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Kirillov’s famous formula says that the characters X of the irreducible unitary
representations of a Lie group G should be given by an equation of the form

(Φ) χ(expx) = p(x)−1
∫
Ω ei(λ,x) dµΩ(λ)

where ω = Ω(X) is a G-orbit in the dual g∗ f the Lie algebra g of G, µΩ is
Kirillov’s canonical measure on Ω, and p is a certain function on g, namely
p(x) = det1/2{sinh(ad(x/2)) /ad(x/2)} at least for generic orbits Ω [10].
This formula cannot be taken too literally, of course (the integral in (Φ) is
usually divergent), but has to be interpreted as an equation of distributions on
a certain space of test functions on g. To make this precise, denote by go an
open neighborhoodod of zero in g so that exp : g → G restricts to an invertible
analytic map of go onto an open subset of G. For our purposes, the formula (Φ)
should be interpreted as saying that

(Φ′) tr
∫

g
ϕ(x)π(exp(x)) dx =

∫
Ω

∫
g
ei(λ,x) ϕ(x) p(x)−1} dµΩ(λ)

for all C∞ functions ϕ with compact support in go. (Here π is the representation
of G with character χ.)
Of course, Kirillov’s formula does not hold in this generality. It is in fact a major
problem in representation theory to determine its exact domain of validity. In
this paper we shall show that Kirillov’s formula holds for the characters of a
reductive real Lie group which occur in the Plancherel formula. Actually, we
shall deal in detail only with the discrete series characters. The formula for
the other characters can then be reduced to the formula for the discrete series
characters by familiar methods. (Duflo [3]). Kirillov’s formula for the discrete
series is a consequence of a formula relating the Fourier transform on g with
the Fourier transform on Cartan subalgebras of compact type by means of the
invariant integral. This is the form in which Kirillov’s formula will be proved.
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The proof depends of course heavily on the fundamental results of Harish- Chan-
dra [5-7]. (These results are conveniently collected in Varadarajan’s book [14],
which will serve as standard reference for this paper.) In fact, it follows from
Harish-Chandra’s results that the characters in question are of the form

χ(expx) = p(x)−1
∑

Ω cΩ
∫
Ω
ei(λ,x) dµΩ(λ)

where Ω runs over a finite set of orbits and the cΩ’s are complex constants. In
this context the formula (Φ) simply says that cΩ is in fact zero, except for a
single orbit Ω for which it is one. The amount of effort and machinery involved
in proving this simple assertion does seem somewhat surprising. An important
ingredient in the proof is a Bochner type formula for the Fourier transform on
a Euclidean space with indefinite metric, due to Strichartz [13].
Special cases of the result given here have been known for some time: the case
when G is compact reduces essentially to Weyl’s character formula together with
results of Harish-Chandra and bas been worked out by Kirillov himself [10]; the
case when G is complex semisimple by Gutkin [4]; and the case of the principal
series of a real semisimple group by Duflo [3].
There is of course also the extensive literature on Kirillov’s theory for nilpotent
and solvable Lie groups, starting with Kirillov’s original paper [9]. (Cf. [1,2],
for example, for the solvable case.) Generalizations to other groups have been
studied by Kirillov in [10], and by Lipsman in a recent paper [11], in which he
also poses the problem of establishing Kirillov’s formula for the characters of
the discrete series of a semisimple Lie group.

We shall deal with the following kind of group, familiar from the work of Harish-
Chandra (called “groups of class H” in [14]):

(1) G is a real Lie group whose Lie algebra g is reductive.
(2) G bas only finitely many connected components.
(3) Ad(G) is contained in Int(g).
(4) The center of the connected subgroup with Lie algebra [g, g] is finite.

