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Abstract

We investigate the issue of designing a kernel programming language for Mobile

Computing and describe Klaim, a language that supports a programming paradigm

where processes, like data, can be moved from one computing environment to an-

other. The language consists of a core Linda with multiple tuple spaces and of a

set of operators for building processes. Klaim naturally supports programming with

explicit localities. Localities are first-class data (they can be manipulated like any

other data), but the language provides coordination mechanisms to control the inter-

action protocols among located processes. The formal operational semantics is useful

for discussing the design of the language and provides guidelines for implementations.

Klaim is equipped with a type system that statically checks access rights violations of

mobile agents. Types are used to describe the intentions (read, write, execute, etc.) of

processes in relation to the various localities. The type system is used to determine the

operations that processes want to perform at each locality, and to check whether they

comply with the declared intentions and whether they have the necessary rights to

perform the intended operations at the specific localities. Via a series of examples, we

show that many mobile code programming paradigms can be naturally implemented

in our kernel language. We also present a prototype implementation of Klaim in Java.

Keywords: Programming Languages, Mobile Code Languages, Semantics of Program-

ming Languages, Language Design, Coordination Models.
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1 Introduction

Networking has changed computers from isolated data processors into powerful commu-

nication and elaboration devices. The terms global computers and global information

structures have recently been used to identify architectures of this kind and applications

over them [8]. The World–Wide Web (WWW) is the best known example of an appli-

cation geographically distributed over a collection of processors and networks. Global

structures/computers are rapidly evolving towards programmability; again, an illustra-

tive example is the WWW. One could easily imagine applications with programs running

at different sites and needing continuous interactions or applications that have to take

decisions according to information retrieved from the global environment.

This new scenario has called for new programming languages and paradigms that

support migratory (mobile) applications. For example, Java [3] permits local executions

of self–contained programs downloaded from other sites. Similarly, Facile [23] supports

mobility of programs by allowing processes to be transmitted in communications. Obliq

[7] is a programming language with a static scoping discipline where mobile processes

maintain their connections when they move from one site to the other. Other examples

of languages supporting forms of mobility are CML [38] and Telescript [41].

From a theoretical perspective, much research has addressed mobility starting from the

definition of π–calculus [32], which has been used as the basis for designing the concurrent,

object oriented, programming language PICT [33]. Indeed, an abstract semantic frame-

work that would allow one to formalize and understand global programming languages is

clearly required. Such a semantic framework may be the formal basis to discuss contro-

versial design/implementation issues (e.g. the scoping discipline of mobile processes) and

provide support for mechanical reasoning about global programs.

A key issue when designing a language for network programming is security, e.g. pri-

vacy and integrity of data. It is important to prevent malicious agents from accessing

private information or modifying private data. Tools are thus needed that enable sites

receiving mobile agents for execution to set demands and limitations to ensure that the

agents will not violate privacy or jeopardize the integrity of the information. Similarly,

mobile agents need tools to ensure that their execution at other sites will not disrupt

them or compromise their security. Languages for mobile agents often rely on policies

(both at compilation and run–time) that over-restrict privileges and capabilities of mobile

agents (e.g. Java [3]). This unnecessarily reduces the expressive power and capabilities of

the agents. Moreover, there is no guarantee that certain desired security properties are

enforced by the language implementation.

This paper presents a kernel programming language, Klaim (Kernel Language for

Agents Interaction and Mobility), for describing mobile agents and their interaction strate-

gies. We introduce basic concepts and linguistic primitives together with a formal opera-
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tional semantics. This is followed by a discussion of the pragmatics of the language and

of a prototype implementation.

The distinguishing features of our approach are the explicit use of localities for accessing

data or computational resources and the presence of a simple type system to control access

rights.

The choice of Klaim’s primitives was heavily influenced by Process Algebras [25, 30]

and Linda [20, 10]. Indeed, our language can be seen as an asynchronous higher–order

process calculus whose basic actions are the original Linda primitives enriched with explicit

information about the location of the nodes where processes and tuples are allocated.

Explicit localities enable the programmer to distribute and retrieve data and processes

to and from the sites of a net and to structure the tuple space as multiple, located spaces.

Moreover, localities, considered as first–order data, can be dynamically created and com-

municated over the network. The overall outcome is a powerful programming formalism

that, for example, can easily be used to model encapsulation. In fact, an encapsulated

module can be implemented as a tuple space at a private locality, and this ensures con-

trolled accesses to data.

