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Simple Summary: Galectins are a family of β-galactoside binding proteins whose levels are altered
in various stages of different types of cancer. This study provides an analytical comparison of
50 frequently mutated genes in two common cancers and the serum levels of the galectin proteins.
The goal is the revelation of potential relationships between the mutation status of these genes and
serum levels of galectins. We found that mutations in the KIT gene (which codes for the proto-
oncogene c-KIT protein) are associated with increased circulating levels of certain galectins. We
also found that patient samples originating from brain tissue have a higher likelihood of having a
mutation in the KIT gene. Understanding the relationship between cancer-critical gene mutations
and serum galectin levels could provide a feasible and non-invasive avenue to better understand the
tumor’s unique genetic profile.

Abstract: To investigate a potential role for galectins as biomarkers that enable diagnosis or prog-
nostication of breast or non-small cell lung cancer, the serum levels of galectins -1, -3, -7, -8, and -9
of cancer patients determined by ELISA assays were compared to the mutation status of 50 known
cancer-critical genes, which were determined using multiplex PCR in tumors of the same patients.
Mutations in the KIT proto-oncogene, which codes for the c-Kit protein, a receptor tyrosine kinase,
correlated with higher levels of galectins -1, -3, -8, and -9 in breast cancer patients and galectin-1
in non-small cell lung cancer patients. Mutations in the KIT gene were more likely found in brain
metastases from both of these primary cancers. The most common KIT mutation in our panel was
p.M541L, a missense mutation in the transmembrane domain of the c-Kit protein. These results
demonstrate an association between KIT oncogenic signaling and elevated serum galectins in patients
with metastatic disease. Changes in protein trafficking and the glycocalyx composition of cancer cells
may explain the observed alterations in galectin expression. This study can be useful for the targeted
selection of receptor tyrosine kinase and galectin inhibitor anti-cancer treatments.

Keywords: galectin; KIT gene; mutation; c-Kit; CD117; breast cancer; non-small cell lung cancer;
ELISA; cancer hotspot panel
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1. Introduction

Lung cancer has one of the lowest 5-year survival rates of any cancer in the United
States at 21% and is the greatest cause of cancer deaths in both men and women. Although
the 5-year relative survival rate of breast cancer is 90% for all subtypes, its high incidence
still results in tens of thousands of deaths annually in the United States [1]. Once metastasis
occurs, the survival rate greatly drops, with a majority (66.7%) of all solid tumor cancer
deaths being caused by metastasis [2]. Sixteen to twenty percent of those diagnosed with
lung cancer, and 5.1% with breast cancer, develop metastasis to the brain [3,4]. The high
incidence and metastatic ability make these cancers of primary interest for study.

1.1. Cancer-Critical Genes

Multiple genes in the human genome, when mutated, enable the development and
progression of neoplastic tissue. Oncogenes are genes that, when mutated, create a product
with a gain-of-function (GOF) that allows it to contribute to the dysregulation of the cell.
Conversely, tumor suppressor genes lose their ability to protect the cell from dysregulated
growth and proliferation when they are mutated. This paper refers to both groups of genes
collectively as “cancer critical” genes.

A recent comprehensive study of 9423 tumor exomes identified 299 cancer driver
genes [5]. This study evaluates 50 of those cancer-critical genes, providing a broad screening
of genes commonly mutated in multiple cellular pathways. The nine involved pathways
are the RTK/RAS/MAP, TGFβ, PI3K, Wnt, GPCR, p53, JAK/STAT, Notch, and the cell
cycle pathway. These genes and their respective pathways are highlighted in Figure 1. The
graphic is not comprehensive of all the possible cancer-critical genes or the full signaling
pathways, it is instead designed to highlight the genes used in this study and their potential
contribution to unregulated proliferation.
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Figure 1. Signaling Pathways with Cancer Critical Genes. Hotspot panel genes in this study are
shaded in red (oncogenes), and blue (tumor suppressor genes). RTK: Receptor Tyrosine Kinase; RAS:
Rat Sarcoma; TGFβ: Transforming Growth Factor Beta; PI3K: Phosphoinositide 3-kinase; GPCR: G-
Protein Coupled Receptor; JAK: Janus Kinase; STAT: Signal Transducer and Activator of Transcription
Proteins. Figure modified from Sanchez-Vega et al. [6].
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Seven genes were not a part of any canonical cancer-causing pathway or were members
of multiple pathways (e.g., SRC); these are grouped together as “Other” in Figure 1. These
genes are involved in DNA repair, genomic stability, epigenetic modification, etc.

