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Abstract. Let Y = (X, Ri0≤i≤d) denote a P -polynomial association scheme.
By a kite of length i (2 ≤ i ≤ d) in Y , we mean a 4-tuple xyzu (x, y, z, u ∈ X)
such that (x, y) ∈ R1, (x, z) ∈ R1, (y, z) ∈ R1, (u, y) ∈ Ri−1, (u, z) ∈ Ri−1,
(u, x) ∈ Ri.
Our main result in this paper is the following.

Theorem. Let Y be a P - and Q-polynomial association scheme. Suppose Y
has diameter d ≥ 3, and suppose Y has intersection number a1 6= 0.
Then the following (i)-(iii) are equivalent.

(i) Y has classical parameters (d, b, α, β), and either b < −1, or Y is a dual
polar scheme or a Hamming scheme.

(ii) Y has no kites of length 2 and no kites of length 3.
(iii) Y has no kites of any length i (2 ≤ i ≤ d).

1. Introduction. It is shown by Terwilliger[5] that a P - and Q-polynomial
scheme with classical parameters (d, b, α, β), such that d ≥ 3 and b < −1, has no
kites of any length i (2 ≤ i ≤ d). In this paper we show that if Y is not a dual
polar scheme or a Hamming scheme, then the converse is also true. Theorem
2.6 is our main result.

For the rest of this section, we recall some definitions and basic concepts con-
cerning the theory of P - and Q- polynomial schemes. See Bannai and Ito[1], or
Terwilliger[3] for more background information.

Let d denote a non-negative integer. A symmetric, d-class association scheme
(or simply a scheme) is a configuration Y = (X, Ri0≤i≤d), where X is a non-
empty set and R0, R1, · · · , Rd are non-empty subsets of the Cartesian product
X ×X, possessing the following properties.

(i) (x, y) ∈ R0 if and only if x = y (x, y ∈ X).

(ii) (x, y) ∈ Ri for exactly one i (0 ≤ i ≤ d), (x, y ∈ X).

(iii) Rt
i = Ri (0 ≤ i ≤ d), where Rt

i = {(y, x) | (x, y) ∈ Ri} (0 ≤ i ≤ d).

(iv) For all integers i, j, k (0 ≤ i, j, k ≤ d), and all x, y ∈ X with (x, y) ∈ Rk,
the number pk

ij of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is a constant
that depends only on i, j, k.

(v) pk
ij = pk

ji (0 ≤ i, j, k ≤ d).
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The elements of X, the constants pk
ij , and the constant d are known as the

vertices, the intersection numbers, and the diameter, of Y.

Let MatX(IR ) denote the algebra of all the matrices over the real number field
with the rows and columns indexed by the elements of X. The associate matrices
of Y are the matrices A0, A1, · · · , Ad ∈ MatX(IR ), defined by the rule

(Ai)xy =
{

1 if (x, y) ∈ Ri

0 if (x, y) 6∈ Ri
0 ≤ i ≤ d,

where x, y ∈ X.

Then by (i)-(v) we have

A0 = I,
A0 + A1 + · · ·+ Ad = J (J = all 1′s matrix),
At

i = Ai (0 ≤ i ≤ d),
AiAj =

∑d
k=0p

k
ijAk (0 ≤ i, j ≤ d),

and
AiAj = AjAi. (0 ≤ i, j ≤ d).

The algebra M spanned by the associate matrices over the real number field
IR is a commutative semi-simple subalgebra of MatX(IR ), and is known as the
Bose-Mesner algebra of Y . By [1, p59, p64], M has a second basis E0, E1, · · · , Ed

such that
E0 =| X |−1 J,
EiEj = δijEi (0 ≤ i, j ≤ d),
E0 + E1 + · · ·+ Ed = I,
Et

i = Ei (0 ≤ i ≤ d).

We refer to Ei as the ith primitive idempotent of Y (0 ≤ i ≤ d).

Let ◦ denote entry-wise multiplication in MatX(IR ). Then

Ai ◦Aj = δijAi (0 ≤ i, j ≤ d),

so M is closed under ◦. Thus there exists qk
ij ∈ IR (0 ≤ i, j, k ≤ d) such that

Ei ◦ Ej =| X |−1
d∑

k=0

qk
ijEk (0 ≤ i, j ≤ d).

A scheme Y is said to be P -polynomial with respect to the ordering A0, A1, · · · , Ad

of the associate matrices if for all integer i, j, k (0 ≤ i, j, k ≤ d), pk
ij = 0 (resp.

pk
ij 6= 0) whenever one of i, j, k is greater than (resp. equal to) the sum of the

other two.
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Let Y = (X,Ri0≤i≤d) be a P -polynomial scheme. For convenience, set

bi = pi
1,i+1 (0 ≤ i ≤ d− 1), ai = pi

1,i (0 ≤ i ≤ d), ci = pi
1,i−1 (1 ≤ i ≤ d).

