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Abstract

Background: Kisspeptin and its G protein-coupled receptor (GPR) 54 are essential for activation of the hypothalamo-
pituitary-gonadal axis. In the rat, the kisspeptin neurons critical for gonadotropin secretion are located in the hypothalamic
arcuate (ARC) and anteroventral periventricular (AVPV) nuclei. As the ARC is known to be the site of the gonadotropin-
releasing hormone (GnRH) pulse generator we explored whether kisspeptin-GPR54 signalling in the ARC regulates GnRH
pulses.

Methodology/Principal Findings: We examined the effects of kisspeptin-10 or a selective kisspeptin antagonist
administration intra-ARC or intra-medial preoptic area (mPOA), (which includes the AVPV), on pulsatile luteinizing
hormone (LH) secretion in the rat. Ovariectomized rats with subcutaneous 17b-estradiol capsules were chronically
implanted with bilateral intra-ARC or intra-mPOA cannulae, or intra-cerebroventricular (icv) cannulae and intravenous
catheters. Blood samples were collected every 5 min for 5–8 h for LH measurement. After 2 h of control blood sampling,
kisspeptin-10 or kisspeptin antagonist was administered via pre-implanted cannulae. Intranuclear administration of
kisspeptin-10 resulted in a dose-dependent increase in circulating levels of LH lasting approximately 1 h, before recovering
to a normal pulsatile pattern of circulating LH. Both icv and intra-ARC administration of kisspeptin antagonist suppressed LH
pulse frequency profoundly. However, intra-mPOA administration of kisspeptin antagonist did not affect pulsatile LH
secretion.

Conclusions/Significance: These data are the first to identify the arcuate nucleus as a key site for kisspeptin modulation of
LH pulse frequency, supporting the notion that kisspeptin-GPR54 signalling in this region of the mediobasal hypothalamus
is a critical neural component of the hypothalamic GnRH pulse generator.
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Introduction

Inactivating mutations of the kisspeptin receptor (GPR54) in

humans are associated with a failure to progress through puberty

and adult infertility (hypogonadotropic hypogonadism) [1,2].

Kisspeptin administration stimulates GnRH or LH secretion in

various species including mice [3], rats [4,5], sheep [6], monkeys

[7] and Humans [8]. The recent development of selective

kisspeptin antagonists [9] has facilitated investigation of the role

of endogenous kisspeptin in the control of the hypothalamo-

pituitary-gonadal axis. Central administration of the kisspeptin

antagonist, peptide 234, inhibited the post-castration rise in LH

secretion in mice, blunted the LH response to exogenous

kisspeptin in rats, suppressed LH pulse frequency and amplitude

in ewes and suppressed GnRH pulses in monkeys [9]. However,

the precise neural site of action remains to be established.

Kisspeptin perikarya are located in two discrete hypothalamic

regions in rodents; the anteroventral periventricular nucleus

(AVPV) and the arcuate nucleus (ARC) [3,10]. The AVPV sends

projections to the GnRH-rich medial preoptic area (mPOA) [11]

where kisspeptin fibers appear in close apposition to GnRH

perikarya [12]; the latter express GPR54 mRNA and show c-FOS

expression after kisspeptin administration [13].

Kisspeptin neurons in the AVPV and ARC of rodents are the

target for estrogen positive and negative feedback action

respectively, since Kiss1 mRNA expression is increased in the
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former and decreased in the latter nucleus in response to the

steroid [14]. Further, the LH surge is blocked by injection of

metastin antibodies into the mPOA [10] and GPR54- or

kisspeptin-null mice fail to show LH surges [15]. In contrast to

the AVPV, little is known about the role of kisspeptin-GPR54

signalling in the ARC in the regulation of gonadotropic hormone

secretion in rodents. Nevertheless, the ARC is considered to be the

prime location of the GnRH pulse generator in the rat [16], in

common with other species including primates [17].

