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1. Introduction. In 1859 Kirchhoff [15] extended earlier work of Euler [13] by
developing a semilinear theory for the spatial deformation of initially straight elastic
rods (cf. Love [16, Chs. 18, 19]). This work was clarified by Clebsch [8]. Kirchhoff's
theory rests upon the following constitutive assumptions:

i) The stress couple depends linearly upon the curvature and twist.
ii) The axis of the rod is inextensible.

iii) There can be no shear of the cross-section with respect to the axis.
iv) There can be no deformation within the cross-section.

The material constraints (iii), (iv) arc termed Kirchhoff's hypotheses. For this theory
Kirchhoff showed that an initially straight prismatic rod with a cross-section having
equal principal moments of inertia admits helical solutions solely under the action of
applied terminal loads ([16, §270]).

In this article we formulate a general theory of nonlinearly elastic rods with sufficient
geometric structure to allow not only for flexure and torsion as in the Kirchhoff theory,
but also to allow for axial extension and shear of the cross-section with respect to the
axis. Wo thereby remove constraints (ii) and (iii). Moreover, we can replace constraint
(iv) by a much larger class of constraints without affecting the mathematical structure
of the resulting equations. We merely assume that the cross-sectional deformation
depends uniquely upon the state of flexure, torsion, axial extension, and shear of the
cross-section with respect to the axis. (Constraint (iv) is a special case of this.) In
particular, quantities that measure the thickness of the cross-section may be given as
functions of the axial strain in such a way that a lateral contraction results from an
axial extension and vice versa. (In Sec. 7, we briefly comment on more sophisticated
models in which the deformation within the cross-section is independent of the other
kinds of deformation.)

In our theory, the constitutive equations give the stress resultants and couples as
arbitrary nonlinear functions of appropriate strain variables. These functions need not
be derivable from a strain energy density function, i.e. the material need not be hyper-
elastic.
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For this general theory, we show that an initially straight prismatic rod with a
sufficiently symmetric cross-section admits helical solutions solely under the action of
applied terminal loads. The additional kinematic structure and nonlinearity of our
theory give rise to a far wider variety of solutions than does the Kirchhoff theory. In
particular, a number of our solutions manifest interesting nonlinear effects.

The Kirchhoff problem of finding hclical solutions is a semi-inverse problem: certain
features of the solution are prescribed, while others are left free. It must be shown that
the free variables can be chosen so that the governing equations and boundary conditions
are satisfied. This sort of problem, so successfully treated by St. Venant [18] in linear
elasticity, has also received much attention in nonlinear elasticity [21, §59], although
in the latter case much of the analysis is purely formal. Within various theories of the
elastica, semi-inverse problems have been treated in [13, 7, 20, 1] (cf. [3, §27].)

For a general class of hyperelastic materials, Ericksen [12] showed that certain
invariance requirements characterizing a "uniform state" imply that the solutions must
be hclical, but, as he observes, "it is impossible to say much about the existence or
multiplicity of [such] solutions without introducing some assumptions concerning the
form of [the strain energy density function]." In this article we do treat such existence
and multiplicity questions by introducing mild assumptions on the constitutive relations.
Our theory is not quite comparable to Ericksen's in that ours has less geometric structure
but is not restricted to hyperelastic materials.

Our work represents a considerable generalization of that of Whitman and De Silva
[22], who treated the problem only for a special set of linear constitutive equations of
hyperelastic type. They consequently did not obtain the variety of nonlinear effects
that we do. We employ the same scalar variables as they.

2. Formulation of the governing equations. Geometry of deformation. To con-
struct a rod theory with sufficient geometric structure to allow for flexure, torsion, axial
extension, and shear of cross-sections with respect to the axis, we assume that the
configuration of a rod is specified by an arbitrary vector function r and by a pair of
orthonormal vector functions d! , d2 of the variable S with

0 < S < L. (2.1)

We suppose that the rod is prismatic in its reference configuration. Then we interpret S
as the arc length parameter of the line of centroids of the cross-sections in this configura-
tion and r(S) as the position of the particle S in an arbitrary configuration. The curve
defined by r is called the axis. We interpret the vectors di(iS) and d2(S), which define
a plane and a line in this plane at t(S), as representing the deformation of the particles
forming the cross-section at S in the reference configuration. The plane passing through
r(S) with normal

d30S) - d,(S) X d2(S) (2.2)

is called the section at S. (Theories of this type were introduced by the Cosserats [10]
and have recently been studied in [9, 14, 11, 3], etc.)

The orthonormality of dt , d2 , d:i permits us to represent them relative to a fixed
orthonormal basis ei , e2 , e3 by means of the Euler angles i/s 6, <j> (as employed bv Love
[16, §253]):
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di = (— sin \p sin <£ + cos \p cos 4> cos d)e1 + (cos \p sin <t> +

sin \p cos 4> cos d)e2 — cos <j> sin d e3 , (2.3a)

d2 = (— sin xp cos 4> — cos ip sin <j> cos 0)e! + (cos \p cos (/> —

sin ip sin $ cos 6) e2 + sin </> sin de3 , (2.3b)

d3 = cos \p sin 6e i + sin \p sin de2 + cos 0e3 . (2.3c)

We restrict 6 to the interval [0, ir].
We employ the summation convention for Latin indices that range over 1, 2, 3 and

for Greek indices that range over 1, 2. We conventionally replace a statement such as
"{wk\ are the components of a vector w" with "wk is a vector." The appearance of wk
as an argument of a function means that the function depends on the three variables
wx , w2 , w3 .

We set
r(S) = xk(S)ek , (2.4)

r'(S) = xk'(S)ek s y.(S)i.(S) = y,(S)d,(S) + z(S)d3 , y3 = z, (2.5)

where the prime denotes differentiation with respect to S. The substitution of (2.3)

into (2.5) yields

Xi = 2/i(— sin \p sin <f> + cos \p cos 4> cos 6) — y2 (sin \p cos </> +

cos Tp sin 4> cos 6) + z cos \p sin d, (2.6a)

x2' = ?/i(cos \p sin + sin \p cos <t> cos 6) + y2(cos \p cos 4> —

sin \p sin <f> cos d) + 2 sin \p sin 0, (2.6b)

x3' = —yi cos <f> sin d + y2 sin <j> sin 6 + 2 cos 6. (2.6c)

That no S-interval of positive length can be squeezed to arbitrarily small length in
a deformed configuration is ensured by the requirement that the magnitude of r' be
positive. This and the further requirement that a section can never be sheared so severely
that it contain the tangent to the axis are both guaranteed by the requirement that

2 = r'-d3 > 0. (2.7)

We set
2ua = eabcdb'-dc , u3 = v, (2.8)

where eabc is the alternating tensor. From (2.3) it follows that

Ui = 6' sin <t> — \p' cos <}> sin 0,

u2 = d' cos <j> + \p' sin <£ sin 6, (2.9)

v = (/>' + \p' cos 6.