The separation of the logical distribution of processes and their physical mappings over

the net leads to the sharing of the control between programmers and a net coordinator.

The actual coordination language is designed to handle all issues related to the physical

distribution of processes. Coordinators have complete control over changes of configuration

of the network that may be due to addition/deletion of software components and sites, or

to transmission of programs and of sites references.

The actual structuring in terms of processes and coordinators provides a clean abstrac-

tion device for global programming languages and is instrumental for studying migratory

applications and for understanding the extent of configuration decisions before carrying

out the actual implementation. This will be illustrated by analyzing the effects of choosing

specific scoping disciplines for accessing tuple spaces.

To take security issues into account, we extend Klaim processes and coordinators

with a simple type system that can be used to statically enforce security properties. More

precisely, the type system permits one to check whether the operations Klaim processes

intend to perform over the sites of a net really do comply with their access rights.

We illustrate the pragmatics of the language by means of a number of programming

examples which demonstrate how well established programming paradigms for mobile

applications can be naturally programmed in Klaim. The untyped version of Klaim has

been implemented as a set of Java packages.

The rest of the paper is organized as follows. Sections 2 and 3 introduce the syntax and

the operational semantics of Klaim, respectively. In Section 4 we present a type system

for inferring process types and a methodology for controlling their access rights. This is

followed by a discussion of the language pragmatics in Section 5, and by the description of
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the prototype implementation in Section 6. In the last section, future research is discussed.

Comments about the relationships of Klaim with other languages and about alternative

design choices are scattered along the paper as remarks.

Preliminary presentations of the Klaim language can be found in [15, 16].

2 Klaim: Syntax and Informal Semantics

Klaim consists of a core Linda with multiple tuple spaces and of a set of operators,

borrowed from Milner’s CCS [30], for building processes. The distinguishing feature is

that tuples and operations over them are located at specific sites of a net. We start this

section by summarizing the main features of Linda (the interested reader is referred to,

e.g., [22, 11, 10] for more details). Then, we present the syntax of Klaim. The process

algebraic operators will be briefly presented in the subsection that contains the syntax of

Klaim processes.

2.1 An overview of Linda

Linda is a coordination language that relies on an asynchronous and associative commu-

nication mechanism based on a shared global environment called Tuple Space (TS). A

tuple space is a collection (formally a multiset) of tuples, where a tuple is a sequence of

actual fields, i.e. expressions or values, and formal fields, i.e. variables. Pattern–matching

is used to select tuples in a TS. Two tuples match if they have the same number of fields

and corresponding fields have matching values or variables. Variables match any value of

the same type, and two values match only if they are identical.

Linda provides just four primitives for manipulating tuples. Two (non–blocking) oper-

ations, out(t) and eval(t), permit tuples to be added to a TS. The operation out(t) adds

the tuple resulting from the evaluation of t to a TS. The operation eval(t) differs from

out(t) because t is first added to the TS and then a new concurrent process is created

for evaluating the tuple; this is not available for matching until its evaluation has been

completed. Two (possibly blocking) operations, in(t) and read(t), permit tuples to be

accessed in the TS. The operation in(t) evaluates t and looks for a matching tuple t′ in

the TS. Whenever t′ is found, it is removed from the TS. The corresponding values of t′

are then assigned to the variables of t and the operation terminates. If no matching tuple

is found, the operation is suspended until one is available. The operation read(t) differs

from in(t) because the tuple t′ selected by pattern–matching is not removed from the TS.

Nondeterminism is inherent in the definition of Linda primitives. It arises when more

in/read operations are suspended while waiting for a tuple. When such a tuple becomes

available, only one of the suspended operations is nondeterministically selected to proceed.

Similarly, when an in/read operation has more than one matching tuple one is arbitrarily

chosen.
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The Linda programming paradigm is known as Generative Communication [20]. In-

deed, once a tuple is added to a TS (generated), its life–time is independent of the producer

process’s life–time.

In the original proposal [20] two predicative (non–blocking) forms, inp and readp, were

also part of the language. They yield true or false depending on whether the TS contains

a tuple matching their argument. When returning true they retrieve/remove the matching

tuple. We did not consider these predicates because they are functional duplicates of their

non–predicative counterparts and are difficult to implement in a distributed environment.

They may require expensive checks and synchronizations over entire tuple spaces [29].