To further explore the relationship between kisspeptin-GPR54

signalling in the control of GnRH pulse generator activity, we

examined the effects of icv administration of kisspeptin antagonist

on pulsatile LH secretion in the rat. To test the hypothesis that

kisspeptin-GPR54 signalling in the ARC plays a critical role in

controlling GnRH pulse generator activity, we examined the

effects of kisspeptin or kisspeptin antagonist microinfused into this

brain region on pulsatile LH secretion and compared the response

to microinfusion into the mPOA.

Materials and Methods

Animals and Surgical Procedures
Adult female Sprague Dawley rats (220–250 g) obtained from

Charles River (Manston, UK) were housed under controlled

conditions (12:12-h light/dark cycle with lights on at 0700 h;

temperature at 2262uC) and provided with food and water ad

libitum. All animal procedures were undertaken in accordance with

the United Kingdom Animals (Scientific Procedures) Act, 1986,

under Licence # 70/6237. Experimental procedures on animals

were also approved by the King’s College London Ethical Review

Panel Committee. Animals were allowed to habituate to the

animal unit for one week before initiation of experimentation. All

surgical procedures were carried out under ketamine anaesthesia

(100 mg/kg i.p.; Pharmacia and Upjohn Ltd., Crawley, UK) and

Rompun (10 mg/kg i.p.; Bayer, Leverkusen, Germany).

Rats were bilaterally ovariectomized and implanted with a

Silastic capsule (inner diameter, 1.57 mm; outer diameter,

3.18 mm; Sanitech, Havant, UK), filled to a length of 25 mm

with 17b-estradiol (E2) (Sigma-Aldrich, Poole, UK) dissolved at a

concentration of 20 mg/ml arachis oil (Sigma-Aldrich). The E2-

containing capsules produced circulating concentrations of E2

within the range observed during the diestrous phase of the estrous

cycle (,38.861.2 pg/ml) as previously described [18].

To evaluate the inhibitory effect of the selective kisspeptin

antagonist on pulsatile LH secretion, a group of rats was implanted

with an icv guide cannula (22 gauge; Plastics One, Roanoke, VA,

USA) directed towards the left lateral ventricle, the co-ordinates

for implantation being 0.6 mm lateral and 1.5 mm posterior to

bregma, and 4.5 mm below the surface of the dura. The guide

cannula was secured using dental cement (Dental Filling Ltd.,

Swindon, UK), and fitted with a dummy cannulae (Plastics One)

to maintain patency. To identify the neural site for kisspeptin-

GPR54 signalling to control pulsatile LH secretion, a separate

group of rats was implanted with bilateral guide cannulae (22-

gauge; Plastics One) directed at the GnRH-rich areas of the

mPOA or the ARC for microinfusion of kisspeptin or its

antagonist. The coordinates for implantation for the mPOA and

ARC cannulae were: 0.5 mm lateral, 0.26 mm posterior to

bregma and 8.6 mm below the surface of the dura, and 0.4 mm

lateral, 3.3 mm posterior to bregma, and 10.2 mm below the

surface of the dura, respectively [19]. Schematic illustration of the

microinjection sites is shown in Figure 1. The guide cannulae were

secured using dental cement (Dental Filling Ltd.) and fitted with

dummy cannulae (Plastics One). All brain cannulae were

implanted at the time of ovariectomy. After a 10-day recovery

period, the rats were fitted with two indwelling cardiac catheters

via the jugular veins. The catheters were exteriorised at the back of

the head and secured to a cranial attachment; the rats were fitted

with a 30-cm-long metal spring tether (Instec Laboratories Inc.,

Boulder, CO, USA). The distal end of the tether was attached to a

fluid swivel (Instec Laboratories), which allowed the rat freedom to

move around the enclosure. Experimentation commenced 3 day

later. Correct cannula placement in the mPOA or ARC was

confirmed by injection of 500 nl India ink through the internal

guide cannulae followed by microscopic inspection of 30 mm

frozen brain sections. Only data from animals with correct

cannula placement were analysed.