The KIT gene codes for c-Kit, a class III receptor tyrosine kinase (RTK) which binds
to extracellular Stem Cell Factor (SCF) and activates the PI3K, JAK/STAT, and MAPK
pathways in hematopoietic cells, resulting in proliferation and differentiation [7–9]. This
RTK is also highly expressed by glandular and myoepithelial breast cells [10]. Furthermore,
c-Kit is known to play roles in several cancers via gain-of-function and loss-of-function
mutations; most notably in gastrointestinal stromal tumors (GIST), and also in melanoma
and thyroid carcinoma [11–14]. Several mutations in c-KIT have been associated with the
development of cancers. These mutations are typically missense mutations that usually
result in gain-of-function or an otherwise unknown result [15].

The incidence of brain metastasis in breast cancer patients is possibly increasing and
is high in patients with hormone receptor-negative tumors with human epidermal growth
factor receptor 2 (HER2) overexpression [16–21]. Similarly, patients with specific molecular
subtypes of NSCLC have an increased predisposition for brain metastases, such as those
with an epidermal growth factor receptor (EGFR) mutation, or anaplastic lymphoma kinase
(ALK) rearrangement [22–24].

Targeted cancer therapy offers more precise cancer treatment with fewer cytotoxic
effects on non-cancer cells [25]. This level of therapy requires knowing the cancer’s specific
genetic makeup to identify druggable targets. For example, osimertinib, a tyrosine kinase
inhibitor, is a targeted therapy for patients with NSCLC with specific sensitizing mutations
(p.Thr790Met and p.Leu858Arg) in the EGFR gene [26–32]. A more thorough understanding
of the cellular biology of cancer will reveal the therapeutic targets involved in growth and
is a promising strategy for reducing mortality from cancer and its metastases.

1.2. Galectins and Their Role in Cancer

Galectins (formerly known as S-type lectins) are a family of lectin proteins which share
a domain with high-affinity binding for β-galactoside sugars. Galectins are divided into
three subfamilies based on their structures: prototypical, chimeric, and tandem-repeat [33].
Among other functions, galectins are players in the innate immune system, triggering
immune responses as well as resolving inflammation [34]. Further, galectins modulate
adaptive immune responses, such as Gal-9 or Gal-1, acting to dampen activated T cell
responses [35]. Galectins also have several functions outside of the immune system. They
interact with cellular proteins via binding to protein glycosylation sites [36,37]. They
can form lattice networks with cell membrane receptors and modulate the functions and
transportation of the receptors [38]. Galectins have intracellular interactions as well and
enhance oncogenic signals and promote tumor proliferation [39].

Galectin-1, -3, and -9 have been implicated in cancer progression, metastasis, and
angiogenesis [40–44]. Galectins-7 and -8 have less studied properties in cancer but are
known to support metastatic breast cancer and colon cancer, respectively [45,46]. Their
understudied status warrants their inclusion in this study.

In breast cancer, galectins have several roles. Galectins-1 and -3 specifically have
been implicated in the progression of lesions into metastatic disease through their roles
in cell-to-cell and cell-to-extracellular matrix interactions [47]. Galectin-7 has been found
to have interactions with p53 that can induce chemoresistance [45,48]. Increased levels of
galectin-8 were shown to lead to lower survival rates [49]. Lastly, galectin-9 has increased
expression in breast cancer, and its interactions with Tim-3 may provide an escape from
cytotoxic T cells [50,51].

In regard to NSCLC, galectin-1 is overexpressed in these cell lines and in tissue
samples from lung cancer patients [52,53]. Knockdown of Gal-1 in lung adenocarcinoma
results in reduced tumor growth in vivo and inhibited migration, invasion, and colony
formation in vitro [53]. Galectin-3 is also more highly expressed in NSCLC and augments
tumorigenesis, invasion, metastasis, and tumor immunity [54]. Galectins -7 and -8 have
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been shown to have higher mRNA expression levels in NSCLC [55]; however, no studies
have examined their roles. Galectin-9 expression in NSCLC is found to be a favorable
prognostic marker due to interactions between tumor-infiltrating lymphocytes and tumor
cells [55,56].

