
2011 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 21-23 SEPTEMBER 2011, GUIMARÃES, PORTUGAL
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Abstract—Various methods have been developed for indoor
localization using WLAN signals. Algorithms that fingerprint
the Received Signal Strength Indication (RSSI) of WiFi for
different locations can achieve tracking accuracies of the order
of a few meters. RSSI fingerprinting suffers though from two
main limitations: first, as the signal environment changes, so
does the fingerprint database, which needs recalibration; second,
it has been reported that, in practice, certain devices record more
complex (e.g bimodal) distributions of WiFi signals, precluding
algorithms based on the mean RSSI. We propose in this article a
simple methodology that takes into account the full distribution in
computing similarities with fingerprints using Kullback-Leibler
divergence, and that performs localization through kernel re-
gression. Our method provides a natural way of smoothing over
time and trajectories. Moreover, we propose an unsupervised
KL-divergence based recalibration of the training fingerprints.
Finally, we apply our method to work with histograms of
WiFi connections with access points, ignoring RSSI distributions
and thus removing the need for recalibration. We demonstrate
that our results outperform nearest neighbors or Kalman and
Particle Filters, achieving 1m accuracy in office environments,
and we show that our method generalizes to non-Gaussian RSSI
distributions.

Index Terms—Signal Strength, WiFi, Fingerprinting, Localiza-
tion, Distributions, Kernel Methods

I. INTRODUCTION

Tracking people and objects indoors from radio signal
strength measurements can be performed with an accuracy
of a few meters for a typical building. As a first step,
localization methods require laborious human involvement in
the training phase to build so-called fingerprint maps for each
Access Point (AP). In predictive mode, the Received Signal
Strength Indicators (RSSI) from visible APs are matched to
the fingerprints to estimate the location. Typical algorithms
such as nearest neighbor matching [1] may involve solely the
RSSI; other techniques take advantage of time-stamping and of
assumptions about the motion and resort to state-space models
and dynamical system inference, such as in Kalman or particle
filtering [6].

Those fingerprint maps however generally store only the
mean value of the Received Signal Strength Indicators
(RSSI) [4], [6] and do not exploit information about the fluctu-
ations of the RSSI in the environment. And yet, we noticed that
in practice, certain devices record more complex distributions,
complicating the fingerprinting process and introducing errors
at estimation. Moreover, frequent re-training is necessary to
maintain accuracy. Finally, some APs may be no longer visible
during estimation, for instance due to equipment failures or
their roles in mobile ad-hoc networks.
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Fig. 1. Non-Gaussian Distributions of the Signal-to-Noise Ratio (SNR) of the
RSSI. Data were recorded over 30min along a long corridor and for a single
AP. The mobile would alternately stop for about two minutes at each location
and move one meter further, repeating these steps for about 15 locations.
The histograms have one bin per SNR level, and were constructed using 60s
sliding windows and 10s steps.

A. The Challenge of Non-Gaussianity

The common assumption about the RSSI coming from
multiple APs is that the signals are distributed as multivariate
Gaussians. It has however been reported [14] that this is not
always the case: the signal can be multimodal, or different
recording devices can measure quite different distributions at
the same location. In our experiments, we noticed that the
RSSI can be distributed in a bimodal way, oscillating between
two values distant by 10dB, as illustrated on Fig. 1.

Presumably, if we use mean and variance methods with a
multimodal distribution, then we are less discriminating than
we could otherwise be. We therefore look for a procedure
that can provide a richer characterization of the distribution.
We represent the RSSI or Signal-to-Noise Ratio (SNR) distri-
butions by histograms. Because the RSSI values recorded by
such software as NetStumbler R© (http://www.netstumbler.com)
are integers, we propose the natural binning scheme of one bin
for each integer level1. In the most general case that accounts
for the multi-modality of the signals we consider multinomial
distributions as our model for RSSI distributions, and in order
to compare such multimodal distributions, we propose to use
the Kullback-Leibler (KL) divergence.

