
Geophys. J. R. astr. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASOC. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1985) 80,121-147 

Kirchhoff-Helmholtz reflection seismograms in a 
laterally inhomogeneous multi-layered 
elastic medium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I. Theory 

L. Neil Frazer and Mrinal K. SenHawaiiInsii tute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Geophysics, 

Univ.ersity of Hawaii at  Manoa, Honolulu, Hawaii 96822, USA 

Received 1984 July 2; in original form 1984 January 27 

Summary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn a medium consisting of elastic layers with irregular interfaces, 
Kirchhoff-Helmholtz (KH) theory can be extended to synthesize the motion 
due to various generalized rays. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn exact elastic form of the KH integral is 
first derived, then various asymptotic approximations are used to convert 
this integral into one which can be rapidly evaluated to give the motion of a 
single generalized ray. The approximations used are those of geometrical 
optics, for propagation across layers, and the Kirchhoff or tangent-plane 
approximation for propagation across boundaries. It is shown how the KH 
method leads naturally to a generalization of our usual notion of elastic 
reflection and transmission coefficients. The new coefficients are functions 
of both angle of incidence and angle of reflection or transmission and they 
are derived so as to obtain coordinate-free formulae that show clearly their 
relation to the conventional Snell’s law coefficients. The elastic KH method is 
applied first to the problem of a single interface, where its performance is 
compared to that of the Gaussian beam and Maslov methods. (For synthesiz- 
ing reflections from irregular interfaces the KH method is superior because it 
includes signals diffracted from corners. However, when the interface is very 
smooth on the scale of a wavelength the Maslov and Gaussian beam methods 
are superior because they do not break down when there is a caustic on the 
reflector.) KH theory is then applied to a multilayered elastic medium and 
it is shown how the effects of frequency-dependent attenuation and disper- 
sion can be incorporated into the theory by taking advantage of the approxi- 
mately logarithmic variation of slowness with frequency in most earth 
materials. The limitations of the KH theory are discussed and some recent 
attempts to overcome these difficulties are reviewed. A new method for 
overcoming the problem of a caustic on the reflector becomes apparent when 
the KH integral is regarded as a member of a larger family of equivalent 1-fold 
integrals all of which are derivable from the same multifold path integral. 
Refracted or diving rays can be treated within the same formalism with equal 
benefit. For velocity models that are independent of one spatial direction 
(strike) a method is given for approximately converting 2-D results into 3-D 
results. 
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122 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Introduction 

The Kirchhoff-Helmholtz (KH) integral (Helmholtz 1860; Kirchhoff 1883) has been 
applied to many problems in wave propagation. Mow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pao (1971) review its application 
in the diffraction of elastic waves by cylinders and spheres. Burridge (1962, 1963) used 
it to calculate reflections in liquid and solid spheres and recently Haddon & Buchen (1981) 
adapted Burridge's method to the synthesis of PKP. Scott & Helmberger (1983) used the 
KH integral to model body wave reflections from mountclin topography and spdl from 
nuclear blasts. Application of the method to the synthesis of finite frequency body wave 
synthetic seismograms in media with laterally inhomogeneous but continuous velocity 
was made by Sinton & Frazer (1981), Haddon (1982), Zherniak (1983), and Frazer & 
Sinton (1984). 

In exploration seismology Hilterman (1970, 1975, 1982), Trorey (1970, 1977) and 
Berryhill (1977) have used the KH technique to  model small offset reflection data for 
reflecting surfaces embedded in a homogeneous acoustic half-space. Extensions of these 
methods to  the case of a laterally varying velocity were given by Hilterman & Larsen (1975), 
Berryhill (1 979), Carter & Frazer (1 983), and Deregowski & Brown (1 983). 

The elastodynamic form of the KH integral (Love 1904,1944; de Hoop 1958; Wheeler & 
Sternberg 1968) has been applied to the calculation of reflected wavefields less often than 
the acoustic form. Until recently most reflection data were gathered with small lateral 
separation of sources and receivers so that very little conversion of compressional energy 
to  shear energy occurred and losses due to mode conversion could be neglected. Also 
sources and receivers were designed to enhance compressional energy at the expense of 
shear wave energy. in  this paper we are interested in wide angle reflections as well as near 
vertical reflections so that (even when shear wave arrivals are not computed) the loss in 
amplitude and change in phase of compressional arrivals due to shear conversion must be 
accounted for. 

A derivation of the time domain form of the elastodynamic Kirchhoff integral can be 
found in Aki & Richards (1980). For completeness we include here a brief derivation of 
the frequency domain form of the integral that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be needed in the sequel. As shown 
in Fig. 1 let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV be an open volume in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- or 3-D elastic medium and let a V  be the 
boundary of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' with outward pointing unit normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. Let f l  be some distribution of 
body force density which vanishes on V and aV, and let u1 and T~ be the displacement 
and stress associated with f l  so that these quantities satisfy the frequency domain 
momentum equation -pw2u1 = V.r l  + f l .  Also, let f, be some distribution of body 
force which vanishes both outside V and on a V and let u2 and r2 be the displacement and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L. N. Frazer and M. K. Sen 

F@R 1. A volume V in (E2  or E 3 )  with boundary a V. The vector n is the outward-pointing unit normal 
to a V .  We wish to calculate the displacement at x, due to a force f ,  at x,. 
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Kirchhoff-Helmholtz reflection seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA123 

stress associated with f2,  so that -pw2u2 = v.7, + f,. Using the divergence theorem 
we write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(TI * u2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT2 - u1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdA = v. ( 7 1  - u2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 2  * U l )  dV.  

However, for any vector u and second-order tensor T, V- (T- u) = (V -7 )  * u + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 :  Vu. 
(To interpret this last equation let {xi>:=l be any system of coordinates for E 3 .  Then 
V =  Vx'alax' and T:VU = Vx' .T- aiu - e.g. Backus 1967.) Thus the integral on the 
right side of (1) becomes 

But rl and u1 are related by the fourth-order elastic tensor c and because of the symmetries 
of c we have .r1:Vu2 =(c:Vul) :Vu2 =Vu l : c :Vu2  =Vu2 :c :Vu l  = r 2 : V u l .  Thus the 
last two terms in the integral ( 2 )  cancel each other. In the remainder of (2) we replace 
V * by - po2u1  - f l  and V- 72 by - pw2u2 - f2 ,  respectively. Since f ,  vanishes on 
V and aV the integral ( 2 )  reduces to  J.vf2 - u1 dV. To summarize, we have shown that if 
f l  vanishes on V and a V,  and if f2 vanishes outside V and on a V ,  then 

When this relation is used for calculations the fictitious. force f2 is chosen in accordance 
with the nature of the actual receiver located at x2. If there is a pressure sensor at x2 then 
choosing f2 = V6 (x - x2) and using the fact that x2 is an interior point of V we may write 

u1 - V 6 ( x - x 2 ) d V  

v- { 6 ( x - x ~ ) u l } d v -  6(x-x,)  V U l d V  s, 
= - v. Ul(X2). 

Then since pressure P is given by - k V - u  where k is bulk modulus, the pressure field 
at x2 due to  f l  is 

n 

Jf the detector at x2 meaures motion in the direction a, then choosing f2 = a2 6 (x - x2) 
yields 

s , f 2 .  u1 d V =  s,6(. - x2 )a2 .  u1 d V =  a 2 .  Ul(X2) 

and so 
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124 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. N. Frazer and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. K.  Sen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y-7- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreceiver 

Figure 2. Application of the KH equations (4) and (5) to the calculation of waves reflected from a 
material discontinuity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ. As u ,  is a reflected field it appears to originate from sourkes outside V .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In the sequel we will also use these formulae to  calculate energy reflected from a material 
discontinuity which coincides with a part of the surface of integration as shown in Fig. 2 .  
Here the volume V contains both x1 and x2; however, at each point on the scattering surface 
C the quantity u1 in (4) and (5) is the reflected P- (or S-)  wavefield, which appears to 
emanate from points outside of V. Thus, although the physical source point is inside V ,  
the virtual source region is not, and so none of the assumptions used in the derivation above 
are violated. In Fig. 2 the reflected field u1 does not vanish on aV\Z. However, since aV\C 
is very distant from x2 the contribution to  uI(x2) of the integral over aV\Z arrives much 
later in time than the contribution from the integral over Z. Thus the former may be 
neglected. 