Recall that such a group bas a discrete series precisely when it bas a compact
Cartan subgroup. This we assume to be so, and denote by T a fixed compact
Cartan subgroup of G. The complexified Lie algebra tC of T is then a Cartan
subalgebra of gC whose Weyl group will be denoted by WC. We write W for the
subgroup NG(T )/T of WC. Fix once and for all a system of positive roots for tC
in gC and denote by π : tC → C the product of these positive roots. The set of
regular elements in t is then tr = {t ∈ t | π(t) �= 0}. If ge denotes the (open) set
of regular, elliptic elements in g, then the map G/T × te → ge, (gT, t) → g · t,
onto, locally (analytically) invertible, and has fiber {(gwT,w−1t)} above g · t.
If ϕ is a function on g, we denote by Mtϕ the (partially defined) function on t
given by

(1) ϕ(t) = π(t)
∫
G
ϕ(g · t) dg

whenever this integral converges. The integral here is taken with respect to
Haar measure on G normalized so that ([14], Lemma 2, p. 37):
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(2)
∫

go
ϕ(x) dx =

∫
t
|π(t)|2 {∫

G
ϕ(g · t) dg} dt.

when the Lebesgue measures on g and on t are normalized as indicated below.
From the regularity properties of the map G/T × te → ge it is clear that Mt

maps the space D(ge)
compactly supported C∞ functions on ge (with its usual topology) continuously
onto the space D(tr)of W -anti-invariant compactly supported C∞ functions on
tr. (A function ϕ on t is W -anti-invariant if τ(w)ϕ = ε(w)ϕ for all w ∈ W ; here
ε(w) = det(w : t → t) .)

We fix a G-invariant inner product ( , ) on g which is negative definite on t and
use it to define the Fourier transforms on g and on t:

(3) Fg =
∫

g e
i(x,y) ϕ(y) dy,

(4) Ft =
∫

t
ei(t,s) ϕ(s) ds.

The Lebesgue measures on g and on t we assume normalized so that F 2
gϕ(x) =

ϕ(−x) and F 2
gϕ(t) = ϕ(−t) for rapidly decreasing functions ϕ. We also extend

Fg and Ft transforms of tempered distributions in the usual way.
Set D̂(ge) = FgD(ge), D̂(tr) = FtD(tr), and write D̂(tr)W = FtD(tr)W for the
W -anti- invariants in D̂(tr). With this notation the main result of this paper
can be stated
as follows.

Theorem. Mt maps D(ge) onto D(tr)and D̂(ge) onto D̂(tr). This map Mt

satisfies
MtFgϕ = γFtMtϕ

for ϕ ∈ D(gr) and all ϕ ∈ D̂(gr). Here
γ = (i)

1
2 dim(g/t)(−1)

1
2 dim(g/k)

where k is a subalgebra of g containing t for which k∩[g, g] is maximal compactly
embedded in [g, g]. (So dim(g/k) is the maximal dimension of a subspace of g
on which ( , ) is positive definite.)

The first step in the proof of this theorem is the following lemma, which is an
elaboration on a result of Harish-Chandra ([14J Thm. 7, p. 111).

Lemma A. There is a function c : W → C so that

MtFgϕ = (−1)
1
2 dim(g/k)

∑
w∈WC

c(w) τ(w)FtMtϕ

for all ϕ ∈ D(ge) and so that

(1) c(w) = c(w−1) for all w ∈ WC,
(2) c(vw) = ε(v)c(w) for all w ∈ WC,

(3) c ∗ ĉ = εW = ĉ ∗ c for some function ĉ : WC → C which also satisfies
(1) and (2). Here

c ∗ c ∧ (w) =
∑

v∈WC
c(wv−1)c(v), εW (w) =

{
ε(w) if w ∈ W

0 if w /∈ W
.
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To prove this lemma we introduce for t ∈ tr the (tempered) distribution µt on
g defined by

(5) (µr, ϕ) = π(t)
∫
G
ϕ(g · t) dg

and denote by θt = Fgµt its Fourier transform. According to a theorem of
Harish- Chandra θt is a locally integrable function whose restriction to tr is
given by the formula

(6) θt(s) = π−1(s)
∑

w∈WC
c(w, t) ei(w·t,s)

where for fixed w ∈ W, t �→ c(w, t) is a locally constant function on tr ([14
Thm.7], p.111). Now these functions are actually constant on all of t. To see
this we show that

(7) π(s)θt(s) = π(t)θs(t)

for all s, t in tr. This will be sufficient because in view of (6) the equation(7)
says that∑

w∈WC
c(w, t) ei(w·t,s) =

∑
w∈WC

c(w, s) ei(w·s,t)