The tissue levels of galectins are well known to be altered in breast and lung
cancer [42,52,57–62]. This results in measurably altered serum levels of these galectins [52,63–65].
The mechanism for the altered serum expression of galectins in cancer patients remains
unclear, however, there are potential explanations. Galectins are secreted in a currently
enigmatic non-classical pathway and their trafficking is controlled at different points within
the cell [66–70]. The abnormal cellular processes of cancer cells quite possibly result in the
dysregulation of the processes involved in galectin secretion. Additionally, while normal
cellular glycosylation is required for proper functioning, cancer cells have deviant glyco-
sylation [71–73]. This could disturb the type and number of glycoconjugates for which
galectins bind. The alterations in both trafficking and the glycomic profile, in turn, could
lead to altered galectin levels in these neoplastic tissues, resulting in their demonstrably
different serum levels.

As such, levels of galectin-3 have been especially implicated as an emerging biomarker
for neoplasms [39,44,74–77]. Other galectins also have the potential to serve as biomarkers
for diseases, such as cancer [77–80].

Given galectin’s dysregulation in the cancer environment and a possible therapeu-
tic target, several galectin inhibitors have been developed [41,78,81,82]. GR-MD-02 (a
galectin-3 inhibitor) is currently in clinical trials to evaluate its usefulness in cancer pa-
tients with melanoma, NSCLC, and squamous cell head and neck cancer (NCT02117362,
NCT02575404).

Galectins interact with proteins commonly mutated in cancer. Galectin-1 and -3 have
interactions with the RAS family of proteins [53,83–86] and EGFR and TGFβ receptors [87].
Thus, the interplay between galectin levels and mutations in these cancer-critical genes has
clinical importance.

Finally, galectins are known players in cancer metastasis. Galectins -1 and -3 are
particularly well studied in this aspect. Galectin-3 has been identified as a metastasis-related
protein as early as 1998 [88]. Galectin-1 is upregulated in more advanced breast cancers
of higher TNM stages and correlates with metastasis to regional lymph nodes [58,89].
Molecularly, the lectin interacts with laminin and fibronectin to promote aggregation [90,91].
Galectin-1 is able to upregulate MMP-2 and MMP-9 and reorganize cytoskeletal elements
by activating Cdc42 to increase the amount of filopodia in oral squamous cell carcinoma
cells [92]. Knockdown of galectin-1 reduced prostate cancer migration by suppressing
androgen receptors and Akt signaling [93].

While many studies show changes in galectin levels during cancer, no comprehensive
work has been done to correlate galectin levels with cancer-critical gene mutations in
cancer patients [65,77,78,80,94,95]. This paper seeks to provide an initial exploration into
serum galectin levels and their correlation with cancer-critical gene mutations in breast and
non-small cell lung cancer patients.

2. Materials and Methods
2.1. Patient Samples

Seventy-four cancer patient serum samples were obtained from the Prisma Health Can-
cer Institute (PHCI) biorepository (Greenville, SC, USA). The collection years ranged from
2012–2018. The PHCI biorepository houses inventory, including live cryopreserved, snap-
frozen, and formalin-fixed paraffin-embedded tissues, and blood (whole blood, plasma,
and serum). Patient donor permission was obtained via participant informed consent
prior to the collection and storage of specimens. The biorepository standard operating
procedures include specimen handling and tracking (i.e., collection, processing, storage)
and facilities management and operations (i.e., equipment maintenance and monitoring).
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The PHCI biorepository has been acknowledged in various publications, having provided
all specimen types in its inventory for previously conducted research projects [65,96,97].

Thirty-five samples were from breast cancer patients (F:M 1:0, median age 60.6, min-
max 33–87) and the other 39 were from NSCLC patients (F:M 17:22, median age 65.1,
min-max 47–79). Ten samples were obtained of stages I, II, and III of breast and lung cancer,
5 of stage IV breast cancer, and 9 of stage IV lung cancer. In the breast cancer samples,
31 were ductal, 2 were lobular and 2 were coded non-specifically as “adenocarcinoma”
histology. In the lung cancer samples, 24 were adenocarcinoma, 13 were squamous cell
and 2 were large cell histology. The samples from the patients contained a random mix of
primary tumors and metastatic tissue.

