
Kitsune: An Ensemble of Autoencoders for Online

Network Intrusion Detection

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici and Asaf Shabtai

Ben-Gurion University of the Negev

{yisroel, tomerdoi}@post.bgu.ac.il, {elovici, shabtaia}@bgu.ac.il

Abstract—Neural networks have become an increasingly popu-
lar solution for network intrusion detection systems (NIDS). Their
capability of learning complex patterns and behaviors make them
a suitable solution for differentiating between normal traffic and
network attacks. However, a drawback of neural networks is
the amount of resources needed to train them. Many network
gateways and routers devices, which could potentially host an
NIDS, simply do not have the memory or processing power to
train and sometimes even execute such models. More importantly,
the existing neural network solutions are trained in a supervised
manner. Meaning that an expert must label the network traffic
and update the model manually from time to time.

In this paper, we present Kitsune: a plug and play NIDS
which can learn to detect attacks on the local network, without
supervision, and in an efficient online manner. Kitsune’s core
algorithm (KitNET) uses an ensemble of neural networks called
autoencoders to collectively differentiate between normal and
abnormal traffic patterns. KitNET is supported by a feature
extraction framework which efficiently tracks the patterns of
every network channel. Our evaluations show that Kitsune can
detect various attacks with a performance comparable to offline
anomaly detectors, even on a Raspberry PI. This demonstrates
that Kitsune can be a practical and economic NIDS.

Keywords—Anomaly detection, network intrusion detection, on-
line algorithms, autoencoders, ensemble learning.

I. INTRODUCTION

The number of attacks on computer networks has been
increasing over the years [1]. A common security system used
to secure networks is a network intrusion detection system
(NIDS). An NIDS is a device or software which monitors all
traffic passing a strategic point for malicious activities. When
such an activity is detected, an alert is generated, and sent to
the administrator. Conventionally an NIDS is deployed at a
single point, for example, at the Internet gateway. This point
deployment strategy can detect malicious traffic entering and
leaving the network, but not malicious traffic traversing the
network itself. To resolve this issue, a distributed deployment
strategy can be used, where a number of NIDSs are be
connected to a set of strategic routers and gateways within
the network.

Over the last decade many machine learning techniques
have been proposed to improve detection performance [2], [3],
[4]. One popular approach is to use an artificial neural network
(ANN) to perform the network traffic inspection. The benefit
of using an ANN is that ANNs are good at learning complex
non-linear concepts in the input data. This gives ANNs a
great advantage in detection performance with respect to other
machine learning algorithms [5], [2].

The prevalent approach to using an ANN as an NIDS is
to train it to classify network traffic as being either normal
or some class of attack [6], [7], [8]. The following shows the
typical approach to using an ANN-based classifier in a point
deployment strategy:

1) Have an expert collect a dataset containing both normal
traffic and network attacks.

2) Train the ANN to classify the difference between normal
and attack traffic, using a strong CPU or GPU.

3) Transfer a copy of the trained model to the net-
work/organization’s NIDS.

4) Have the NIDS execute the trained model on the observed
network traffic.

In general, a distributed deployment strategy is only prac-
tical if the number of NIDSs can economically scale according
to the size of the network. One approach to achieve this goal
is to embed the NIDSs directly into inexpensive routers (i.e.,
with simple hardware). We argue that it is impractical to use
ANN-based classifiers with this approach for several reasons:

Offline Processing. In order to train a supervised model, all
labeled instances must be available locally. This is infeasible
on a simple network gateway since a single hour of traffic may
contain millions of packets. Some works propose offloading
the data to a remote server for model training [9] [3]. However,
this solution may incur significant network overhead, and does
not scale.

Supervised Learning. The labeling process takes time and is
expensive. More importantly, what is considered to be normal
depends on the local traffic observed by the NIDS. Further-
more, in attacks change overtime and while new ones are
constantly being discovered [10], so continuous maintainable
of a malicious attack traffic repository may be impractical.
Finally, classification is a closed-world approach to identifying
concepts. In other words, a classifier is trained to identify the
classes provided in the training set. However, it is unreasonable
to assume that all possible classes of malicious traffic can be
collected and placed in the training data.

High Complexity. The computational complexity of an ANN

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23204
www.ndss-symposium.org

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

Map

Ensemble Layer Output Layer

… s
c
o
r
e

Fig. 1: An illustration of Kitsune’s anomaly detection algo-
rithm KitNET.

grows exponentially with number of neurons [11]. This means
that an ANN which is deployed on a simple network gateway,
is restricted in terms of its architecture and number of input
features which it can use. This is especially problematic on
gateways which handle high velocity traffic.

In light of the challenges listed above, we suggest that
the development of an ANN-based network intrusion detector,
which is to be deployed and trained on routers in a distributed
manner, should adhere to the following restrictions:

Online Processing. After the training or executing the model
with an instance, the instance is immediately discarded. In
practice, a small number of instances can be stored at any
given time, as done in stream clustering [12].

Unsupervised Learning. Labels, which indicate explicitly
whether a packet is malicious or benign, are not used in the
training process. Other meta information can be used so long
as acquiring the information does not delay the process.

Low Complexity. The packet processing rate must exceed the
expected maximum packet arrival rate. In other words, we
must ensure that there is no queue of packets awaiting to be
processed by the model.

In this paper, we present Kitsune: a novel ANN-based
NIDS which is online, unsupervised, and efficient. A Kitsune,
in Japanese folklore, is a mythical fox-like creature that has a
number of tails, can mimic different forms, and whose strength
increases with experience. Similarly, Kitsune has an ensemble
of small neural networks (autoencoders), which are trained
to mimic (reconstruct) network traffic patterns, and whose
performance incrementally improves overtime.

The architecture of Kitsune’s anomaly detection algorithm
(KitNET) is illustrated in Fig. 1. First, the features of an
instance are mapped to the visible neurons of the ensemble.
Next, each autoencoder attempts to reconstruct the instance’s
features, and computes the reconstruction error in terms of
root mean squared errors (RMSE). Finally, the RMSEs are
forwarded to an output autoencoder, which acts as a non-linear
voting mechanism for the ensemble. We note that while train-
ing Kitsune, no more than one instance is stored in memory at
a time. KitNET has one main parameter, which is the maximum
number of inputs for any given autoencoder in the ensemble.
This parameter is used to increase the algorithm’s speed with
a modest trade off in detection performance.

The reason we use autoencoders is because (1) they can
trained in an unsupervised manner, and (2) they can be used for
anomaly detection in the event of a poor reconstruction. The
reason we propose using an ensemble of small autoencoders,
is because they are more efficient and can be less noisier than
a single autoencoder over the same feature space. From our
experiments, we found that Kitsune can increase the packet
processing rate by a factor of five, and provide a detection
performance which rivals other an offline (batch) anomaly
detectors.

In summary, the contributions of this paper as follows:

• A novel autoencoder-based NIDS for simple network de-
vices (Kitsune), which is lightweight and plug-and-play.
To the best of our knowledge, we are the first to propose
the use of autoencoders with or without ensembles for
online anomaly detection in computer networks. We also
present the core algorithm (KitNET) as a generic online
unsupervised anomaly detection algorithm, and provide
the source code for download.1

• A feature extraction framework for dynamically main-
taining and extracting implicit contextual features from
network traffic. The framework has a small memory
footprint since the statistics are updated incrementally
over damped windows.

• An online technique for automatically constructing the
ensemble of autoencoders (i.e., mapping features to ANN
inputs) in an unsupervised manner. The method involves
the incremental hierarchal clustering of the feature-space
(transpose of the unbounded dataset), and bounding of
cluster sizes.

• Experimental results on an operational IP camera video
surveillance network, IoT network, and a wide variety of
attacks. We also demonstrate the algorithm’s efficiency,
and ability to run on a simple router, by performing
benchmarks on a Raspberry PI.

The rest of the paper is organized as follows: Section
II discusses related work in the domain of online anomaly
detection. Section III provide a background on autoencoders
and how they work. Section IV presents Kitsune’s framework
and it’s entire machine learning pipeline. Section V presents
experimental results in terms of detection performance and
run-time performance. Finally, in section VII we present our
conclusion.

II. RELATED WORK

The domain of using machine learning (specifically
anomaly detection) for implementing NIDSs was extensively
researched in the past [13], [14], [15], [16], [17]. However,
these solutions usually do not have any assumption on the
resources of the machine running training or executing the
model, and therefore are either too expensive to train and
execute on simple gateways, or require a labeled dataset to
perform the training process.

Several previous works have proposed online anomaly
detection mechanisms using different lightweight algorithms.
For example, the PAYL IDS which models simple histograms

1The source code for KitNET is available for download at:
https://github.com/ymirsky/KitNET-py.

2

of packet content [18] or the kNN algorithm [19]. These
methods are either very simple and therefore produce very
poor results, or require accumulating data for the training or
detection.

A popular algorithm for network intrusion detection is
the ANN. This is because of its ability to learn complex
concepts, as well as the concepts from the domain of network
communication [17]. In [20], the authors evaluated the ANN,
among other classification algorithms, in the task of network
intrusion detection, and proposed a solution based on an
ensemble of classifiers using connection-based features. In [8],
the authors presented a modification to the back propagation
algorithm to increase the speed of an ANN’s training process.
In [7], the authors used multiple ANN-based classifiers, where
each one was trained to detect a specific type of attack. In [9],
the authors proposed a hierarchal method where each packet
first passes through an anomaly detection model, then if an
anomaly is raised, the packet is evaluated by a set of ANN
classifiers where each classifier is trained to detect a specific
attack type.

All of the aforementioned papers which use ANNs, are
either supervised, or are not suitable for a simple network
gateway. In addition, some of the works assume that the
training data can be stored and accumulated which is not the
case for simple network gateways. Our solution enables a plug-
and-play deployment which can operate at much faster speeds
than the aforementioned models.

With regards to the use of autoencoders: In [21], the
authors used an ensemble of deep neural networks to address
object tracking in the online setting. Their proposed method
uses a stacked denoising autoencoder (SDAE). Each layer of
the SDAE serves as a different feature space for the raw
image data. The scheme transforms each layer of the SDAE
to a deep neural network which is used as discriminative
binary classifier. Although the authors apply autoencoders in
an online setting, they did not perform anomaly detection, nor
address the challenge of real-time processing (which is great
challenge with deep neural networks). Furthermore, training
a deep neural network is complex and cannot be practically
performed on a simple network device. In [22] and [23], the
authors propose the use of autoencoders to extract features
from datasets in order to improve the detection of cyber
threats. However, the autoencoders themselves were not used
for anomaly detection. Ultimately, the authors use classifiers
to detect the cyber threats. Therefore, their solution requires an
expert to label instances, whereas our solution is unsupervised,
and plug-and-play.

