If p = 1, then k(t) is not periodic. Hence γ

is not periodic, too. Next, let p = 0. Then r(t) is constant, so that γ lies on a Clifford

torus. Also, θ(t) and ψ(t) are expressed as (6.18). Thus, the periodicity of γ implies that

θ ′(t)/ψ ′(t) = σ/ρ is a rational number, and so is (Q1 − Q2)/(Q1 + Q2). That is, (2) holds.

Next, let 0 < p < 1. Let l denote the primitive period of γ . Then, since k(t) is (2K/y)-

periodic, l is expressed as l = m(2K/y), where m is a non-zero integer. It then follows from

(7.1) that θ(t + l) = θ(t) + m∆θ for all t except at the points where r(t) = 0. Hence,

m∆θ(β, η, p,w)/(2π) is an integer, so that ∆θ(β, η, p,w)/(2π) ∈ Q. Similarly, we see

that ∆ψ(β, η, p,w)/(2π) ∈ Q. Thus, (1) holds.

We show the converse. Suppose that (1) holds. Then there exists a non-zero integer m

such that m∆θ , m∆ψ ∈ 2πZ. Thus, θ(t + m(2K/y)) = θ(t) mod 2π holds for all t except

at the points where r(t) = 0. Also, ψ(t + m(2K/y)) = ψ(t) mod 2π holds for all t except
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at the points where r(t) = 1/
√

G, while r(t + m(2K/y)) = r(t) holds for all t . Hence we

obtain that γ (t + m(2K/y)) = γ (t) holds for all t , that is, γ is periodic. Next, we suppose

that (2) holds. Then γ is a helix on a Clifford torus and θ ′(t)/ψ ′(t) is a rational number.

Therefore, γ is periodic. ✷

8. Closed Kirchhoff elastic rods. In this section, by using Theorem 7.2, we give

an example of closed Kirchhoff elastic rods. Specifically, we give a smooth two-parameter

family of closed Kirchhoff elastic rods including both helices and non-helices. Precisely, we

show the following

THEOREM 8.1. There exists a smooth two-parameter family {γ λ,ω,Mλ,ω} (0 � λ ≪
1, |ω| ≪ 1) of closed Kirchhoff elastic rods satisfying the following. If λ = 0, then γ λ,ω is a

helix, and if λ �= 0, then γ λ,ω is not a helix. Moreover, if λ1, λ2 �= 0 and (λ1, ω1) �= (λ2, ω2)

hold, then γ λ1,ω1 and γ λ2,ω2 are not congruent.

To prove Theorem 8.1, we need three lemmas. We regard ∆θ and ∆ψ as formal functions

on

P̂ = {(β, η, p,w) ∈ R4 ; β > 0, 0 � |p| � w � 1, w > 0} .

Note that ∆θ , ∆ψ are even functions in p. We calculate the expressions of ∆θ , ∆ψ evaluated

at p = 0. Let sgn denote the function on R defined by

sgn x =







1 if x > 0 ,

0 if x = 0 ,

−1 if x < 0 .

LEMMA 8.2. Suppose that p = 0. Then the three conditions (6.10), (6.11) and

β1/2Γ = ±1 are equivalent. If β1/2Γ �= ±1, then ∆θ and ∆ψ are expressed as follows:

∆θ(β, η, 0, w) = πw

β1/2
(−ε1Q1 + ε2Q2) , ∆ψ(β, η, 0, w) = πw

β1/2
(−ε1Q1 − ε2Q2) ,

where
ε1 = sgn(β1/2Γ + 1) , ε2 = sgn(−β1/2Γ + 1) .

PROOF. A straightforward calculation yields the following.

Y1 = 4w2

β
(βΩΓ − 1), R = 2w2Γ , Y2 = 4w2

β
(βΓ 2 − 1) ,

U = 16w4

β
(βΓ 2 − 1)[1 − β(Ω2 + 1)] ,

Λ = 16w4

β
(1 − βΓ 2)ε1ε2Q1Q2 , S1 = 4w3

β
(βΓ 2 − 1) ,

〈I+, T 〉 = 2G(β1/2Ω − 1)(β1/2Γ + 1) ,

〈I−, T 〉 = 2G(−β1/2Ω − 1)(−β1/2Γ + 1) ,

f = 2G3/2(β1/2Γ + 1)ε1Q1 , g = 2G3/2(−β1/2Γ + 1)ε2Q2 .