If the scattered field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 and the incident field u2 are exactly known on aV then 
equations (4) and (5) hold exactly. However, the usefulness of these equations inheres 
in the fact that often u1 and u2 are easy to calculate on  Z whereas u1 (x2) may be difficult 
to calculate directly because of the presence of caustics or multiple arrivals. In such 
circumstances equation ( 5 )  can be an efficient method of computing u1(x2). 

2 Plane wave theory 

In Section 3 we will use equation (5) to  derive formulae for the motion due to  various kinds 
of generalized rays in 2- and 3-D models. These formulae will have the property that they 
give the geometrical optics solution for u1(x2) whenever geometrical optics are valid but 
that, in addition, they also give a correct solution :vhen x2 is located on a caustic of the 
u1 wavefield. To derive these formulae we assume that the length scale of the variation 
in C is much greater than the wavelength of the signal. Thus near Z we may treat both u1 
and u2 as if they were plane waves. To obtain the stress fields associated with these waves we 
use the constitutive relation T = XV. ul + /J [Vu + ( V U ) ~ ]  in which X and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1 are Lamb 
parameters and I is the identity tensor in E 3 .  For a P-wave with displacement up, local 
direction of propagation tp, amplitude A and local P-wave speed a we have 

u p  = ~ t '  exp { iw(F  - r)/a},  

VuP=-t u , 

v. up =-up. ip 

iwAp 

iw  

a 

a 

and 
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For an S-wave with displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus, local direction of propagation fS, amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and 
local S-wave speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP we have us = A exp {iw(ts - r)/P}where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis * A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  Vus = (io/P)isus, 
V * us = 0 and 

Then for two P-waves, u z  and u i ,  the integral of (9, henceforth referred to as the P 
interaction, is 

i o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n * (75 - u; -7; - u5) = -u; - h(t; n -iliPg) + 2p(lii5 - t;n)) - UpB (84  

Q 

and for two S-waves, u$ and u i ,  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS interaction is 

Figure 3. Two elastic half-spaces welded together along an irregular boundary. 

In our use of equation (8) uA will generally be a reflected wavefield of the kind shown 
in Fig. 3.  We will use up and uf' to  denote the P- and S-waves radiated by the source at xl. 
The P- and S-wave reflections of up from Z will be denoted upp and ups, respectively and 
the P- and S-wave reflections of u s  will be denoted ufp and uss, respectively. The reflected 
fields are obtained from the incident field by use of the invariant plane wave reflection 
formulae given in Appendix 1. For example let upp= A f p i f p  be the P-wave reflected by C 
from uf = Aftf. Then upp = up * tfPPtpp in which PP is one of the plane wave coefficients 
of Aki & Richards (1980) and t p p =  tf * (I - 2nn) where n is the local normal to Z. We can 
use this relation to write the P interaction for upp and uf in terms of uf and u[. Thus we 
obtain the PP interaction 

ii - (T';" - uf  -r; - u f q  = upp-  R:: - u f ;  (9a) 

(9b) 
i w -  

RPP 12 = t - P  1 P P - t f P  ' * {A(tyn - nt3 + 2p(nty - g n ) }  
(Y 

in which 

(9c) f P P  = t P  . 1 1 (I - 2nn). 

Similarly for ups and up we have the PS interaction 

ii - (r$ - u - i f  - ufs) = uf R 7: - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf ; (1 Oa) 

( lob) 

S 
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in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Frazer and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[if. K. Sen 

* P S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= i p s  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(&n - nu); 

I $ =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb u + J m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Irn(J> > 0 ;  

And for ups and u,"'we obtain the SS interaction 

n.(7fs.u:-7:. 1 ) - U l  - s .  Rss.  12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 

in which 

The quantities Rf;, RTf, Rf:, Rf$! will be referred to as interaction coefficients, or elastic 
Kirchhoff-Helmholtz reflection coefficients. Note that with these definitions RTC is a 
function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif, i[ and n, Rff is a function of if, if and n, RfC is a function of if, t; and 
d, and Rff is a function of i f , if and n. These definitions are completely coordinate-free 
so that to  apply them in any particular coordinate system one needs only to  have a formula 
for the dot product in that system. However, it should be emphasized that these interaction 
coefficients are asymptotic, being correct only at high frequencies where the radii of 
curvature of C are much larger than a wavelength of the signal. They give only the effect 
of a single interaction of the incident field with C.. Phenomena such as head waves, which 
involve multiple interactions with the surface, are not included. 

3 Results from geometrical optics 

In geometrical optics (Babich & Alekseev 1958; Karal & Keller 1959) one obtains the 
radiation field of a point source by tracing rays, to  obtain travel times; and by assuming 
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that energy flux is conserved along ray tubes, to  obtain amplitudes. We omit the derivations 
of the geometrical optics formulae as these can be found in many books and papers 
(e.g. Cerveny, Molotkov & PSenc'ik 1977; Aki & Richards 1980; Frazer & Phinney 1980). 

Consider first the problem of an elastic medium with a point source located at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , .  We 
assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are smooth functions of spatial position and that the wavelength of 
the signal is small compared to  the scale length of the variations in these parameters. Then 
the P-wave motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup and S-wave motion uf propagate independently and we have for the 
motions in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- or 3-D medium 

In equation (13) fp=t[(x, x l )  is the tangent at x to the P-ray from x1 to x, and 
Tl - T (x, x l )  is the P-wave travel time from x1 to  x. In the denominator the densities 
are p = p(x) and p1 = p(xl) and the P-wave velocities are Q = Q(X) and 011 = a(xl). The 
source term FP = Fp(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxl) and spreading factor BF = BP(x, x l )  are discussed in detail 
below. The unit vectors 6, = b(x, x l )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15, = c(x, x l )  shown in Fig. 4(c) are normal to  
each other and normal to  the unit vector tf = fs(x, xl) which is tangent at x to  the S-ray 
from x1 to x. The vectors {t?, b l ,  6 , )  are a frame field on the S-ray. Thus for rays in a 3-D 
medium b l  and il rotate about t l  at a rate equal to the torsion of the ray. In the numerator 
of (14) F f  =F?(x, xl) and Ff=FF(x,  x l )  are source terms, and in the denominator Bf = 
Bf(x, x l )  is a spreading factor. 

P -  P 

In a 3-D medium the spreading factors are 

B f  = 47rculdm and B f  = 4 7 r p l d m  (15a, b) 

where, as shown in Fig. 4(a), d A  is the cross-sectional area at x of the ray tube which 
suhtends solid angle dSZ at the source. Since the ray tube for the P-wave will in general be 
different from that of the S-wave, dA/d  Cl refers to the P-wave in (1 Sa) and to  the S-wave in 
(1 5b). In a homogeneous medium d m  = 1 1  x - x1 1 I for both P and S. In a 2-D medium 
the spreading factors are 

B f = d 8 7 r u ~ ~  dl/dO exp(-in/4) and Bf=J8nuD1 dl/dO exp(-in/4) (16a, b) 

where as shown in Fig. 4(b) dl is the cross-sectional width of the ray tube which subtends 
an angle dB at the source. Again dZ/dO is in general different for P- and S-waves. However, 
in a homogeneous medium dl/dO = I I x - x1 1 I for both P and S. The quantities dA/dCl and 
dl/dO can be calculated either by integration of the ray equations (e.g. Cerveng & Hron 

Figure 4. (a) Ray tube in three dimensions; (b) ray tube in two dimensions; ( c )  frame field on a ray. 
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128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1980) or by numerical differencing (e.g. Sinton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Frazer 1982). An approximate method 
for converting 2-D solutions into 3-D solutions is given in Appendix B. 