In [24], the authors proposed the generic use of an au-
toencoder for detecting anomalies. In [19], the authors use
autoencoders to detect anomalies in power grids. These works
differ from ours because (1) they are not online, (2) the archi-
tecture used by the authors is not lightweight and scalable as
an ensemble, and (3) has not been applied to network intrusion
detection. We note that part of this paper’s contribution is an
appropriate feature extraction framework, which enables the
use of autoencoders in the online network setting.

III. BACKGROUND: AUTOENCODERS

Autoencoders are the foundation building blocks of Kit-
sune. In this section we provide a brief introduction to au-
toencoders; what they are, and how they work. To describe
the training and execution of an auto encoder we will refer to
the example in Fig. 2.

+1+1

റ𝑥∈ℝ3 𝑥1𝑥2𝑥3
ෞ𝑥1𝑙1 𝑙3𝑙2

𝑊 = 𝑊(1),𝑊(2)
𝑏 = 𝑏(1), 𝑏(2)

ෞ𝑥2ෞ𝑥3
= ℎ𝑊,𝑏 റ𝑥
where, 𝑊 2 = 𝑊(1) 𝑇

Learned Parameters:

Fig. 2: An example autoencoder with one compression layer,
which reconstructs instances with three features.

A. Artificial Neural Networks

ANNs are made up of layers of neurons, where each
layer is connected sequentially via synapses. The synapses
have associated weights which collectively define the concepts
learned by the model. Concretely, let l(i) denote the i-th layer
in the ANN, and let ‖l(i)‖ denote the number of neurons in l(i).
Finally, let the total number of layers in the ANN be denoted as
L. The weights which connect l(i) to l(i+1) are denoted as the
‖l(i)‖-by-‖l(i+1)‖ matrix W (i) and ‖l(i+1)‖ dimensional bias

vector ~b(i). Finally, we denote the collection of all parameters
θ as the tuple θ ≡ (W, b), where W and b are the weights of
each layer respectively. Fig 2 illustrates how the weights form
the synapses of each layer in an ANN.

There are two kinds of layers in an ANN: visible layers
and hidden layers. The visible layer receives the input instance
~x with an additional bias variable (a constant value of 1). ~x
is a vector of numerical features which describes the instance,
and is typically normalized to fall out approximately on the
range of [−1,+1] (e.g., using 0-1 normalization or zscore
normalization)[25]. The difference between the visible layer
and the hidden layers is that the visible layer is considered to
be precomputed, and ready to be passed to the second layer.

B. Executing an ANN

To execute an ANN, l(2) is activated with the output of l(1)

(i.e., ~x) weighted with W (1), then the output l(2) weighted with
W (2) is used to activate l(3), and so on until the final layer has
been activated. This process is known as forward-propagation.
Let ~a(i) be the ‖l(i)‖ vector of outputs from the neurons in l(i).
To obtain a(i+1), we pass ~a(i) through l(i+1) by computing

a(i+1) = f
(

W (i) · ~a(i) + ~b(i)
)

(1)

where f is what’s known as the neuron’s activation function.
A common activation function, and what we use in Kitsune,
is the sigmoid function, defined as

f (~x) =
1

1 + e~x
(2)

3

Algorithm 1: The back-propagation algorithm for
performing batch-training of an ANN.

procedure: trainGD(θ,X, Y,max iter)
1 θ ← U(− 1

‖l(1)‖
, 1
‖l(1)‖

). ⊲ random initialization

2 cur iter ← 0
3 while cur iter ≤ max iter do
4 A, Y ′ ← hθ(X) ⊲ forward propagation
5 deltas← bθ(Y, Y

′) ⊲ backward propagation
6 θ ← GDℓ(A, deltas) ⊲ weight update
7 cur iter++
8 end
9 return θ

Finally, we define output of the last layer to be denoted as
~y′ = a(L). Let the function h be the full layer-wise forward-

propagation from the input ~x until the final output ~y′, denoted

hθ(~x) = ~y′ (3)

C. Training an ANN

The output of an ANN depends on the training set, and the
training algorithm. A training dataset is composed of instances
~x ∈ X and the respective expected outputs ~y ∈ Y (e.g., the
labels in classification). During training, the weights of the
ANN are tuned so that hθ(~x) = ~y. A common algorithm for

training an ANN (i.e., finding the optimum W and ~b given
X,Y) is known as the back-propagation algorithm [6].

The back-propagation algorithm involves a step where the
error between the predicted y′ and the expected y is propagated
from the output to each neuron. During this process, the errors
between a neuron’s actual and expected activations are stored.
We denote this backward-propagation step as the function
bθ(Y, Y

′). Given some execution of hθ, let A be every neuron’s
activation and let Delta be the activation errors of all neurons.

Given the current A and Delta, and a set learning rate ℓ ∈
(0, 1], we can incrementally optimize W and b by performing
the Gradient Descent (GD) algorithm [26]. All together, the
back-propagation algorithm is as follows:

The above process is referred to as batch-training. This is
because for each iteration, GD updates the weights accord-
ing to the collective errors of all instances in X . Another
approach is stochastic-training, where Stochastic Gradient De-
scent (SGD) is used instead of GD. In SGD, the weights are
updated according to the errors of each instance individually.
With SGD, the back propagation algorithm becomes:

The difference between GD and SGD is that GD converges
on an optimum better than SGD, but SGD initially converges
faster [27]. For a more elaborate explanation of the back-
propagation algorithm, we refer the reader to [26].

In Kitsune, we use SGD with a max iter of 1. In other
words, while we are in the training phase, if a new instance
arrives we perform a single iteration of the inner loop in
Algorithm 2, discard the instance, and then wait for the next.
This way we learn only once from each observed instance, and
remain an online algorithm.

Algorithm 2: The back-propagation algorithm for
performing stochastic-training of an ANN.

procedure: trainSGD(θ,X, Y,max iter)
1 θ ← U(− 1

‖l(1)‖
, 1
‖l(1)‖

). ⊲ random initialization

2 cur iter ← 0
3 while cur iter ≤ max iter do
4 for xi in ‖X‖ do
5 A, y′ ← hθ(xi) ⊲ forward propagation

6 deltas← bθ(~y, ~y′) ⊲ backward propagation
7 θ ← GDℓ(A, deltas) ⊲ weight update
8 end
9 cur iter++

10 end
11 return θ

D. Autoencoders

An autoencoder is an artificial neural network which is
trained to reconstruct it’s inputs (i.e., X = Y). Concretely,
during training, an autoencoder tries to learn the function

hθ(~x) ≈ ~x (4)

It can be seen that an autoencoder is essentially trying to
learn the identity function of the original data distribution.
Therefore, constraints are placed on the network, forcing it
to learn more meaningful concepts and relationships between
the features in ~x. The most common constraint is to limit the
number of neurons in the inner layers of the network. The
narrow passage causes the network to learn compact encodings
and decodings of the input instances.

As an example, Fig. 2 illustrates an autoencoder which
receives an instance ~x ∈ R

3 at layer l(1), (2) encodes
(compresses) ~x at layer l(2), and (3) decodes the compressed
representation of ~x at layer L(3). If an autoencoder is sym-
metric in layer sizes, the same (mirrored) weights can be used
for coding and decoding [28]. This trick reduces the number
of calculations needed during training. For example, in Fig 2,
W (2) = [W (1)]T .

E. Anomaly Detection with Autoencoders

Autoencoders have been used for many different machine
learning tasks. For example, generating new content [29], and
filtering out noise from images [30]. In this paper, we are
interested in using autoencoders for anomaly detection.

In general, an autoencoder trained on X gains the ca-
pability to reconstruct unseen instances from the same data
distribution as X . If an instance does not belong to the
concepts learned from X , then we expect the reconstruction
to have a high error. The reconstruction error of the instance
~x for a given autoencoder, can be computed by taking the root
mean squared error (RMSE) between ~x and the reconstructed

output ~y′. The RMSE between two vectors is defined as

RMSE (~x, ~y) =

√

∑n
i=1 (xi − yi)

2

n
(5)

where n is the dimensionality of the input vectors.

4

Let φ be the anomaly threshold, with an initial value of
−1, and let β ∈ [1,∞) be some given sensitivity parameter.
One can apply an autoencoder to the task of anomaly detection
by performing the following steps:

1) Training Phase: Train an autoencoder on clean (normal)
data. For each instance xi in the training set X:

a) Execute: s = RMSE (~x, hθ(~x))
b) Update: if(s ≥ φ) then φ← s
c) Train: Update θ by learning from xi

2) Execution Phase:
When an unseen instance ~x arrives:

a) Execute: s = RMSE (~x, hθ(~x))
b) Verdict: if(s ≥ φβ) then Alert

The process in which Kitsune performs anomaly detection
over an ensemble of autoencoders will be detailed later in
section IV-D

F. Complexity

In order to activate the layer l(i+1), one must perform the
matrix multiplication W (i) ·~a(i) as described in (1). Therefore,
the complexity of activating layer l(i+1) is O

(

l(i) · l(i+1)
)

.2

Therefore, the total complexity of executing an ANN is de-
pendent on the number of layers, and the number of neurons
in each layer. The complexity of training an ANN on a
single instance using SDG (Algorithm 2) is roughly double
the complexity of execution. This is because of the backward-
propagation step.

We note that autoencoders can be deep (have many hidden
layers). In general, deeper and wider networks can learn
concepts which are more complex. However, as shown above,
deep networks can be computationally expensive to train
and execute. This is why in KitNET we ensure that each
autoencoder is limited to three layers with at most seven visible
neurons.

IV. THE KITSUNE NIDS

In this section we present the Kitsune NIDS: the packet
preprocessing framework, the feature extractor, and the core
anomaly detection algorithm. We also discuss the complexity
of the anomaly detection algorithm and provide a bound on
its runtime performance.

A. Overview

Kitsune is a plug-and-play NIDS, based on neural net-
works, and designed for the efficient detection of abnormal
patterns in network traffic. It operates by (1) monitoring the
statistical patterns of recent network traffic, and (2) detecting
anomalous patterns via an ensemble of autoencoders. Each
autoencoder in the ensemble is responsible for detecting
anomalies relating to a specific aspect of the network’s be-
havior. Since Kitsune is designed to run on simple network
routers, and in real-time, Kitsune has been designed with small
memory footprint and a low computational complexity.

2The modern approach is to accelerate these operations using a GPU.
However, in this paper, we assume that no GPU is available. This is the
case for a simple network router.

Kitsune’s framework is composed of the following com-
ponents:

• Packet Capturer: The external library responsible for ac-
quiring the raw packet. Example libraries: NFQueue[31],
afpacket[32], and tshark[33] (Wireshark’s API).