The functions ya , ua will constitute the strains for our problem. We assume that in the
reference configuration the axis is straight, d3 coincides with r', and d[ and d2 are constant
functions of S. Then the reference values of the strains are

2/i=2/2 = 0, 2=1, ua = 0. (2.10)
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We do not require that the reference configuration be stress-free.
Equilibrium equations. Let

n(S) m na(S)da(S) = n,(S)d,(S) + p(-S)d,(S) (2.11)

be the resultant force and

m(S) = ma(S)da(S) = mf(S)d,(S) + g(S)d,(5) (2.12)

be the resultant couple acting across the section at S. If the applied loads consist only
of forces and couples at the ends S = 0, L, then the equilibrium equations are

n' = 0, (2.13)

m' + r' X n = 0. (2.14)

(Note that the prime denotes differentiation with respect to the arc-length parameter
of the reference configuration.) By dotting these equations with da , we obtain com-
ponential forms. In particular, (2.13) yields

mj + eabc(ubmc + ybnc) = 0. (2.15)

We remark that components with respect to d„ are most natural both physically and
mathematically; components with respect to r'/|r'| and two vectors normal to it are
far less satisfactory. In particular, it is the components of n in the deformed section,
namely n, and n2 , that are responsible for the shearing, whereas components in the
plane normal to r' have no definite connection with the shearing (despite the standard
terminology that calls these latter components the "shear resultants"). We illustrate
this in the two-dimensional situation of Fig. 1, in which the section has suffered a large
shear. We take n2 = 0 and r', d, , d:) coplanar. It is reasonable to expect that an increase
in ni results in a decrease in the angle between d! and r', whereas an increase in
n- (d2 X r')/|r'| need have no such consequence. (We do not show all the components
of n in this figure.) In our discussion of constitutive restrictions below, we shall encounter
the mathematical advantages of the basis da .

Fig. 1.
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Constitutive relations. We assume that n and m depend upon r', dp , d/. If the
resulting constitutive relations are to be unaffected by rigid motions, it can be shown [14]
that they must have component forms

na(S) = na(yb(S), ub(S), S), n3 = p, (2.16)

ma(S) = ma(yb(S), ub(S), S), m3 = q. (2.17)

We take n„, m„ to be independent of S. (If the three-dimensional body modelled by this
one-dimensional theory is homogeneous, then this requirement means that the reference
configuration is prismatic. Note that (2.16), (2.17) embody both the mechanical and
the geometric properties of the three-dimensional body.) We assume that n„ , m0 are
continuously differentiable functions of their arguments on their domains. The variable
z is restricted by (2.7); all other arguments can assume any real values.

We impose the following restrictions on the constitutive relations:
i) Strict monotonicity. The symmetric part of the matrix

dn„\ /dnA
dyj \duj

[dm J
dyj \ duj

is positive definite, i.e., the quadratic form based on (2.18) satisfies

( dm„\
V dyj

(2.18)

t. i <. dna i dmg i dm„ — „ ^
U Z ib + Ka z Vb + Va ~Z kb + Va ^b > 0 (2.19)dyb dub dyb dub

for + ■qaT}a ^ 0. This implies the physically reasonable result that n[ , n2 , n3 , m[ ,
m2, m3 are respectively monotonically increasing functions of yx , y2, y3 , ux , u2 , u3 for
fixed values of the remaining arguments. Assumptions of this form, when coupled with
a coercivity condition like the following, underlie the available existence theories [2, 3, 5]
and qualitative studies [4] for fully nonlinear one-dimensional problems of elasticity.
Moreover, strict monotonicity conditions form the natural one-dimensional analogue
of the strong ellipticity condition of three-dimensional nonlinear elasticity [5], (See the
discussion on components given above. Note that in terms of other components, this
requirement would be a mess.)

ii) Coercivity. We require that

ng(yb} ub)ya + ma(yb, ub)ua

kUcVc + ucuc)
T72 (2.20)

approach °° as ycyc + ucuc —> and approach — <» as y3 = z —> 0. This condition essen-
tially ensures that the resultants get large as the corresponding strains get large and
that an infinitely large resultant is needed to violate (2.7). In a few instances it will be
necessary to supplement this condition with slightly more specific restrictions on the
growth of the constitutive functions.

In the context of this paper, these two constitutive restrictions enable us to apply the

Global implicit function theorem: If the strict monotonicity and coercivity condi-
tions hold, then the algebraic equations

na(Vt , ub) = na , ma(yb , ub) = ma (2.21)
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have a unique solution for ya , ua in terms of na , ma . Moreover, the subset of these
equations

na(yb ,u„,v) = na , q(yb , u„ , v) = q (q = m3) (2.22)

can be solved uniquely for ya , v in terms of na , u„ , q:

Va = ya*(nb ,u„,q), v = v*(nb , u„ , q). (2.23)

The proof of existence requires only coercivity and the proof of uniqueness, only
strict monotonicity (cf. [6, 19]). We remark that an operator-theoretic generalization
of this theorem forms the basis of a general existence theory for equations of this type [5],

We also define

m *(na , u„ , q) = mp(y„*(>ic , u, , q), up , v*(nc , u„ , q)) (2.24)

so that (2.23) and
mp = m *(na , u, , q) (2.25)

represent a set of constitutive equations equivalent to (2.16), (2.17). In Appendix 1
(Sec. 8) we show that the symmetric part of the matrix of partial derivatives of yf, y2*,
y3*, m,*, m2*, v* with respect to rii , n2 , n3 , Ui , u2 , q is positive definite.