The Linda asynchronous communication model allows programmers to explicitly con-

trol interactions among processes via shared data and to use the same set of primitives

both for data manipulation and for process synchronization. This has the advantage of ren-

dering explicit all the interactions of a program with its environment. The original Linda

primitives are, however, not completely adequate for programming distributed systems.

For example, data protection and security, which are key features of mobile applications,

are problematic because the Linda communication model cannot guarantee data privacy.

Also, modular programming disciplines are awkward to follow in practice as there is no

way to guarantee that tuples coming from different contexts are not mixed up when two

modules are put together. Multiple tuple spaces [21] are a first step toward the solution of

these problems. In this paper we perform a further step by adding structure to multiple

tuple spaces and allowing explicit manipulation of localities and locality names.

2.2 Klaim Processes

Hereafter, we shall exploit the syntactic categories listed below; all of them are followed

by the symbols we will use (sometimes with indices) to refer to their elements.

• S (s) is a set of sites (or physical localities). A site can be considered as the address

of a node where processes and tuple spaces are allocated.

• Loc (l) is a set of (logical) localities. A locality may be thought of as the symbolic

name for a site. Localities permit structuring programs over distributed environ-

ments while ignoring their precise allocations. A distinguished locality self (∈ Loc)

is assumed. Programs can use self to refer to their execution site.

• VLoc (u) is a set of locality variables.

• Val (v) is a set of basic values.

• Var (x) is a set of value variables.

• Exp (e) is the category of value expressions. These are built up from values and

value variables, by using a set of operators (not specified here).
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• Ψ (A) is a set of parameterized process identifiers. Parameters can be of three

different types: process, locality and value; for the sake of simplicity, we fix this

ordering for the formal parameters of any process identifier.

• χ (X) is a set of process variables.

For simplicity, we will use ℓ to denote both localities and locality variables. Moreover,

ℓ̃ will indicate sequences of localities and {ℓ̃} the set of localities in ℓ̃. A similar notation

will also be used for other kinds of sequences.

We will use the standard notation e[e′/x] to indicate the substitution of the value

expression e′ for the variable x in e; e[ẽ′/x̃] will denote the simultaneous substitution of

each x ∈ x̃ with the corresponding e′ ∈ ẽ′ in e.

Tuples are sequences of actual fields (i.e. expressions, processes, localities or locality

variables) and formal fields; these are denoted by “! var”, where var is a generic variable.

We shall use fields(t) to denote the set of fields of t.

The Linda operations to generate tuples (out), to spawn a new process (eval), to read

tuples (read), and to remove tuples (in) are located, e.g. the operation out(t)@ℓ is used to

place the tuple t in the tuple space located at ℓ. Our primitives generalize Linda’s original

ones. We have a modified eval primitive; it has processes as arguments rather than tuples,

and thus permits mobile agents to be programmed. As will be clarified later (Section 3),

action eval(out(t)@ℓ.nil)@ℓ can be used to simulate the “expected” behaviour of action

eval(t)@ℓ. New sites are created through the prefix newloc(u). This operation creates a

“fresh” site that can be accessed via the locality variable u.

The operators for building processes are borrowed from Milner’s CCS [30]. They are

commonly used in Process Algebras and correspond to basic notions. Namely, nil stands

for the process that cannot perform any action, a.P stands for the process that first

executes action a and then behaves like P , P1|P2 stands for the parallel composition of P1

and P2, and P1+P2 stands for the nondeterministic composition of P1 and P2.

Klaim terms are given by the abstract syntax in Table 1. As a matter of notation, in

the following we often shall write a instead of a.nil.

Variables occurring in Klaim process terms can be bound by prefixes. More precisely,

prefixes in(t)@ℓ. and read(t)@ℓ. act as binders for variables in the formal fields of t.

Prefix newloc(u). binds the locality variable u.

Process identifiers are used in recursive process definitions. It is assumed that each

process identifier A has a single defining equation A(X̃, ũ, x̃)
def
= P . All free (value, process

and locality) variables in P are contained in {X̃, ũ, x̃} and all occurrences of process

identifiers in P are guarded (i.e. each process identifier occurs within the scope of a

blocking in/read prefix).