• Packet Parser: The external library responsible for pars-
ing raw packets to obtain the meta information required
by the Feature Extractor. Example libraries: Packet++3,
and tshark.

• Feature Extractor (FE): The component responsible for
extracting n features from the arriving packets to create
creating the instance ~x ∈ R

n. The features of ~x describe
the a packet, and the network channel from which it came.

• Feature Mapper (FM): The component responsible for
creating a set of smaller instances (denoted as v) from ~x,
and passing v to the in the Anomaly Detector (AD). This
component is also responsible for learning the mapping,
from ~x to v.

• Anomaly Detector (AD): The component responsible for
detecting abnormal packets, given a packet’s representa-
tion v.

Since the Packet Capturer and Packet Extractor are not the
contributions of this paper, we will focus on the FE, FM, and
AD components. We note that FM and AD components are
task generic (i.e., solely depend on the input features), and
therefore can be reapplied as a generic online anomaly detec-
tion algorithm. Moreover, we refer to the generic algorithm in
the AD component as KitNET.

KitNET has one main input parameter, m: the maximum
number of inputs for each autoencoder in KitNET’s ensemble.
This parameter affects the complexity of the ensemble in
KitNET. Since m involves a trade-off between detection and
runtime performance, the user of Kitsune must decide what
is more important (detection rate vs packet processing rate).
This trade-off is further discussed later in section V.

The FM and AD have two modes of operation: train-mode
and exec-mode. For both components, train-mode transitions
into exec-mode after some user defined time limit. A compo-
nent in train-mode updates its internal variables with the given
inputs, but does not generate outputs. Conversely, a component
in exec-mode does not update its variables, but does produce
outputs.

In order to better understand how Kitsune works, we will
now describe the process which occurs when a packet acquired,
as depicted in Fig. 3:

1) The Packet Capturer acquires a new packet and passes
the raw binary to the Packer Parser.

2) The Packet Parser receives the raw binary, parses the
packet, and sends the meta information of the packet to
the FE. For example, the packet’s arrival time, size, and
network addresses.

3) The FE receives this information, and uses it to retrieve
over 100 statistics which are used to implicitly describe
the current state of the channel from which the packet
came. These statistics form the instance ~x ∈ R

n, which
is passed to the FM.

3The Packet++ project can be found on GitHub:
https://github.com/seladb/PcapPlusPlus

5

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

Ensemble Layer Output Layer

… sco
re

L
o
g

Feature Extractor (FE) Feature Mapper (FM) Anomaly Detector (AD)

Damped

Incremental

Statistics

Packet ParserPacket Capturer

KitsuneExternal Libs

Fig. 3: An illustration of Kitsune’s Architecture.

4) The FM receives ~x...

• Train-mode: ...and uses ~x to learn a feature map. The
map groups features of ~x into sets with a maximum
size of m each. Nothing is passed to the AD until the
map is complete. At the end of train-mode, the map is
passed to the AD, and the AD uses the map to build
the ensemble architecture (each set forms the inputs to
an autoencoder in the ensemble).
• Exec-mode: ...and the learned mapping is used to create

a collection of small instances v from ~x, which is then
passed to the respective autoencoders in the ensemble
layer of the AD.

5) The AD receives v...

• Train-mode: ..if and uses v to train the ensemble layer.
The RMSE of the forward-propagation is then used to
train the output layer. The largest RMSE of the output
layer is set as φ and stored for later use.
• Exec-mode: ...and executes v across all layers. If the

RMSE of the output layer exceeds φβ, then an alert is
logged with packet details.

6) The original packet, ~x, and v are discarded.

We discuss how the FE, FM, and AD components work in
greater detail.

B. Feature Extractor (FE)

Feature extraction is the process of obtaining or engineer-
ing a vector of values which describe a real world observation.
In network anomaly detection, it is important to extract fea-
tures which capture the context and purpose of each packet
traversing the network. For example, consider a single TCP
SYN packet. The packet may be a benign attempt to establish
a connection with a server, or it may be one of millions of
similar packets sent in an attempt to cause a denial of service
attack (DoS). As another example, consider a video stream
sent from an IP surveillance camera. Although the contents
of the packets are legitimate, there may suddenly appear a
consistently significant rise in jitter. This may indicate the
traffic is being sniffed in a man-in-the-middle attack.

These are just some example of attacks where temporal-
statistical features could help detect anomalies. The challenge
with extracting these kinds of features from network traffic is
that (1) packets from different channels (conversations) are
interleaved, (2) there can be many channels at any given
moment, (3) the packet arrival rate can be very high. The
naive approach is to maintain a window of packets from each
channel, and to continuously compute statistics over those

windows. However, it clear how this can become impractical
in terms of memory, and doesn’t scale very well.

For this reason, we designed a framework for high speed
feature extraction of temporal statistics, over a dynamic num-
ber of data streams (network channels). The framework has
a small memory footprint since it uses incremental statistics
maintained over a damped window. Using a damped window
means that the extracted features are temporal (capture the re-
cent behavior of the packet’s channel), and that an incremental
statistic can be deleted when its dampening weight becomes
zero (saving additional memory). The framework has a O(1)
complexity because the collection of incremental statistics is
maintained in a hash table. The framework also maintains
useful 2D statistics which capture the relationship between the
rx and tx traffic of a connection.

We will now briefly describe how damped incremental
statistics work. Afterwards, we will enumerate the statistical
features extracted by the FE to produce the instance ~x.

1) Damped Incremental Statistics: Let S = {x1, x2, . . .}
be an unbounded data stream where xi ∈ R. For example,
S can be a sequence of observed packet sizes. The mean,
variance, and standard deviation of S can be updated incre-
mentally by maintaining the tuple IS := (N,LS, SS), where
N ,LS, and SS are the number, linear sum, and squared sum
of instances seen so far. Concretely, the update procedure for
inserting xi into IS is IS ← (N+1, LS+xi, SS+x2

i), and the

statistics at any given time are µS = LS
N

, σ2
S = |SS

N
−
(

LS
N

)2
|,

and σS =
√

σ2
S .

In order to extract the current behavior of a data stream, we
must forget older instances. The naive approach is to maintain
a sliding window of values. However, this approach has a
memory and runtime complexity of O(n), in contrast to O(1)
for an incremental statistic. Furthermore, the sliding window
approach does not consider the amount of time spanned by
the window. For example, the last 100 instances could have
arrived over the last hour or in the last few seconds.

The solution to this is to use damped incremental statistics.
In a damped window model, the weight of older values are
exponentially decreased over time. Let d be the decay function
defined as

dλ(t) = 2−λt (6)

where λ > 0 is the decay factor, and t is the time
elapsed since the last observation from stream Si. The tuple
of a damped incremental statistic is defined as ISi,λ :=
(w,LS, SS, SRij , Tlast), where w is the current weight, Tlast

6

TABLE I: Summary of the incremental statistics which can be
computed from Si and Sj .

𝝀
All traffic…𝑤𝑖, 𝜇𝑖 , 𝜎𝑖 …originating from the same MAC and IP address →

…originating →
…from one IP to another (delta in arrival times) →𝑤𝑖, 𝜇𝑖 , 𝜎𝑖, ‖𝑆𝑖, 𝑆𝑗‖,𝑅𝑆𝑖,𝑆𝑗 , 𝐶𝑜𝑣𝑆𝑖,𝑆𝑗 , 𝑃𝑆𝑖,𝑆𝑗
…shared between two IP addresses ↔
…shared between two network sockets ↔

’ …
… 𝜇𝑖 , 𝜎𝑖
… ‖𝑆𝑖, 𝑆𝑗‖, 𝑅𝑆𝑖,𝑆𝑗 , 𝐶𝑜𝑣𝑆𝑖,𝑆𝑗 , 𝑃𝑆𝑖,𝑆𝑗
… 𝑤𝑖
… 𝑤𝑖, 𝜇𝑖 , 𝜎𝑖

Type Statistic Notation Calculation

1D

Weight 𝑤 𝑤

Mean 𝜇𝑆𝑖 𝐿𝑆 𝑤⁄

Std. 𝜎𝑆𝑖 √|𝑆𝑆 𝑤⁄ − (𝐿𝑆 𝑤⁄)2|
2D

Magnitude ‖𝑆𝑖 , 𝑆𝑗‖ √𝜇𝑆𝑖2 + 𝜇𝑆𝑗2

Radius 𝑅𝑆𝑖,𝑆𝑗 √(𝜎𝑆𝑖2)2 + (𝜎𝑆𝑗2)2

Approx.

Covariance
𝐶𝑜𝑣𝑆𝑖,𝑆𝑗

𝑆𝑅𝑖𝑗𝑤𝑖 + 𝑤𝑗

Correlation

Coefficient
𝑃𝑆𝑖,𝑆𝑗

𝐶𝑜𝑣𝑆𝑖,𝑆𝑗𝜎𝑆𝑖 𝜎𝑆𝑗

is the timestamp of the last update of ISi,λ, and SRij is the
sum of residual products between streams i and j (used for
computing 2D statistics). To update ISλ with xcur at time
tcur, Algorithm 3 is performed.

Table I provides a list of the statistics which can be
computed from the incremental statistic ISi,λ. We refer to the
statistics whose computation involves one and two incremental
statistics as 1D and 2D statistics respectively.

Algorithm 3: The algorithm for inserting a new value
into a damped incremental statistic.

procedure: update(ISi,λ,xcur,tcur,rj)
1 γ ← dλ(tcur − tlast) ⊲ Compute decay factor
2 ISi,λ ← (γw, γLS, γSS, γSR, Tcur) ⊲ Process decay

3 ISi,λ ← (w+1, LS+xcur, SS+x2
i , SRij+rirj , Tcur)

⊲ Insert value
4 return ISi,λ

2) Features Extracted for Kitsune: Whenever a packet
arrives, we extract a behavioral snapshot of the hosts and
protocols which communicated the given packet. The snapshot
consists of 115 traffic statistics capturing a small temporal
window into: (1) the packet’s sender in general, and (2) the
traffic between the packet’s sender and receiver.

Specifically, the statistics summarize all of the traffic...

• ...originating from this packet’s source MAC and IP
address (denoted SrcMAC-IP).

• ...originating from this packet’s source IP
(denoted SrcIP).

• ...sent between this packet’s source and destination IPs
(denoted Channel).

• ...sent between this packet’s source and destination
TCP/UDP Socket (denoted Socket).

A total of 23 features (capturing the above) can be extracted
from a single time window λ (see Table II). The FE extracts
the same set of features from a total of five time windows:
100ms, 500ms, 1.5sec, 10sec, and 1min into the past (λ =
5, 3, 1, 0.1, 0.01), thus totaling 115 features.

We note that not every packet applies to every channel type
(e.g., there is no socket if the packet does not contain a TCP
or UDP datagram). In these cases, these features are zeroed.
Thus, the final feature vector ~x, which the FE passes to the
FM, is always a member of Rn, where n = 115.