Equations (15a, b) and (16a, b) assume that the ray between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 and x has encountered 
no caustics. If in fact the ray has encountered one or more caustics then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB must be multi- 
plied by exp{-i sgn(w)u(x, x1)n/2} where u(x, xl) is the KMAH index (Ziolkowski & 
Deschamps 1980). Here we need only remember that for 2-D problems the KMAH index of 
a ray is initially zero and increases by 1 every time the ray encounters a caustic. 

In equations (13) and (14) the form of the terms Fp, Fb and FC depends on the nature 
of the source. For a point force the equivalent body force density (Burridge & Knopoff 
1964) is f l  = a(w)& (x - xl) and we have 

L. N. Frazer and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. K .  Sen 

FT= a - tT(xl); F f  = a -  bl(xl); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF? = a  - cl(xl). (17a, b, C) 

In these relations if(xl) is the tangent at the source x1 to the P-ray from x1 to x. Similarly 
bl(xl) and C1(xl) are the normals to the S-ray from x1 to x, evaluated at xl. For a point 
double couple the equivalent body force density is f l  = M VS(x - xl) where M = M(w) 
is the second-order symmetric moment tensor, and we have 

iw 
F;  = -Cl(xl) * M . if(x1). 

PI 
For a point explosion f l  = P ( o )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV6 (x - xl) and 

F P = - P ( w ) ;  F? = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ;  F: = 0. 
iw 

f f1  

These last relations can be obtained from equations (1 8) by setting M (0) = P(w) I ,  where I 
is the identity tensor. Finally we note that for any travel-time function T(x) we have 

T(x) = i(x)/u(x) where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is the local propagation speed and i is the unit normal to the 
wavefront. Since pressure is - hV * u the pressure field associated with equation (14) is zero 
and the pressure field associated with (13) is (- iwX/a) Ff exp ( i o  Tr)/(d- Bf). 

A scheme to obtain dl/d8 by numerical differencing is shown in Fig. 5. Let X be a line 
through the field point x and s denote distance along Z. By shooting rays from x1 to Z we 

Figure 5 .  A differencing scheme for dlld0. If s denotes distance along E then dl/de = fi - ^ t  dsld0. For the 
3-D case see text. 
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obtain a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(0). If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the normal to  2 at x and f is the unit tangent to  the ray then 

dl/de = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 -  t ds/dO. (20) 

In the 3-D case where Z is a surface let sl, s2, be coordinates on Z and f(sl, s2) the func- 
tion such that dA = f(sl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2)ds1 ds2 is an element of area on Z. By shooting rays we get 
s1 = sl(t9, 4) s2 = s2(0, 4) where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and 4 are any spherical polar coordinates on the focal 
sphere SZ. Then 

dA/dQ = 6 t^{(as1/ae)(a~2/a4)-(as,/a4)(as2/ae)} f {si(e, $1, sz(6, $11 /sine. (21) 

4 Reflected waves 

4.1 A S I N G L E  I N T E R F A C E  

We are now in a position to write fairly simple expressions for the reflected wavefields from 
a surface Z as shown in Fig. 3. In general, two inhomogeneous elastic media are in welded 
contact along Z. We substitute (9a) into (5) to  obtain uf', the field of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPP reflection, 
and then use (1 3) to get uf and u,' under the integral. 

az ufp(x2) = uf(x) - R fr - u$(x) d Z(x) 
Ja.1 

In this expression Ff is one of the forms ( I  7a), (18a) or (19a), depending on our choice of 
source, but F[ = a, - t[(x2) where t,' is the unit tangent to the ray from x2 to  x, evaluated 
at x2 (our notation is as in Fig. 4c but with x2 instead of xl). Since both sides of (22) are 
linear in a2 we may suppress the factor 'a2', and write just 

Let us review the meaning of each of the symbols in (23). Outside the integral sign we have 
~1 = p(xl), p2 = ~ ( x z ) ,  a1 = a(xl), a2 = a(xz). Inside the integral sign t,'(x2) is the tangent 
at x2 of the ray from x2 to x. Thus f[(x2) is a function of x as well as x2. FP is, as just 
noted, given by (17a), (lga), or (19a); in each of those equations there appears tf(xl) 
which is the tangent at x1 to the ray from x1 to x. Thus if(xl), and hence Ff, is a function 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx as well as x l .  The factor if * Rf,'. I,' means t^f(x) - Rf;. t[(x) where Rf[ is itself 
given as a function of if(x), i[(x) and n(x) by equations (9b, c), and n(x) is the downward 
pointing unit normal to Z at x. 

Note that p and a inside the integral in (23), and X and p in equation (9b) are evaluated 
above the interface C and these quantities may vary along 2. The quantity $6 in (9b) 
depends on velocities both above and below C and these too may vary. Tf and Tf are the 
P-wave travel times from x1 to  x and from xz to  x, respectively. If the integral is for three 
dimensions then according to equation (15a) Bf'= 47-ral.\ldAl(x)/dSZ1 and B[ = 4na2 
ddA2(x)/dR2. Here dAl (x) is the cross-sectional area at x of the ray tube which subtends 
solid angle dSZl at x l ,  and dA,(x) is the cross-sectional area at x of the ray tube which 
subtends solid angle dSZ2 at x2. Thus Bf and B,' can be obtained by shooting rays from 
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130 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xI and from x2 and differentiating according to equation (21). If the integral is for two 
dimensions then Bf is given by (16a) and B! by a similar expression and these expressions 
can be obtained by differentiating according to equation (20). In two dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ds 

where s is the curvilinear distance along Z, but for three dimensions dX =f(sl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2) dsl dsz 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is a function and s1 and s2 are the coordinates for Z introduced just before equation 
(21). Thus in either case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd C  is the element of area on  Z. 

To obtain an expression for the PS reflected wave we use relation (13) to get up, relation 
(14) to get uf, and then substitute (IOa) into (5) to  obtain 

u$(x2) = 

L. N. Frazer and M. K .  Sen 

tp * R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATf - { b2 b2 (x2) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2 S2 (x2)} 

exp [ iw(Tf + T S  
X )Id X(x). B P B ~  

For the SP reflected wave, proceeding in a similar manner, we find 

and for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASS reflected wave we get 

Here Rff,  for example, is well defined in terms of if(x), @(x) and n(x) by relations 
(1 2b-h). 

Equations (23)-(26) may be used when the surface Z: has corners or when the receiver is 
located at a caustic, but they contain the asymptotic interaction coefficients and so they 
give only the reflected field but not head waves or diving waves. Fortunately, computational 
experiments using more exact methods (e.g. Fuchs 1971) have shown that even in most 
refraction experiments the largest amplitude arrivals are generally post-critical reflections, 
are less often refractions, and are almost never head waves. Refractions are discussed briefly 
in Section 6 and will be treated in more detail elsewhere. 