Icv Infusion of Kisspeptin or Antagonist and Pulsatile LH
Secretion

On the morning of experimentation, a single internal injection

cannula (Plastics One) with extension tubing, preloaded with a

selective kisspeptin antagonist [9] (peptide 234, 7.5 nmol in 12 ml

aCSF; N = 6) or aCSF (12 ml aCSF; N = 5) was inserted in the

guide cannula, extending 1.0 mm beyond its tip to reach the left

ventricle. The distal end of the tubing was extended outside of the

animal cage and attached via a dual-channel swivel (Instec

Laboratories) connected to a 25 ml Gastight Hamilton syringe

(Waters International, UK) secured in a microinjection syringe

Figure 1. Schematic illustration of the intra-cerebral microin-
jection sites. Bilateral cannulae were positioned in the medial preoptic
area (mPOA) at bregma 20.26 mm or the hypothalamic arcuate
nucleus (ARC) at bregma 23.30 mm according to the rat brain atlas of
Paxinos and Watson (19). Closed triangles represent the location of the
cannulae tips. Ac, anterior commissure; 3v, third cerebral ventricle.
doi:10.1371/journal.pone.0008334.g001
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pump (2000 Syringe Pump; Harvard Apparatus, Massachusetts,

USA) programmed to deliver 4 ml/h for 3 h, thus allowing remote

infusion without disturbing the rat during the experiment. Rats

were also attached via one of the two cardiac catheters to a

computer-controlled automated blood sampling system, which

allows for the intermittent withdrawal of small blood samples (25-

ml) without disturbing the animals. Once connected, animals were

left undisturbed for 1 h before sampling commenced. Blood

sampling commenced between 0900 and 1000 h when samples

were collected every 5 min for 8 h for LH measurement. After

removal of each 25-ml blood sample, an equal volume of

heparinized saline (5 U/ml normal saline; CP Pharmaceuticals

Ltd., Wrexham, UK) was automatically infused into the animal to

maintain patency of the catheter and blood volume. After 2 h of

controlled blood sampling, kisspeptin antagonist or aCSF were

infused in the relevant animals over a period of 3 h. Blood

sampling continued throughout the experiment. Blood samples

were frozen at 220uC for later assay to determine LH

concentrations.

Intra-ARC or Intra-mPOA Infusion of Kisspeptin-10 and
Pulsatile LH Secretion

For the administration of kisspeptin-10, bilateral injection

cannulae (Plastics One) with extension tubing preloaded with

different doses of kisspeptin-10 (Sigma-Aldrich) (1 pmol, N = 6;

10 pmol, N = 8; 100 pmol, N = 8) in 400 nl aCSF per brain loci

(intra-ARC or mPOA) or aCSF (400 nl; N = 6 for the ARC and

N = 7 for the mPOA) were inserted into the guide cannulae,

extending 1.0 mm beyond its tip to reach the site of the brain

nuclei. The distal end of the tubing was extended outside of the

animal cage to allow remote infusion without disturbing the rat

during the experiment. The automated blood sampling system was

set up in the same way as described above for the collection of 25-

ml blood samples every 5 min, but only for 5 h. All treatments

were given by injection over 5 min after 2 h of the onset of blood

sampling.

Intra-mPOA or Intra-ARC Infusion of Kisspeptin
Antagonist and Pulsatile LH Secretion

For the infusion of kisspeptin antagonist into the mPOA or

ARC, internal cannulae loaded with the antagonist or aCSF were

set up in the same way as described above. Rats were

administrated with 10 pmol (mPOA, N = 8; ARC, N = 7 for the

ARC) or 50 pmol (mPOA, N = 8; ARC, N = 8) kisspeptin

antagonist in 500 nl aCSF over the period of 5 min after 2 h of

controlled blood sampling and then the same dosage was repeated

on two further occasions at an interval of 30 min. Control animals

received 500 nl aCSF only with the same regimen (mPOA, N = 7;

ARC, N = 6). Blood sampling procedures were set up as described

above for LH measurement.

RIA for LH Measurement
A double-antibody RIA supplied by the National Institute of

Diabetes and Digestive and Kidney Diseases was used to

determine LH concentration in the 25-ml whole blood sample

[20]. The sensitivity of the assay was 0.093 ng/ml. The intraassay

variation was 8.5% and the interassay variation was 9.5%.