Patient information was collected from the PHCI database. The information included
demographic data, such as age, race, gender, and smoking status, as well as tumor data,
including TNM staging, grade, histology, site, and cancer stage. This information is
available in Supplemental Materials (Tables S1 and S2)..

2.2. Galectin Profiling

The patient’s serum was used to determine the circulating galectin levels using an
enzyme-linked immunosorbent assay (ELISA) [65]. This study used a subset of the data
described by Blair et. al. (2021). Galectin-1, -3, and -9 concentrations were obtained
using the ELISA kits from R&D Systems (Minneapolis, MN, USA). Galectin-7 and -8
concentrations were determined using the ELISA kits from Invitrogen (Carlsbad, CA, USA).
Each sample was assayed four times. ELISA kit quality control information can be found
in Supplemental Materials as Table S3.

2.3. Cancer HotSpot Panel

Mutation information of the patient’s tumors was provided by the PHCI. The cancer
hotspot panel screening was performed by Precision Genetics (Greenville, SC, USA). The
Ion Ampliseq Cancer Hotspot Panel, v2 (Life Technologies Corporation, Carlsbad, CA,
USA), was used to determine the mutation status of 50 genes in the patients. This panel
amplifies 207 amplicons, which cover approximately 2800 mutations in the Catalogue of
Somatic Mutations in Cancer (COSMIC) from 50 oncogenes and tumor suppressor genes.

Oncogenes: ABL1, AKT1, ALK, BRAF, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, EZH2,
FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HRAS, IDH1, IDH2, JAK2, JAK3,
KDR, KIT, KRAS, MET, MPL, NPM1, NRAS, PDGFRA, PIK3CA, PTPN11, RET, SMARCB1,
SMO, SRC.

Tumor Suppressors: APC, ATM, CDH1, CDKN2A, FBXW7, HNF1A, MLH1, NOTCH1,
PTEN, RB1, SMAD4, STK11, TP53, VHL.

The AmpliSeq Cancer Hotspot panel (v2), from which all variants were identified, was
validated as a laboratory-developed test (LDT) under the Clinical Laboratory Improvement
Amendments (CLIA) guidelines. The accuracy of all variant calls was validated at 99.8%.
The sensitivity of the variants was detected at a lower limit of 5% allele frequency down to
30% tumor content (cell admixture). The precision of variant detection was shown to be
99.8% between operators and 98.9% within the operator. False variant calls, a measure of
specificity, were less than 1% from the CLIA validation.

Each sequencing run had minimum criteria for variant calls. Coverage across the
entire panel must be greater than 90% at 300X for the sequencing run to be analyzed further.
A minimum read depth of 100X and 5% allele frequency must be observed for individual
variants to be reported. Finally, homopolymer indels and variants within 10 bp of amplicon
ends were filtered to minimize the likelihood of false positives.

Each sequencing run included the AcroMetrix Oncology Hotspot Control, which is
designed to control the hundreds of amplicons targeted by next-generation sequencing
(NGS) panels. It contains over 500 mutations from the COSMIC database and has five
variant types of varying nucleotide lengths. The 53 genes represented in the AcroMetrix
Oncology Hotspot Control are: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A,
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CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3,
FOXL2, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, IDH2, JAK2, JAK3, KDR, KIT, KRAS,
MAP2K1, MET, MLH1, MPL, MSH6, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN,
PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL.

This control was calibrated using the analysis parameters detailed in the CLIA vali-
dation. The resulting analysis yielded 351 detected variants, and these variants served as
the reference set for quality control of each sequencing run. As a quality control measure
for variant detection, a minimum of 344 variants (95%) must be identified from each se-
quencing run for variants from clinical specimens to be reported. A detailed quality control
log was maintained, which documented the results from each run and was a part of the
routine CLIA compliance.

2.4. Data Analysis

All statistical analyses were performed using JMP® software by the SAS Institute
(Cary, NC, USA). The distributions of the serum galectin levels were analyzed for normality.
The distributions for each galectin in a mutated gene were compared to those of patients
with a non-mutated version of the same gene by t-test.