iii) Isotropy. The previous conditions are universal in the sense that they are
reasonable for any problem. We now adopt a special symmetry assumption that general-
izes Kirchhoff's assumption of "kinetic symmetry." He assumed that , d2 are the
principal inertia axes of the cross-section, that the moments of inertia with respect to
these axes are equal, and that the constitutive equations for the bending moments have
the forms

wii = EI u2 , m2 = EI u2 , (2.26)

where E is the elastic modulus and I is the common value of the moments of inertia.
Within the geometric and mechanical structure of Kirchhoff's theory, (2.26) represents
the class of rods whose mechanical response is indistinguishable from that of rods with
circular cross-sections. We adopt this characterization as a criterion for symmetry in
our theory. In terms of the constitutive equations (2.23), (2.25), we specifically require
that y* and mp* be isotropic two-vector functions of the two-vectors n„ , wp and of the
scalars p, q and that z*, v* be isotropic scalar functions of the same arguments. This
means that

y*(n„ ,p,u„,q) = Qp1y'*{Q,.n, , p, Q„u„ , q), (2.27a)

z*(n„ , p, u, , q) = z*(Q„n, , p, Q„aua , q), (2.27b)

m,*^ ,p,u.,q) = Qp,va*{Q,„n, , p, Qv,u„ , q), (2.27c)

v*(n„ , p, u„ , q) = v*{Q,.n. , p, Q,„u„ , q) (2.27d)

are to be satisfied identically for all n„ , p, u„ , q and for all two-dimensional orthogonal
tensors . In Appendix 2 (Sec. 9), we obtain representations for the constitutive
functions under the special conditions prevailing for our problem. We note that this
isotropy requires , n2 , ml , m2 to vanish in the reference state.

Summary of equations. The geometrical variables are the components xk of the
position r of the axis, the Euler angles ip, 4>, d giving the orientation of the sections, and
the strains ya, na. The mechanical variables arc; the components na of the stress resultant
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n and the components ma of stress couple m. These eighteen quantities must satisfy the
six "strain-displacement" relations (2.6), (2.9), the six scalar equations of equilibrium
of (2.13), (2.14), and the six "stress-strain" laws (2.16), (2.17) or (2.23), (2.25).

3. Geometry of the Kirchhoff solutions. The equilibrium equation (2.13) immediately
yields

n = const = n(L). (3.1)

We choose Cartesian base vactors ek so that

n(L) = Ne3 . (3.2)

By taking components of (3.1) with respect to d„ , we obtain

n1 = — N sin 9 cos <j>, n2 — N sin 6 sin <j>, n3 = p = N cos 9. (3.3)

We use (3.1) to integrate (2.14):

m + r X n(L) = const = m(L) + Nt(L) X e3 , (3.4)

whence it follows that

m- e3 = —mi sin 9 cos <p + m2 sin 9 sin $ + q cos 9 = m(L) • e:l . (3.5)

We seek smooth solutions of the governing equations with

6 = const, 0 < 6 < ir. (3.6)

In this case, (2.9) and (3.3) reduce to

Mi = —u cos <t>, u2 = u sin <f>, v = </>' + \j/' cos 6, u = \p' sin 6, (3.7)

«i = — n cos ij>, n2 = n sin 4>, p = N cos 9, n = N sin 6. (3.8)

In Appendix 2 (Sec. 9), we show that (3.7), (3.8) cause the isotropic versions of the
constitutive equations (2.23), (2.25) to have the reduced forms:

Vi = cos <t> y(n, p, u, q), y2 = sin 4> y(n, p, u, q), z = z («, p, u, q),

nu = —cos <f> m(n, p, u, q), m2 = sin <f> m(«, p, u, q), v = v(n, p, u, q), (3.9)

where

y( —V, —u, q) = —y(n, p, u, q), m(-», p, -u, q) = — m(n, p, u, q),
z(-", P, —u, q) = z(n, p, u, q), v(-?i, p, -u, q) = v(n, p, u, q), (3.10)

and where the symmetric part of

3y dy dy dy
dn dp du dq

3z 3z 3z
dn dp du dq

dm dm 3m dm
dn dp du dq

dv dv dv dv
dn dp du dq.

(3.11)
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is positive definite. It proves convenient to define

y — —cos <f>y, + sin <j>y2 , m = —cos (j>rnl + sin <j>m2 . (3.12)

Then y and m satisfy the constitutive relations

y = y(n, p, U, q), m = m(n, p, u, q). (3.13)

We now substitute (3.9), (3.13) into (2.15) for a = 3, to get

q' = u2mx — Uiin2 + y2nL — yxn2 = ( — sin0cos<£ + sin <f> cos <j>) {urn + ny) = 0. (3.14)

Thus

q = const = m(L) • d:,(L). (3.15)

We now show that u must be a constant. Substituting (3.6), (3.9), (3.13), (3.15)
into (3.5), we get

sin d m(n, p, u, q) = m(L)-[e3 — d:i(L) cos 6}. (3.16)

Now dm/du > 0 by (3.11) and m(n, p, u, q) —> ± <» as u —> ± co for fixed n, p, q, by
coercivity. Thus if sin MO, we can uniquely solve (3.16) for u in terms of the remaining
(constant) variables. If sin 6 = 0, then (3.7) implies that u = 0. In either case, the
specification of terminal load and of 6 uniquely defines a real constant value for u.

If sin 6 ^ 0, then (3.7) implies that ip' is a uniquely determined constant and (3.7),
(3.9) then imply that <j>' = v(n, p, u, q) — ip' cos 6, a uniquely determined constant.
In this case, if there is a solution satisfying (3.6), then all the variables are uniquely
determined by d and the loads. (But 6 need not be uniquely determined by the data,
as we show below.) If sin 0 = 0, then all we can conclude from (3.7), (3.9) is that <f>' ±
ip' = v(0, p, 0, q), a constant. This ambiguity is a consequence of our use of spherical
polar coordinates and leads to no ambiguity in the solution.