Data and Statistical Analysis
Detection of LH pulse frequency and amplitude was established

by use of the algorithm ULTRA [21]. Two intra-assay coefficients

of variation of the assay were used as the reference threshold for

the pulse detection. The inhibitory effect of infusion of kisspeptin

antagonist (icv) on pulsatile LH secretion was analysed by

comparing the mean LH pulse interval before, during and after

treatments. The period duration in min of the 2 h pre-, 3 h during

and the 3 h post-treatment was divided by the number of LH

pulses detected in each of these periods to give the appropriate LH

pulse interval. When there were no LH pulses evident during the

3 h treatment period, the LH pulse interval assigned to this period

was taken as the interval from the onset of treatment to the first

LH pulse in the 3 h post-treatment period. In addition, for the icv

kisspeptin antagonist treated animals, the mean LH interpulse

interval in the pre-treatment period was compared with the post-

treatment period from the time of resumption of LH pulses

onwards. The significance of the effect of icv infusion of kisspeptin

antagonist on LH pulse intervals was also compared with their

control animals injected with aCSF alone at the same time points.

The effect of icv administration of kisspeptin antagonist on LH

pulse amplitude was compared before and during treatment only.

The effect of kisspeptin-10 administration into the ARC or mPOA

on LH secretion was calculated by comparing the area under the

LH profile in the 2 h baseline control blood sampling period to the

1 h period after administration of drug using SigmaPlot version 11

(Systat Software Inc., San Jose, CA, USA). The inhibitory effect of

administration of kisspeptin antagonist into the mPOA or ARC on

LH pulses was calculated by comparing the mean LH pulse

interval before, 1st h and 3rd plus 4th h after treatment onset in

each group. For intra-mPOA and intra-ARC administration of

kisspeptin antagonist, LH pulse amplitude was compared before

and during the 1st h after treatment onset in each group. Values

given in the text and figures represent mean 6 SEM. Comparisons

between groups were made by subjecting data to ANOVA and

Dunnett’s test.

Results

Effect of Icv Administration of Kisspeptin Antagonist on
Pulsatile LH Secretion

Pulsatile LH secretion representing normal activity of the

GnRH pulse generator was detected in both kisspeptin antagonist

and artificial cerebrospinal fluid (aCSF) treated animals during the

2-h baseline control period, with no significant difference in LH

pulse frequency between experimental groups. Kisspeptin antag-

onist profoundly suppressed pulsatile LH secretion (Fig. 2B–D;

P,0.05). LH pulses were effectively suppressed immediately after

the onset of antagonist (2.5 nmol/h) infusion in 4 out of 6 rats and

all 4 of these animals showed a complete absence of LH pulses

during the period of kisspeptin antagonist infusion (Fig. 2B). Of the

remaining animals, one displayed a single LH pulse at 50 min

from the onset of kisspeptin antagonist infusion, and the second

showed a gradual reduction in LH pulse frequency, though of

smaller amplitude during the infusion (Fig. 2C; Table 1). The

pulsatile pattern of LH secretion generally returned within 1–2 h

after the end of the kisspeptin antagonist infusion, albeit of reduced

frequency upon resumption of LH pulses (pre-treatment period

versus post-treatment period from the time of resumption of LH

pulses onwards: 26.4261.42 versus 41.0164.30 LH interpulse

interval in minutes respectively; mean 6 SEM; N = 5–6; P,0.05).

Central administration of aCSF did not affect pulsatile LH

secretion (Fig. 2A and D).

Effects of Intra-ARC and Intra-mPOA Administration of
Kisspeptin-10 on LH Secretion

Both intra-ARC and intra-mPOA administration of kisspeptin-

10 resulted in a dose-dependent increase in circulating levels of LH

that lasted approximately 1 h before recovering to a normal

Kiss and GnRH Pulse Generator
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pulsatile pattern of LH secretion (Fig. 3B and 3E; P,0.05). The

mean value of area under the LH profile during the first hour of

kisspeptin-10 infusion was significantly greater in the 100 pmol

than in the 10 pmol kisspeptin-10 treated group (Fig. 3C and F;

P,0.05). Control intra-nuclear injection of aCSF had no effect on

LH secretion (Fig. 3A and 3D).