B. Proposed Improvements

We propose in this research a probability kernel-based
approach to matching position-labeled fingerprints. We com-
pare distributions using the symmetrized Kullback-Leibler
divergence and construct probability kernels that can be used
either in a simple weighted regression scheme. We contend
that this metric on fingerprints is robust to various noise and
RSSI distributions, and we provide means to estimate the
location using a short-term history of RSSI measurements.
As an extension, we also propose an alternative approach

1We are planning on evaluating the trade-off between coarser binning
schemes, e.g. 5dB bins, and time window lengths.



to fingerprinting, that records only the count of successful
connections to Access Points (AP) over a small time interval, a
method similar in principle to AP coverage area estimates [7].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [13]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram of
RSSI at a new location using Bayesian Networks [3] or the
Naive Bayes algorithm [13]. [12] use a Kullback-Leibler-based
statistical framework for Wireless Sensor Networks localiza-
tion (consisting in null hypothesis testing at each fingerprint).
[2] use the KL divergence to find the one nearest neighbor
in the space of multinomial counts of Bluetooth dongles. [9]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple AP is simply a
multivariate Gaussian, a hypothesis that is not always true, as
we showed in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving 1m accuracies in office
environments.

II. METHODS

Our method can be summarized as following: we sample
the distribution p of RSSI from all visible APs for a dura-
tion τ (typically of a few seconds), and we compare it to
the distributions q in the labeled fingerprint database, using
the Kullback-Leibler divergence (Section II-A) and the KL-
divergence kernel (Section II-B). The location is estimated
through kernel regression (Section II-D). Our method naturally
copes with unknown RSSI (Section II-C), contains few hyper-
parameters, and can be trivially extended to operate merely on
AP connection histograms instead of full RSSI (Section II-G).
We justify sampling RSSI or AP during motion in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where
the random variable S takes discrete values (e.g. integer-valued
RSSI or SNR from an access point), we have: KL(p||q) =∑
s p(S = s) log (p(S = s)/q(S = s)). To avoid taking log-

arithms of zero-valued bins, we smooth the distribution by
adding a small constant term (e.g. 10−6) and re-normalizing
the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as D(p, q)
in Eq. (1). However, this metric does not satisfy the triangle
inequality and cannot be considered a distance measure.

D(p, q) = KL(p||q) +KL(q||p) (1)

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g. when measuring RSSI from

2We can also write KL(p||q) = H(p, q) − H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

multiple access points {1, . . . , J}), we can make the assump-
tion of local independence of each AP’s marginal distribution4,
i.e. that p(S|{x, y}) =

∏J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Note that we now use the shorthands p = p(S|{x, y})
and q{x,y} = q(S|{x, y}). Such a local independence assump-
tion for multiple APs was already made in [13].

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s marginal distribution [5]. We therefore have, for
any two locations {x, y} and {x′, y′} and their associated
multivariate distributions p and q:

D
(
p, q{x

′,y′}
)

=
J∑

j=1

D (p(Sj |{x, y}), q(Sj |{x′, y′})) (2)

B. KL-Divergence Kernel

The Kullback-Leibler divergence is used in [12] for localiza-
tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [10],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods often require the
kernel matrix between all training datapoints to be positive
semi-definite. Following [10], and for a data-dependent range
of values α, it is possible to define such PSD kernels by
exponentiating the symmetrized KL-divergence:

k
(
p, q{xl,yl}

)
= e
−α
∑J

j=1
D(p(Sj |{x,y}),q(Sj |{xl,yl})) (3)

C. Handling Missing Data

When the signal fingerprint at location {x, y} does not
sample any RSSI from a specific AP j, the obvious choice
is to set that distribution to p(Sj = −∞|{x, y}) = 1. We can
approximate this by putting all the mass on the first bin of the
histogram (typically the bin below the limit of detection).

When an AP is “unknown” both to the current sample p and
to training fingerprint q{x,y}, then D(p(Sj), q(Sj |{x, y})) =
0, i.e. we ignore the j-th AP in the kernel regression. However,
if that AP is sampled by p and by a fingerprint q but not by
another fingerprint q′, then the KL-divergence for that AP is
smaller between p and q than it is between p and q′, giving
more kernel weight to the fingerprint who “knows” that AP.

When it appears that an AP is down and is never sampled,
it can be simply removed from the sum in the kernel function
exponent (Eq. 3).

D. KL-Divergence Kernel Regression

Using the KL-divergence kernel function k and a set of
known training datapoints

{
q{xl,yl}

}
, we perform Weighted

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us doing the computation efficiently.
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Fig. 2. Possible trajectory (red line) traversing three adjacent fingerprints
located at {xa, ya}, {xb, yb} and {xc, yc} at times t, t+ τ

2
and t+ τ .