4.2 A M U L T I - L A Y E R E D  M E D I U M  

Up to this point we have assumed that the medium contains no interfaces other than Z. 
Now suppose the medium has above X two other interfaces A and B, as shown in Fig. 6. 
Focusing effects associated with the curvature of interfaces A and B are automatically 
included in relations (13) and (14) through the factors dA/dQ or dZ/d0 in equations (15) 
or (16). However, to account for the loss of energy through reflections and mode changes 
at A and B, relations (13) and (14) must be modified by the inclusion of plane wave trans- 
mission coefficients. Equation (I  3) becomes 
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Figure 6. (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA medium with three interfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ,  and Z showing the geometrical ray for the P-wave 
reflected from Z; (b) the rayfields for u: and up needed to synthesize the reflection. 

in which and (pp)l~ are P-wave transmission coefficients through interfaces A and B, 
respectively, and p1 and a1 refer to the source while p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa refer to  the point x on C-, the 
upper side of C. Equation (14) becomes 

uf(x)= {b~(x )  b l ( X i )  + el(x) el(xg)} *{v?g(vp)lB*fB+ qlB(f i&lBqlB} 

- {b,(x,> b l ( X 2 )  + G ( X , ) e l ( X : N  - { * i w ~ ) l A C l +  qlA(mlAqlA} 

exp ( i w T f )  
* { ~ ( x A )  F t  + C(xj) FF} - 

Bf 

in which (T%')lA and (fifi)lA are, respectively, the downward SV and SH transmission 
coefficients through interface A with (Pv),, and playing similar roles for interface 
B. The vectors Uf:, vfA and qlA are an obvious extension of the notation introduced in 
Appendix A (Fig. A l )  and are all well defined in terms of is(xA) and the material para- 
meters immediately above and below interface A. The operatorbl (x) bl (xh) + el (x) el (&), 
for example, takes account of the curvature and torsion of the ray in getting from the 
bottom of B to the top of C. If the material parameters change only across A ,  B, and z1 and 
are otherwise constant then these operators have no effect and may be suppressed. Equation 
(28) would then become 

In view of equation (27) our expression (23) for the reflected P-wave must now be 
modified to include a factor ( ~ p ) l A ( ~ ~ ) ~ B ( ~ ~ ) ~ A ( p ~ ) * B .  Equations (24)-(26) must also 
be modified in obvious ways to include new factors like those obtained in going from 
(14) to  (28). These modifications are straightforward but the resulting equations are very 
long and will be omitted. Henceforth we will assume that (23)-(26) have been modified 
whenever necessary to include the effects of interfaces shallower than C. These modifica- 
tions can of course include the effects of multiple reflections and mode changes anywhere 
above Z. All of the integrals (23)-(26) we have written have the form 

in which Gz is the elastic Green's tensor obtained from (13) or (14) by suppressing the 'a- '  
in FP, Fb,  Fc. Here u1 is the wave from the source down to Z -  and G 2  is the wave from the 
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receiver down to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ -  (since the normal to  C points down we use C -  to  denote the upper side 
of C and C+ to  denote its lower side). The interaction coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 1 2  in (30) is chosen to 
agree with the modes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 2  on C -  without regard to the mode of these waves in the 
shallower portions of their respective paths. For example, with reference to Fig. 6, if u1 is 
the wave which travels from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB as an S-wave and from B to  Z as a P-wave, and G 2  is 
the wave which travels from x2 to B as a P-wave and from B to C as an S-wave then R 1 2  in 
(30) is RL' given by equations (lob-g). u1 and G 2  may even represent waves which have 
been reflected one or more times from Z before interacting, as shown in Fig. 7. 

L. N, Frazer and M, K,  Sen 

g p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5; g p ;  $----$A B 

s p  
S P  S 

S P P  u2 u; u' 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0) ( b) ( c )  

Figure 7. (a) The generalized ray whose response is to be synthesized; (b) first choice for u ,  and u,; (c) a 
second choice for u ,  and u,. Here the AB multiple has been incorporated into u> instead of u;. 

4.3 A T T E N U A T I O N  A N D  D I S P E R S I O N  

In an attenuating medium the Lam6 parameters X and /.I become frequency dependent and 
complex; hence so do the seismic velocities (Y and 0. All the quantities in the geometrical 
optics expressions (13) and (14) remain well defined except for travel time T and dA/df l  

(or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdZ/d8). To define these quantities we assume that the geometrical optics raypath is the 
same for all frequencies. Then dA/di2 is frequency-independent; also, we obtain a frequency- 
dependent, complex travel time for the P-wave, say, by evaluating the ray path integral 
Tp(w) = J d s / a ( o )  over the same path for each frequency. This definition of Tp(w) accords 
with Fermat's principle, which states that, on any geometrical optics path, travel time is 
stationary with respect to small perturbations in the path. Thus the travel time Jds/a(o).  
is nearly the same over our fixed path as it is over the true, frequency-dependent, path. 

Even integrating over a frequency-independent path, evaluation of the travel times in 
(23)-(26) would be time consuming if many frequencies were needed. However, suppose 
the seismic quality factor Q is spatially homogeneous between the interfaces of the multi- 
layered model shown in Fig. 6. Then, even if the velocity itself is not spatially homogeneous 
there, we may write for the layer between, say, A and B 

where we have assumed w > 0 and ( l / n Q A ~ )  In (o /wo)  e 1 (e.g. Kanamori & Anderson 
1977). Here QAB and wo are fixed parameters and ao(r) is independent of frequency. Thus 
for the leg of the ray path between A and B 

that is, all the frequency-dependent factors may be taken outside the integral. Doing likewise 
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for the other legs of the path we find that the total travel time Tf'(x) in equation (13) may 
be written 

TT(x1,w) = f l A ( a )  T%X) + f A B ( W L ? ( X )  + f B C ( W )  TPBdx) (33) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l A ,  for example, is the coefficient of the integral on the right side of (32). Here x is, 
as usual, a point on Z. The significance of (33) is that if we are willing to store the three 
functions Tf,(x),  T:B(x), TL(x) separately (instead of storing their sum, as we would in the 
lossless case) then we can quickly recover Tf'(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  for each frequency. Of course, if the 
quality factor Q is the same in each layer then in (33) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= fAB= f B C  and we need only 
save the sum of the travel times, just as in the lossless case. 

4.4 L I M I T A T I O N S  O F  T H E  M E T H O D  

As noted above an advantage of Kirchhoff-Helmholtz (KH) theory over geometrical optics 
is that the former gives a correct response when the receiver is located on a caustic whereas 
the latter does not. However, this advantage also obtains with other methods for synthesiz- 
ing reflections. The EWKBJ (Frazer & Phinney 1980) or Maslov method (Maslov 1965; 
Chapman & Drummond 1982) allows the receiver to  be located on a caustic and so does the 
Gaussian beam method (e.g. Cerveny 1983). These two methods are probably superior to  
KH theory for modelling refracted waves in a medium without interfaces (Sinton & Frazer 
1981; Haddon 1982, 1983). For modelling reflections, however, KH theory is probably 
superior to both of these other methods because of its more correct rendering of shadow 
arrivals and diffractions. To see why this is so consider the situation shown in Fig. 8, where 
a fault in a reflective interface has caused the primary reflection wavefield to  divide into 
two branches separated by a shadow zone. Without loss of generality we may for convenience 
take the velocity to be unity above the reflector and take the reflector to be flat except at 
the fault. Travel-time curves for the synthetics that would be obtained with various methods 
are also shown in Fig. 8. For reference: ABE is the reflection branch that would be obtained; 
in the absence of a fault, from an infinite length horizontal reflector passing through P; LHJ 
is the reflection that would be obtained from a single infinite length horizontal reflector 
passing through points Q and R. The KH method gives branches ABD, CB, GHJ and HI with 
the arrivals on branches CB and HI opposite in polarity to  arrivals on the other branches. 
Hilterman's (1 970) experiments with physical models and sources shows that these arrivals 