Contingency analyses were performed on the mutation status of genes against other
categorical variables, such as tissue site and histology. The odds ratios were calculated
for the KIT mutations and brain metastases in both cancers. Both cancers were analyzed
separately. Values of p less than 0.05 were considered statistically significant.

3. Results

The levels of circulating galectins -1, -3, -7, -8 and -9 in breast and lung cancer patients
were revealed by an ELISA assay of patient serum [65]. Tumor tissues from the same
patients were analyzed for mutations in 50 cancer-critical genes by multiplex polymerase
chain reaction (PCR). The mutation status of these genes was compared to the circulating
levels of galectins in the cancer patients.

3.1. Serum Galectin Levels

Tables 1 and 2 contain the serum galectin levels for the cancer patient groups. Some
samples were excluded from further analysis due to the reliability of the results.

Table 1. Breast Cancer Patient Serum Galectin Levels.

Galectin n Mean, ng/mL SD, ng/mL Min-Max, ng/mL

Gal-1 35 23.50 7.48 11.30–43.92
Gal-3 35 17.52 6.94 8.85–38.20
Gal-7 35 1.77 1.85 0.58–11.69
Gal-8 29 2.50 2.35 0.95–11.84
Gal-9 35 8.40 3.21 3.42–16.12

Table 2. Lung Cancer Patient Serum Galectin Levels.

Galectin n Mean, ng/mL SD, ng/mL Min-Max, ng/mL

Gal-1 39 27.12 12.84 13.41–83.69
Gal-3 38 17.77 6.98 4.52–37.82
Gal-7 39 1.91 1.12 0.42–5.07
Gal-8 31 2.73 8.02 0.56–45.71
Gal-9 39 10.15 4.87 3.79–26.64
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3.2. Mutation Frequency

Table 3 ranks the genes by frequency of mutation among breast cancer patients as
well as the specific mutation. PIK3CA and TP53 were the most mutated genes in this
group patients.

Table 3. Gene Mutation Frequency in Breast Cancer Patients.

Gene Mutation Count Percent

PIK3CA p.His1047Arg 7 20.0%
p.Ile391Met 5 14.3%
p.Glu545Lys 4 10.3%
Other 2 5.7%
Total 18 51.4%

TP53 p.Pro72Arg 5 14.3%
p.Arg273His 2 5.7%
Other 10 28.6%
Total 17 48.6%

KDR p.Gln472His 11 31.4%
Total 11 31.4%

KIT p.Met541Leu 3 8.6%
p.Val530Ile 1 2.9%
Total 4 11.4%

MET p.Asn375Ser 2 5.7%
p.Met362Thr 2 5.7%
Total 4 11.4%

Other Other 14 40.0%

Table 4 provides the mutations and their frequencies in the lung cancer patient sample
group. TP53 and KDR (VEGF2) were the most mutated genes in this group.

Table 4. Gene Mutation Frequency in Lung Cancer Patients.

Gene Mutation Count Percent

TP53 p.Pro72Arg 4 10.2%
Other 14 35.9%
Total 18 46.2%

KDR p.Gln472His 15 38.5%
p.Val1356Ala 1 2.6%
Total 16 41.0%

KIT p.Met541Leu 6 15.4%
p.Glu849Gln 1 2.6%
Total 7 18.0%

KRAS p.Gly12Asp 2 5.1%
p.Gly12Cys 2 5.1%
p.Gly13Cys 2 5.1%
p.Gly13Asp 1 2.6%
Total 7 18.0%

PIK3CA p.Ile391Met 3 7.7%
p.His1047Arg 1 2.6%
Total 4 10.3%

PTEN p.Arg173fs 1 2.6%
p.Gly165Ter 1 2.6%
p.Gly244Cys 1 2.6%
p.Met1Ile 1 2.6%
Total 4 10.3%

Other Other 29 74.4%
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3.3. Associations with Galectins