A process is a term without free variables; localities occurring in processes are consid-

ered as constants. In the next section, we will see that they are names whose meaning
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P ::= nil (null process)∣∣∣ a.P (action prefixing)
∣∣∣ P1 | P2 (parallel composition)
∣∣∣ P1+P2 (choice)
∣∣∣ X (process variable)
∣∣∣ A〈P̃ , ℓ̃, ẽ〉 (process invocation)

a ::= out(t)@ℓ
∣∣∣ in(t)@ℓ

∣∣∣ read(t)@ℓ
∣∣∣ eval(P )@ℓ

∣∣∣ newloc(u)

t ::= e
∣∣∣ P

∣∣∣ ℓ
∣∣∣ ! x

∣∣∣ !X
∣∣∣ !u

∣∣∣ t1, t2

Table 1: Processes Syntax

is defined (i.e. mapped onto sites) by coordinators. Both processes and localities are

first–class data and can be manipulated and generated like any other data occurring in

tuples. Processes have higher–order capabilities, in that they can be exchanged in com-

munications.

2.3 Klaim Nets

Coordination appears to be a key concept for modelling and designing heterogeneous, dis-

tributed, open ended systems. It applies typically to systems consisting of a large number

of software components, programmed independently, possibly with different programming

languages, which may change their configuration during execution. Coordination lan-

guages provide the primitive for defining configurations and interaction protocols of sets

of software agents. Systems are designed and developed in a structured way, starting

from the basic computational components and adding suitable software modules called

coordinators. This approach increases the potential reuse of both software agents and

coordinators at the cost of acceptable overheads.

In this section we introduce the Klaim coordination language. It is designed to han-

dle all the issues related to the physical distribution of processes. Moreover, it controls

changes of network configuration. Changes may be due to the addition/deletion of software

components and sites, or to the transmission of programs and resources.

Given a finite set of sites, a Klaim net is a set of nodes. A Klaim node is a triple

(s, P, ρ) where s is a site and ρ is the allocation environment, i.e. a (partial) function from

Loc to S. Hereafter E will denote the set of environments, φ the empty environment, and

[s/l] the environment that maps the locality l to the site s. Processes at each site can

potentially access any other site of the net; however, site visibility is (locally) controllable

via the allocation environment: a site s′ is visible at the node (s, P, ρ) only if s′ belongs to

7



N ::= s ::ρ P (node)
∣∣∣ N1 ‖ N2 (net composition)

Table 2: Nets Syntax

the image of ρ. Finally, we introduce an operation to stratify environments. If ρ1, ρ2 ∈ E ,

then ρ1 • ρ2 is the environment defined by:

ρ1 • ρ2 (l) =

{
ρ1(l) if ρ(l) is defined

ρ2(l) otherwise

In ρ1 • ρ2 , ρ1 is the inner environment and ρ2 is the outer environment.

The abstract syntax for Klaim nets is given by the grammar in Table 2.

Given a net N , we assume the existence of a function st which returns the sites of N .

The composition N1 ‖ N2 is defined only if st(N1) ∩ st(N2) = ∅, thus we can consider a

net just as a set of nodes. We say that a net N is well–formed if whenever s ::ρ P is a node

of N then ρ(self) = s and the image of ρ is included in st(N). We will only consider

well–formed nets. To lighten notations, the allocation environments will not report the

binding for self.

Remark 2.1 In the present formulation of Klaim, located tuple spaces have no hierar-

chical structure, i.e. located tuple spaces are not nested. However, the nesting of located

tuple spaces can easily be modelled. It suffices to extend Klaim coordination language

with a combinator to allocate a complete net. Hence, a hierarchical net would be written:

s ::ρ [N ]

where ρ is the allocation environment that now returns either localities or sequences of

sites. The idea is that s is the site where the net N is allocated. Site s and its environment

ρ can then be used to control all interactions between N and other nets.

Allocated nets are very similar in spirit to the multiple ambients of Cardelli and Gordon

[9]. A complete investigation of allocated nets is beyond the scope of the present paper

and will be the subject of a further work.