I I 
I I - x  

0 XI 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxz 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 

Figure 8. Travel-time curves of arrivals given by different methods of constructing synthetic seismograms 
for a model consisting of a faulted interface. See text for discussion. 
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134 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and polarities are correct. Geometrical optics gives only branches AB and HJ and so is 
correct only in the limit of infinite frequency. The EWKBJ/Maslov method gives branches 
ABF and KHJ; BF IS a straight line tangent to  ABE at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 and KH is a straight line tangent to  
LHJ at x2. The Gaussian beam method also gives branches ABF and KHJ. Branches BF and 
KH are incorrect, although for low frequencies the large beam width makes this difficult to 
detect (e.g. Cerveny 1983, figs 8 and 9). To see why the Maslov and Gaussian beam methods 
give spurious branches BF and KH note that branch BF is associated with the single ray 
(plane wave) which travels from the source to  the upthrown corner of the fault P hence to 
xl, and the branch KH is associated with the ray which leaves the source at the same angle 
but just misses the fault corner and is reflected at R up to x2. Branch BF and branch KH 
are straight and parallel because they are associated with essentially the same plane wave. It 
has often been pointed out that the fundamental limitation of KH theory is that the reflect- 
ing point must be contained in an area of surface whose linear dimensions and radii of 
curvature are large compared to  a wavelength. The example of Fig. 8 indicates that the key 
word in this statement is ‘contained’ since KH theory works well when the reflecting point 
is on the boundary of such an area but the other ray methods (geometrical optics, Maslov, 
Gaussian beams) work only when the reflecting point is near the centre of such an area. 

In any comparison of asymptotic methods correctness is, of course, a relative term. For 
instance, a very careful comparison of data with KH synthetics for arrivals on branches CB 
and HI in Fig. 8 would reveal a lack of agreement in the phase shift at low frequencies due 
to the fact that the region of the fault from Q to R is not truly shadowed but instead is 
lit by energy diffracted from the corner P. Also, depending on the nature of the velocity 
jump across the interface in Fig. 8 ,  we would expect to see a head wave arrival from either 
the upthrown side of the interface or the downthrown side. The KH theory presented here 
will not give this arrival because it assumes only a single interaction with the interface. This 
lack of head waves will be particularly serious in a situation like that shown in Fig. 9 where 
the upthrown side of the interface is rounded off. If velocity increases across the interface 
then the incident field will excite a rather strong whispering gallery wave which will radiate 
upwards; but this wave will be absent from our KH synthetics. Stephen (1984) has observed 
such a wave in marine data and modelled it using a finite difference method. Such waves 
could also be modelled using the boundary integral equation method (e,g. Cole, Kosloff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Minster 1978). 

The most significant limitation of the KH theory outlined above is one to which the 
Maslov and Gaussian beam methods are not subject. It is encountered when the wavefields 
u1 and u2 in the integral (3) cannot be represented everywhere on Z by the geometrical 
optics equations (13) and (14). Consider the situation shown in Fig. 10. There the velocity 
structure is such that the up rayfield (from the source) has two caustics on Z. The 
geometrical optics representation of up on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is a sum of three terms of the form (13). At 
each of the caustics on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, two of the three terms will be singular due to  a zero of their 

L. N. Fruzer and M. K. Sen 

Figure 9. Reflections from a smooth interface. If the velocity jump across the interface is positive then a 
whispering gallery wave will be excited in the upper portion of the curved part of the interface and will 
propagate past P into the shadow, radiating upward. This energy will be absent from our KH reflection 
synthetics. 
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source receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA135 

Figure 10. The problem with the KH method when the medium is inhomogeneous above the reflector 
of interest is that u1 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2  may have caustics on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ. Then the geometrical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoptics expressions for u, and 
u, are no longer valid. 

spreading factors. When the representation for uf is substituted into (22a) the resulting 
integrand is therefore a sum of three terms each of which has a different phase function 
and each of which is singular at one or two points on Z. It can be seen that in general, 
if ul, the wave from the source to  X ,  is a sum of m terms of the form (13) and u2, the 
wave from the receiver to  X ,  is a sum of n terms of the form (13) then the resulting 
integrand of (22a) is a sum of mn terms each of which has a different phase function and is 
singular at one or two points on  X .  Let us denote such a term by f ,  exp (iqjk), 1 < k < mn; 
then @k = o ( T r j  + T:/) for some i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj in the ranges 1 < i < m and 1 < j < n ,  respectively. 
Each reflection arrival from Z is associated with a stationary point of some function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@k 

Thus if no @k is stationary near the singularities of its f k  we can compute all of our arrivals 
by limiting the range of integration to  exclude the singularities. However, limiting the range 
of integration is unsatisfactory in several respects: it requires determining the location of 
stationary poi& before integrating; it gives synthetics with unreliable amplitudes, or 
truncation phases; and there is no guarantee that a stationary point of some @k will not 
coincide with a singularity of f k .  

Another approach to this problem was taken by Sinton & Frazer (1981), who treated 
the singularities of each f k  as integrable and integrated over them. This procedure makes it 
unnecessary to  locate the stationary points of the @, before integrating; however, it too is 
unsatisfactory in several respects: the integrable singularities cause small spurious arrivals; 
if a stationary point of 4, coincides with a singularity of fk then the amplitude of the 
arrival associated with that stationary point is unreliable; and, finally, not all the singularities 
of geometrical optics formulae are integrable. In a variation on this approach Sen & Frazer 
(1983) proposed that the integrable singularities could be removed from each term 
f k  exp(iGk) by convolving each f k ( x )  with a smoothing operator whose width is a 
decreasing function of frequency. This enlarges the domain of fk (x )  and so the phase 
function # k ( ~ )  must be extrapolated to cover this enlarged domain. This procedure has a 
number of advantages: the spurious phases associated with the singularities are no longer 
present; the integrand is still a sum of terms f k  exp (i&) each of which has a well-defined 
phase function &; we know that physically the singularities do not exist at finite frequencies, 
therefore any method of quelling them is better than not quelling them at all; on the other 
hand it seems clear that if we are to average f k  in order to  quell its singularities we ought to 
average it over a wavefront instead of a surface on which @, also varies. If we averaged over 
a wavefront our frequency-dependent smoothing operator would then play a role similar 
to the beam amplitude profile in the Gaussian beam theory. Deregowski & Brown (1983) 
have used such a scheme in numerical calculations; they average over the surface containing 
the receivers instead of a wavefront, and do not bother to  extend the domain of @k(X) .  In 
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summary, although the physical basis of such a procedure may be reasonable its mathematics 
have not yet been worked out and may in fact not be workable since, as noted above, a 
geometrical optics formula may well have a non-integrable singularity. In the next section 
we consider in detail a quite different approach to  the problem of caustics on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L. N. Frazer and M. K .  Sen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 One-fold path integrals 

Earlier we noted that the KH integral for the generalized ray shown in Fig. 7(a) could be 
written in two ways. In the first way we write 

using the interaction coefficient given by (9b) and the geometrical optics expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u1  and u2 shown in Fig. 7(b). In the second way we write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 

using the interaction coefficient given by (1 2b) and the geometrical optics expressions for 
u1 and u2 shown in Fig. 7(c). If none of the rayfields in Fig. 7 has a caustic on  Z: then (34) 
and (35) are equivalent. However, it may happen that u1 or u2 has a caustic on  C whereas 
u: and u; do not. Then equation (35) will have an integrand consisting of a single term 
of the form f exp (io@) where f is regular, whereas equation (34) will have an integrand 
of the form Ck fk exp (iGk) where each fk is singular. That is, equation (35) will be accurate 
and easy to evaluate by  the method of this paper but equation (34) will be plagued by ail 
the difficulties described in Section 4.4. Frazer (1983) showed that (34) and (35) are both 
one-fold path integrals that can be derived from the same nine-fold path integral by different 
applications of the method of stationary phase. [Frazer (1983) referred to these path 
integrals as Feynman path integrals (Feynman & Hibbs 1964), but this is incorrect. An 
actual application of the Feynman technique to  the wave equation is given by Schulman 
(1981, p. 164).] Details of the theory of multi-fold integrals for reflection problems will be 
the subject of a separate paper but we summarize the theory here in order to  exhibit the 
relation between (34) and (35) and to show how to find other one-fold integrals for the 
same generalized ray. 