=
∑

w∈WC
c(w−1, s) ei(w·t,s)

for all s, t in tr. But for fixed t ∈ tr the functions s → ei(wt,s), w ∈ WC, are
linearly independent (even after restriction to a connected component of tr,
where s → c(w, s) is constant). So c(w, t) = c(w−1, s) for all s, t in tr, c(w, t) =
c(w) is constant and c(w) = c(w−1). To prove (7) it suffices to show that

(8)
∫

t×t
π(s)θt(s)Mtϕ(s)Mtψ(t) ds dt =

∫
t×t

π(t)θs(t)Mtϕ(s)Mtψ(t) ds dt

for all ϕ, ψ ∈ D(ge) (because π(s)θt(s) and π(t)θt(t) are W -anti-invariant in s
and t, and Mt maps D(ge) onto D(tr)W ). For this we use formula (2) and the
fact that |π(t)|2 = (−1)

1
2 dim(g/t)π(t)2 to compute∫

t×t π(s)θt(s)Mtϕ(s)Mtψ(t) ds dt =
=

∫
t
{∫

t

∫
G
π(s)2θt(s)ϕ(g · s) dg ds}Mtψ(t) dt

= (−1)
1
2 dim(g/t)

∫
t
{∫

g
θt(x)ϕ(x) dx}Mtψ(t) dt

= (−1)
1
2 dim(g/t)

∫
t
{π(t) ∫

G
ϕ(g · t) dg}Mtψ(t) dt

=
∫

t

∫
G

∫
G Fgϕ(g · t) dg ψ(h · t) |π(t)|2 dg dh dt

=
∫
G

∫
t

∫
G
Fgϕ(g · t)ψ(h · t) |π(t)|2 dh dt dg

=
∫
G

∫
g
Fgϕ(g · x)ψ(x) dx dg

=
∫
G

∫
g×g e

i(g·x,y)ϕ(y)ψ(x) dx dy dg .

Since this expression is symmetric in ϕ and ψ we get (8).
Next we show that the function c : WC → C defined in this way satisfies the
conditions (1) – (3) of the lemma. (1) we already know. For (2) we note that
µv·t = ε(v)µt for all v ∈ W , which is immediate from (5). Therefore

θv·t(s) = ε(v)π(s)−1
∑

w∈WC
c(w) ei(w·t,s).

But also
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θv·t(s) = π(s)−1
∑

w∈WC
c(w) ei(wv·t,s)

= π(s)−1
∑

w∈WC
c(wv−1) ei(w·t,s).

Comparison of the formulas gives that that c(wv−1) = ε(v)c(w) for all v ∈ W
and w ∈ WC, hence also c(vw) = ε(v)c(w) in view of (1). To prove (3) we use
the fact that the fact that the matrix [c(uv−1)}, u, v ∈ WC, has rank |WC/W |
([14], Thm.20, p.121), which is precisely the dimension of the space of functions
a : WC → C satisfying a(vw) = ε(v)a(w) for all v ∈ W, w ∈ WC. So the map
a → c ∗ a defines a linear automorphism of this space of functions. In particular
there is a unique such function ĉ so that c ∗ ĉ = εW . This ĉ clearly also satisfies
(1).
Finally it remains to be shown that this function c satisfies the first assertion
of the lemma. For this we use formula (2) to compute:

MtFgϕ(t) = (µt, Fgϕ)
=

∫
t

∫
G θt(g · s)ϕ(g · s) dg |π(s)|2 dg ds

= (−1)
1
2 dim(g/t)

∫
t π(s) θ(s) {π(s)

∫
G ϕ(g · s) gd} ds

= (−1)
1
2 dim(g/t)

∑
w∈WC

c(w)
∫

t e
i(w·t,s) Mtϕ(s) ds

= (−1)
1
2 dim(g/t)

∑
w∈WC

c(w)Ft Mtϕ(w · t).
Write D′(ge) for the topological dual of D(ge) (i.e. for the space of distributions
on ge) and D̂′(ge) for the dual of D′(ge). The map Fg : D′(ge) → D̂ ′(ge) gives
F ′

g : D̂ ′(ge) → D′(ge). (I write A′ for the transpose of a continuous map A

between topological vector spaces.) F ′
g clearly clearly maps Fg : D̂′(ge)G onto

D̂ ′(ge)G ) (the superscript G denoting the G-invariants.)