3 Operational Semantics

The two syntactic levels of Klaim are reflected at the semantic level. The operational

semantics of Klaim is given in the SOS style [35] and proceeds in two steps. The first

step defines the symbolic semantics that specifies parts of process commitments, i.e. the

control on localities and the effects of the actions on the tuple spaces. The full description

of process behaviours is given in the second step, which packages processes and data into

a net.
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out(t)@ℓ.P
s(t)@ℓ
−−−→

φ
P eval(Q)@ℓ.P

e(Q)@ℓ
−−−→

φ
P

in(t)@ℓ.P
i(t)@ℓ
−−→

φ
P read(t)@ℓ.P

r(t)@ℓ
−−−→

φ
P

newloc(u).P
n(u)@self

−−−−−→
φ

P

P
µ
−→
ρ

P ′

P+Q
µ
−→
ρ

P ′

P
µ
−→
ρ

P ′

Q+P
µ
−→
ρ

P ′

P
µ
−→
ρ

P ′

P | Q
µ
−→
ρ

P ′ | Q

P
µ
−→
ρ

P ′

Q | P
µ
−→
ρ

Q | P ′

P
µ
−→
ρ′

P ′

P{ρ}
µ

−−−→
ρ′ • ρ

P ′{ρ}

P [P̃ /X̃, ℓ̃/ũ, ẽ/x̃]
µ
−→
ρ

P ′

A〈P̃ , ℓ̃, ẽ〉
µ
−→
ρ

P ′

A(X̃, ũ, x̃)
def
= P

Table 3: The Structural Rules of Symbolic Semantics

3.1 Process Semantics

The labelled transition system for processes describes the possible evolutions of Klaim

processes without providing the actual allocation of processes and tuple spaces. For this

reason, the corresponding operational semantics is called symbolic in that neither value

and locality expressions nor tuples are evaluated.

To describe the effects of the evaluation of processes which are placed within tuples

fields, we introduce the auxiliary term P{ρ} which indicates the process P packaged with

the allocation of localities specified by ρ; the mapping ρ is an evaluation environment and

P{ρ} is a closure. For the sake of simplicity, we will use P to range over closures as well.

The structural rules of the symbolic semantics are reported in Table 3. The transition

P
µ
−→
ρ

P ′

describes the evolution to P ′ of the process P . The label of the transition 〈µ, ρ〉 provides an

abstract description of the activities performed in the evolution. For instance, µ = s(t)@ℓ

describes the output (sending) of tuple t in the tuple space specified by ℓ. Similarly,

µ = n(u)@self can be thought of as the request for binding a fresh site to the variable u.

The environment ρ records the local bindings that must be taken into account to evaluate

µ. Our use of allocation environments in the transition labels is similar to the use of

Boolean expressions in the operational framework of [24].
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T [[ e ]]ρ = E [[ e ]]

T [[ P ]]ρ = P{ρ}

T [[ ℓ ]]ρ = ρ(ℓ)

T [[ t1, t2 ]]ρ = T [[ t1 ]]ρ, T [[ t2 ]]ρ

T [[ !x ]]ρ = !x

T [[ !X ]]ρ = !X

T [[ !u ]]ρ = !u

Table 4: Tuple Evaluation Function

match(v, v) match(P, P ) match(s, s)

match(!x, v) match(!X, P ) match(!u, s)

match(et1, et2)

match(et2, et1)

match(et1, et2) match(et3, et4)

match((et1, et3), (et2, et4))

Table 5: The Matching Rules

3.2 Net Semantics

Following [4, 31] the operational semantics of Klaim coordination language is defined

by a structural congruence and a reduction relation. The structural congruence incorpo-

rates the basic semantics of net parallel composition, while reduction describes the basic

computational paradigm of interactions among processes inside a net.

Nets are defined up to a structural congruence ≡. This is the smallest congruence such

that ‖ is associative and commutative.

To avoid cumbersome notations, we use ℓ to denote localities, locality variables and

sites, and assume that allocation environments are extended to sites but for these they

act as the identity function. The operational semantics of nets exploits an evaluation

mechanism for tuples, and a pattern–matching to select tuples in a tuple space. The

evaluation function for tuples, T [[ ]], exploits the allocation environment to resolve locality

names and relies on an evaluation mechanism, E [[ ]], for closed expressions (i.e. expressions

without free variables). T [[ ]] is inductively defined over the syntax of tuples by the rules in

Table 4, where we use E [[ e ]] to denote the value of the closed expression e; the evaluation

of a process, say T [[ P ]]ρ, yields a process closure, i.e. P{ρ}.

The rules defining the pattern–matching predicate are reported in Table 5.

As in [18, 37], we model tuples as processes and we introduce auxiliary processes to

denote evaluated tuples, referred to as et. Thus Klaim syntax is extended with the process

out(et) whose symbolic semantics is expressed by the following structural rule

out(et)
o(et)@self

−−−−−→
φ

nil.

Moreover, we use sites alike localities and locality variables.