Differential Effect of Kisspeptin Antagonist
Administration into the mPOA and the ARC on Pulsatile
LH Release

To identify the site of action for the inhibitory effect of the

kisspeptin antagonist on pulsatile LH secretion, 10 pmol or

50 pmol of the antagonist was administered into the mPOA or

ARC as 3 injections at 30 min intervals starting after 2 h baseline

control blood sampling. (Multiple injections were employed as

continual infusion was impractical in this model). Administration

of kisspeptin antagonist into the mPOA did not affect LH pulse

frequency (Fig. 4B–D) or LH pulse amplitude (Table 1). However,

intra-ARC administration of 10 pmol of antagonist suppressed LH

pulses, resulting in an immediate prolongation of LH pulse interval

(Fig. 5B–D; P,0.05) compared with the aCSF controls, which

showed no change during the experimental period (Fig. 5A and D).

The suppression of LH pulse frequency was further enhanced in

response to the higher dose of antagonist (50 pmol63) (Fig. 5C and

D; P,0.001). LH pulse amplitude was not affected by kisspeptin

antagonist administration into the ARC (Table 1).

Discussion

The results of this study demonstrate that administration of a

selective kisspeptin antagonist profoundly suppressed pulsatile LH

secretion in the rat. They support findings in the rhesus monkey

where stalk-median eminence perfusion of the antagonist appar-

ently suppressed GnRH pulses and in the ewe where icv infusion

of the antagonist apparently suppressed LH pulse amplitude [9].

However, as in these previous studies, it is sometimes difficult to

differentiate between amplitude and frequency effects as pulses

Figure 2. Effect of intracerebroventricular (icv) administration
of kisspeptin antagonist (Kiss-antag) on LH pulse frequency.
Representative examples illustrating the effects of continuous icv
infusion of (A) aCSF (4 ml/h for 3 h) or (B and C) Kiss-antag (2.5 nmol/h
for 3 h) in ovariectomized 17bestradiol-replaced rats. Pulsatile LH
secretion was either completely suppressed during the period of Kiss-
antag infusion (B) or LH pulse interval was significantly prolonged by
Kiss-antag (C). D, Summary showing the inhibitory effect of Kiss-antag
on pulsatile LH secretion. {P,0.001 versus aCSF control group at the
same time point. #P,0.001 versus Kiss-antag treated group during the
time of infusion; N = 5–6 per group. *LH pulse.
doi:10.1371/journal.pone.0008334.g002

Table 1. Effect of intracerebroventricular (icv), intra-medial
preoptic area (mPOA) or intra-arcuate nucleus (ARC)
administration of kisspeptin antagonist, peptide 234 (Kiss-
antag), on LH pulse amplitude (ng/mg) in ovariectomized
17b-estradiol-replaced rats.

Treatment groups n Baseline During Post

ICV

aCSF (4 ul/h for 3 h) 5 1.9060.22 2.0160.30 2.1960.33

Kiss-antag (2.5 nmol/h for 3 h) 6 1.9160.41 1.0760.25* 2.6160.50

Intra-POA

aCSF (0.5 ul 63) 6 1.9760.29 1.9960.32 2.0360.34

Kiss-antag (10 pmol 63) 8 1.9260.17 2.0760.16 1.9760.15

Kiss-antag (50 pmol 63 ) 7 1.9660.29 1.9860.36 1.9560.25

Intra-ARC

aCSF (0.5 ul 63) 5 1.7360.33 1.7560.37 1.8060.39

Kiss-antag (10 pmol 63) 6 1.7760.54 1.8160.46 1.8760.49

Kiss-antag (50 pmol 63) 6 1.9260.27 1.8860.38 2.0460.37

*2 rats continued to show LH pulses during kisspeptin antagonist infusion/not
significant from baseline value (P = 0.28).
LH pulse amplitude (Mean 6 SEM) is indicated before, during and post
administration of antagonist or artificial cerebrospinal fluid (aCSF).
doi:10.1371/journal.pone.0008334.t001
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become undetectable if the amplitude is highly suppressed. In the