Similarly we have a map F ′
t : D̂ ′(tr) → D′(tr) mapping D̂ ′(tr)W onto D′(tr)W

(the subscript W denoting W-anti-invariants). Finally, the map Mt : D(ge) →
D(tr)W gives rise to a map M ′

t : D′(tr)W → D′(ge)G , D̂ ′(tr)W → D̂ ′(ge)G .
Note that ϕ ∈ D′(tr)W is a function, so is Mtϕ ∈ D̂ ′(ge)G : Mtϕ(x) =
π(t)−1ϕ(t) if x = g · t with g ∈ G and t ∈ tr. The next lemma shows how
certain distributions behave under these maps:

Lemma B. (1) If h is a W -anti-invariant, harmonic polynomial on t, then
M ′

th extends to a G-invariant, harmonic, tempered distribution H on g. If
h is homogeneous of degree deg(h), then H is homogeneous of degree deg(h) −
1
2 dim(g/t).
(2) For h as above

F ′
gM

′
t(rh) = (i)

1
2 dim(g/t)(−1)

1
2 dim(g/k)M ′

tF
′
t (rh)

on ge,for every function r of the form r(t) = f(|t|), f ∈ C∞
c ((0,∞)).

By “harmonic” is meant “annihilated by the Laplacian ∆g or ∆t of the inner
product ( , ) on g or on t ”; and |t| = |(t, t)|1/2.
The assertions of the lemma should be understood as follows. In (1) we think
of h as an element of D′(tr)W so that M ′

th in D′(ge)G. In (2) we think of rh as
an element of D̂′(tr)W so that F ′

gM
′
t(rh) and M ′

tF
′
t (rh) are both in D′(ge)G.
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To prove this lemma we denote by h for the moment any W -anti-invariant
polynomial on t. Write Dh the constant coefficient operator corresponding to
multiplication by h under Ft. Now, according to a result of Harish-Chandra
([14] Cor. 24, p. 50), the formula

ϕ → limt→0+ DhMtϕ(t)

defines a tempered distribution on g. (Here t → 0+ means that t goes to zero in
the positive Weyl chamber. Any other Weyl chamber would also do.) We can
therefore define a tempered distribution νh on g by setting

(νh, ϕ) = (−1)dim(g/t)

|W |
∑

w∈WC
ĉ(w) limt→0+ Dhτ(w)Mtϕ(t).

Let H = Fgν
h be its Fourier transform. Then H is a tempered, G-invariant

distribution on g, and I claim that H coincides with M ′
th on ge. In fact, if

ϕ ∈ D(ge), then

(H,ϕ) = (νh, Fgϕ)

= (−1)dim(g/t)

|W |
∑

w∈WC
ĉ(w) limt→0+ Dhτ(w)MtFgϕ(t).

= 1
|W |

∑
u,v∈WC

ĉ(u)c(v)Dhτ(u)τ(v)FtMtϕ(0).

(by Lemma A. – The limit becomes evaluation at t = 0 because FtMtϕ, ϕ ∈
D̂(tr)W is C∞ on al of t). Thus

(H,ϕ) = (νh, Fgϕ)
= 1

|W |
∑

u,v∈WC
ĉ(u)c(v)Dhτ(u)τ(v)FtMtϕ(0)

= 1
|W |

∑
w∈WC

ĉ ∗ c(w)Dhτ(w)FtMtϕ(0)
= 1

|W |
∑

w∈WC
ε(w)Dhτ(w)FtMtϕ(0)

= DhFtMtϕ(0)
= FthMtϕ(0)
= (h,Mtϕ)
= (M ′

th, ϕ).

SoH does indeed coincide with M ′
th on ge. Moreover, if h is homogeneous

of degree deg(h), then H is clearly homogeneous degree deg(h) − deg(π) =
deg(h) − 1

2 dim(g/t).
To prove that H is harmonic when h is we argue as follows. Let P be any
G-invariant polynomial on g, p its restriction to t, andDP (resp. Dp) the
corresponding constant coefficient operators on g {resp. on t). For any rapidly
decreasing C∞ function ϕ on g

(DPH,ϕ) = (DPFgν
h, ϕ)

= (Fgν
h, Pϕ)

= (−1)dim(g/t)

|W |
∑

w∈WC
ĉ(w) limt→0+ Dhτ(w)MtPFgϕ(t)

= (−1)dim(g/t)

|W |
∑

w∈WC
ĉ(w) limt→0+ Dhτ(w)pMtFgϕ(t).