The P -polynomial property implies

bi > 0 (0 ≤ i ≤ d− 1), ci > 0 (1 ≤ i ≤ d),

b0 = bi + ai + ci (1 ≤ i ≤ d− 1). (1.1)

By a kite of length i in a P -polynomial scheme Y = (X, Ri0≤i≤d), we mean a
4-tuple xyzu (x, y, z, u ∈ X) such that

(x, y), (x, z), (y, z) ∈ R1, (u, x) ∈ Ri,

(u, y) ∈ Ri−1, (u, z) ∈ Ri−1.

A scheme Y is said to be Q-polynomial with respect to the given ordering
E0, E1, · · · , Ed of the primitive idempotents, if for all integers i, j, k (0 ≤ i, j, k ≤
d), qk

ij = 0 (resp. qk
ij 6= 0) whenever one of i, j, k is greater than (resp. equal to)

the sum of the other two.
Suppose Y is Q-polynomial with respect to E0, E1, · · · , Ed. Then the dual eigen-
values θ∗i ∈ IR (0 ≤ i ≤ d) are defined by

E1 =| X |−1
d∑

i=0

θ∗i Ai.

By [3, p384], the dual eigenvalues θ∗i (0 ≤ i ≤ d) are mutually distinct real
numbers.

One class of P - and Q-polynomial schemes are the Hamming schemes(see [1,
III.2]), defined in the following way. Take S a finite set of cardinality q ≥ 2. Let
X denote the set of all d-tuples of elements taken from S. The ith relation Ri

on X is defined as follows:

(x, y) ∈ Ri ⇐⇒ x, y differ in precisely i coordinates.

Another class of P - and Q-polynomial schemes are the schemes of dual polar
spaces(see [1, III.6]), defined in the following way. Let W be a vector space over
a finite field equipped with a nondegenerate form F (quadratic, symplectic, or
Hermitian). Let X denote the set of all maximal isotropic subspaces of F in W ,
and let d denote the common dimension of these subspaces.. The ith relation
Ri on X is defined as follows:

(x, y) ∈ Ri ⇐⇒ dim(x ∩ y) = d− i.

We refer the reader to Bannai and Ito[1, III.6] for more examples of P - and Q-
polynomial schemes.
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2. The main theorem. We divide the main theorem 2.6 into a few Lemmas.
Our work is based on the following theorem of Terwilliger[4, Theorem3.3(viii)],
[5, Theorem 2.11].
Theorem 2.1. Let Y = (X, Ri0≤i≤d) denote a P - and Q-polynomial scheme
with diameter d ≥ 3 and dual eigenvalues θ∗0 , θ∗1 , · · · , θ∗d. Then we have the
following (i)-(ii).
(i)

θ∗η−2 − θ∗η−1 = σ(θ∗η−3 − θ∗η), (3 ≤ η ≤ d) (2.1)

for appropriate σ ∈ IR \ 0.

(ii) Suppose the intersection number a1 6= 0, and pick any 3-tuple xyz such
that (x, y), (y, z), (x, z) ∈ R1. Set

ei(xyz) := (p1
ii−1)

−1 | {u|u ∈ X,xyzu is a kite of length i} | (2 ≤ i ≤ d).

Then
ei(xyz) = αie2(xyz) + βi (2 ≤ i ≤ d), (2.2)

where

αi =
(θ∗1 − θ∗2)(θ∗0 + θ∗1 − θ∗i−1 − θ∗i )

(θ∗0 − θ∗2)(θ∗i−1 − θ∗i )
, (2.3)

βi =
(θ∗0 − θ∗1)(θ∗2 − θ∗i )− (θ∗1 − θ∗2)(θ∗1 − θ∗i−1)

(θ∗0 − θ∗2)(θ∗i−1 − θ∗i )
. (2.4)

Lemma 2.2. With the notation of Theorem 2.1(ii), suppose e2(xyz) = 0 and
e3(xyz) = 0. Then there exists b ∈ IR \ 0,−1 such that

θ∗i − θ∗0 = (θ∗1 − θ∗0)
[
i

1

]
b1−i (0 ≤ i ≤ d), (2.5)

where [
i

1

]
:= 1 + b + b2 + · · ·+ bi−1. (2.6)

Proof. Set
b =

θ∗1 − θ∗0
θ∗2 − θ∗1

.