Let s be the arc length parameter of the deformed axis:

ds/dS = [r'(S)-r'(S)]I/2 = (y2 + z2)I/2 = X (const). (3.17)

Substituting this and the constitutive representations for ya into (2.6), we obtain

dxjds = a cos \p, dx2/ds = a sin ip, dx3/ds = b, (3.18)

where

ip = X~ Vs + const, \a = —y cos 6 + z sin d, \b = y sin 6 + z cos 9.
(3.19)

If sin 8 ^ 0, then tp' = const and (3.18) gives the equation of a circular helix (possibly
degenerate) of radius \\a/\p'\ and pitch b. If sin 0 = 0, then n = 0, u = 0, and y = 0
by (3.7), (3.8), (3.10), (3.13). Then a = 0, so that (3.14) represents a straight line along
the z3-axis. Thus if the governing equations admit solutions with 6 = const, then the
axes of such solutions must be helical. Note that a and b cannot vanish simultaneously
since 2 > 0. We also note that

X~'n X r' = A'a(sin <£d, + cos </>d2). X~'r'-n = Xb, (3.20)

so that Na is the magnitude of the component of resultant force in the plane perpendicular
to the axis and Nb is the component of resultant force along the axis.
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To verify that there actually exist solutions of this kind, we must first show that all
the equilibrium equations are satisfied. We have actually done this for the equations
beginning with n/, n2', p'', q' by our use of (3.1), (3.15). If we now substitute the results
of this section into the remaining two equilibrium equations, taking special note of the
constancy of y and m, we find that these equations are satisfied if and only if

ip'(m cos 6 — q sin 6) = N(y cos 6 — z sin 6). (3.21)

We must then check that the resulting solution is consistent with the data. This will be
done in the next three sections.

Love [16, §270], in his treatment of the Ivirchhoff problem, showed that a helical
deformation can always be maintained by a force of magnitude N acting along the
z3-axis (which is the axis of the circular cylinder containing the helix) and by a couple
parallel to e3 . (This loading is called a wrench.) The force and couple are communicated
to the end of the rod by some rigid connection. We show that the same is true for our
problem.

We assume that the axis is not straight, so that aip' ^ 0. At the end L of the rod, the
applied force is Ne3 and the applied couple is m(L). This loading is equivalent to a force
Ne3 applied at r = ze:l for any z, and a couple

m(L) + r0(L) X Ne3 , (3.22)

where r0(L) is the projection of r(L) onto the (£i , a;2)-plane. From (3.18) we find that

\p'r0 = Xa(sin — cos <pe2). (3.23)

If the force along the :r3-axis and (3.22) are to form a wrench, the components of (3.22)
in the ej and e2 directions must vanish. An evaluation of these components shows that
they vanish if and only if (3.21) is satisfied. If the rod is straight, a simple computation
shows that an equilibrium state can always be maintained by a wrench. Thus every
deformation of a rod having the material properties described in Sec. 2 must have a
helical axis and can always be maintained by a terminal wrench acting along the z3-axis.
This is not surprising since the problem becomes purely statical once the helical form
is known so our demonstration is therefore effectively equivalent to Love's.

4. Deformations with a straight axis. Eq. (3.18) implies that the axis will be
straight if and only if a\p' = 0. Now a = 0 if and only if

y cos 6 = z sin 6, (4.1)

in which case (3.21) reduces to

ip'(m cos 6 — q sin 6) = 0.

These two conditions and (2.7) restrict the six variables 9, y, z, \p', m, q. Under these
circumstances the axis is straight and parallel to the direction e3 of the terminal force.

If ip' = 0, then (3.21) implies that
Na = 0. (4.3)

If a = 0, we revert to the previous case. If N = 0, then e3 (the direction of the terminal
force) is arbitrary and we simply choose e3 to be along the axis by setting

r' = |r'|e3 . (4.4)
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In this case we have from (3.7), (3.8) that

n = 0, p = 0, u = 0, y = y(0, 0, 0, q) = 0, (4.5)

whence (2.5) implies

Eq. (2.3c) then implies that

|r'[e:i = 2d:) or e:) = d:! . (4.6)

sin 6> = 0. (4.7)

Thus (4.1) is satisfied by virtue of (4.5), (4.7), so that a = 0. Thus the axis will be
straight if and only if a = 0.

We first examine the special case d = kir, k = 0, 1, in which the sections are perpen-
dicular to the axis. From (3.10), we have

y = y(0, V, 0, q) = o, m = m(0, p, 0, q) = 0, (4.8)

so that (4.1), (4.2) are satisfied. Moreover, we have from (3.7)-(3.9) that

2/1 = 2/2 = 0, Ui = u2 = 0, iii = «2 = 0, nil = 1112 = 0. (4.9)

Thus a solution with 9 = kir is impossible if terminal data are inconsistent with (4.9).
From (3.9), (3.8) we obtain

2 = z(0, p, 0, q), v = v(0, p, 0, q), p = (-1 )kN. (4.10a, b, c)

Thus the stretch 2 and the twist v = 4>' + (— 1)V arc determined uniquely by (4.10)
if the axial force p = (—1 )kN and the twisting couple q are prescribed (at the ends).
Conversely, if 2 and v arc prescribed, then p and q are uniquely determined by the unique
invertibiLity of (4.10a, b). (The prescription of a terminal stretch is generally not a proper
boundary condition for a well-set boundary value problem. This does not disturb us
for two reasons: i) we are not studying boundary value problems, ii) the stretch 2 is
constant by (4.10a) and the axis is straight, so that in the present problem the specifica-
tion of stretch is equivalent to the specification of the relative longitudinal displacement
of the ends, and this is a proper boundary condition.) Also, if z and q are prescribed, we
can solve (4.10a) uniquely for p in terms of z and q and then substitute this representation
for p into (4.10b) to obtain a unique value for v. We can similarly find z and q uniquely
if p and v are proscribed. In summary, if sin 0 = 0 and if any one of the four pairs (p, q),
(2, v), (p, v), (2, q) is prescribed arbitrarily, then the governing equations have a unique solu-
tion meeting these conditions. This deformation has a straight axis along e;! with sections
perpendicular to it, has a constant twist v, and satisfies (4.9). Note that we do not obtain
4>' and \p' separately, but merely get v = <£' + (— 1)V'. It is just this combination that
determines dL , d2 uniquely from (2.3) however. In this case it is thus immaterial whether
or not we take \p' = 0.