For simplicity consider once more the P-wave shown in Fig. 6(a). The path shown in 
Fig. 6(a) is a geometrical optics path; actually the energy in the P-wave reflected from Z 
may be regarded as travelling from the source to  every point on A ,  from every point o n A  
to every point on  B, from every point on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB to  every point on Z: then from every point on 
Z upward to  every point on B, from every point on B to  every point o n A  and from every 
point on A to the receiver. Paths such as the one shown in Fig. 1 l(a) are thus legitimate. 
The integral giving the contribution of all such paths may be written 

R A E  R E X  R X B + R B A  I RA2) \  x exp (iw (?+- +- +- 
a B  ax a x  aB aA 

where for brevity we have taken the velocity to  be constant between interfaces. In this 
expression R 1~ = I I x1  - XA I 1 ,  R A E  = I I x A  - xE I I , R B X = I I ~ B - X ~  I I ,  R ~ B = I I x z -  
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Kirchhoff-Helmholtz reflection seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA137 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) One of the paths summed in the five-fold path integral (36) for the P-wave of Fig. 6(a); 
(b) the one-fold integral that would be obtained if the first four integrals in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 6 )  were evaluated simul- 
taneously by the method of stationary phase. Similarly for: (c) the first, second, third and fifth integrals; 
(d) the first, second, fourth and fifth integrals; (e) the first, third, fourth and fifth integrals; (f)  the 
second, third, fourth and fifth integrals. 

xb 1 1 ,  RBA = I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi - x> I 1 ,  RAZ = I I x> - x2 I 1 ,  dA is the element of area on interface A 

and similarly for the other interfaces, and f(xl, xA, xB, xx, xb, x>, x2) is a product of 
interaction coefficients similar t o  those used in this paper. If we were to  apply the method 
of stationary phase to (simultaneously) the first, second, fourth and fifth integrals in (36) 
we would obtain exactly the KH integral (34) with u1 and u2 given by the geometrical optics 
expression for the rays in Fig. 1 l(d). This is the kind of integral we have been treating in this 
paper. On the other hand if we were to apply the method of stationary phase to  (simul- 
taneously) the first four integrals in (36) we would obtain an integral like (34) - the inter- 
action coefficient will be slightly different - with u, and u2 given by the geometrical optics 
expressions for the rays in Fig. 1 l(b). 

Fortunately we do not actually have to write out the exact form of (36) and perform 
the stationary phase evaluation of four integrals to get whichever one-fold integral we 
seek. We can use the KH formalism to obtain the one-fold integral directly. For example, 
to obtain the one-fold integral whichuses the u1 and u2 shown in Fig. 1 l(c) note first that 
since u 1  has been reflected upward from 2 it appears to  emanate from a virtual source 
distribution below interface B. As shown in Fig. 12  we may apply the KH equation (5) 
with B C a V and ii = ng. By an analysis very similar to that given in Section 2 we obtain 

To make each term in (37b) well-defined we denote the -nB (upper) side of surface B by 
B- and the +i iB  (lower) side of B by B'. Since A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and a are discontinuous across B we 
denote values of h on the upper side of B by h(xB) and values of h on the lower side of B 

by X(xf;) and similarly for p and a. In (37b) h = h ( x i ) ,  p = p(xi), a = a ( x i ) ,  (@)2 is for 
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138 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. N. Frazer and M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. Sen 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. Using KH theory to calculate the one-fold integral for Fig. 1 l(c). We take B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and note 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 1  appears to emanate from outside V .  As usual the integration over a V \ B  is neglected. 

a P-wave incident from above B with direction of propagation f f  (see Appendix A), and 

t;p = a ( x L )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor5 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ1 - Cw(xj+J2i i ;  (37c) 

u=t :* (~ -nn) /a!(x i ) ,  u=I Iu I I ,  u=a/u. (374 

Then 

is the one-fold integral for Fig. 1 l(c). 
It is interesting to compare (37b) with equation (9b). In deriving (37b) we used a plane 

wave transmission coefficient to transmit u2 downward through'surface B, then used the PP 
interaction equation (8); in deriving (9b) we used a plane wave reflection coefficient to 
reflect u1 upward from Z and then used equation (8). We could have obtained a different 
looking expression for (9b) by reflecting u2 instead of u1  and we can obtain an alternative 
expression for (37b) by transmitting u1 instead of u2. Dding so yields 

n . (=?P. u; +. uPP ) - u l  - p. Ef;*u: 

in which 

(38a) 

where X = X(xs), p = p(xi), a! = (~(x;), (kj)2 is for a P-wave incident from below B with 
direction of propagation if, and 

ty = . ( x i )  uu- dl - a ( x i ) 2  u2 n (38c) 

u=t?.(I-nn)/a(x&), U = I I U I / ,  i = o / u .  (384 

Then 
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Kirchhoff-Helmholtz reflection seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA139 

( c )  (d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( e  1 

( f  1 (9 1 (h)  ( 1 )  ( 1 )  

A 

B 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUlU2 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. The generalized ray in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) may be written as a nine-fold path integral (equation 39) or a 
one-fold integral (KH integral) using any one of the geometrical optics ray pairs in (b)-(j). 

is also the one-fold integral for Fig. 1 I(c). Although (37b) and (38b) look quite different 
they take the same values on neighbourhoods of stationary points of (37e) and (38e). Thus 
they are identical within the accuracy of the rest of our theory. The other interaction 
coefficients for transmission, DG', DC', D f -  (or equivalently EG', Ef:, EC') are straight- 
forward to obtain using equation (8) and (9) and will be omitted. 

We return briefly to the more complicated generalized ray of Fig. 7(a), repeated in 
Fig. 13(a). The full-fold path integral for this ray is 

a2ul(x2)= S, dA dB Jr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, dB' I, S, dB" S, dA' S, dB"' i, dA" 

x f(xl ,  XA, XB,  XZ, xk, xh, xg, x6, x:, x i ,  x2) 

RAB RBx RxB' R B I = '  Rx'B" RB';1' RA'B"' 
x exp (iw(" +- +-+-+-+- +-+- 

+-+-?I f f B  PA 

a A  138 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAac PB OB 

RB"'A" 

x (R  1A RABR B C R  CBIR B l  

~ ' B " R A ~ ~ ~ ' R ~ ' ~ " ' R  B"'A.~RA" 2)-1 (3 9) 

where again for brevity we have assumed that density and velocities are constant between 
interfaces. In this expression R I A  = I I x1 - XA I I, RAB = I I XA - XB I 1, and so forth, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 
is a product of interaction coefficients. Full fold integrals such as (39) and (36) are always 
robust with respect to internal caustics but they are time-consuming to compute (clearly!) 
and are usually not needed. If for one of the geometrical optics pairs (ul, u2) in Fig. 13(b-j) 
neither u1 nor u2 has a caustic, then the KH integral which uses that pair will be just as 
robust. In order to determine whether such a pair exists it is only necessary to trace two sets 
of rays. For the problem in Fig. 13 one set of geometrical optics rays, the ul-set, say, is 
traced from the source along paths similar to u1 in Fig. 13(j). Another set of geometrical 
optics rays, the u2-set, is traced from the receiver along paths similar to u2 in Fig. 13(b). 
If for one of the (virtual) interface CE { A ,  B, t;, B', Zf, B", A', B"', A"} the ul-set has no 
caustics on or before C and the u2 set has no caustics on or before C then C is a good 
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1 40 