Kernel Regression [11] to obtain an estimate of the location
using p, the sampled distribution of RSSI:

(x̄, ȳ)T =
∑
l(xl, yl)

T k(p, q{xl,yl})∑
l k(p, q{xl,yl})

(4)

We propose to do this regression using only the N nearest
neighbors (in the KL-divergence sense), instead of the full
set of known training datapoints, i.e. to keep the N finger-
prints

{
q{xl,yl}

}
that maximize k

(
p, q{xl,yl}

)
. Our methods

amounts to nearest neighbor matching in the case when
N = 1. Note that the choice of the N neighbors depends
on the test datapoint p, and that the kernel function still
needs to be evaluated for all known fingerprints. We optimize
hyperparameters α and N on the training dataset (i.e. on the
fingerprints), for instance using leave-one-out cross-validation.

Kernels provide a simple way to interpolate the location
estimates between fingerprint locations; some earlier methods
such as [4] were using more ad-hoc Delaunay triangulation of
mean values of RSSI distributions.

E. Evaluating the Distribution During Motion Tracking
In realistic scenarios, the distribution p for which one wishes

to estimate the location is going to be sampled during motion,
as the mobile goes through areas with different RSSI distribu-
tions. The crucial assumption that we make for estimating the
location is that the PDFs continuously change for neighboring
points5. In other words, for two close positions {x, y} and
{x′, y′}:

q(S|λ{x, y}+(1−λ){x′, y′}) ≈ λq{x,y}+(1−λ)q{x
′,y′} (5)

There is a trade-off between the number of RSSI samples
necessary to get a good approximation of p (i.e. the time
required τ and the distance travelled), and the error introduced
by sampling from neighboring locations. Knowing how adja-
cent fingerprints are spaced, how frequently APs are queried,
and having a prior idea on the speed of motion can however
help. For instance, in some of our experiments, we used
τ = 8s time windows, while the motion speed was 0.5m/s,
adjacent training fingerprints were spaced every 2-2.5m, and
APs queried at 5Hz: this means that our sampling windows
covered roughly 2 to 3 training fingerprints and up to 40 RSSI

5We plan on verifying that assumption quantitatively for specific datasets.

samples, as illustrated on Fig. 2. For comparison, each training
fingerprint would have up to 100 samples. Let us from now on
assume that τ is always adjusted to cover 3 fingerprints during
tracking. We propose a weighting scheme that involves giving
a smaller weight κ

2 to samples from q{xa,ya} collected at the
beginning [t, t+ τ

4 ) of the sampling window, and to samples
from q{xc,yc} at the end [t+ 3τ

4 , t+τ) of that window, and 1−κ
to samples from q{xb,yb} in the middle window [t+ τ

4 , t+
3τ
4 ).

κ can be cross-validated using a multinomial sampler on
the training dataset from three adjacent fingerprints for total
duration τ , to be the value that minimizes the KL-divergence
between the sampled κ

2 p
{xa,ya}+ (1−κ)p{xb,yb}+ κ

2 p
{xc,yc}

and the actual q{xb,yb}6. Note that our specific sampling
window scheme gives an estimate for the location at τ

2 = 4s
ago, which is acceptable for practical usage.

We are currently investigating the impact of the choice of
the sampling window τ and the size of the RSSI bins.

F. Unsupervised Recalibration of RSSI Histograms
The KL divergence can also be used as a metric to compare

two global distributions. We propose to correct for some
variations in the signal strength maps by shifting the test data
RSSI histogram collected during tracking7, so as to minimize
its KL divergence with the distribution of RSSI from that same
AP but for all training fingerprints.

G. Extension to Access Point Connection Histograms
Our KL-divergence kernel regression can be trivially ex-

tended to accommodate AP connection histograms (i.e. multi-
nomials of the number of connections for each AP during
time window τ ). As we show in the next section, we can thus
achieve a median accuracy of 2 to 3m in an office environment,
even though we ignore the actual RSSI levels.

One benefit from our approach is that it foregoes RSSI
recalibration completely: what APs are seen might be similar
across devices, even if the RSSI levels change. The only trick
that we suggest is to remove, from all histograms, the APs that
do not show up during tracking. Alternatively, we can know
through software and at training time if the AP is ad-hoc or
part of the infrastructure and use this information to filter out
mobile phones acting as hot spots. Other ways of filtering out
APs is to weed out devices with short ranges.

III. RESULTS

For our first set of experiments, we used a 2D office dataset
used in [6], [4], consisting of a 40m×40m area, illustrated on
Fig. 3. The training data consisted of 88 fingerprints recorded
for 22 APs8); some APs had over 100 samples for each
location. 4 APs only were used in the published experiments.