(8.1)
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Then it is easy to see that the three conditions (6.10), (6.11) and β1/2Γ = ±1 are equivalent.

Thus, if β1/2Γ �= ±1, then Λ + U > |U | + U � 0, Λ − U > |U | − U � 0, and hence C1,

C2, ξ , ζ , ∆θ , ∆ψ are well-defined.

Suppose that β1/2Γ �= ±1. By (6.21), we find ∆θ to be

∆θ(β, η, 0, w) = 2K(0)

y

(

g 〈I+, T 〉 − f 〈I−, T 〉
2f g(U + Λ)/(2GΛ)

)

.

Substituting (8.1) to the expression above, we then have

∆θ(β, η, 0, w) = 2πw

G1/2β1/2

(

G1/2[(β1/2Ω + 1)ε1Q1 + (β1/2Ω − 1)ε2Q2]
[(Ω2 + 1)β − 1] + ε1ε2Q1Q2

)

= πw

β1/2
(−ε1Q1 + ε2Q2) .

Similarly, we have the expression of ∆ψ(β, η, 0, w). ✷

Let S denote the subset of P̂ defined by

S = {(β, η, p,w) ∈ P̂ ; p = 0, β1/2Γ �= ±1, w �= 1} .

The image of the map (∆θ/(2π),∆ψ/(2π)) : S → R2 is determined as follows. (We omit

the proof.)

LEMMA 8.3. Let 0 < w0 < 1. Then,
(

∆θ

2π
,
∆ψ

2π

)

(S|w=w0
)

= {(v1, v2) ∈ R2 ; v2 < 0, v1 + v2 > 1}
⋃

{(v1, v2) ∈ R2 ; v1 + v2 � −w0, v1 − v2 > 1}
⋃

{(v1, v2) ∈ R2 ; v2 < 0, v1 − v2 � −w0}
⋃

{(v1, v2) ∈ R2 ; v2 � 0, v1 + v2 � −w0 , v1 − v2 > −1, (v1, v2) �= (−w0, 0)} .

We state the third lemma.

LEMMA 8.4. Let (β0, η0, 0, w0) ∈ S. Then ∆θ and ∆ψ are smooth functions on a

neighborhood of (β0, η0, 0, w0) in P̂, and

D(∆θ,∆ψ)

D(β, η)

∣

∣

∣

∣

(β0,η0,0,w0)

�= 0 ,(8.2)

where the left hand side denotes the Jacobian of the map (∆θ,∆ψ) at (β0, η0, 0, w0).

PROOF. Since both (6.10) and (6.11) do not hold on a neighborhood of (β0, η0, 0, w0)

in P̂ , ∆θ and ∆ψ are given by the upper expressions of the right hand sides of (7.2) and (7.3).

Also, since β, V , X, Λ, f and g are positive at (β0, η0, 0, w0), we see that ∆θ and ∆ψ are

smooth on a neighborhood of (β0, η0, 0, w0) in P̂ . We show (8.2). By Lemma 8.2, we have

(∆θ |p=0)
2 + (∆ψ|p=0)

2 = 4π2w2(1 + Ω2 + 1/β) ,(8.3)
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(∆θ |p=0)(∆ψ |p=0) = −4π2w2Ω

β1/2
.(8.4)

We write ∆θ |p=0, ∆ψ|p=0 as ∆θ , ∆ψ . Differentiating (8.3) and (8.4) with respect to β and

η yields

(

∆θ ∆ψ

∆ψ ∆θ

)









∂∆θ

∂β

∂∆θ

∂η

∂∆ψ

∂β

∂∆ψ

∂η









= 2π2w2

(

−1/β2 2νΩ

−Ω/β1/2 −2ν/β1/2

)

.