present study, there was an immediate and complete absence of

LH pulses following icv infusion of the antagonist in 4 of the 6

animals, with the 2 remaining animals showing continuing LH

pulses with a tendency for lower amplitude (though not significant)

and with a gradual reduction in frequency. In addition, there was

a rapid restoration of LH pulses with normal pulse amplitude but

reduced frequency post-treatment. These findings suggested that

kisspeptin affects the GnRH pulse generator. However, the most

definitive evidence that the kisspeptin antagonist modulates

frequency of the GnRH pulse generator was derived from our

demonstration that intra-ARC administration reduced LH pulse

frequency in a dose-dependent manner without affecting pulse

amplitude. Interestingly, LH pulses were not affected by kisspeptin

antagonist administration into the mPOA. This differential effect

of antagonist administration into different sites of kisspeptin

neuron localization suggests that the site of action of kisspeptin in

controlling pulsatile LH secretion resides in the ARC nucleus and

not the mPOA.

The present study has provided the first direct evidence that

endogenous kisspeptin-GPR54 signalling in the ARC plays a

critical role in regulating LH pulse frequency in the rat. It is well

established that pulsatile LH secretion is governed by the GnRH

pulse generator, the precise neural construct of which still remains

to be elucidated. However, it has been proposed that kisspeptin

neurons in the ARC nucleus may represent the substrate of the

Figure 3. Effect of intra-arcuate nucleus (ARC) and intra-medial preoptic area (mPOA) administration of kisspeptin-10 (KP) on LH
secretion. Representative examples illustrating the effects of intra-ARC infusion of (A) 400 nl aCSF or (B) 100 pmol KP in ovariectomized
17bestradiol-replaced rats. C, Summary showing the effect of KP on LH secretion, calculated by comparing the mean area of under LH profile 2 h
before with 1 h after its administration. Representative examples illustrating the effects of intra-mPOA infusion of (D) 400 nl aCSF or (E) 100 pmol KP
in ovariectomized 17bestradiol-replaced rats. F, Summary showing the effect of intra-mPOA KP on LH secretion. LH secretion was dramatically
increased immediately after KP treatment in both nuclei, which lasted about 1 h in most experimental animals. *P,0.05 versus aCSF control group at
the same time point. #P,0.05 versus 10 pmol KP treatment group at the same time point; N = 5–7 per group.
doi:10.1371/journal.pone.0008334.g003
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Figure 4. Effect of intra-medial preoptic area (mPOA) admin-
istration of kisspeptin antagonist (Kiss-antag) on pulsatile LH
secretion. Representative examples illustrating the effects of intra-
mPOA injection of (A) of 500 nl aCSF (3 injections at 30 min intervals),
(B) 10 pmol Kiss-antag (3 injections at 30 min intervals) or (C) 50 pmol
Kiss-antag (3 injections at 30 min intervals) in ovariectomized
17bestradiol-replaced rats. D, Summary showing there was no
inhibitory effect of Kiss-antag on LH pulse interval. N = 6–8 per group.
doi:10.1371/journal.pone.0008334.g004

Figure 5. Effect of intra-arcuate nucleus (ARC) administration
of kisspeptin antagonist (Kiss-antag) on pulsatile LH secretion.
Representative examples illustrating the effects of intra-ARC injection of
(A) of 500 nl aCSF (3 injections at 30 min intervals), (B) 10 pmol Kiss-
antag (3 injections at 30 min intervals) or (C) 50 pmol Kiss-antag (3
injections at 30 min intervals) in ovariectomized 17bestradiol-replaced
rats. D, Summary showing the inhibitory effect of Kiss-antag on LH
pulse frequency. *P,0.05 versus aCSF control group at the same time
point. #P,0.001 versus Kiss-antag (10 pmol63) at the same time point;
N = 5–6 per group.
doi:10.1371/journal.pone.0008334.g005
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GnRH pulse generator [22,23]. The GnRH pulse generator is