surface of integration for a KH integral. Of course if no good surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC exists then we can 
consider going to a two-fold path integral. We do not discuss two-fold path integrals here 

except to  note that for the generalized ray of Fig. 13(a) there are (s) = 36 possible two-fold 

integrals, and a great many sets of rays must be traced to verify visually the goodness of even 
one of them. Note, however, that in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 we have not exhausted the possibilities for 
one-fold integrals since we are free to choose a surface of integration across which velocity 
does not change. With reference to  Fig. 13 suppose: C and C' are adjacent virtual surfaces; 
that u1 has caustics on C' but not C, and that u2 has caustics on C but not C'. Then there 
may be a good surface of integration between C and C'. Also, every one-fold integral is 
implicitly an mtegration over the tocal spheres ot the source and receiver. Thus we are tree 
to  allocate different portions of the focal sphere to  different one-fold integrals and then sum 
these integrals to get the complete response. Since the u l -  and u2-ray sets introduced above 
give the correspondence between the reflector surface and the focal spheres, inspection of 
these ray sets will indicate which portions of the focal spheres should be allocated to which 
one-fold integrals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Fruzer and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. K.  Sen 

6 Refracted waves 

As a simple example we consider the situation shown in Fig. 14. We take the material 
parameters to be linear both above and below the surface C but discontinuous across C. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. Single interface problem for a refracted wave. In this model the material parameters are 
(different) linear functions of position above and below X ;  (a) the geometrical optics path between x, and 
x,; (b) an admissible path in the full (two)-fold path integral; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c )  and (d) possible one-fold path integrals 
for the phase in (a). 

Thus for P-wave velocity: above C, a(r) = a(r - r,) * w, and below C, a(r) = (r - rb) * wb 

for some constant vectors r,, w,, rb and wb. Fig. 14(a) shows a geometrical optics path 
between x1 and x2. To synthesize the P-wave associated with this path we may use the 
full-fold path integral 

in which T l z ,  Tzx i ,  T z f 2  are the travel times from x1 to  xz, xz to x i ,  and xk to  x2, 
respectively: B l x ,  Bzzt, B y 2  are spreading fact.ors; and f(xl, xz,  x i ,  x2) is a product of 
interaction coefficients. [At a stationary phase point of (40) f will be proportional to  
i+(xd)@(x") where xu and xd are the upward and downward points, respectively, of the 
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Kirchhoff-Helmholtz reflection seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA141 

geometrical ray in Fig. 14(a).] Application of the method of stationary phase to  the 
integration over C' in equation (40) yields the one-fold path integral (Kirchhoff-Helmholtz 
integral) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 are shown in Fig. 14(c) and EG' is given by (38b). On the other hand, 
application of the method of stationary phase to  the integration over C in (40) yields the 
one-fold integral 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 and u2 are shown in Fig. 14(d). To see whether (41) or (42) is robust (i.e. whether 
neither u1 nor u2 has caustics on C) we trace one set of rays from the source, down through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X ,  through their turning points and back up to  C; and a similar set of rays from the receiver, 
down through C, through their turning points and back up to  X. 

Integrals (40)-(42) are for waves that interact only twice with C, but a similar procedure 
can be used for refracted waves that reflect off the bottom of the interface. For example, a 
wave with three turning points in the lower medium will give rise to  a four-fold integral 
analogous to (40) and four equivalent one-fold integrals. The tracing of one set of rays from 
the receiver and one set of rays from the source will reveal whether any of these one-fold 
integrals are robust. It is clear that the total interaction of the incident field with the inter- 
face can be written formally as an infinite series of multi-fold integrals (one for each general- 
ized ray), of which integral (40) is a single term. However, numerical evaluation of this series 
would certainly be a very inefficient way of computing the total response. 

7 Discussion 

In this paper we have attempted to show how Kirchhoff-Helmholtz (KH) theory can be 
extended to elastic media, especially multi-layered elastic media. Throughout we have 
assumed that the frequencies in the signal that is to  be synthesized are sufficiently high that, 
were it not for the presence of caustics and diffractions, our methods could be replaced by 
geometrical optics. Thus all of our results are asymptotic. However, the experience of many 
workers over the past two decades in modelling body wave amplitudes and arrival times with 
geometrical optics suggests that such asymptotic theories are useful. Also, comparison of 
such theories with both experiments (e.g. Hilterman 1970) and more accurate methods 
(e.g. Choy et al. 1980) reveals that they generally work well at frequencies far lower than 
the mathematics would lead one to expect. 

The extension of KH theory to  the case of a single interface between two elastic media, 
carried out in Section 4.1, is relatively straightforward, consisting mainly in the inclusion 
of an elastic reflection coefficient and the use of the more general KH formula given by 
equation (5). The main limitation of this extension is that the reflected wave is assumed to 
have interacted only once with the boundary, so that head waves, for example, are not 
included. Section 6 shows that waves which interact numerous times with the interface can 
be computed using KH theory but that additional KH integrals are required to compute 
them. The contributions of these other waves cannot be included in the KH integral for the 
primary reflection. Another limitation of the extension arises in consequence of our use of a 
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plane wave reflection coefficient. Computational experiments in Sen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Frazer (in prepara- 
tion) show that rapid changes in the reflection coefficient with angle of incidence can give 
rise to small erroneous arrivals in the KH synthetic seismogram. 

The extention of KH theory to  a multi-layered medium, in Section 4.2, is accomplished 
by including plane wave transmission coefficients for intermediate interfaces. With reference 
to Fig. 6, note that even though the energy flow is from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxl, down to Z, then up  to x2, we 
use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdownward transmission coefficients for both the downward and upward paths through 
interfaces A and B.  (The reason is that for reasons of convenience we calculate the spread- 
ing factor BC on 2 by tracing rays from the receiver to  Z. If we were to  use upward trans- 
mission coefficients for the upward leg then to be correct we would have to  calculate B: 

by shooting rays upward from each point of Z to a neighbourhood of the receiver.) The 
procedure given in Section 4.2 works well even if the receiver is located on a caustic but 
breaks down if either the source wavefield or the receiver wavefield has a caustic on the 
reflector Z, for Z is the surface of integration. The nature of the breakdown is discussed 
in Section 4.4. Numerical examples will be given in Sen & Frazer (in preparation), and have 
already been given for a similar situation by Frazer & Sinton (1984). 

The breakdown in the method of Section 4.2 can often be avoided by using a surface of 
integration other than the reflector. As shown in Section 5 all such one-fold integrals are 
derivable from a multifold path integral. For a medium consisting of homogeneous irregular 
layers the most general path integral that might be required to synthesize a primary reflec- 
tion is the one with a single integration over the reflector and two integrations over each 
intermediate interface; we refer to this integral as the full-fold path integral. With the full- 
fold integral we associate a generalized ray or path like the one shown in Fig. 1 l(a). This 
generalized ray obeys Snell’s law between interfaces but is non-Snell at each interface. 
If one of the integrations in the full-fold integral is evaluated by stationary phase then 
the result is a lower-fold integral whose associated generalized ray now has a Snell-type 
interaction at one interface. Continuing this procedure leaves a one-fold integral whose 
generalized ray has a Snell-type interaction with every interface but one. Seen from this 
point of view, the KH integral over the reflector is just one member of a family of one-fold 
integrals. Fortunately, as shown in Section 5 ,  all of these one-fold integals can be derived 
directly with the KH theory of Section 4.2; it is not necessary actually to perform stationary 
phase on a full-fold integral. Frazer (1 983) showed an example of the breakdown of the KH 
integral and calculated the reflection using a one-fold integral over an intermediate interface. 
Other examples will be given in Sen & Frazer (in preparation). 