The screening of galectin levels by gene mutations found several associations between
the serum galectin levels and cancer-critical gene mutations. Most notable are the associa-
tions with multiple galectin levels and the KIT gene. Figure 2 shows a heat map of the t-test
results of comparing the serum galectin levels in patients with a mutated gene to patients
with a wild-type gene.
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Figure 3. Comparison of Serum Galectin Levels of Breast Cancer Patients KIT Gene Mutation Status
in Tumor Sample. (A) Serum levels of galectin-1, as determined by ELISA, were significantly higher in
breast cancer patients with a mutation in the KIT gene. (B) Serum levels of galectin-3, as determined
by ELISA, were significantly higher in breast cancer patients with a mutation in the KIT gene.
(C) Serum levels of galectin-8, as determined by ELISA, were significantly higher in breast cancer
patients with a mutation in the KIT gene. (D) Serum levels of galectin-9, as determined by ELISA,
were significantly higher in breast cancer patients with a mutation in the KIT gene. (* p-value ≤ 0.05).
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and PTEN Mutations in Tumor Sample. (A) Serum levels of galectin-1, as determined by ELISA,
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3.4. Associations with Brain Metastases

Figure 5 shows the contingency analysis of the presence of a KIT mutation at the site
of the tissue biopsy of the tumor. Tumor samples taken from the brains of cancer patients
were significantly more likely to have a mutation in the KIT gene.
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Figure 5. Mosaic Plot of Cancer Tissue Biopsy Site (Primary and Metastatic) used for Mutation
Analysis. Cell sizes are proportional to the number of samples in that category. Mutation status is on
the X-axis and color represents the tissue sample of origin. (A) All KIT mutations occur in biopsy
samples of breast cancer taken from the brain. The p-value = 0.0003. (B) Biopsy samples taken from
the brain have a higher number of KIT mutations than samples from the lung. The p-value = 0.0221.

Table 5 shows the odds ratio between having a KIT mutation and brain metastasis.
Our sample population did not contain a breast cancer sample with a brain metastasis and
wild-type KIT and therefore, no ratio could be calculated for the group.

In summary, in breast cancer patients, we find that PIK3CA and TP53 were the most
mutated genes while TP53 and KDR (VEGF2) were the most mutated genes in the lung
cancer patients. Levels of galectins -1, -3, -8, and -9 were elevated in patients with mutations
in the KIT gene. Simultaneously, samples from a brain metastasis of breast and lung cancer
patients had more KIT gene mutations than samples from the primary tumor.
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Table 5. Odds Ratio of KIT Mutation and Brain Metastasis in Breast and Lung Cancer Patients.

Cancer
Mutated KIT Wild-Type KIT

Brain Met No Brain Met Brain Met No Brain Met Odds Ratio

Breast 2 2 0 31 -
Lung 2 5 1 31 12.4

Total 4 7 1 62 35.4

4. Discussion

Galectins -1, -3, -8, and -9 were found to be at higher levels in sera of breast cancer
patients with a mutation in the KIT gene than other cancer patients without the mutation.

The most common KIT mutation in our panel was p.Met541Leu (rs3822214). This
mutation occurs in the transmembrane region of the protein and has not been implicated
as a mutation of clinical concern [98]. Since the mutation occurs in the transmembrane
region, some have theorized that the mutation is loss-of-function and impairs the insertion
of the receptor into the membrane [99]. However, studies have shown that the p.Met541Leu
mutation increases the RTK’s affinity for its ligand, SCF [100,101]. One study found that
chronic myelogenous leukemia (CML) patients with this mutation had altered white blood
cell counts and overall survival [101].

Our study joins others in finding increasing potential clinical significance for this
missense mutation [102]. We investigated the allele frequency of the mutation in these
patients and found it indicates a heterozygous germline mutation. This is supported by
studies which find that this mutation is common (8.1% allele frequency) in the Caucasian
population [103]. For comparison, the mutation appears in 8.57% of our breast cancer
patients and 15.38% of the lung cancer patients for 12.61% overall.

Galectins and RTKs, such as c-Kit, are known to have an abundant number of inter-
actions [104]. There is no literature to indicate specific interactions between galectins -1,
-3, -8, and -9 and c-Kit, although it is known that galectins do interact with other members
of this class of RTKs, such as platelet-derived growth factor receptor (PDGFR) via spatial
organization and trafficking [105–107].

The association between the c-Kit mutation and increased levels of certain galectins
is interesting. There are a variety of possible interpretations of this finding (Figure 6).
The mutation could lead to altered receptor glycosylation, which would in turn affect the
galectin serum levels. Galectin expression could be upregulated by the GOF c-Kit mutations
via the activated intracellular pathways. The nature of the interaction is of interest and
worthy of future studies.