C. Feature Mapper (FM)

The purpose of the FM is to map ~x’s n features (dimen-
sions) into k smaller sub-instances, one sub-instance for each
autoencoder in the Ensemble Layer of the AD. Let v denote
the ordered set of k sub-instances, where

v = {~v1, ~v2, · · · , ~vk} (7)

We note that the sub-instances of v can be viewed as subspaces
of ~x’s domain X .

In order to ensure that the ensemble in the AD operates
effectively and with a low complexity, we require that the
selected mapping f(~x) = v:

1) Guarantee that each ~vi has no more than m features,
where m is a user defined parameter of the system.
The parameter m affects the collective complexity of the
ensemble (see section IV-E).

2) Map each of the n features in ~x exactly once to the
features in v. This is to ensure that the ensemble is not
too wide.

3) Contain subspaces of X which capture the normal behav-
ior well enough to detect anomalous events occurring in
the respective subspaces.

4) Be discovered in a process which is online, so that no
more than one at time is stored in memory.

To respect the above requirements, we find the mapping
f by incrementally clustering the features (dimensions) of X
into k groups which are no larger than m. We accomplish
this by performing agglomerative hierarchal clustering on
incrementally updated summary data.

More precisely, the feature mapping algorithm of the FE
performs the following steps:

1) While in train-mode, incrementally update summary
statistics with features of instance ~x.

2) When train-mode ends, perform hierarchal clustering on
the statistics to form f .

3) While in execute-mode, perform f(~xt) = v, and pass v

to the AD.

In order to ensure that the grouped features capture normal
behavior, in the clustering process, we use correlation as the
distance measure between two dimensions. In general, the
correlation distance dcor between two vectors u and v is
defined as

dcor(u, v) = 1−
(u− ū) · (v − v̄)

‖(u− ū)‖2‖(v − v̄)‖2
(8)

where ū is the mean of the elements in vector u, and u · v is
the dot product.

We will now explain how the correlation distances between
features can be summarized incrementally for the purpose of
clustering. Let nt be the number of instances seen so far. Let

7

TABLE II: The statistics (features) extracted from each time window λ when a packet arrives.

𝝀
All traffic…𝑤𝑖, 𝜇𝑖 , 𝜎𝑖 …originating from the same MAC and IP address →

…originating →
…from one IP to another (delta in arrival times) →𝑤𝑖, 𝜇𝑖 , 𝜎𝑖, ‖𝑆𝑖, 𝑆𝑗‖,𝑅𝑆𝑖,𝑆𝑗 , 𝐶𝑜𝑣𝑆𝑖,𝑆𝑗 , 𝑃𝑆𝑖,𝑆𝑗
…shared between two IP addresses ↔
…shared between two network sockets ↔

The packet’s… Statistics Aggregated by # Features Description of the Statistics

…size 𝜇𝑖 , 𝜎𝑖 SrcMAC-IP, SrcIP, Channel, Socket 8 Bandwidth of the outbound traffic

…size ‖𝑆𝑖, 𝑆𝑗‖, 𝑅𝑆𝑖,𝑆𝑗 , 𝐶𝑜𝑣𝑆𝑖,𝑆𝑗 , 𝑃𝑆𝑖,𝑆𝑗 Channel, Socket 8
Bandwidth of the

outbound and inbound traffic together

…count 𝑤𝑖 SrcMAC-IP, SrcIP, Channel, Socket 4 Packet rate of the outbound traffic

…jitter 𝑤𝑖, 𝜇𝑖 , 𝜎𝑖 Channel 3 Inter-packet delays of the outbound traffic

pe n 𝑤 𝑤𝜇𝑆𝑖 𝐿𝑆 𝑤⁄𝜎𝑆𝑖 √|𝑆𝑆 𝑤⁄ − (𝐿𝑆 𝑤⁄)2|‖𝑆𝑖 , 𝑆𝑗‖ √𝜇𝑆𝑖2 + 𝜇𝑆𝑗2𝑅𝑆𝑖,𝑆𝑗 √(𝜎𝑆𝑖2)2 + (𝜎𝑆𝑗2)2
𝐶𝑜𝑣𝑆𝑖,𝑆𝑗 𝑆𝑅𝑖𝑗𝑤𝑖 + 𝑤𝑗𝑃𝑆𝑖,𝑆𝑗 𝐶𝑜𝑣𝑆𝑖,𝑆𝑗𝜎𝑆𝑖 𝜎𝑆𝑗

72 66 69 75 78 73 67 70 76 79 85 86 99 10
0 92 93 11
3

11
4

10
6

10
7 49 35 42 56 63 50 36 43 97 10
4

11
1 83 90 57 64 10
8

10
1 58 77 12 27 54 61 47 33 40 94 80 87 34 41 48 55 62 9 24 51 74 44 71 6 21 30 65 0 15 37 68 3 18 8 23 14 29 11 26 2 17 5 20 46 53 60 32 39 7 22 13 28 10 25 1 16 4 19 45 52 59 31 38 95 10
2

10
9 81 88 96 10
3

11
0 82 89 98 10
5

11
2 84 91

Feature (dimension) ID
0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Di

st
an

ce

Fig. 4: An example dendrogram of the 115 features clustered
together, from one million network packets.

~c be an n dimensional vector containing the linear sum of

each feature’s values, such that element c(i) =
∑nt

t=0 x
(i)
t for

feature i at the time index t. Similarly, Let ~cr denote a vector
containing the summed residuals of each feature, such that

c
(i)
r =

∑nt

t=0

(

x
(i)
t −

c(i)

nt

)

. Similarity, Let ~crs denote a vector

containing the summed squared residuals of each feature, such

that c
(i)
rs =

∑nt

t=0

(

x
(i)
t −

c(i)

nt

)2

. Let C be the n-by-n partial

correlation matrix, where

[Ci,j] =

nt
∑

t=0

((

x
(i)
t −

c(i)

nt

)(

x
(j)
t −

c(j)

nt

))

(9)

is the sum of products between the residuals of features i and j.
Let D be the correlation distance matrix between each features
of X .

Using C and ~crs, the correlation distance matrix D can be
computed at any time by

D = [Di,j] = 1−
Ci,j

√

c
(i)
rs

√

c
(j)
rs

(10)

Now that we know how to obtain the distance matrix
D incrementally, we can perform agglomerative hierarchal
clustering on D to find f . Briefly, the algorithm starts with
n clusters, one cluster for each point represented by D. It then
searches for the two closest points and joins their associated
clusters. This search and join procedure repeats until there
is one large cluster containing all n points. The tree which
represents the discovered links is called a dendrogram (pictured
in Fig. 4). For further information on the clustering algorithm,
we refer the reader to [34]. Typically, hierarchal clustering
cannot be performed on large datasets due to its complexity.

However, our distance matrix is small (n being in the order of
a few hundred) and therefore practical to compute on-site.

Finally, with the dendrogram of D, we can easily find k
clusters (groups of features) where no cluster is larger than m.
The procedure is to break the dendrogram’s largest link (i.e.,
the top most node) and then check if all found clusters have
a size less then m. If there is at least one cluster with a size
greater than m, then we repeat the process on the exceeding
clusters. At the end of the procedure, we will have k groups
of features with a strong inter-correlation, where no single
group is larger than m. These groupings are saved, and used
to perform the mapping f .

The algorithm described in this section is suitable for
online and on-site processing because (1) it never stores more
than one instance in memory, (2) it uses very little memory
(On2 during train-mode) and, (3) is very fast since the update
procedures require updating small n-by-n distance matrix.

D. Anomaly Detector (AD)

As depicted in Fig. 3, the AD component contains a special
neural network we refer to as a KitNET (Kitsune NETwork).
KitNET is an unsupervised ANN designed for the task of
online anomaly detection. KitNET is composed of two layers
of autoencoders: the Ensemble Layer and the Output Layer.

Ensemble Layer: An ordered set of k three-layer autoen-
coders, mapped to the respective instances in v. This layer is
responsible for measuring the independent abnormality of each
subspace (instance) in v. During train-mode, the autoencoders
learn the normal behavior of their respective subspaces. During
both train-mode and execute-mode, each autoencoder reports
its RMSE reconstruction error to the Output Layer.

Output Layer: A three-layer autoencoder which learns the
normal (i.e., train-mode) RMSEs of the Ensemble Layer. This
layer is responsible for producing a final anomaly score, con-
sidering (1) the relationship between subspace abnormalities,
and (2) naturally occurring noise in the network traffic.

We will now detail how KitNET operates the Ensemble and
Output Layers.

1) Initialization: When the AD receives the first set of
mapped instances v from the FM, the AD initializes KitNET’s
architecture using v as a blueprint. Concretely, let θ denote an
entire autoencoder, and let L(1) and L(2) denote the Ensemble
and Output Layers respectively. L(1) is defined as the ordered
set

L(1) = {θ1, θ2, . . . , θk} (11)

such that autoencoder θi ∈ L(1) has three layers of neurons:
dim(~vi) neurons in the input and output, and ⌈β · dim(~vi)⌉

8

Algorithm 4: The back-propagation training algo-
rithm for KitNET.

procedure: train(L(1), L(2),v)
// Train Ensemble Layer

1 ~z ← zeros(k) ⊲ init input for L(2)

2 for (θi in L(1)) do
3 ~v′i = norm0−1(~vi)
4 Ai, ~yi ← hθi(~v

′
i) ⊲ forward propagation

5 deltasi ← bθi(~vi
′
, ~yi) ⊲ backward propagation

6 θi ← GDℓ(Ai, deltasi) ⊲ weight update

7 ~z[i]← RMSE(~vi
′
, ~yi) ⊲ set error signal

8 end
// Train Output Layer

9 ~z′ = norm0−1(~z) A0, ~y0 ← hθ0(~z
′) ⊲ forward

propagation
10 deltas0 ← bθ0(~z

′, ~y0) ⊲ backward propagation
11 θ0 ← GDℓ(A0, deltas0) ⊲ weight update

12 return L(1), L(2)

neurons in the inner layer, where β ∈ (0, 1] (in our experiments
we take β = 3

4). Fig. 5 illustrates the described mapping

between ~vi ∈ v and ~θi ∈ L(1).

L(2) is defined as the single autoencoder θ0, which has k
input and output neurons, and ⌈k · β⌉ inner neurons.

Layers L(1) and L(2) are not connected via the weighted
synapses found the common ANN. Rather, the inputs to
L(2) are the 0-1 normalized RMSE error signals from each
respective autoencoder in L(1). Signaling the aggregated errors
(RMSEs) of each autoencoder in L(1), as opposed to signaling
from each individual neuron of L(1), reduces the complexity of
the network. Finally, the weights of autoencoder θi in KitNET
is initialized with random values from the uniform distribution
U(−1

dim(~vi)
, 1
dim(~vi)

).