Using leave-out-last cross-validation on the training data, we
selected the optimal coefficient α in the KL-divergence kernel
function (Eq. 3) and the optimal number of nearest neighbor
fingerprints N for kernel regression, both when using 4 APs
and when using 22 APs. We also selected the optimal α when
using all fingerprints for regression for both numbers of APs.

6We could consider different weightings κ, perhaps with a continuous κ-
parameterized curve (exponential smoothing).

7We are limiting ourselves to changes in RSSI or SNR comes from
variations in the ambient noise. Our method does not consider local changes
in the environment, such as furniture or people movements.

8It is common to observe hundreds of unique MAC addresses in office
environments, coming from various floors and individual offices.



TABLE I
RESULTS ON THE 2D OFFICE DATASET USING 4 APS

Technique Median accuracy Accuracy at 90%
Kalman filter [6] 2.0m -

Voronoi particle filter [6] 1.6m -
Model-free tracking [4] 1.3m 2.5m

KL divergence, 1 NN 1.34m 3.11m
KL divergence, 3 NN WKR 1.06m 2.29m
KL divergence, 88 NN WKR 1.26m 2.70m
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Fig. 3. Tracking results on the 2D office dataset using 4 APs. The true path
is in dashed blue, the estimated path in solid red line, and the 88 fingerprint
locations appear as green circles. We used a KL-divergence kernel with weight
α = 0.011, τ = 8s windows and performed kernel regression on the N = 3
nearest neighbors. Median error was 1.06m and 2.3m at the 90% percentile.
RSSI was sampled at 5Hz, yielding up to 40 samples per sampling window
for each AP.

Tracking data in that dataset were acquired a few days
later, and re-calibrated as explained in Section II-F. As we
report in Table I, we achieved a median accuracy of 1.06m,
when using the optimal number of nearest neighbors (N = 3)
for kernel regression. This result is considerably better than
previously published Kalman filters (2m) and Voronoi particle
filters (1.6m) [6] or model-free tracking (1.3m) [4]. As we
show on Fig. 3, the estimated trajectory is reasonably smooth.
Interestingly, using the location of only one nearest neighbor
(based on the KL-divergence) still yields good tracking per-
formance at 1.34m.

We did not observe a decrease in the median accuracy
when using 22 APs rather than 4 APs, similarly to what was
suggested in [7], but as shown in Table II, the 90% quantile
error was reduced to around 2m.

In a second series of experiments on the same office dataset,
we ignored the RSSI from the AP, and used only multinomials
of AP connections to build the KL-divergence kernels. As
shown in Table II, the tracking accuracy remained decent, at
about 2m median error.

We acquired another dataset by walking at constant speed
(around 1.4m/s) along a 320m corridor. NetStumbler would
query APs only at 1Hz. We used 8s-long sampling windows to
create 55 fingerprints (AP connection histograms only) spaced
every 4s (i.e. every 5.5m) for 130 APs. When we used those
fingerprints to localize ourselves later on the same day (while
in motion at 1.4m/s), we achieved 3.4m median accuracy
(7.9m at 90%), which compares with 5.2m median accuracy
(15m at 90%) for 3-NN on 1s-long binary vector fingerprints.
Keeping the same AP fingerprints, we repeated the tracking
test one week later: we still achieved a 3.8m median accuracy

TABLE II
RESULTS ON THE 2D OFFICE DATASET USING THE KL-DIVERGENCE

KERNEL ON 22 APS, WITH OR WITHOUT RSSI

Technique Median accuracy Accuracy at 90%
With RSSI, 1 NN 1.28m 3.56m

With RSSI, 6 NN WKR 1.12m 2.10m
With RSSI, 88 NN WKR 1.05m 1.81m

No RSSI, 1 NN 2.27m 5.05m
No RSSI, 14 NN WKR 1.93m 4.41m
No RSSI, 88 NN WKR 1.93m 4.41m

(7.8m at 90%), in spite of some missing APs. These results
are upper bounds: more careful (slower) fingerprinting and
accounting for speed fluctuations should bring the errors down.

IV. CONCLUSIONS

We designed a simple probabilistic algorithm for WLAN
fingerprint-based tracking, relying on location regression with
KL-divergence kernels. Our time-window based sampling ap-
proach is a very simple way to account both for the motion
and for the complex non-Gaussian distributions of RSSI.
Moreover, the structure of our model is such that we can
further investigate the distributions of location prediction error
and to quantify the localization uncertainty due to how the
WiFi signal distribution varies in space. Since corridors may be
idealized environments for signal propagation and fingerprint-
ing, we are currently also experimenting with various open-
space indoor environments.
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