Now one easily verifies that for any two polynomials p, q on a Euclidean space
and any C∞ function ϕ one has
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Dq(pϕ) = Dq′ϕ+ ψ

where q′ = Dpq and ψ is a function (defined by this equation) which satisfies
ψ(0) = 0. We would like to apply this observation to the termsDhτ(w)pMtFgϕ(t)
in the above sum. Now MtFgϕneed not be C∞ on all of t, but its partials do
extend to continuous functions on the closure of any fixed Weyl chamber ([14J
Thm.23, p. 50). From this one can conclude that the function ψ on tr defined
by

DhpMtFgϕ = Dh′MtFgϕ+ ψ (on tr), h′ = Dph

still bas the property that ψ(t) → 0 as t → 0+. (By subtracting a suitable
polynomial from MtFgϕ it evidently suffices to see that a function f on tr whose
partials up to sufficiently high order all vanishes as t → 0+ has the property
that Dh(pf) = Dh′f +g where g(t) → 0 as t → 0+. But this is clear, since – for
fixed h, p – g is a linear expression in the partials of f with polynomial functions
for coefficients.) So the formula for DpH becomes

(DPH,ϕ) =const.
∑

w∈WC
ĉ(w) limt→0+ Dhwτ(w)MtFgϕ(t).

where hw = Dτ(w)ph. In particular, for P (x) = (x, x) we have p(t) = (t, t), DP =
∆g, Dp = ∆t. So if h is harmonic, then hw = 0 for all w ∈ WC and consequently
(∆gH,ϕ) = 0 also.
This proves the first part of the lemma. For the second part we need Strichartz’s
extension of Bochner’s formula for the Fourier transform of a distribution of the
type “radial× homogeneous harmonic” for Euclidean spaces with indefinite
metric [13]. We therefore introduce the following notation

E = R
n with inner product

(x, x) = x2
1 + · · ·+ x2

n+ − x2
n++1 − · · · − x2

n++n− , (n+ + n− = n),
|x| = |(x, x)|1/2
E± = {x ∈ E | ±(x, x) > 0}
∆ = ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
n+

− · · · − ∂2

∂x2
n
.

We define the Fourier transform F on E by Fϕ(x) =
∫
E ei(x,x) ϕ(y) dy and

assume the Lebesgue measure on E normalized so that F 2ϕ(x) = ϕ(−x). We
let R× operate on functions on E by setting τ(a)ϕ(x) = ϕ(a−1x) for a ∈ R×

and ϕ : E → C. We extend this action to distributions on E by requiring that
(τ(a)ϕ, τ(a)ψ) = |a|n(ϕ, ψ) for distributions ϕ and test functions ψ.With this
notation we can state:

Strichartz’s Formula. Let ϕ be a tempered distribution on E which satisfies
∆ϕ=0, τ(a)ϕ = |a|−σsgnε(a)ϕ for some σ ∈ C and ε = 0, 1 (identically in
a ∈ R×). Let ψ be a functions supported on E± of the form ψ(x) = f(|x|)
for x ∈ E± with f ∈ C∞

c ((0,∞)). Then the restriction to E± of the Fourier
transform of the distribution ψϕ is given by the formula F (ψϕ) = ψ̃ϕ (on E)
where ψ̃ is the function on E± defined by

ψ̃(x) = iε
∫ ∞
0 {cos π

2 (n± + σ + ε)Jα(|x|t)
− sin π

2 (n± + σ + ε)Yα(|x|t)}f(t)|x|−αtα+1 dt
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Here α = n/2 + σ − 1 and Jα, Yα are the usual special functions denoted by
these symbols. The assertions are to be taken in the sense that either the upper
sign or the lower sign in the symbols ± is consistently chosen throughout. The
formula differs from the one in [13] by a factor of (2π)n/2 because of different
normalizations of the Lebesgue measure on E. Strichartz also requires that ϕ
be a C∞ function on E±, but this superfluous since on E± a homogeneous
harmonic distribution is a limit (in the distribution sense) of homogeneous har-
monic C∞ functions (in fact of harmonic analytic functions, as one sees from
Lemma 3(a) of [12]).
We apply this formula as follows. First we take E = t with its inner product
( , ). For ϕ we take a homogeneous harmonic polynomial h on t and for ψ a
function r(t) = f(|t|) as in the lemma. Then on t\{0}, Ft(rh) = r̃h where r̃ is
the function defined at x ∈ t\{0} by taking the rower signs on the rhs of (10)
and substituting

n+ = 0; σ = deg(h); ε ≡ deg(h) mod 2; α = 1
2 dim(t) + deg)h) − 1.