2) Train-mode: Training KitNET is slightly different than
training a common ANN network, as described in section III.
This is because KitNET signals RMSE reconstruction errors
between the two main Layers of the network. Furthermore,
KitNET is trained using SGD using each observed instance v

R
M
S
E

R
M
S
E

Ensemble Layer
Feature Mapper (FM) Anomaly Detector (AD)

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

R
M
S
E

𝜃𝑛𝑎−2
𝜃2𝜃3𝜃1

𝜃𝑛𝑎−1𝜃𝑛𝑎
𝜃4

Fig. 5: An illustration of the mapping process between the
FM and the Ensemble Layer of KitNET: a sub-instance ~vi is
mapped from ~x, which is then sent to the autoencoder θi.

Algorithm 5: The execution algorithm for KitNET.

procedure: execute(L(1), L(2),v)
// Execute Ensemble Layer

1 ~z ← zeros(k) ⊲ init input for L(2)

2 for (θi in L(1)) do
3 ~v′i = norm0−1(~vi)
4 Ai, ~yi ← hθi(~v

′
i) ⊲ forward propagation

5 ~z[i]← RMSE(~vi
′
, ~yi) ⊲ set error signal

6 end
// Execute Output Layer

7 ~z′ = norm0−1(~z)
8 A0, ~y0 ← hθ0(~z1

′) ⊲ forward propagation
9 return ← RMSE(~z′, ~y0)

exactly once. The algorithm for training KitNET on a single
instance is presented in Algorithm 4.

We note that in order to perform the 0-1 normalization on
line 3, each autoencoder must maintain a record of the largest
and smallest value seen for each input feature. Furthermore,
these maximum and minimum records are only updated during
train-mode.

Similar to the discussion in section III-E, KitNET must be
trained on normal data (without the presence of attacks). This
is a common assumption [35], [36] and is practical in many
types of computer networks, such as IP camera surveillance
systems. Furthermore, there are methods for filtering the
training data in order to reduce the impact of the possible
preexisting attacks in the network [37], [38].

3) Execute-mode: In execute-mode, KitNET does not up-
date any of its internal parameters. Instead, KitNET performs
forward propagation through the entire network, and returns
L(2)’s RMSE reconstruction error. The execution procedure of
KitNET is presented in Algorithm 5.

L(2)’s reconstruction error measures the instance’s abnor-
mality with respect to the relationships between the sub-
spaces in v. For example, consider two autoencoders from
the Ensemble Layer θi, θj ∈ L(1). If the of RMSE θi and
θj correlate during train-mode, then a lack of correlation in
execute-mode may be considered a more significant anomaly
than say the simple sum of their independent RMSEs (similarly
in vice versa). Since the Output Layer L(2) learns these
relationships (and other complex relationships) during train-
mode, L(2)’s reconstruction error of L(1)’s RMSEs will reflect
these anomalies.

4) Anomaly Scoring: The output of KitNET is the RMSE
anomaly score s ∈ [0,∞)], as described in section III-E. The
larger the score s, the greater the anomaly. To use s, one
must determine an anomaly score cutoff threshold φ. The naive
approach is to set φ to the largest score seen during train-mode,
where we assume that all instances represent normal traffic.
Another approach is to select φ probabilistically. Concretely,
one may (1) fit the outputted RMSE scores to log-normal
or non-standard distribution, and then (2) raise an alert if s
has a very low probability of occurring. A user of KitNET
should decide the best method of selecting φ according to
his/her application of the algorithm. In section V, we evaluate
Kitsune’s detection capabilities based on its raw RMSE scores.

9

E. Complexity

As a baseline, we shall compare the complexity of KitNET
to a single three-layer autoencoder over the same feature space
~x ∈ R

n, with the compression layer ratio β ∈ (0, 1].

The complexity of executing the single autoencoder is as
follows: In section III-F, we found that the complexity of
activating layer l(i+1) in an ANN is O

(

l(i) · l(i+1)
)

. Therefore,
the complexity of executing the single autoencoder is

O(n · βn+ βn · n) = O(n2) (12)

The complexity of executing KitNET is as follows: We
remind the reader that k denotes the number of subspaces
(autoencoders) selected by the FM, and that m is an input
parameter of the system which defines the maximum number
of inputs for any given autoencoder in L(1). The complexity of
executing L(1) and L(2) are O(km2) and O(k2) respectively.
Since the variable m ∈ 1, 2, . . . , 10 is a constant parameter of
the system, the total complexity of KitNET is

O(km2 + k2) = O(k2) (13)

The result of (13) tells us that the complexity of the
Ensemble Layer scales linearly with n, but the complexity
of the Output Layer depends on how many autoencoders
(subspaces) are designated by the FM. Concretely, the best case
scenario is where k = n

m
, in which case performance increased

by a factor of m. The worst case scenario is where the FM
designates nearly every single feature its own autoencoder in
L(1). In this case, k = n, and KitNET operates as a single
wide autoencoder meaning that there is no performance gain.
This will also occur if the user sets m = 1 or m = n.

However, it is very rare for the latter case to occur on
a natural dataset. This is because it would mean that the
dendrogram from the FM’s clustering process in section IV-C
is completely imbalanced. For example,

dcor(x
(1), x(2)) < dcor(x

(2), x(3)) < dcor(x
(3), x(4)) < ...

(14)
where xi is the i-th dimension of R

n. Therefore, it can be
expected that in the presence of many features, KitNET will
have a runtime which is faster than a single autoencoder
or stacked autoencoder. Finally, the complexity of training
KitNET is also O(k2) since we learn from each instance only

Fig. 6: Two of the cameras used in the IP camera video surveil-
lance network. Left: SNC-EM602RC. Right: SNC-EB602R.

once (see Algorithm 4). This can be contrasted to ANN-based
classifiers which typically make multiple passes (epochs) over
the training set.

V. EVALUATION

In this section, we provide an evaluation of Kitsune in
terms of its detection and runtime performance. We open by
describing the datasets, followed by the experiment setup, and
finally, close by presenting our results.

A. Datasets

The goal of Kitsune is to provide a light weight IDS which
can handle many packets per second on a simple router. Given
this goal, we evaluated Kitsune’s capabilities in detecting
attacks in a real IP camera video surveillance network. The
network (pictured in Fig. 7) consists of two deployments
of four HD surveillance cameras each. The cameras in the
deployments are powered via PoE, and are connected to the
DVR via a site-to-site VPN tunnel. The DVR at the remote site
provides users with global accessibility to the video streams
via a client-to-site VPN connection. The cameras used in the
network, and their configurations are described in Table IV.
Fig. 6 pictures two of the eight cameras used in our setup.

There are a number of attacks which can performed on
the video surveillance network. However, the most critical
attacks affect the availability and integrity of the video uplinks.
For example, a SYN flood on a target camera, or a man in
the middle attack involving video injection into a live video
stream. Therefore, in our evaluation, we focused on these types
of attacks. Table III summarizes the attack datasets used in
our experiments, and Fig. 7 illustrates the location (vector) of
the attacker for each respective attack. The Violation column
in Table III indicates the attacker’s security violation on the
network’s confidentiality (C), integrity (I), and availability (A).
All datasets where recorded from the packet capture point as
indicated in Fig. 7.

To setup the active wiretap, we used a Raspberry PI 3B as a
physical network bridge. The PI was given a USB-to-Ethernet
adapter to provide the second Ethernet port, and then placed
physically in the middle of the cable.

We note that for some of the attacks, the malicious packets
did not explicitly traverse the router on which Kitsune is
connected to. In these cases, the FE components implicitly
captures these attacks as a result of statistical changes in the
network’s behavior. For example, the man in the middle attacks
affect the timing of the packets, but not necessarily the contents
of the packets themselves.

In order to evaluate Kitsune on a nosier network, we used
an additional network. The additional network was a Wi-Fi
network populated with 9 IoT devices, and three PCs. The
IoTs were a thermostat, baby monitor, webcam, two different
doorbells, and four different cheap security cameras. On this
particular network, we infected a one of the security cameras
with a real sample of the Mirai botnet malware.

B. Experiment Setup

Offline algorithms typically perform better than online
algorithms. This is because offline algorithms have access to

10

TABLE III: The datasets used to evaluate Kitsune.

Attack

Type
Attack Name Tool Description: The attacker… Violation Vector # Packets

Train

[min.]

Execute

[min.]

Recon.

OS Scan Nmap
…scans the network for hosts, and their operating systems, to

reveal possible vulnerabilities.
C 1 1,697,851 33.3 18.9

Fuzzing SFuzz
…searches for vulnerabilities in the camera’s web servers by

sending random commands to their cgis.
C 3 2,244,139 33.3 52.2

Man in the

Middle

Video Injection Video Jack …injects a recorded video clip into a live video stream. C, I 1 2,472,401 14.2 19.2

ARP MitM Ettercap …intercepts all LAN traffic via an ARP poisoning attack. C 1 2,504,267 8.05 20.1

Active Wiretap
Raspberry

PI 3B

…intercepts all LAN traffic via active wiretap (network bridge)
covertly installed on an exposed cable.

C 2 4,554,925 20.8 74.8

Denial of

Service

SSDP Flood Saddam
…overloads the DVR by causing cameras to spam the server

with UPnP advertisements.
A 1 4,077,266 14.4 26.4

SYN DoS Hping3
…disables a camera’s video stream

by overloading its web server.
A 1 2,771,276 18.7 34.1

SSL

Renegotiation
THC

…disables a camera’s video stream by sending many SSL
renegotiation packets to the camera.

A 1 6,084,492 10.7 54.9

Botnet

Malware
Mirai Telnet

…infects IoT with the Mirai malware by exploiting default

credentials, and then scans for new vulnerable victims network.
C, I X 764,137 52.0 66.9

TABLE IV: The specifications and statistics of the cameras
used in the experiments.

SNC-

EM602RC

SNC-

EM600

SNC-

EB600

SNC-

EB602R

Resolution 1280x720
Codec H.264/MPEG4

Frames/Sec 15

Avg.

Packets/Sec
195 350 290 320

Avg.
Bandwidth

1.8 Mbit/s 1.4 Mbit/s 1.8 Mbit/s 1.8 Mbit/s

Protocol RTP RTP
Https

(TLSv1)
Http/TCP

the entire dataset during training and can perform multiple
passes over the data. However, online algorithms are useful
when resources, such as the computational power and memory,
are limited. In our evaluations, we compare Kitsune to both
online and offline algorithms. The online algorithms provide
a baseline for Kitsune as an online anomaly detector, and the
offline algorithms provide a perspective on the Kitsune’s per-
formance as a sort of upperbound. As an additional baseline,
we evaluate Suricata [39] –a signature-based NIDS. Suricata is
an open source NIDS which is similar to the Snort NIDS, but is
parallelized over multiple threads. Signature-based NIDS have
a much lower false positive rate than anomaly-based NIDS.
However, they are incapable of detecting unknown threats or
abnormal/abstract behaviors. We configured Suricata to use the
13,465 rules from the Emerging Threats repository [40].