Eqs. (4.10) have some interesting consequences. For simplicity let us assume that
the reference state is stress-free so that z(0, 0, 0, 0) = 1, v(0, 0, 0, 0) = 0. If N = 0,
but q ^ 0, then z need not equal 1, in which case the1 application of a terminal twisting
moment produces not only torsion but also a change in length. Similarly, a nonzero
twist v could be maintained solely by a nonzero axial force. The first possibility is the
"Poynting" effect, which has been observed experimentally and has been studied in the
three-dimensional theory of incompressible nonlinearly-elastic materials [21]. The second
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possibility is an example of a "shear instability" in which a nonzero shear deformation
(namely torsion) is maintained by a shear less loading on the boundary. This case is
related to the "Coulomb" effect.

We now examine another special case: a = 0, sin 9 9^ 0, \p' = 0. Here (4.2) is satisfied,
so we need only concern ourselves with (4.1). Now N ^ 0, since the vanishing of N would
imply that sin 9 = 0 by the argument developed in (4.4)-(4.7). Thus the substitution
of (3.13) into (4.1) yields

y(N sin 9, N cos 9, 0, q) cos 6 = z(iV sin 9, N cos 9, 0, q) sin 9. (4.11)

The right-hand side of (4.11) is positive by (2.7) and (3.6), so y cos 9 must be positive.
Without loss of generality we assume that r' = |r'|e3 . (Since a = 0, we know that r' is
proportional to e3 .) Then (2.7) gives

0 < z = r''d3 = |r'| cos 9,

so that cos 9 > 0 and y itself must be positive. Since dy/dn > 0 by (3.11), it follows
that N must be positive, for if not, we should have

y(N sin 9, N cos 9, 0, q) < y(0, N cos 9, 0, q) = 0,

in contradiction to the consequences of (4.11). Thus deformations of this type can only
occur in the presence of tensile forces. (Recall that (3.16) and (4.11) show that the
component of resultant force perpendicular to the axis must vanish.) Beyond this fact,
our constitutive restrictions cast 110 light on whether there actually do exist triples
9, N, q, with 9 £ (0, 7r/2), N > 0, that satisfy (4.11). The possibility of finding such
solutions becomes somewhat more remote if we were to require that some component
or components of the moment vanish, for this would add more conditions to (4.11)
without increasing the number of variables. It is not hard, however, to construct a
set of admissible constitutive relations for which (4.11) has solutions and another set
for which (4.11) does not have solutions. Such deformations have the normal to each
section making a constant nonzero angle with the straight axis. This sort of shear in-
stability models aspects of the Liiders band phenomenon in which bars of certain metals
go into a state of shear under the action of purely tensile terminal loads (cf. [17]).

The remaining possibilities of solutions with straight axes are characterized by
a = 0, sin 9 ^ 0, \p' ^ 0. In this case (4.1) and (4.2) require

y(N sin 9, N cos 9, 1p' sin 9, q) cos 9 = z (N sin 9, N cos 9, \p' sin 6, q) sin 6, (4.12)

m(A^ sin 9, N cos 9, \p' sin 9, q) cos 9 = q sin 6. (4.13)

Here there is one more condition to be satisfied and one more parameter at our disposal
than in (4.11). As in the previous case, our constitutive restrictions say nothing about
the possibility of these equations having solutions.

5. Deformations with a circular axis. Eq. (3.18) implies that the axis will be
circular if and only if b = 0, \p' ^ 0. From (3.15) it follows that b = 0 if and only if

y sin 9 + z cos 0 = 0. (5.1)

Since a and b cannot vanish simultaneously, the coefficient of N in (3.21) cannot vanish.
Moreover, sin 9^0, since the vanishing of sin 9 would cause (5.1) to violate (2.7).
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We thus have two equations (5.1), (3.21) and three inequalities (2.7), tp' ^ 0, sin 6 ^ 0
restricting the seven variables d, y, z, \p', N, m, q.

We first treat the special case 6 = tt/2. Eqs. (5.1) and (3.21) then imply that

y = 0, qi' = Nz, (5.2a, b)

so we have these two equations and two inequalities (2.7), \p' ^ 0 restricting the five
variables y, z, \p', N, q. We find

n = N, p = 0, u = \p', v = 4>', (5.3)
so that

0 = y(iV, 0, \p', q), z = z(N, 0, ip', q), m = m(.V, 0, \p', q), 4>' = v(iV, 0, ip', q).
(5.4a, b, c, d)

From (2.5) we find r' = ,ed:i so that the sections are perpendicular to the axis. Now
if we take N = 0, then (5.2b) implies that q = 0 and conversely. For there to be a
deformation in this case, the equation

y(0, 0, f, 0) = 0 (5.5)
must have a pair of nonzero solutions ±\p0'- (This would certainly occur if y did not
depend on u.) For any such solution \p„', we could then compute z, m, <j>' from (5.4).
From (3.9), (2.3) we have that

m = m( — cos <£di + sin <£d2) = me3 , (5.6)

with in = m(0, 0, \p0', 0) having the same sign as \p0' since m(0, 0, 0, 0) =0 and 3m/du> 0.
Thus for such deformations the stress couple is a pure nonzero bending moment about
the normal to the plane of the deformed circular axis (just as in the classical elastica
theory).

If (5.5) fails to have a nonzero solution, i.e. if

y(0, 0, u, 0) 5^ 0 for all u 0, (5.7)

there is a deformation with a circular axis and perpendicular sections, provided we
suspend the requirement that N and q vanish and we impose some further mild consti-
tutive restrictions. Since dy/dn > 0 by (3.11) and since y assumes all real values as n
assumes all real values for fixed p, u, q, we can solve (5.4a) uniquely for

N = 3l(*', q) (5.8)

with 91(0, q) = 0 since y(0, 0, 0, q) = 0 and with 9l(^', 0) 5^ 0 for 1p' ̂  0 by (5.7).
We can now write (5.2b) as

q\p' = 9l(i', q)z(3l(\p', q), 0, 1p', q). (5.9)

Let \p' 0 be arbitrary. We seek a q satisfying (5.9). Note that q — 0 cannot be a
solution since 9l(^', 0)2 5^ 0. If we assume that the constitutive functions y and z are
such that

|gr'9l(^', q), 0, \p', q) -» 0 as |g| —> , (5.10)
then (5.9) has a nonzero solution q, as is immediately seen from a plot of the left- and
right-hand sides of (5.9) as functions of q. (The condition (5.10) is mild because it does
not restrict the dependence of y and z on their principal arguments n and p. This condi-
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tion is consistent with strict monotonicity and coercivity.) We can then find the other
variables from (5.4). (It is conceivable that m = 0). The condition (5.7) indicates that
flexure and shear are coupled. In this case, our analysis implies that a deformation with
a circular axis and perpendicular sections must be maintained by a nonzero shear resultant
and a nonzero twisting moment. This is another example of a nonlinear effect.