This gives ( for x ∈ t\{0}):
r̃(x) = (−i)deg(h)

∫ ∞
0 Jα(|x|) f(t) |x|−αtα+1 dt

Next we take E = g with its inner product ( , ). For ϕ we take a harmonic
distribution H (homogeneous of degree deg(h) − 1

2 dim(g/t)) as in part (1) of
the lemma, and for ψ the function R on E− = g− defined by R(x) = f(|x|) (f
as above). Then on g−, Fg(RH) = R̃H , where R̃ is the function defined at
x ∈ g− by taking the lower signs on the rhs of (10) and substituting

n+ = dim(g/t); σ = deg(h) − 1
2 dim(g/t),

ε = deg(h) − 1
2 dim(g/t) mod 2, α = 1

2 dim(t) + deg(h) − 1.

This gives (for x ∈ g−):

R̃(x) = γ(−i)deg(h)
∫ ∞
0

Jα(|x|) f(t) |x|−αtα+1 dt

where γ = (i)
1
2 dim(g/t)(−1)

1
2 dim(g/k).

Since α has the same value for g and for t we find that R̃ = γr̃ on t\{0}. We
now use the fact that g is a subset of g− and the relations

M ′
t(rh) = RMt′(h) = RH (on ge)

M ′
t(r̃h) = γ−1R̃Mt′(h) = γ−1R̃H (on ge)

to compute

(11) M ′
t(rh) = M ′

t(r̃h) (on ge)
= γ−1R̃H (on ge)
= γ−1F ′

gRH (on ge)
= γ−1F ′

gM
′
t(rh) (on ge)

This finishes the proof of Lemma B.

To complete the proof of the Theorem we compare Lemma A with Lemma B
to find that (notation as above, δ = (−1)

1
2 dim(g/t)):
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(12) M ′
tF

′
t (rh) = δ

|W |
∑

w∈WC
ĉ(w)F ′

gM
′
tτ(w)′(rh)

(by taking transposes in Lemma A); but also

(13) M ′
tF

′
t (rh) = γ−1F ′

gM
′
t(rh)

where (12) and (13) are understood as equations between distributions on ge.
Now by (11) these distributions area actually functions on ge, namely

M ′
tF

′
t (rh) = γ−1R̃H, F ′

gM
′
t(rh) = R̃H .

So if we equate the rhs of (12) and (13) and restrict to tr we get
γδ
|W |

∑
w∈WC

ĉ(w)τ(w)r̃h = r̃h

Since r radial (hence WC-invariant) this shows that
γδ
|W | r̃

∑
w∈WC

ĉ(w)τ(w)h = r̃h

as function on tr. Thus
γδ
|W |

∑
w∈WC

ĉ(w)τ(w)h = h

for all W -anti-invariant harmonic polynomials h on t. Since every polynomial on
t is a sum of polynomials of the form p(x) = g((x, x))h)x) with h(x) harmonic
we see that (14) holds for all W -anti-invariant polynomials h on t. So the
operator γδ

|W |
∑

w∈WC
ĉ(w)τ(w) maps the polynomials on t onto the W -anti-

invariant polynomials and leaves the W -anti-invariants fixed. This means that
this operator is the W -projection onto the space of W -anti-invariants i.e.

γδ
|W |

∑
w∈WC

ĉ(w)τ(w) = 1
|W |

∑
w∈W ε(w)τ(w).

Comparing coefficients shows that

ĉ(w) =

{
1
γδ ε(w) if w ∈ W

0 if w /∈ W

Equation (3) of Lemma A now gives

c(w) =

{
γδ
|W | ε(w) if w ∈ W

0 if w /∈ W
.