For the offline algorithms, we used Isolation Forests (IF)
[41] and Gaussian Mixture Models (GMM) [42]. IF is an
ensemble based method of outlier detection, and GMM is
a statistical method based on the expectation maximization
algorithm.For the online algorithms, we used an incremental
GMM from [43], and pcStream2 [44]. pcStream2 is a stream
clustering algorithm which detects outliers by measuring the
Mahalanobis distance of new instances to known clusters.

For each experiment (dataset) every algorithm was trained

Distribution A

PoE Switch

VPN

Router

VPN

Router

SwitchDVR

Server

Kitsune

Attacker

Distribution B

Remote Site

Client

1

2

Attacker

3

IoT Distribution Remote Site

X

S
u

rv
e
il
la

n
c
e
 N

e
tw

o
rk

Io
T
 N

e
tw

o
rk

Attacker

IoT Server

WiFi Router

Kitsune

Fig. 7: The network topologies used in the experiments: the
surveillance network (top) and the IoT network (bottom).

on the first million packets, and then executed on the remain-
der. The duration of the first million packets depends on the
packet rate of the network at the time of capture. For example,
with the OS Scan dataset, each algorithm was trained on the
first one million packets, and then executed on the remaining
697,851 packets. Table III lists the relative train and execute
periods for each dataset. Each algorithm received the exact
same features from Table II.

Kitsune has one main parameter, m ∈ {1, 2, . . . , n}, which
is the maximum number of inputs for any one autoencoder
of KitNET’s ensemble. For our detection performance evalua-
tions, we set m = 1 and m = 10. For all other algorithms, we
used the default settings.

11

C. Evaluation Metrics

The output of an anomaly detector (s) is a value on the
range of [0,∞), where larger values indicate greater anomalies
(e.g., the RMSE of an autoencoder). This output is typically
normalized such that scores which have a value less than 1
are normal, and greater than 1 are anomalies. The score s is
normalized by dividing it by a cutt-off threshold φ. Choosing
φ has a great effect on an algorithm’s performance.

The detection performance of an algorithm, on a particular
dataset, can be measured in terms of its true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). In our evaluations we measure an algorithm’s true
positive rate (TPR = TP

TP+FN
) and the false negative rate

(FNR = FN
FN+TP

) when φ is selected so that the false positive

rate (FPR = FP
FP+TN

) is very low (i.e., 0.001). We also count
the number of true positives where the FPR is zero. These
measures capture the amount of malicious packets which were
detected correctly, and accidentally missed with few and no
false alarms. In network intrusion detection, is it important
that there be a minimal number of false alarms since it is time
consuming and expensive an analyst to investigate each alarm.

Fig. 8 plots KitNET’s anomaly scores before and during a
fuzzing attack. The lower blue line is the lowest threshold we
might select during the training phase which produces no FPs.
The upper blue line is the lowest threshold possible during the
attack which produces no FPs (kind of like a global optimum).
Another way of looking at these two thresholds is like a
best-case and worst case scenarios for threshold selection.
Therefore, by measuring the performance of each at these two
thresholds, we can get a better idea of an algorithm’s potential
as an anomaly detector.

To measure the general performance (i.e. with every pos-
sible φ), we used the area under the receiver operating char-
acteristic curve (AUC), and the equal error rate (EER). In our
context, the AUC is the probability that a classifier will rank a
randomly chosen anomalous instance higher than a randomly
chosen normal instance. In other words, an algorithm with an
AUC of 1 is a perfect anomaly detector on the given dataset,
whereas an algorithm with an AUC of 0.5 is randomly guessing
labels. The EER is a measure which captures an algorithm’s
trade-off between its FNR and FPR. It is computed as the
value of FNR and FPR when they are minimal and equal
to one another.

D. Detection Performance

Figure 9 presents TPR and FNR of each algorithm over
each dataset when the threshold is selected so that the FPR is
0 and 0.001. The figure also presents the AUC and EER as
well. We remind the reader that the GMM and Isolation Forest
are a batch (offline) algorithms, which have full access to the
entire dataset and perform many iterations over the dataset.
Therefore, these algorithms serve as an optimum goal for us
to achieve. In Fig. 9 we see that Kitsune performed very well
relative to these algorithms. In particular, Kitsune performed
even better than the GMM in detecting the active wiretap.
Moreover, our algorithm achieved a better EER than the GMM
on the AR, Fuzzing, Mirai, SSL R., SYN and active wiretap
datasets.

Fig. 8: KitNET’s RMSE anomaly scores before and during
a fuzzing attack. The red lines indicate when the attacker
connects to the network (left) and initiates the attack (right).

As evident from Fig. 9, there is a trade-off between the
detection performance and m (runtime performance). Users
who prefer better detection performance over speed should use
an m which is close to 1 or n. Whereas users who prefer speed
should use a moderate sized m. The Kitsune gives the user the
ability to adjust this parameter according to the requirements of
the user’s system. The affect of m on the runtime performance
is presented in section V-E.

As a baseline comparison to the performance of online
algorithms we compared Kitsune to the incremental GMM
and pcStream2. Overall, it is clear that Kitsune out performs
both algorithms in terms of AUC and EER.

The top row of figure 9 presents the maximum number
of true positives each algorithm was able to obtain, when the
threshold was set so that here were no false positives (e.g., the
blue dashed bar in Fig. 8). In other words, these figures show
how well each anomaly detector is able to raise the anomaly
score of malicious packets above the noise floor. The figures
shows that Kitsune detects attacks across the datasets better
than the other algorithms, and more so than the GMM in
most cases. We note that Kitsune with m = 10 sometimes
performs better than m = 1. This is because the Output Layer
autoencoder lowers the noise floor of the ensemble. This affect
can amplify the scores of some outliers.

E. Runtime Performance

One of Kitsune’s greatest advantages is its runtime per-
formance. As discussed in section IV-E, KitNET’s ensemble
of small autoencoders is more efficient than using a single
autoencoder. This is because the ensemble reduces the overall
number of operations required to process each instance.

To demonstrate this effect, we performed benchmarks on
a Raspberry PI 3B and an Ubuntu Linux VM running on a
Windows 10 PC (full details are available in Table V). The
experiments were coded in C++, involved n = 198 statistical
packet features, and were executed on a single core (physical
core on the PI and logical core on the Ubuntu VM).

Fig. 10 plots the affect which KitNET’s ensemble size has
on the packet processing rate. With a single autoencoder in

12

0 0 0 0

2
e
−

0
6 0 0

0 0 0 0 0 0 0

0

0
.0

0
2
7 0 0 0

0
.0

0
0
1
4
2

0
.0

0
0
1
4
2

0 0

0
.0

0
0
1
2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

9
.4

e
−

0
5 0

0
.3

2
2
2
9
7

0
.3

2
1
0
3
2

0 0

5
.4

e
−

0
5

1
.7

e
−

0
5

2
.2

e
−

0
5

2
.2

e
−

0
5

2
.2

e
−

0
5

0 0

1
e
−

0
6

0
.0

0
2
8
3
5 0

4
.2

e
−

0
5

2
.3

e
−

0
5

SYN DoS Video Inj. Wiretap

OS Scan SSDP F. SSL R.

ARP Fuzzing Mirai

0.00

0.25
0.500.751.00

0.00

0.25
0.500.751.00

0.00

0.25
0.500.751.00

T
P

R
 (

s
q
rt

−
s
c
a
le

)
True Positive Rate (TPR) at FPR=0

1 1 1 1

0
.9

9
9
9
9
8 1 1

1 1 1 1 1 1 1

1

0
.9

9
7
3 1 1 1

0
.9

9
9
8
5
8

0
.9

9
9
8
5
8

1 1

0
.9

9
9
8
8 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

0
.9

9
9
9
0
6 1

0
.6

7
7
7
0
3

0
.6

7
8
9
6
8

1 1

0
.9

9
9
9
4
6

0
.9

9
9
9
8
3

0
.9

9
9
9
7
8

0
.9

9
9
9
7
8

0
.9

9
9
9
7
8

1 1

0
.9

9
9
9
9
9

0
.9

9
7
1
6
5 1

0
.9

9
9
9
5
8

0
.9

9
9
9
7
7

SYN DoS Video Inj. Wiretap

OS Scan SSDP F. SSL R.

ARP Fuzzing Mirai

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

F
N

R

False Negative Rate (FNR) at FPR=0

0
.5

0
0
0
1

0
.5

5
6
2
8

0
.2

9
0
5
6

0
.4

3
8
8
1

0
.6

5
0
6
9

0
.4

5
2
3
9

0
.2

3
1
5
2

0
.5

0
.1

5
6
8

0
.0

9
4

0
.0

9
7
4
2

0
.2

8
0
3
3

0
.0

9
4
1
3

0
.0

9
4
1
2

0
.5

0
0
0
2

0
.4

4
7
2
5

0
.2

3
6
0
2

0
.2

4
5
2
4

0
.6

8
3
6

0
.0

7
7
3
5

0
.1

3
5
5
7

0
.5

0
.0

7
7
5
3

0
.0

0
1
2
9

0
.9

2
2
6
3

0
.0

3
1
6

0
.0

0
1
2

0
.0

0
0
9
1

0
.5

0
0
0
1

0
.0

9
3
5
7

0
.0

0
0
5
6

0
.2

3
2
7
4

0
.9

7
3
5
5

0
.0

0
1
0
4

0
.0

0
0
6
7

0
.4

9
9
7

0
.4

9
0
6
7

0
.2

0
3
9
8

0
.3

4
9
9
3

0
.3

9
9
7
9

0
.2

2
8

0
.2

6
7
5
6

0
.5

0
0
2
3

0
.5

1
3
8
8

0
.0

1
0
9
5

0
.4

4
7
7
4

0
.8

1
6
8
4

0
.0

0
3
1
7

0
.0

0
3
2

0
.3

4
5
3
9

0
.1

5
4
0
8

0
.0

8
4
4
9

0
.8

8
0
2
2

0
.8

2
1
6
6

0
.0

4
6
0
3

0
.1

0
7
6
1

0
.5

0
.5

4
2
6
5

0
.2

1
0
2
7

0
.5

2
5
3
8

0
.7

4
9
7
8

0
.1

7
2
7
3

0
.1

6
9
3

SYN DoS Video Inj. Wiretap

OS Scan SSDP F. SSL R.