The reduction rules of nets (rules in Table 6, and rules (11) and (12)) clearly distinguish
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between local and remote operations performed by located processes and provide a formal

model to guide the implementation.

The evaluation of an out operation modifies a tuple space. Rule (1) adds a new tuple

to the local tuple space of the process. Rule (2), on the other hand, adds a new tuple

to the remote tuple space located at ℓ2. In the latter rule, the evaluation of the tuple t

depends on the allocation environment ρ•ρ1 . This corresponds to having a static scoping

discipline for the remote generation of tuples. Moreover, if the tuple t contains a field

with a process, the corresponding field of the evaluated tuple et contains a closure. Hence,

processes in a tuple are transmitted together with their local allocation environment.

A dynamic scoping strategy is adopted for the eval operation, described by rules (3)

and (4). In this case the process spawned in the remote node is transmitted without

the local allocation environment, and its execution is influenced by the remote allocation

environment ρ2.

For the communication operations in and read note that in modifies the tuple space

(see rules (5) and (6)) while read does not (in the conclusions of rules (7) and (8) the tuple

space encompassed within process P2 is left unchanged by process evolution). Obviously,

we have to distinguish between local rules ((5) and (7)) and remote rules ((6) and (8)).

Let us consider rule (5) (rules (6), (7) and (8) can be interpreted similarly). It says

that a process can perform an in action at the local tuple space by synchronizing with

a process which represents a matching tuple. The result of this synchronization is that

the tuple is consumed, i.e. the corresponding process becomes nil, and its values are used

to replace the corresponding (free) variables of the process which has performed the in

operation.

Finally, rule (9) describes the asynchronous evolution of subcomponents of a node.

Rules (1)–(9) may modify the structure of the nodes of the net but they cannot intro-

duce new localities. The creation of a new node is described by rule (10). The environment

of a new node is obtained from that of the creating one (with the obvious update for the

self locality). The underlying idea is that the new node inherits all the knowledge about

localities of the creating node.

Remark 3.1 Obviously, other design choices could have been made. An alternative for-

mulation of the rule for the creation of a new node is

P
n(u)@self

−−−−−→
ρ′

P ′ s′ ∈ S, s′ fresh

s ::ρ P ≻→ s ::ρ P ′[s′/u] ‖ s′ :: [s′/self]•φ nil

The rationale behind this choice (adopted in [39]) is that any new node has no knowledge

of the rest of the net.
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P
s(t)@ℓ
−−−→

ρ′
P ′ s = ρ′ • ρ (ℓ) et = T [[ t ]] ρ′

•ρ

s ::ρ P ≻→ s ::ρ P ′ | out(et)

(1)

P1
s(t)@ℓ
−−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ) et = T [[ t ]] ρ•ρ1

s1 ::ρ1
P1 ‖ s2 ::ρ2

P2 ≻→ s1 ::ρ1
P ′

1 ‖ s2 ::ρ2
P2 | out(et)

(2)

P
e(Q)@ℓ
−−−→

ρ′
P ′ s = ρ′ • ρ (ℓ)

s ::ρ P ≻→ s ::ρ Q | P ′

(3)

P1
e(Q)@ℓ
−−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ)

s1 ::ρ1
P1 ‖ s2 ::ρ2

P2 ≻→ s1 ::ρ1
P ′

1 ‖ s2 ::ρ2
Q | P2

(4)

P1
i(t)@ℓ
−−→

ρ′
P ′

1 s = ρ′ • ρ (ℓ) P2
o(et)@self

−−−−−→
φ

P ′

2 match(T [[ t ]] ρ′
•ρ , et)

s ::ρ P1|P2 ≻→ s ::ρ P ′

1[et/T [[ t ]] ρ′
•ρ ]|P ′

2

(5)

P1
i(t)@ℓ
−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ) P2
o(et)@self

−−−−−→
φ

P ′

2 match(T [[ t ]] ρ•ρ1
, et)

s1 ::ρ1
P1 ‖ s2 ::ρ2

P2 ≻→ s1 ::ρ1
P ′

1[et/T [[ t ]] ρ•ρ1
] ‖ s2 ::ρ2

P ′

2

(6)

P1
r(t)@ℓ
−−−→

ρ′
P ′

1 s = ρ′ • ρ (ℓ) P2
o(et)@self

−−−−−→
φ

P ′

2 match(T [[ t ]] ρ′
•ρ , et)

s ::ρ P1|P2 ≻→ s ::ρ P ′

1[et/T [[ t ]] ρ′
•ρ ]|P2

(7)