thought to be located in the ARC nucleus of the mediobasal

hypothalamus of the rat since isolation of this region, using the

Halász deafferentation technique, permits continued follicular

growth [24] and detection of LH pulses [25]. Further, the

hypothalamic multiunit electrical activity (MUA) volleys invariably

associated with LH pulses and which provide a robust electro-

physiological correlate of GnRH pulse generator activity, are

recorded from the ARC in the rat [20,26] and goat [22]; species in

which this structure contains abundant kisspeptin neurons but is

devoid of GnRH neurons. It is worth noting that we recently

reported that intravenous administration of kisspeptin-10 elicits a

robust release of LH, and presumably GnRH, without affecting

the MUA volleys in the rat [20]; data that are seemingly

inconsistent with the notion that the MUA volleys reflect neuronal

discharge recorded from GnRH neurons per se. Interestingly, Plant

and Ramaswamy [23] have recently highlighted that the early

ARC nucleus lesioning studies in the rhesus monkey that led

Knobil to conclude that the GnRH pulse generator was located in

this hypothalamic region [17], overlapped with the now known

location of the kisspeptin perikarya [27]. The majority of the

kisspeptin neurons in the ARC would therefore have been

destroyed by the lesions, but the more laterally positioned GnRH

neural network would have been spared [27]. Although the

electrode assembly used for the MUA recordings in the monkey

were targeted to area which kisspeptin neurons are located

[27,28], they would also have encompassed the GnRH neurons

[29], so the neurochemical phenotype of the neurons that

constitute these electrophysiological correlates in the monkey still

remain an intriguing mystery. Nevertheless, Keen et al., [30]

recently demonstrated a circhoral pattern of kisspeptin release

showing 75% concordance with GnRH pulses simultaneously

measured in the stalk-median eminence in the rhesus monkey, and

that delivery of kisspeptin antagonist into the same region

suppressed GnRH pulses measured in the stalk-median eminence

dialysate [9]. Kisspeptin and its receptor are not only expressed in

the ARC but their expression here is regulated by various

physiological or pharmacological manipulations. For example,

lactating rats not only show a profound suppression of pulsatile LH

secretion, but also show a marked reduction in Kiss1 mRNA

expression [31]. Similarly, we have shown a down-regulation of

Kiss1 and GPR54 expression in the ARC in response to a variety

of different stressors and corticotropin-releasing hormone admin-

istration, which are associated with suppression of LH pulses [32].

Collectively, these findings support a role for ARC kisspeptin-

GPR54 signalling in the regulation of GnRH pulse generator

activity.

Whether kisspeptin neurons in the ARC or indeed other loci are

the key neural substrate of the GnRH pulse generator per se

remains to be established. However, with clinical observations that

patients with inactivating mutations of GPR54 exhibit low

amplitude LH pulses with approximately normal frequency

[2,33], it remains equivocal whether kisspeptin neuron input is

critical for the generation of pulsatile GnRH secretion or simply

reflects modulation of GnRH pulse amplitude [9]. Furthermore,

there is evidence that GnRH neurons themselves may be equipped

with a pulse generating mechanism. Intrinsic periodic increases in

intracellular calcium concentration synchronized with pulses of

GnRH was detected in GnRH neurons from the olfactory placode

of monkeys [34]. Episodes of spontaneous burst firing have also

been detected in green fluorescent protein identified GnRH

neurons [35].

The role of AVPV kisspeptin in GnRH surge generation is

unequivocal. These kisspeptin neurons become transcriptionally

activated at the time of the LH surge in the rat [36]. Local

injection of kisspeptin into the preoptic area induced a surge-like

increase in LH level in rats [10]. More importantly, infusion of a

specific monoclonal antibody to kisspeptin into the preoptic area

blocked the LH surge [10]. Whether the preoptic area kisspeptin-

GPR54 signaling also contributes to GnRH pulse generation is

unlikely given that in the present study intra-mPOA administra-

tion of the kisspeptin antagonist affected neither LH pulse

amplitude nor frequency. It is of note that intra-mPOA

administration of kisspeptin-10 evoked a robust release of LH,

thus it can be presumed that the antagonist delivered into this

region also has access to the kisspeptin receptor.