ARP Fuzzing Mirai

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

T
P

R

True Positive Rate (TPR) at FPR=0.001

1

0
.9

9
8
5
3

0
.9

1
6
6
7

0
.9

9
9
4
8 1

0
.9

9
9
5
3

0
.9

9
9
9
6

0
.9

9
9
9
8 1

0
.9

8
8
2
5

0
.9

9
0
3
5 1

0
.9

9
0
1
5

0
.9

9
0
1
4

1

0
.9

6
4
9

0
.7

5
3
9
1 1

0
.8

8
4
2

0
.7

5
3
9
1

0
.7

5
3
9
1

1

0
.9

9
9
7
6

0
.0

0
1
9
2 1

0
.0

5
1
3

0
.0

0
5
4
1 0

1 1 0 1 1

0
.0

0
1
0
5

0
.0

0
0
6
2

0
.9

9
8
7
3

0
.9

6
4
6
7

0
.9

8
9
6
8

0
.9

9
8
8
8

0
.9

9
8
4
1

0
.9

8
9
4
1

0
.9

8
9
4
1

1

0
.9

9
5
8
7

0
.0

2
9
9
4

0
.9

9
8
9
2

0
.9

9
9
5
4

0
.0

0
3
2
9

0
.0

0
3
2
7

1

0
.9

8
5
8
5

0
.9

8
5
0
1

0
.9

9
5
6

0
.9

9
4
6
1

0
.9

7
5
3
3

0
.9

7
4
9
1

0
.9

9
9
9
9 1

0
.9

9
8
7
7

0
.9

9
9
7
3

0
.9

9
9
9
2

0
.9

9
8
5
3

0
.9

9
9
5
4

SYN DoS Video Inj. Wiretap

OS Scan SSDP F. SSL R.

ARP Fuzzing Mirai

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

F
N

R

False Negative Rate (FNR) at FPR=0.001

Suricata

Iso. Forest

GMM

GMM Inc.

pcStream

Kitsune (m=10)

Kitsune (m=1)

Anom-based (batch)

Signature-based

Anom-based (online)

0
.5

0
0
0
1

0
.5

9
8
3
6

0
.7

6
7
0
9

0
.5

9
8
4
1

0
.7

1
6
9
9

0
.5

8
4
2
3

0
.7

9
4
9
9

0
.5

0
0
0
1

0
.9

0
7
0
2

0
.9

4
9
2
9

0
.9

4
6
9
2

0
.7

4
1
9
1

0
.9

4
8
0
5

0
.9

4
8
0
6

0
.5

0
0
0
3

0
.5

8
6
6
7

0
.8

3
3
5
3

0
.6

7
9
6
9

0
.6

3
4
6
9

0
.9

5
0
2
4

0
.9

2
2
8
9

0
.5

0
.9

5
7
9
7

0
.9

9
9
8
8

0
.9

3
1
6
3

0
.9

9
0
8
1

0
.9

9
9
9
5

0
.9

9
9
9
7

0
.5

0
0
0
1

0
.9

4
8
3
9

0
.9

9
9
9
5

0
.8

4
8
3
6

0
.9

9
6
2
6

0
.9

9
9
8
4

0
.9

9
9
9
7

0
.5

0
0
6

0
.5

1
6
6
1

0
.8

7
3
2
4

0
.6

8
6
6
1

0
.5

7
6
9
8

0
.8

5
3
7
8

0
.8

0
4
5
8

0
.5

0
0
4
6

0
.5

2
5
4
7

0
.9

9
9
2
8

0
.5

8
5
9
8

0
.8

7
3
9
9

0
.9

9
9
1
9

0
.9

9
8
5
7

0
.7

3
1
5
9

0
.8

7
2
1
6

0
.9

6
5
0
9

0
.8

8
4
1
8

0
.8

7
3
7

0
.9

7
3
5
3

0
.9

3
9
2

0
.5

0
.5

7
3
7
8

0
.8

7
8
7
8

0
.5

5
2
6
6

0
.7

3
9
3
1

0
.8

8
2
2
1

0
.9

0
8
7
6

SYN DoS Video Inj. Wiretap

OS Scan SSDP F. SSL R.

ARP Fuzzing Mirai

S
u
ri

c
a
ta

Is
o
.
F

o
re

s
t

G
M

M

In
c
.
G

M
M

p
c
S

tr
e
a
m

K
it
s
u
n
e
 (

m
=

1
0
)

K
it
s
u
n
e
 (

m
=

1
)

S
u
ri

c
a
ta

Is
o
.
F

o
re

s
t

G
M

M

In
c
.
G

M
M

p
c
S

tr
e
a
m

K
it
s
u
n
e
 (

m
=

1
0
)

K
it
s
u
n
e
 (

m
=

1
)

S
u
ri

c
a
ta

Is
o
.
F

o
re

s
t

G
M

M

In
c
.
G

M
M

p
c
S

tr
e
a
m

K
it
s
u
n
e
 (

m
=

1
0
)

K
it
s
u
n
e
 (

m
=

1
)

0.5
0.6
0.7
0.8
0.9
1.0

0.5
0.6
0.7
0.8
0.9
1.0

0.5
0.6
0.7
0.8
0.9
1.0

A
U

C

Area Under the Curve (AUC)

0
.5

0
0
0
1

0
.5

5
6
2
8

0
.2

9
0
5
6

0
.4

3
8
8
1

0
.6

5
0
6
9

0
.4

5
2
3
9

0
.2

3
1
5
2

0
.5

0
.1

5
6
8

0
.0

9
4

0
.0

9
7
4
2

0
.2

8
0
3
3

0
.0

9
4
1
3

0
.0

9
4
1
2

0
.5

0
0
0
2

0
.4

4
7
2
5

0
.2

3
6
0
2

0
.2

4
5
2
4

0
.6

8
3
6

0
.0

7
7
3
5

0
.1

3
5
5
7

0
.5

0
.0

7
7
5
3

0
.0

0
1
2
9

0
.9

2
2
6
3

0
.0

3
1
6

0
.0

0
1
2

0
.0

0
0
9
1

0
.5

0
0
0
1

0
.0

9
3
5
7

0
.0

0
0
5
6

0
.2

3
2
7
4

0
.9

7
3
5
5

0
.0

0
1
0
4

0
.0

0
0
6
7

0
.4

9
9
7

0
.4

9
0
6
7

0
.2

0
3
9
8

0
.3

4
9
9
3

0
.3

9
9
7
9

0
.2

2
8

0
.2

6
7
5
6

0
.5

0
0
2
3

0
.5

1
3
8
8

0
.0

1
0
9
5

0
.4

4
7
7
4

0
.8

1
6
8
4

0
.0

0
3
1
7

0
.0

0
3
2

0
.3

4
5
3
9

0
.1

5
4
0
8

0
.0

8
4
4
9

0
.8

8
0
2
2

0
.8

2
1
6
6

0
.0

4
6
0
3

0
.1

0
7
6
1

0
.5

0
.5

4
2
6
5

0
.2

1
0
2
7

0
.5

2
5
3
8

0
.7

4
9
7
8

0
.1

7
2
7
3

0
.1

6
9
3

SYN DoS Video Inj. Wiretap

OS Scan SSDP F. SSL R.

ARP Fuzzing Mirai

S
u
ri

c
a
ta

Is
o
.
F

o
re

s
t

G
M

M

In
c
.
G

M
M

p
c
S

tr
e
a
m

K
it
s
u
n
e
 (

m
=

1
0
)

K
it
s
u
n
e
 (

m
=

1
)

S
u
ri

c
a
ta

Is
o
.
F

o
re

s
t

G
M

M

In
c
.
G

M
M

p
c
S

tr
e
a
m

K
it
s
u
n
e
 (

m
=

1
0
)

K
it
s
u
n
e
 (

m
=

1
)

S
u
ri

c
a
ta

Is
o
.
F

o
re

s
t

G
M

M

In
c
.
G

M
M

p
c
S

tr
e
a
m

K
it
s
u
n
e
 (

m
=

1
0
)

K
it
s
u
n
e
 (

m
=

1
)

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

E
E

R

Equal Error Rate (EER)-Higher is better -Lower is better

Fig. 9: The experimental results for all algorithms on each of the datasets: the TPR when the FPR is equal to 0.001 (top-left),
the FNR when the FPR is equal to 0.001 (top-right), the AUC (bottom-left), and the EER (bottom-right).

L(1), the PI and PC can handle approx. 1,000 and 7,500 pack-
ets per second respectively. However, with 35 autoencoders
in L(1), the performance of both environments improve by a
factor of 5 to approx. 5400 and 37,300 respectively. Fig. 11
provides a closer look at the PI’s packet processing times with
k = 1 and k = 35. This figure shows that using an ensemble
can also reduce the variance in the processing times. This may
be beneficial in applications where jitter in network traffic is
undesirable.

The results of the Raspberry PI’s benchmark show that
a simple network router, with limited resources, can support
Kitsune as an NIDS. This means that Kitsune is an inexpensive
and reliable distributed NIDS solution. We note that since the
experiments were run on a single core, there is potential to

increase the packet processing rates further. To achieve this,
we plan on parallelizing KitNET over multiple cores.

VI. ADVERSARIAL ATTACKS & COUNTERMEASURES

When using Kitsune, there are several aspects one should
consider. First off all, an advanced adversary may attempt
to perform adversarial machine learning [45]. When first
installed, Kitsune assumes that all traffic is benign while in
train-mode. Therefore, a preexisting adversary may be able
to evade Kitsune’s detection. However, during execute-mode,
Kitsune will detect new attacks, and new threats as they
present themselves. Regardless, a user should be aware of this
risk when installing Kitsune on a potentially compromised
network. As a future work, it would be interesting to find a

13

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Size of Ensemble Layer (k)

R
a
te

 [
P

a
c
k
e
ts

/S
e
c
]

PC: Exec−mode

PC: Train−mode

PI: Exec−mode

PI: Train−mode

Packet Processing Rate on Single Logical Core

Fig. 10: The affect KitNET’s ensemble size (k) has on the average packet processing rate, while running on a single core of a
Raspberry PI and an Ubuntu VM (PC), using n = 198 features.

TABLE V: The environments used to perform the benchmarks.

 Environment 1 Environment 2

 Raspberry PI 3B Ubuntu VM

CPU
Type Broadcom BCM2837 Intel i7-4790
Clock 1.2GHz 3.60GHz

Cores 4 4 (8 logical)

RAM 1 GB 4 GB

mechanism which can safely filter out potentially contaminated
instances during the training process. For example, we can first
execute and see if there is a high anomaly score. If there is,
then we will not train from the instance (since we only want to
learn from benign instances). By doing so, we can potentially
remain in train-mode indefinitely.