Unfortunately there are many velocity models that will give reflections for which no 
member of the family of one-fold integrals is robust. In such situations a multifold integral 
must be used. A detailed derivation of the full-fold path integral, including generalized 
transmission coefficients, will be given elsewhere. It is interesting to  note that similar path 
integrals have already been used for the synthesis of refracted waves in a smoothly varying 
acoustic medium by Haddon (1 983) and Zherniak (1983). Haddon (private communication) 
has stated that the amount of ray tracing required makes this method prohibitively expen- 
sive. However, in the refraction problem treated by Haddon (1983), velocity could not be 
held constant between surfaces of integration and rays had to be traced numerically from 
surface to  surface. For the reflection problem, one can choose models with velocity constant 
between surfaces of integration so that ray paths are piecewise straight and easily calculated. 
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Appendix A 

Here we give invariant formulae for calculating the local direction of propagation and the 
displacement of the scattered waves created by a locally plane wave incident on a smooth 
boundary. Frequent reference is made to Vol. I of Aki & Richards (1980) and these 
references are abbreviated as AR. Equations (5.32) on p. 144 of AR are of SH-waves and we 
shall replace the symbol S on their left sides by H. Thus, for example, we write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfifi instead 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3s. Similarly, equations (5.89), which begin on p. 150 of AR, are of P- and SV-waves so, 
when referring to these equations, we use Vinstead of S and write, for example, j p  instead 
of PS. As shown in Fig. A l ,  the smooth surface Z has unit normal n with material para- 
meters a+, /3+ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp+ on its +ii side and parameters a, /3, p on its -ii side. The surface 
identity tensor on Z: is II = I -nn where I is the identity tensor for the underlying Euclidean 
3-space. The formulae we derive here are for the case of a wave incident on the - ii side of Z 
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Kirchhoff-Helmholtz reflection seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA145 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

n 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA l .  Directions of propagation and directions of displacement for: (a) an incident P-wave; and 
(b) an incident S-wave. 

Table 1A. Incident P-wave. Given quantities are: n, the normal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ;  i p ,  the direction of propagation of 
the incident P-wave; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  the material parameters on the -n side of X+:  a+, p+, p+, the material 
parameters on the + A  side of X ;  and u p  = A p t p  the displacement of the incident P-wave. Derived 
quantities are I = I -fin, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa =  ( t P .  I l ) /a ,  u = 1 I u I I ,  and i =a /u .  In the AR formulae cos i l=  i p *  n, 
cosi2=t^$p*n, cosjl = -iss.ii, and cosj2= iy*n; and the branch to be taken for each root in 
column 2 is Im (J) > 0. 

as shown in Fig. A l .  To use these formulae for a wave incident from + n side one replaces 
ii by - ii in each formula containing h. 

Appendix B 

When seismic reflection or refraction data are gathered along a line perpendicular to the strike 
of the geological structure then these data are often modelled by synthetic seismograms 
computed using the two-dimensional (2-D) wave equation. In any method of computing 
synthetics which has a ray theoretical foundation (e.g. geometrical optics, Maslov theory, 
Gaussian beams, Kirchhoff-Helmholtz) these 2-D solutions are easily converted to  approxi- 
mate 3-D solutions by assuming that the medium has cylindrical symmetry about an axis 
(generally vertical) through either the source or the receiver. If the departures of the 
medium from stratification are greatest in the vicinity of the source then it is best to choose 
this axis through the receiver and vice versa. The switch from one axis to the other can be 
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Table A2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIncident S-wave. Given quantities are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, the unit normal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis, the direction of propagation 
of the incident S-wave; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  the material parameters on the -h  side of Z; a+, p+, p+, the material 
parameters on the + fi side of E ;  and u s ,  the displacement of the incident S-wave. Derived quantities are: 
I I  = 1 - 1 3 ,  a = (is-l,)/p, n = I I a I I,i = a/ I I  a I I ,  q =  us-(I1 -uu), and i = q / l l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr) I I .  In the AR formulae 
cosil = - isp- n, cosiz = isp- A, cosj l  =is. fi, and cosjz = '$!- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ;  and the branch to be taken for each 
root in column 2 is Im (J)  

L. N. Frazer and M. K .  Sen 

R 
0. 

Wave type 

Incident S 

Direction of propagation 

is 

Transmitted P 

Transmitted S 

made continuously so as to accommodate, for example, deep departures from stratifica- 
tion beneath the source and shallow departures from stratification near the receiver. 

Consider first the geometrical optics equations (13) and (14). The spreading factors BP 

and BS are given for 3-D by equations (15) and for 2-D by equations (16). To convert a 
2-D solution to  a 3-D solution for a P-wave, say, we multiply our 2-D solution by the ratio 
of (1 6a) and (1 Sa), i.e. by the conversion factor 

To simplify this relation let x(8, @, T )  be a point on the wavefront which contains the 
receiver x2. Here 8 , @  are spherical polar coordinates at the source x1 and 8 is the same polar 
angle which appears in the quantity dlfde. On this wavefront let dA be the patch of area 
that is the cross-section of the 'ray tube that subtends solid angle dfi = sin 8 d8 d@ at 
the source. Then assuming the medium is cylindrically symmetric about the polar axis, it 
follows that dA = I I a x / M  x ax/&$ I I d8 dQ = (dZ/dO)(dO)(x d@) where x is the horizontal 
distance between the source and receiver. Dividing dA by dS2 we obtain 

dA/dfi  = (dZ/dO)(x/sin 8) (B2) 

and substitution of this quantity into (Bl) yields 

The conversion factor for S-waves is the same except that a1 is replaced by P I .  
Suppose now that instead of assuming cylindrical symmetry about an axis through the 

source we assume it holds about an axis through the receiver. We may take advantage of 
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seismic reciprocity to write formulae analogous to (15), (16) and (17) for our response 
and then make an argument the same as that just given to find 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 2  is the angle which the geometrical ray from x1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 makes with the axis of 
cylindrical symmetry at the receiver. In a stratified medium the axis of symmetry is normal 
to the stratification and the final factors in (B3) and (B4) are then both equal to ray 
parameter p .  In this case, as expected, CT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC: - (wp/2)Hp)(wpx)/exp ( iwpx) where 
E l ? )  is the Hankel function of the first kind of order zero. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1. Use of approximate 3-D/2-D conversion factors. The use of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT means a virtual reflector Z: and 
the use of Cf means a virtual profile Z>. (a) Here Cf is better than Cf; (b) here Cf is better than Cf. 

Although equations (B3) and (B4) were derived using geometrical optics they may be 
applied to any solution involving a generalized ray which has a well-defined angle with a 
polar axis at either the source or the receiver. Consider how to apply them to the KH 
equations (23)-(26). If departures from stratification are greater in the vicinity of the 
receiver, as shown in Fig. Bl(a) then we put Cf under the integral sign in (23)-(26). (Note 
that x in equation (B3) for Cf is the horizontal distance from x1 to  x2, not the distance 
from x1 t o  x E Z.) On the other hand, if departures from stratification are greater in the 
vicinity of the source, as shown in Fig. Bl(b), then Cf should be used instead. The 
examples shown in Fig. B1 are extreme. In general, the integrands of (23)-(26) will contain 
many arrivals not all of which can be associated with a single neighbourhood. To account 
for this we suggest the use of an average factor which will act more like C c  when sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 
is small and act more like CT when sin O2 is small. One example of such a factor is 
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