It is generally considered that kisspeptin directly stimulates

GnRH neurons by binding to its cognate receptor on the

perikarya. This was supported by earlier reports that both icv

and peripheral administration of kisspeptin potently increased

gonadotropic hormone secretion; an action accompanied by

induction of c-FOS activation in GnRH neurons [13,37]. More

recently, electrophysiological studies using green fluorescent

protein identified GnRH neurons in mice have shown exquisite

sensitivity to kisspeptin with sustained action potential firing

[38,39]. Further, kisspeptin antagonist was found to block

kisspeptin-10 stimulation of GnRH neuron firing [9]. However,

in contrast to rodents there are few kisspeptin-GnRH cell body

appositions in other species such as the rhesus monkey [27].

Nevertheless, there is increasing appreciation that kisspeptin may

also act at the level of the GnRH nerve terminals, where there is

close intermingling between kisspeptin and GnRH fibers at the

level of the median eminence evident in many species including

the goat [22], sheep [40] and rhesus monkey (27). Most recently,

kisspeptin was shown to stimulate GnRH release, in a GPR54-

dependent manner, from mouse mediobasal hypothalamus

explants that contain GnRH nerve terminals but lack GnRH cell

bodies [41]. Whether the marked stimulation of LH secretion

following intra-ARC administration of kisspeptin-10, as previously

shown for kisspeptin-54 [42], represents a possible local intranu-

clear effect involving an autoreceptor mediated positive feed-

forward mechanism within the ARC kisspeptin neural network

remains to be examined. Similarly, the dense plexus of kisspeptin

cell bodies and fibers in the ARC [10] and evidence of close

contacts between these fibers and cell bodies [43] may provide the

anatomical substrate for locally administered kisspeptin antagonist

to modulate LH pulse frequency. Although we cannot rule out the

possibility that the intra-ARC administration of kisspeptin

antagonist did not reach the median eminence to exert an effect

at the level of the GnRH nerve terminals, there was no evidence of

the dye injection, used to confirm cannula placement, reaching

this structure. It is also difficult to provide an explanation for the

apparent greater effect of the kisspeptin antagonist on suppression

of LH pulse frequency and the tendency to lower LH pulse

amplitude (in 2/6 animals) following icv administration compared

with intra-ARC delivery. Whether this might reflect an action of

the antagonist at the level of the median eminence following icv

infusion [44] that may not occur after intra-ARC administration

remains a possibility. However, other possible factors including

continuous versus intermittent delivery of antagonist, or the

difference in dosage of antagonist used for the icv versus intra-

ARC may contribute to different efficacy.

It was recently reported that GnRH neuron specific expression

of GPR54 in GPR54-null mice resulted in a complete rescue of

fertility [45], which might suggest that kisspeptin-GPR54 signal-

ling in the rodent ARC per se is non-essential for control of GnRH

secretion. It is difficult to reconcile these data with the present

findings of a modulatory influence of intra-ARC administration of
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the kisspeptin antagonist on GnRH pulse generator frequency,

unless the antagonist was acting on GnRH nerve terminals in the

median eminence and the latter region a locus for modulation of

GnRH pulse frequency; a notion not inconsistent with the earlier

findings of Rasmussen [46] of episodic GnRH release from the rat

isolated median eminence. Further work is required to establish

the precise site of action following intra-ARC administration of

kisspeptin antagonist. Furthermore, there is always the possibility

that the kisspeptin antagonist may be acting through mechanisms

other than GPR54 receptor blockade, although there is consid-

erable evidence against this notion [9].

In summary, the present study shows that intra-ARC, but not

intra-mPOA administration of a selective kisspeptin antagonist

reduced LH pulse frequency in a dose-dependent manner without

affecting pulse amplitude in the rat. These data are the first to

identify the arcuate nucleus as a key site for kisspeptin modulation

of LH pulse frequency, supporting the notion that kisspeptin-

GPR54 signalling in this region of the mediobasal hypothalamus is

a critical neural component of the hypothalamic GnRH pulse

generator.
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