We could impose a restriction on the growth of 9l(z) as a function of \p' for fixed q
and thereby show that for any fixed q, Eq. (5.7) has a solution ip'. But we have no
assurance that the solution \p' is not the zero solution. In the next section we develop
some techniques to handle this sort of difficulty.

We summarize our results: For 6 = k/2 there exists a deformation with a circular axis
and perpendicular sections if either i) Eq. (5.5) has nonzero solutions ±\p0', in which
case the deformation is maintained by zero force resultant, zero twisting moment, and a non-
zero bending moment acting about the normal to the plane of the circular axis, or ii) the
constitutive restrictions (5.7), (5.10) hold, in which case for every ip' 0, there is a deforma-
tion maintained by a nonzero shear force, a nonzero twisting moment, a bending moment,
and a zero axial jorce.

For the general case, we merely note that when the constitutive expressions for y and 2
are substituted into (5.1), the resulting equation can be solved uniquely for iV as a
function of 9, \p', q, since the derivative of the left-hand side of this equation with respect
to N is just

~ sin2 9 + sin 9 cos 9 + ^ cos2 9,dn \dp dnl dp

which is strictly positive by (3.11), and since the left-hand side of the equation assumes
all real values as N is varied. Whether or not there are solutions with 9 5^ ir/2 cannot
be determined by the strict monotonicity and coercivity alone. This situation is entirely
analogous to that for the straight-axis case and will not be pursued further.

6. Deformations with a helical axis. We now obtain conditions ensuring that
there are deformations having a nondegenerate helical axis, i.e., deformations for which
ab\p' ^ 0. Rather than furnishing an exhaustive treatment of all possible cases, we limit
our investigation to cases analogous to those treated by Love [16, §270]. Let

3C(0, 1p', N, q) = \p'[m(N sin 9, N cos 9, \p' sin 9, q) cos 9 — q sin 9]

— N[y(N sin 9, N cos 9, \p' sin 9, q) cos 9 — z(N sin 9, N cos 9, \p' sin 9, q) sin 9], (6.1)

Then (3.18), (3.21) imply that there will be nondegenerate helical solutions if there
are numbers 9, 1p', N, q such that

3C(0, i', N, q) = 0 (6.2)

with ab\p' 5^ 0. We note that sin 9 > 0 by (3.6) and by our proof in Sec. 4 that the vanish-
ing of sin 9 implies that of a.

We first examine the possibility of obtaining a helical solution for prescribed 9, N, q
with iV < 0, cos 9 > 0. We assume that the constitutive functions y and z satisfy the
mild growth conditions:

y(»,y ,(«,p (6.3)
M M
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These sublinear growth conditions and the coercivity imply that

30(6, ip', N, q) —> ao as |^'| —> 00 (6.4)

uniformly in 0, N, q for 0 in any closed subset of [0, x/2) and for N, q in any compact set.
Since dy/dn > 0 by (3.11), since y(0, p, 0, q) =0 by (3.10), and since z > 0 by (2.7),
we find that

30.(6, 0, N, q) = — N[y(N sin 6, N cos 6, 0, q) cos 6 — z(N sin 6, N cos 6, 0, q) sin 9] < 0
(6.5)

for N < 0, cos 6 > 0. From (6.4), (6.5) it follows that (6.2) has at least two roots \pi < 0,
ip2 > 0 for arbitrary fixed N < 0, q, 8 £ (0, tt/2). Now if a were to vanish for one of
these roots, say \p/, then (6.2) would reduce to

m(N sin 6, N cos 8, \p/ sin 6, q) cos 9 — q sin 6 = 0 (6.6)

by (6.1), (3.19). Since dm/du > 0 by (3.11), we have

m(N sin 6, N cos 6, \p2' sin 6, q) cos 6 — q sin M0, (6.7)

so a could not vanish for \p2. Since a and b cannot vanish simultaneously, we conclude
i) Let (6.3) hold. Let 9, N, q be arbitrary ivith N cos 6 < 0, sin 8^0. Then there is

a deformation with a helical axis that is not straight and another deformation with a
helical axis that is not circular.

The generalization to include the case N > 0, cos 9 < 0 is an immediate consequence
of the invariance of (6.2) under the transformation (9, \p', N, q) —* (ir — 8, —iff', —N, —q).
In other words, the two deformations differ only by a rigid displacement.

Now let A' < 0 and q both be fixed. If 8 is restricted to an interval of the form [0, 0O]
with 0 < 0O < ir/2, then the roots of (6.2) fall in a bounded interval by virtue of (6.4),
(6.5). This result, the continuity of y and z, and the inequality (2.7) imply that y is
uniformly bounded as a function of 9 for 9 £ [0, 0O] and that z is uniformly bounded
away from zero as a function of 0 for 0 G [0, 0O]. Thus if we take 0 small enough we can
ensure that

\b = y (N sin 0, N cos 0, \p' sin 0, q) sin 0 + z(N sin 0, N cos 8-\p' sin 4>, q) cos 0 > 0 (6.8)

when \p' = \p/, \p2'- (Note that i/V, ip2' depend on 0 as well as on N, q.) Since b = dx3/ds
is positive and N is negative, this state is maintained by a terminal force that acts
compressively. Hence

ii) Let (6.3) hold. Let N ^ 0 and q be arbitrary. Then there is a number 8 > 0 depending
on N and q such that there is a deformation with a nondegenerate helical axis for any
prescribed 8 satisfying 0 < sin 0 < 5.