If there is a significant concern that the target network has
been contaminated, then one may prefer to use a signature
based NIDS, such as Snort. The trade off is that a signature
based NIDS cannot automatically detect new or abstract threats
(as demonstrated in the evaluation results). A good compro-
mise would be to install an efficient NIDS (such as Snort 3.0
or Suricata) alongside Kitsune.

Another threat to Kitsune is a DoS attack launched against
the FE. In this scenario, an attacker sends many packets with
random IP addresses. by doing so, the FE will creates many
incremental statistics which eventually consume the device’s
memory. Although this attack causes a large anomaly, the
system may become instable. Therefore, it is highly recom-
mended that the user limit the number of incremental statistics
which can be stored in memory. One may note that with
a C++ implementation of Kitsune, roughly 1MB of RAM

0.00

0.05

0.10

950 1000 1050 1100

Packet Processing Time [usec]

d
e

n
s
it
y

k = 1

0

2

4

6

175 200 225 250 275

Packet Processing Time [usec]

Mode

Execute

Train

k = 35

Fig. 11: Density plots of the packet processing times in the
PI, with k = 1 (top), and k = 35 (bottom).

can contain approximately 1,000 network links (assuming five
damped windows per link). A good solution to maintaining
a small memory footprint is to periodically search and delete
incremental statistics with wi ≈ 0. In practice, the majority
of incremental statistics remain in this state since we use
relatively large λs (quick decay).

VII. CONCLUSION

Kitsune is a neural network based NIDS which has been
designed to be efficient and plug-and-play. It accomplishes
this task by efficiency tracking the behavior of all network
channels, and by employing ensemble of auto encoders (Kit-
NET) for anomaly detection. In this paper, we discussed the
framework’s online machine learning process in detail, and
evaluated it in terms of detection and runtime performance.
KitNET, an online algorithm performed nearly as well as other
batch / offline algorithms, and in some cases better. Moreover,
the algorithm is efficient enough to run on a single core of a
Raspberry PI, and has an even greater potential on stronger
CPUs.

In summation, there is a great benefit in being able to de-
ploy an intelligent NIDS on simple network devices, especially
when the entire deployment process is plug-and-play. We hope
that Kitsune is beneficial for professionals and researchers
alike, and that the KitNET algorithm sparks an interest in
further developing the domain of online neural network based
anomaly detection.

ACKNOWLEDGMENT

The authors would like to thank Masayuki Nakae, NEC
Corporation of America, for his feedback and assistance in
building the surveillance camera deployment. The authors
would also like to thank Yael Mathov, Michael Bohadana, and
Yishai Wiesner for their help in creating the Mirai dataset.

REFERENCES

[1] Marshall A Kuypers, Thomas Maillart, and Elisabeth Paté-Cornell. An
empirical analysis of cyber security incidents at a large organization.
Department of Management Science and Engineering, Stanford Univer-

sity, School of Information, UC Berkeley, 30, 2016.

[2] Dimitrios Damopoulos, Sofia A Menesidou, Georgios Kambourakis,
Maria Papadaki, Nathan Clarke, and Stefanos Gritzalis. Evaluation of
anomaly-based ids for mobile devices using machine learning classi-
fiers. Security and Communication Networks, 5(1):3–14, 2012.

[3] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and
Kuobin Dai. An efficient intrusion detection system based on support
vector machines and gradually feature removal method. Expert Systems

with Applications, 39(1):424–430, 2012.

14

[4] Supranamaya Ranjan. Machine learning based botnet detection us-
ing real-time extracted traffic features, March 25 2014. US Patent
8,682,812.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly
detection: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[6] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T
Hagan. Neural network design. Martin Hagan, 2014.

[7] Nidhi Srivastav and Rama Krishna Challa. Novel intrusion detection
system integrating layered framework with neural network. In Advance

Computing Conference (IACC), 2013 IEEE 3rd International, pages
682–689. IEEE, 2013.

[8] Reyadh Shaker Naoum, Namh Abdula Abid, and Zainab Namh Al-
Sultani. An enhanced resilient backpropagation artificial neural network
for intrusion detection system. International Journal of Computer

Science and Network Security (IJCSNS), 12(3):11, 2012.

[9] Chunlin Zhang, Ju Jiang, and Mohamed Kamel. Intrusion detec-
tion using hierarchical neural networks. Pattern Recognition Letters,
26(6):779–791, 2005.

[10] Rebecca Petersen. Data mining for network intrusion detection: A
comparison of data mining algorithms and an analysis of relevant
features for detecting cyber-attacks, 2015.

[11] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training
very deep networks. In Advances in neural information processing

systems, pages 2377–2385, 2015.

[12] Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R
Hruschka, André CPLF de Carvalho, and João Gama. Data stream
clustering: A survey. ACM Computing Surveys (CSUR), 46(1):13, 2013.

[13] Garcia-Teodoro et. al. Anomaly-based network intrusion detection:
Techniques, systems and challenges. computers & security, 28(1):18–
28, 2009.

[14] Harjinder Kaur, Gurpreet Singh, and Jaspreet Minhas. A review of
machine learning based anomaly detection techniques. arXiv preprint

arXiv:1307.7286, 2013.

[15] Taeshik Shon and Jongsub Moon. A hybrid machine learning approach
to network anomaly detection. Information Sciences, 177(18):3799–
3821, 2007.

[16] Taeshik Shon, Yongdae Kim, Cheolwon Lee, and Jongsub Moon. A
machine learning framework for network anomaly detection using svm
and ga. In Information Assurance Workshop, 2005. IAW’05. Proceedings

from the Sixth Annual IEEE SMC, pages 176–183. IEEE, 2005.

[17] Anna L Buczak and Erhan Guven. A survey of data mining and
machine learning methods for cyber security intrusion detection. IEEE

Communications Surveys & Tutorials, 18(2):1153–1176, 2016.

[18] Ke Wang and Salvatore J Stolfo. Anomalous payload-based network
intrusion detection. In RAID, volume 4, pages 203–222. Springer, 2004.

[19] Miao Xie, Jiankun Hu, Song Han, and Hsiao-Hwa Chen. Scalable
hypergrid k-nn-based online anomaly detection in wireless sensor
networks. IEEE Transactions on Parallel and Distributed Systems,
24(8):1661–1670, 2013.

[20] Srinivas Mukkamala, Andrew H Sung, and Ajith Abraham. Intrusion
detection using an ensemble of intelligent paradigms. Journal of

network and computer applications, 28(2):167–182, 2005.

[21] Xiangzeng Zhou, Lei Xie, Peng Zhang, and Yanning Zhang. An
ensemble of deep neural networks for object tracking. In Image

Processing (ICIP), 2014 IEEE International Conference on, pages 843–
847. IEEE, 2014.

[22] Mahmood Yousefi-Azar, Vijay Varadharajan, Len Hamey, and Uday
Tupakula. Autoencoder-based feature learning for cyber security
applications. In Neural Networks (IJCNN), 2017 International Joint

Conference on, pages 3854–3861. IEEE, 2017.

[23] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A
deep learning approach for network intrusion detection system. In
Proceedings of the 9th EAI International Conference on Bio-inspired

Information and Communications Technologies (formerly BIONETICS),
pages 21–26. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2016.

[24] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoen-
coders with nonlinear dimensionality reduction. In Proceedings of the

MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data

Analysis, page 4. ACM, 2014.

[25] T Jayalakshmi and A Santhakumaran. Statistical normalization and
back propagationfor classification. International Journal of Computer

Theory and Engineering, 3(1):89, 2011.

[26] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for

machine learning. Mit Press, 2012.

[27] Léon Bottou. Stochastic gradient descent tricks. In Neural networks:

Tricks of the trade, pages 421–436. Springer, 2012.

[28] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learn-
ing machine: a new learning scheme of feedforward neural networks.
In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint

Conference on, volume 2, pages 985–990. IEEE, 2004.

[29] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert.
An uncertain future: Forecasting from static images using variational
autoencoders. In European Conference on Computer Vision, pages 835–
851. Springer, 2016.

[30] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

[31] Yusuke Sugiyama and Kunio Goto. Design and implementation of a
network emulator using virtual network stack. In 7th International

Symposium on Operations Research and Its Applications (ISORA08),
pages 351–358, 2008.

[32] Eric Leblond and Giuseppe Longo. Suricata idps and its interaction
with linux kernel.

[33] Borja Merino. Instant Traffic Analysis with Tshark How-to. Packt
Publishing Ltd, 2013.

[34] Fionn Murtagh and Pedro Contreras. Methods of hierarchical clustering.
arXiv preprint arXiv:1105.0121, 2011.

[35] Wenke Lee, Salvatore J Stolfo, et al. Data mining approaches for
intrusion detection. In USENIX Security Symposium, pages 79–93. San
Antonio, TX, 1998.

[36] Mingrui Wu and Jieping Ye. A small sphere and large margin
approach for novelty detection using training data with outliers. IEEE

transactions on pattern analysis and machine intelligence, 31(11):2088–
2092, 2009.

[37] Niladri Sett, Subhrendu Chattopadhyay, Sanasam Ranbir Singh, and
Sukumar Nandi. A time aware method for predicting dull nodes and
links in evolving networks for data cleaning. In Web Intelligence (WI),

2016 IEEE/WIC/ACM International Conference on, pages 304–310.
IEEE, 2016.

[38] Deepthy K Denatious and Anita John. Survey on data mining techniques
to enhance intrusion detection. In Computer Communication and

Informatics (ICCCI), 2012 International Conference on, pages 1–5.
IEEE, 2012.

[39] Suricata — open source ids / ips / nsm engine. https://suricata-ids.org/,
11 2017. (Accessed on 11/14/2017).

[40] Index of /open/suricata/rules. https://rules.emergingthreats.net/open/
suricata/rules/, 11 2017. (Accessed on 11/14/2017).

[41] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
Data Mining, 2008. ICDM’08. Eighth IEEE International Conference

on, pages 413–422. IEEE, 2008.

[42] Douglas Reynolds. Gaussian mixture models. Encyclopedia of biomet-

rics, pages 827–832, 2015.

[43] Sylvain Calinon and Aude Billard. Incremental learning of gestures
by imitation in a humanoid robot. In Proceedings of the ACM/IEEE

international conference on Human-robot interaction, pages 255–262.
ACM, 2007.

[44] Yisroel Mirsky, Tal Halpern, Rishabh Upadhyay, Sivan Toledo, and
Yuval Elovici. Enhanced situation space mining for data streams. In
Proceedings of the Symposium on Applied Computing, pages 842–849.
ACM, 2017.

[45] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubin-
stein, and JD Tygar. Adversarial machine learning. In Proceedings of

the 4th ACM workshop on Security and artificial intelligence, pages
43–58. ACM, 2011.

15