A query of the TCGA database via UALCAN shows that galectins -1, and -3, have
decreased expression in breast invasive carcinoma, suggesting that the observed increase
in these galectins could be of a non-tumor origin. The database also shows that galectins -8
and -9 have increased expression in breast cancer tissue [110].

This study also found that tissue samples taken from the metastasis in patients’ brains
were more likely to have a mutated KIT gene. It is unclear why a mutated c-Kit protein
would result in this outcome and, in fact, one study has shown that the loss of c-Kit
expression has been associated with advanced stages of breast cancer [111]. It is possible
that the mutation reduces the stability of the c-Kit protein.
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Figure 6. Potential Interactions between c-Kit and Galectin-1. c-Kit is expressed in immune cells,
melanocytes, neurons, and breast tissue cells. Galectin-1 can bind to appropriate glycosylation sites
on c-Kit with a variety of possible results affecting c-Kit functioning. The downstream effects of
increased c-Kit activity could include increased transcription of galectin-1 levels. (SCF: stem cell
factor; nTPM: normalized transcriptions per million; Gal-1: galectin-1) [10,104,108,109].

4.1. Impact of Findings

These findings serve to further enhance the understanding of the role of galectins in
the cancer setting. Serum levels of certain galectins are known to be increased in cancer [65].
Our study shows that certain galectins could have increased serum levels when certain
cancer-critical genes are mutated in the tumor sample, indicating a potential relationship.

Additionally, given the high frequency of the p.Met541Leu c-Kit mutation in the
general population, its cause for concern in other studies [101,102] and its correlation with
brain metastasis in cancer patients of this study, the p.Met541Leu mutation is a potential
marker for more aggressive cancer and has promise for future studies.

The practical application of this research is the discovery of further molecular changes
correlated with specific tumor mutations. The Ampliseq hotspot panel provides a gene
panel that can be used to investigate many genes of interest, not only in breast and lung
cancers but in other cancers and diseases as well.

Further investigations could find blood serum markers that better correlate with the
mutation status of cancer-critical genes. This approach has applications in both diagnostics
and treatment, as the mutation status of specific proteins often translates to their response
to cancer treatments. For example, p.Met541Leu KIT-expressing cells have been shown
to have increased sensitivity to imatinib, a c-Kit inhibitor [112]. This is a practical goal, as
cancer treatment is tailored to specific mutations and the galectin levels can be targeted by
galectin inhibitors.

4.2. Study Limitations

Our sample size of 35 breast cancer samples and 39 lung cancer samples reflects the
availability of the hotspot panel sequencing data and the pilot nature of this study. Due
to the method of sample selection, a traditional power calculation was not performed.
The size of the sampling does limit the generalizability of the study. However, we view
this work as an exploratory study and a way to find and flag potential genes and gene
mutations of interest.

Additionally, we did not control for other patient variables, such as comorbidities and
detailed treatment, due to the boundaries of our approved research scope. In regard to the
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treatment information, our previous work found that the galectin levels in treated versus
untreated or not recently treated for this sample group had no observable differences [65].
As such, our study should be interpreted accordingly, as a heterogeneous pool of cancer
patients representing the population from which they were obtained.

5. Conclusions

Based on our findings, we propose areas for future studies. The first is a mechanistic
analysis of potential binding between galectins and glycosylated c-Kit protein. Second,
is the establishment of the role of c-Kit in the regulation of expression and secretion of
galectins. Third, is the investigation into the relationship between mutated c-Kit proteins
and metastatic brain tumors. Further, c-KIT and its ligand, SCF, are known to be expressed
preferentially in small cell lung cancers [113]. As small cell lung cancers were not examined
in this study, the next step would be to examine the c-Kit mutation status and galectin
levels in SCLC to determine if there is a correlation. Finally, the concept of a hotspot gene
panel to find correlations between the mutations and circulating biochemical markers can
be expanded to cover more cancer types and molecular markers. As a result, these studies
should not only provide new insight into the key aspects of c-Kit and galectin interactions
but may also provide an important framework to create rational approaches to prevent the
development of metastasis in other cancers.
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