We now study whether there can be a solution with a helical axis when N = 0.
Let us prescribe 0 £ (0, ir/2) and q ^ 0. Then (6.1), (6.2) imply that

30(9, \p', 0, q) — ̂ '[m(0, 0, \p' sin 0, q) cos 0 — q sin 0] = 0. (6.9)

Since dm/du > 0 and since m assumes all real values as u varies over all real numbers,
the equation

m(0, 0, \p' sin 9, q) = q tan 9 (6.10)

has a unique nonzero solution ipa' with the same sign as q. Moreover, ip0' —* 0 as 0 —> 0.
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Thus (6.9) has a unique nonzero solution \p0'. By choosing 9 small enough, we can use
the same uniformity arguments as above to ensure that

\b = y(0, 0, \p0' sin 9, q) sin 9 + z(0, 0, \f/0' sin 6, q) cos 9 > 0 (6.11)

so that the axis is not circular. The vanishing of a for this solution is equivalent to

Wy(0, 0^ W sin 9, q) = z(0, 0, \p0' sin 9, q)
ip0' sin 9 cos 9

The limit of the left-hand side of (6.12) as 9 —» 0 is

dy/dit(0, 0, 0, q) lim \p0' = 0,
0-» 0

whereas the limit of the right-hand side is z(0, 0, 0, q) ^ 0. Thus for 9 sufficiently small,
(6.12) is violated and the axis is not straight either. In summary, we have

iii) Let q ^ 0 be arbitrary. Then there is a number d > 0 depending on q such that there
is a deformation ivith a nondegenerate helical axis maintained by zero terminal force
for any prescribed 9 satisfying 0 < sin 6 < 5.

We have the following related result:
iv) Let \j/' 7^ 0 be arbitrary and let m be such that

g~'m(0, 0, ip' sin 9, q) —» 0 as |g| —► °°. (6.13)

Then there is a number <5 > 0 depending on \p' such that there is a deformation with
a 7iondegenerate helical axis maintained by zero terminal force for any prescribed 9
satisfying 0 < sin 9 < 5.

The proof of this relies on the fact that (6.13) implies that (6.10) has a solution
q0 9^ 0 for fixed \p' ^ 0 and for fixed 9 £ (0, x/2). Moreover (6.10) implies that

go — i' (o, 0, 0, q0) =0, q0 = lim q0. (6.14)
OU 0_» 0

In Sec. 3 we showed the classical result that a deformation with a helical axis could
always be maintained by a wrench applied along the a;3-axis. We now examine whether
this deformation can be maintained solely by a force along the £3-axis. This means
that the couple (3.22) must vanish. We have already shown that the vanishing of the
e, and e2 components of (3.22) is equivalent to (3.21) or (6.2). The vanishing of the e3
component implies that

m(N sin 9, N cos 9, tp' sin 9, q) sin 9 + q cos 0 = 0. (6.15)

Let 9 G (0, ir/2), \p' ^ 0, N <0 be arbitrary. If (6.13) holds, we can solve (6.15)
for q as a function of 9, \p', N:

Q = q(0, 4>', N). (6.16)

Since dm/du > 0 and since m —> ± as u —> ± <*>, we have that

q(0, \p', N) —> ± co as \p' —> ± =0. (6.17)

Substituting (6.15), (6.16) into (6.2), we obtain

J(9, \p', N) = \p'm — N cos 0[y cos 9 — z sin 9] = 0, (6.18)
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where the arguments of m, y, z are

N sin 6, N cos 6, \p' sin 6, q(6, \p', Ar).

We strengthen the coercivity condition on m and the conditions (6.3) by requiring that

um(n,p,u,q) . .. y(n,p,u,q) ft z(n,p,u,q) H ' H ' H (6'19)

a; \u\ —> uniformly for all real q. It then follows that

.1(6, i', N) -► co as |^'| -> oo. (6.20)

Moreover, by following the argument leading to (6.5), we see that

.1(6, 0, N) < 0 (6.21)

for Y < 0, 6 £ (0, t/2). We can now reproduce the arguments leading to (i), (ii), to
obtain

v) Let (6.13), (6.19) hold. Let 6, N be arbitrary with N cos 6 < 0, sin 9 ^ 0. Then
there is a deformation with a helical axis that is not straight and another with a helical
axis that is not circular. These deformations are maintained by the sole action of
a terminal force applied along the x:t-axis. Moreover, there is a number 5 > 0 de-
pending on N such that the first deformation does not have a circular axis either
provided 6 is prescribed such that 0 < sin 6 < 5.

One can obtain a corresponding result by solving (6.15) for \p' as a function of 6, N, q
under suitable growth restrictions and then proceeding in an analogous fashion.

7. Conclusion. In our work we used an exact fully nonlinear theory of one-dimen-
sional elasticity. Our reward for suffering the complexity engendered by this generality
was a wealth of nonlinear effects including thos.e associated with the names of Poynting,
Coulomb, Luders, as well as nonuniqueness and nonexistence. A number of the effects
were of the sort that the three-dimensional theory is not yet equipped to handle.

We note that a theory embodying the requirement (2.7) and the corresponding
coercivity restriction of (2.20) must have constitutive relations depending nonlinearly
on z. Moreover, on numerous occasions our analysis relied critically on (2.7), so that
there were significant analytic advantages attending the use of a nonlinear theory.

The simplest consistent nonlinear theory has constitutive functions of the form

y(n, p, u, q) = An, z(n, p, u, q) = d(p), m(n, p, u, q) = Bu, v(n, p, u, q) = Cq,
(7.1)

where A, B, C are constants and the function b satisfies

d3/dp > 0, lim h(p) = 0, lim %(p) = °° , 3(0) = 1. (7.2)
p-»—CO J) > CO

For this particular material, all the special problems treated in Sees. 4, 5, 6 become
especially simple and the nonlinear effects evaporate.

We did not seek to make an exhaustive study of all possible conditions that would
produce deformations with helical axes. Rather, we limited ourselves to giving the
simplest sufficient conditions for such deformations. We accordingly used constitutive
equations in the form (3.9), which seemed most natural for this goal. On the other hand,
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we did not postulate constitutive equations in the form (2.23), (2.24) because these are
not the common way in which such equations are presented; we began with (2.16),
(2.17), which are standard forms of "stress-strain" relations and which are closely
related to the corresponding versions of three-dimensional nonlinear elasticity [5].

There are two obvious directions in which our results can be extended. The first is
the study of helical deformations of initially helical rods, which is connected with the
study of spiral springs [16, §271]. This would present no analytic novelties. The second
is the study of helical deformations of an initially straight rod within the geometrically-
richer director theory. (This would furnish the existence results for [12].) The requirement
that director stretches and shear be constant should reduce such problems to tractable,
though somewhat more complicated, versions of those we have treated here.