By calculating the determinants of the both sides, we have

[(∆θ)2 − (∆ψ)2]D(∆θ,∆ψ)

D(β, η)
= 8π4νw4

β5/2
(1 + β2Ω2) ,

where the right hand side does not vanish. Hence we obtain (8.2). ✷

PROOF OF THEOREM 8.1. By Lemma 8.3, there exists a rational point in the set

(∆θ/(2π),∆ψ/(2π))(S). Let (β0, η0, 0, w0) be an element of S such that
(

∆θ

2π
,
∆ψ

2π

)

(β0, η0, 0, w0) ∈ Q × Q .(8.5)

By Lemma 8.4 and the implicit function theorem together with the fact that ∆θ and ∆ψ are

even in p, there exists smooth functions β(p,w) and η(p,w) on a neighborhood of (0, w0)

such that β(0, w0) = β0, η(0, w0) = η0 and

β(p,w) = β(−p,w) , η(p,w) = η(−p,w) ,

∆θ(β(p,w), η(p,w), p,w) = ∆θ(β0, η0, 0, w0) ,

∆ψ(β(p,w), η(p,w), p,w) = ∆ψ(β0, η0, 0, w0) .

Let {γ p,w,Mp,w} be the curve with adapted orthonormal frame obtained by substituting

(β, η) = (β(p,w), η(p,w)) to (6.9), (6.12), (6.14) and (6.32) with θ(0) = 0, ψ(0) = 0

and ϕ(0) = 0. Then, for each (p,w) satisfying p �= 0, {γ p,w,Mp,w} is a Kirchhoff

elastic rod corresponding to (β(p,w), η(p,w), |p| , w) ∈ P̃. Note that {γ p,w,Mp,w} =
{γ −p,w,M−p,w} holds.

Let p > 0. We show that γ p,w is periodic. By the definitions of β(p,w) and η(p,w),

together with the assumption (8.5),

∆θ(β(p,w), η(p,w), p,w)/2π = ∆θ(β0, η0, 0, w0)/2π ∈ Q .

Similarly, ∆ψ(β(p,w), η(p,w), p,w)/2π ∈ Q. Therefore, by Theorem 7.2, we have that

γ p,w is periodic. Since p �= 0, γ p,w is not a helix.

Next, let p = 0. We first show that {γ 0,w,M0,w} is a Kirchhoff elastic rod whose

centerline is a helix. Since r(0, w, t), (dθ/dt)(0, w, t) and (dψ/dt)(0, w, t) are constant in t

and 0 < r(0, w, t) < 1/
√

G, we see that γ 0,w is a helix. Also, the continuity of |dγ p,w/dt|
implies that γ 0,w is a unit-speed curve. Since ϕ(0, w, t) is an affine linear function in t , we
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have that {γ 0,w,M0,w} is a Kirchhoff elastic rod. We show that γ 0,w is periodic. Since γ 0,w

is unit-speed, θ ′ �= 0 or ψ ′ �= 0. First, let θ ′ �= 0. By (8.5), we have

ψ ′

θ ′ = ∆ψ(β(0, w), η(0, w), 0, w)

∆θ(β(0, w), η(0, w), 0, w)
= ∆ψ(β0, η0, 0, w0)/(2π)

∆θ(β0, η0, 0, w0)/(2π)
∈ Q .

Hence γ 0,w is periodic. When ψ ′ �= 0 as well, we see that γ 0,w is periodic in the same way

as above.

We show that if p1, p2 > 0 and (p1, w1) �= (p2, w2) hold, then γ p1,w1 and γ p2,w2 are

not congruent. Seeking a contradiction, we suppose that γ p1,w1 and γ p2,w2 are congruent.

Denote the parameters β, y, etc. for {γ pi ,wi ,Mpi ,wi } by βi , yi , etc., where i = 1 or 2.

Since p1, p2 > 0 and the squared curvature of γ p1,w1 coincides with that of γ p2,w2 , we

have β1 = β2, p1/w1 = p2/w2 and sn(y1t, p1) = sn(y2t, p2) for all t . By calculating the

derivatives of the both sides of the above equation at t = 0, we obtain y1 = y2, which implies

w1 = w2, and hence p1 = p2. This contradicts the assumption.

We set λ = p, ω = w − w0, and rewrite {γ λ,w0+ω,Mλ,w0+ω} as {γ λ,ω,Mλ,ω}. Then

the smooth two-parameter family {γ λ,ω,Mλ,ω} (0 � λ ≪ 1, |ω| ≪ 1) of closed Kirchhoff

elastic rods satisfies the properties in Theorem 8.1. ✷
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