Substituting this formula for c(w) into the equation in Lemma A completes the
proof of the Theorem. As a consequence of the theorem we get:

Corollary. The formula (Rtϕ,Mtϕ) = (ϕ, ψ) defines a linear isomorphism Rt

of D′(ge)G onto D′(tt)W and of D̂ ′(ge)G onto D̂ ′(tt)W . This map satisfies
RtF

′
g = γFtRt.

The fact that Rt is an isomorphism of D′(ge)G onto D′(tt)W is a well-kown
consequence of the regularity properties of the map G×Tr → ge ([14J Thm.3, p.
25). The other assertions then follow from the theorem. Another Consequence
of the theorem is the following:
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Corollary. The Fourier transform of the distribution µt (t ∈ tr) on g defined
by

(15) (µt, ϕ) =
∫
G
ϕ(g · t) dg

is the unique tempered, G-invariant eigendistribution (necessarily a function)
whose restriction to tr is given by

θt(s) = κπ(s)−1
∑

w∈W ε(w) ei(w·s,t), κ = (−i)
1
2 dim(g/t)(−1)

1
2 dim(g/k) |W |−1

This is immediate from equations (6)and (15) together with a we -known result
of Harish-Chandra ([14] Thm.,16, p. 119).

The significance of the distributions θt lies in the fact that they are essentially
the discrete series characters in exponential coordinates. To make this precise,
let c0 be an open neighborhood of zero in the center of g on which exp : c0 → G
is an invertible an invertible analytic map auto its image. Write [g, g]0 for the set
of elements x of [g, g] for which the eigenvalues λ of ad(x) satisfy |Im(λ)| < π and
set g0 = c0 + [g, g]0. g0 is an open neighborhood of zero in g and exp : g0 → G
is an invertible analytic map onto its image ([14] Cor. 6, p. 194). This map
allows us to identify distributions on exp(g0) with distributions on g0.
Next, let τ : T → C an irreducible character of T and write the differential of
τ in the form dτ : t → R, s �→ deg(τ)(it − r, s), where r is the half-sum of
the positive roots. Assume that τ ; is regular, i.e. that t is in tr. deg(τ) is
the degree of τ (which may be > 1, since T need not be abelian). According to
Harish- Chandra’s construction there is a discrete series character Θτ associated
to τ which satisfies

(16) Θτ (exp(x)) = deg(τ) (i)
1
2 dim(g/t)|W |ε(t)p(x)−1θt(x)

as an identity of distributions on g0. Here ε(t) = sgnπ(it), p(x) = det1/2

{sinh(ad(x/2)/ ad(x/2)} and θt = Fgµt, as before.[For the definition of Θτ see
[14] Theorem 1, p. 244 and Theorem 8, p.443. I have written τ for Varadara-
jan’s b∗, Θτ for his Θω(b∗) and used the fact that τ(exp(s)) = deg(τ) e(it−r,s).
(16) is a special case of equation (14) in Lemma 7, p.248 of [14], namely the
case b = 1 in T and Ω(b) = exp(g0).]
The relation (16) is essentially Kirillov’s formula for the discrete series char-
acters. To see this we need to recall the construction of Kirillov’s canonical
measure µΩ on an orbit Ω. First define a skew form Bx on the tangent space
TxΩ = ad(g)x for each x in Ω by the formula Bx(u, v) = (x, [y, z]) if u = ad(y)x
and v = ad(z)x for some y, z in g. As this from is this form is non degenerate
one can define a volume element in TxΩ in the usual way: assign the volume
| detBx(ui, uj)|1/2 to the parallelepiped spanned by a basis {ui} of TxΩ. Hav-
ing defined a volume element in each tangent space, we get a smooth measure
on Ω, which is easily seen to be G-invariant. For reasons which will become
clear shortly we multiply this measure by the constant (2π)−

1
2 dim(g/t) to arrive

at Kirillov’s measure µΩ.
On the other band, for t in tr we have the G-invariant measure νt on G·t defined
by
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∫
G·t f(x) dνt(x) =

∫
G
f(g · t) dg.

To compare νt with µt we note that the invertible analytic map G/T × t+ → gr
(t+ ⊂ tr a fundamental domain for W ) transforms the measures according to
the formula∫

ge
f(x) dx = |W | ∫tr

∫
G·t f(y)dνt(y) |π(t)|2 dt.