The helical solutions whose existence we have demonstrated may serve as "trivial"
solutions in the study of the behavior of all solutions of boundary-value problems for
these rods. In particular, they form a useful starting point for treating questions of
multiplicity, stability, and qualitative behavior.

8. Appendix 1. Monotonicity conditions. We prove that the symmetric part of
the matrix of partial derivatives of y!*, y2*, y3*, mt*, m2*, v* with respect to nl , n2 , n3 ,
Ui , u2 , q is positive definite. We actually prove this as a consequence of a general result
of matrix theory, which, though simple, does not seem to be accessible in the literature.

Let A, C, F, Y be if-dimensional vectors and B, G, U be L-dimensional vectors.
Let J be a A-dimensional and Q an /^-dimensional vector function of Y, U. Let dJ/dY
denote the matrix of partial derivatives of the components of with respect to the com-
ponents of Y, etc. We assume that the symmetric part of the matrix

dff diF
dY dU

'[9 dg
dY dU

(8.1)

is positive definite, i.e., the quadratic form

AIA + A'IB + BIA + BJB>0 m
for A-A + B-B ^ 0. Under these conditions the equations

F=ff(Y,U), (8.3)

G=S(Y,U), (8.4)

can be solved locally for Y, U as functions of F, G (for F, G in the range of SF, g) by the
classical implicit function theorem. Moreover, (8.3) can be solved for Y as a function
of F, U:

Y = Y*(F, U). (8.5)

Then we have

G = S*(F, U) = g(Y*(F, u), U). (8.6)
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Theorem: Under these conditions, the symmetric part of

'dY* dY*
dF au

ag* ag*
dF aU

is positive definite.
Proof. Solve (8.4) for U as a function of Y, G:

U = U*(Y, G). (8.8)

From the identities

F = SF(Y*(F, U), U), G = g(Y, U(Y, G)) (8.9)

it follows that

t _ ^ , 1? ,stfl u
dY dF ' dY dU + dZJ ' (8.10a, b)

0 = — + —- — I = — — (8 10c d)aY^auaY' auaG' i».iuc,a;

where I represents the identity matrix and 0 the zero matrix of the right dimension.
If we now take

(8.11)

where T denotes the transpose, then by virtue of (8.10), the quadratic form of (8.2)
becomes

^C + C.|fB + BfYfC+B.
ag _ ag dY* <■)<$
au dY aF au.]-■ (8.12)

Applying the chain rule to (8.6) and substituting the resulting expression together with
(8.10b) into (8.12), we reduce (8.12) to

C-WC + °'WB + Bfc + b?u!b< (8-13)

which is the quadratic form for (8.7) and is positive for C • C + B-B ^ Oby (8.2). Q.E.D.
We remark that if we set C =0 in (8.12), then the matrix

(ag/au) - (ag/aY)(aY*/dF)(ajF/dU)

has a positive-definite symmetric part. We may regard this matrix as essentially a
matrix-valued determinant of (8.1).

To obtain results for our problem, we merely identify

Y = (2/1,2/2,Vs ,v), U = (ut, u2), F = (?i, , n2, n3 ,q), G = (m, , m2). (8.14)

In this case (8.13) implies that
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(fya* , dya* dya* \ /3m/ dm,* dm* \
+ ~^V + + ~d^vdq / \ dnb du,, dq

, (dv* dv* dv* .
(8.15)

for a„aa + /3„/3p + y" ^ 0. We note that there are appropriate implicit function theorems
for these new mappings.

9. Appendix 2. Representation of the isotropic constitutive functions. We require
the constitutive functions of (2.23), (2.25) to satisfy the isotropy conditions (2.27).
Our special representations rely on relations (3.7), (3.8) which prevail for the Kirchhoff
solution. We rewrite these here:

nx = — ncos#, n2 = n sin </>, ux = —u cos#, u2 = u sin#. (9.1)

We choose

(W (92)
. sin <p cos 4>

Then (2.27a) yields

yi*(—n cos 4>, n sin <p, p, — u cos 4>, u sin <j>, q)

= - cos 0 y!*(n, 0, p, u, 0, q) + sin # y2*(n, 0, p, u, 0, q), (9.3)

y2*( — n cos <j>, n sin <j>, p, —u cos <t>, u sin <f>, q)

= sin # yi*(n, 0, p, u, 0, p) + cos <t> y2*(n, 0, p, u, 0, p). (9.4)

Setting 4> = ir in (8.4) and 4> = 0 in (8.3), we obtain

y2*(ft, 0, p, u, 0, q) = - y2*(n, 0, p, u, 0, q) = 0, (9.5)

y!*(—n, 0, p, -u, 0, q) = - yx*(n, 0, p, u, 0, q). (9.6)

We define

y(n, p, u, q) = yx*(n, 0, p, u, 0, q). (9.7)

Thus the first two equations of (2.23) have the reduced forms

yx = - cos 4> y(n, p, u, q), y2 = sin <j> y(ra, p, u, q),

y(-11, p, -u, q) = - y(n, p, u, q). (9.8)

Similarly we obtain reduced forms for the remaining equations of (2.23), (2.25):

2 = z(n, p, u, q), z(-71, p, -u, q) = z(n, p, u, q), (9.9)

rrii = — cos 4> m(n, p, u, q), m2 = sin <j> m(n, p, u, q),

m(-n, p, -u, q) = - m(n, p, u, q), (9.10)

v = v(n, p, u, q), v( — n, p, -u, q) = v(n, p, u, q). (9.11)
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We next observe that y, z, m, v constitute a monotone mapping of n, p, u, q, i.e.,
the symmetric part of the matrix of partial derivatives of y, z, m, v with respect to
n, p, u, q is positive definite. To show this we substitute

= —a cos </>, a2 = a sin <£, /31 = —/3 cos <f>, ff2 = /3sin^> (9.12)

into (8.15). Since

y = —cos4>y* + sin$y2*, m = —cos^mt* + sin <f>m2*,

d . d d d ^ ^ . d (9.13)— = - cos <j> — + sin <t> — , — = - cos <£ — + sin $ — , v '
dn dn i dn2 du dit, du2

the resulting form of (8.15) reduces to the quadratic form for the matrix of derivatives
of y, z, m, v with respect to n, p, u, q.
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