Then we have

θ∗2 − θ∗0 = (θ∗1 − θ∗0)
[
2
1

]
b−1. (2.7)

The above b exists since θ∗0 , θ∗1 , · · · , θ∗d are distinct. Observe that b 6= 0 and
b 6= −1.
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Setting i = 3 in (2.2) we have β3 = 0, so setting i = 3 in (2.4) we find

(θ∗0 − θ∗1)(θ∗2 − θ∗3) = (θ∗1 − θ∗2)2. (2.8)

Evaluating (2.8) using (2.1) with η = 3, we get

(θ∗0 − θ∗1)(σ−1(θ∗1 − θ∗2)− (θ∗0 − θ∗2)) = (θ∗1 − θ∗2)2,

or equivalently we have

(θ∗2 − θ∗0)2 − (1 + σ−1)(θ∗1 − θ∗0)(θ∗2 − θ∗0) + (1 + σ−1)(θ∗1 − θ∗0)2 = 0. (2.9)

Combining (2.7), (2.9) we have

1 + b + b2 = σ−1b,

so 1 + b + b2 6= 0 and

σ =
b

b2 + b + 1
. (2.10)

Now we prove (2.5) by induction on i. The cases i = 0, 1 are trival and the case
i = 2 is from (2.7). Now suppose i ≥ 3. Then (2.1) implies

θ∗i = σ−1(θ∗i−1 − θ∗i−2) + θ∗i−3. (2.11)

Evaluate (2.11) using (2.10) and the induction hypothesis, we find θ∗i − θ∗0 is as
in (2.5).

Definition 2.3. A P -polynomial scheme Y is said to have classical parameters
(d, b, α, β) whenever the diameter of Y is d, and the intersection numbers of Y
satisfy

ci =
[
i

1

]
(1 + α

[
i− 1

1

]
) (0 ≤ i ≤ d), (2.12)

bi =
([

d

1

]
−

[
i

1

])(
β − α

[
i

1

])
(0 ≤ i ≤ d), (2.13)

where
[ ]

as in (2.6).

Lemma 2.4. Let Y denote a P - and Q-polynomial scheme with diameter
d ≥ 3 and dual eigenvalues θ∗0 , θ∗1 , · · · , θ∗d. Suppose that the intersection number
a1 6= 0, and further suppose Y has no kites of length 2 or 3. Then Y has classical
parameters (d, b, α, β), for some b ∈ IR \ 0,−1, and some α, β ∈ IR .

proof. In view of Terwilliger[4, Theorem 4.2(iii)], it suffices to prove that there
exists b ∈ IR \ 0,−1 such that

θ∗i − θ∗0 = (θ∗1 − θ∗0)
[
i

1

]
b1−i (0 ≤ i ≤ d),

where
[ ]

as in (2.6).
But this is immediate from Lemma 2.2.
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The following lemma comes from a simple observation.
Lemma 2.5. Let Y = (X,Ri0≤i≤d) denote a P -polynomial scheme, where
d ≥ 2. Suppose Y has no kites of length 2. Then a2 − a1c2 ≥ 0.

proof. Fix x, y ∈ Y with (x, y) ∈ R2. For u, z ∈ X with (x, z), (x, u), (u, z),
(z, y) ∈ R1, we have (u, y) ∈ R2, otherwise xzuy is a kite of length 2. For any
z′ ∈ X with (x, z′), (u, z′), (z′, y) ∈ R1, we have z = z′ by a similar argument.
Now

a1c2 =| {u ∈ X : (x, u), (z, u), (x, z), (z, y) ∈ R1 for some z ∈ X} |
≤| {u ∈ X : (x, u) ∈ R1, (u, y) ∈ R2} |
= a2.

Theorem 2.6. Let Y be a P - and Q-polynomial association scheme. Suppose
Y has diameter d ≥ 3, and suppose Y has intersection number a1 6= 0. Then the
following (i)-(iii) are equivalent.

(i) Y has classical parameters (d, b, α, β), and either b < −1, or Y is a dual
polar scheme or a Hamming scheme.

(ii) Y has no kites of length 2 and no kites of length 3.

(iii) Y has no kites of any length i (2 ≤ i ≤ d).

Proof. (ii) → (i). Suppose (ii) is true. Then by Lemma 2.4, Y has classical
parameters (d, b, α, β). First suppose α = 0. Then by [2, Theorem 9.4.4], Y is
a dual polar scheme or a Hamming scheme. Now suppose α 6= 0. From (1.1),
(2.12), (2.13), and Lemma 2.5, we have

(−α)(1 + b)(b + a1 + 1) = a2 − a1c2

≥ 0. (2.14)

By direct calculation from (2.12), and by (1.1) we get

(c2 − b)(b2 + b + 1) = c3

> 0. (2.15)

Since b is an integer ([2, p195]), we have

b2 + b + 1 > 0.

Then from (2.15), we get
c2 > b. (2.16)

6



Using (2.12), (2.16) we get

α(1 + b) = (c2 − b− 1)

≥ 0.

But α 6= 0, b 6= −1, so
α(1 + b) > 0.

Applying this to (2.14), we find

(b + a1 + 1) ≤ 0.

Therefore we have b ≤ −(a1 + 1) < −1, since a1 6= 0.

(i)→ (iii). For b < −1, Y has no kites of any length i (2 ≤ i ≤ d) by [5, Theorem
2.12]. It is well known that the Hamming schemes and the dual polar schemes
have no kites. See [2, Theorem 9.2.1], [2, Theorem 9.4.3] for details.

(iii)→ (ii). Clear.
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