So if we write dtνt for the volume element of νt in the tangent space ad(g)t = t⊥

of Ω at t (t⊥ the subspace of g orthogonal orthogonal to t with respect to ( , ),
then the decomposition g = t⊥ + t of g corresponds to the decomposition dx =
dνt(y) |π(t)|2 dt of dx. Thus dνt differs from the volume element of the metric
( , ) by the factor (2π)−

1
2 dim(g/t)|W |−1|π(t)|−2. (The factor (2π)−

1
2 dim(g/t)

comes from the normalizations of dx and dt in terms of Fourier transforms)
This means that dtνt assigns the volume

(2π)−
1
2 dim(g/t)|W |−1|π(t)|−2| det(xi, xj)| 12

to the parallelepiped spanned by a basis {xi} in t⊥. Comparing this with the
volume

(2π)−
1
2 dim(g/t)| detB(xi, xj)| 12

= (2π)−
1
2 dim(g/t)| det(t, [adt⊥(t)−1xi, adt⊥(t)−1xj)]| 12

= (2π)−
1
2 dim(g/t)|π(t)\−1| det(t, [xi, xj ])| 12

assigned to this parallelepiped by the volume element µΩ, we get that

µΩ = |W | |π(t)| νt
= |W | ε(t) (i)− 1

2 dim(g/t)µ,

where µ is defined by (5) and ε(t) = sgnπ(it) as before (so that |π(t)| =
|π(it)| = ε(t)π(it) = ε(t)i)−

1
2 dim(g/t)π(t).) Substituting into(16) using θt =

Fgµt we find that Θτ = deg(τ)FgµΩ, . So if we write π for the discrete series
representation with character Θτ and use the notation introduced above we get
the

Character formula for the discrete series of groups of type H:

tr
∫

g
ϕ(x)π(exp(x)) dx = deg(τ)

∫
Ω
{∫

g
ei(λ,x) ϕ(x) p(x)−1} dµΩ(λ).

for all C∞ functions ϕ with compact support in g0.

One should note that this formula determines the characters Θτ only on the
open subset exp(g0) of G. In fact it may well happen that different irreducible
characters τ of T have the same differential, so that different Θτ ’s may cor
respond to the same θt. If G is connected, however, then so is T and this
situation cannot arise.
Note also that the formula differs from (Φ) in the introduction by the factor
deg(τ). This kind of extra factor first appeared in a paper of Kalgui [Comptes
Rendus 284, (1977), p531].
We now turn to the other characters which occur in the Plancherel formula.
From Harish-Chandra’s work one knows that the irreducible representations of
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G which occur, in the Plancherel formula are induced from cuspidal parabolic
subgroups [8]: If P is a cuspidal parabolic in G with Langlands decomposition
P = MAN, choose a discrete series representation σ of M and a regular unitary
character ν of A to define a representation πσ,ν of P by setting πσ,ν (man) =
σ(m)ν(a). Let T be a compact Cartan subgroup of M, τ the regular, irreducible
character of T which parametrizes the discrete series representation σ of M .
Let t be the element in tr so that s �→ deg(τ)(it − r, s) is the differential of τ
and let a be the element in a so that b → i(a, b) is the differential of ν.
(Here ( , ) is the Killing form of g.)LetΩ = Ω(σ) be the G-orbit of t + a in
g, µΩ the canonical G-invariant measure on Ω. Finally let π = π(σ, ν) be the
representation of G unitarily induced from the representation πσ,ν of P . With
this notation we have the

Character formula for principal series of groups of type H :

tr
∫

g
ϕ(x)π(exp(x)) dx = deg(τ)

∫
Ω
{∫

g
ei(λ,x) ϕ(x) p(x)−1} dµΩ(λ).

for all C∞ functions ϕ with compact support in g0.

When P is a minimal parabolic (i.e. when M is compact) this bas been proved
by Duflo by a reduction to Kirillov’s formula for compact groups [3]. The proof
for an arbitrary cuspidal parabolic is an entirely analogous reduction to Kirillov’s
formula for the discrete series characters of groups of class H established above.
[Duflo assumes implicitly that G is linear, which allows him to drop the factor
deg(τ) from the formula. He also uses linearity in the proof of Lemma 2 in [2],
but that lemma is valid for all groups of type H, as one can verify using [14]
Proposition 4, p. 193.]
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