P1
r(t)@ℓ
−−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ) P2
o(et)@self

−−−−−→
φ

P ′

2 match(T [[ t ]] ρ•ρ1
, et)

s1 ::ρ1
P1 ‖ s2 ::ρ2

P2 ≻→ s1 ::ρ1
P ′

1[et/T [[ t ]] ρ•ρ1
] ‖ s2 ::ρ2

P2

(8)

s ::ρ P1 ≻→ s ::ρ P ′

1

s ::ρ P1|P2 ≻→ s ::ρ P ′

1|P2

(9)

P
n(u)@self

−−−−−→
ρ′

P ′ s′ ∈ S : s′ 6= s

s ::ρ P ≻→ s ::ρ P ′[s′/u] ‖ s′ :: [s′/self]•ρ nil

(10)

Table 6: The Reduction Relation: Process Interactions
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To conclude the description of the reduction relation, we have to say how reduction

behaves in presence of the operator of parallel composition of nets. Since the composition

N1 ‖ N2 is defined only if st(N1) ∩ st(N2) = ∅, we have:

N1 ≻→ N ′
1 st(N ′

1) ∩ st(N2) = ∅

N1 ‖ N2 ≻→ N ′
1 ‖ N2

(11)

Finally, we have to say how reduction behaves with respect to structural congruence.

We have:

N ≡ N1 N1 ≻→ N2 N2 ≡ N ′

N ≻→ N ′
(12)

Remark 3.2 Despite the different programming paradigms, there are interesting similar-

ities between Telescript and Klaim. General Magic Telescript [41] is an object oriented

language designed for network programming. A central concept in Telescript is the con-

cept of place, which corresponds to our sites. A place can be thought of as the stationary

process that can accept mobile agents. Agents travel from one place to another by invok-

ing the go operation. This operation requires the agent’s destination place (the ticket)

and the route of the trip. The main advantage of Klaim’s approach is that the “possi-

ble stationary processes” can be programmed via the notion of locality without requiring

the precise physical distribution of places. In other words, localities provide a powerful

abstraction mechanism over sites. There are also some analogies between our eval/out

operations and Telescript go operation: both allow mobile agents to be programmed.

Remark 3.3 Several theoretical works in non–interleaving semantics of process calculi

have adopted the notion of locality to capture logical distribution of processes (e.g. [6],

[13] and the references therein). The basic idea of these approaches is to allow the obser-

vation of actions together with the locations (access paths) where they take place. In our

approach, localities are not used as a tool for observing the distribution of processes but

rather as a programming device to structure and control the distribution of processes and

data. The formal models presented in [2, 19] are closely related to the work presented here.

These approaches deal with mobility much like π–calculus (channel and locality names can

be passed in interactions). Significantly, localities in Klaim can be used to simulate the

private name passing and the scope extrusion mechanisms of π–calculus, so that a natural

encoding of (asynchronous) π–calculus in Klaim can be easily programmed.

3.3 Scoping and Mobility

The role of a net is to allocate and coordinate a set of processes. Hence, beyond formally

describing all the issues related to physical distribution, net semantics is essential to study
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migratory applications and for understanding design decisions before carrying out an im-

plementation. This can be better understood by analyzing the effects of choosing specific

scoping disciplines on mobile agents when accessing tuple spaces.

The operational semantics of nets adopts a static scoping discipline for the evaluation

of out operations. On the other hand, a dynamic scope discipline is adopted for remote

eval operations: the meaning of localities used by a process spawned at a remote site

depends on the remote allocation environment.

Indeed, whenever a process P located at the site s1 wishes to insert a tuple t into

the remote tuple space located at s2, the local environment of P , namely ρ1, is used for

evaluating t. A dynamic scoping discipline for out can be obtained by replacing rule (2)

in Table 6 with the following:

P1
s(t)@ℓ
−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ) et = T [[ t ]]ρ2

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 ≻→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(et)

where the remote environment ρ2 is used for evaluating t.

Remark 3.4 Alternatively, we could also use the rule:

P1
s(t)@ℓ
−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 ≻→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(t)@self.nil

Namely, a process is placed in s2 which will eventually take care of the local evaluation of

the tuple t.

Dynamic scoping for out can be also simulated (without any modification to the op-

erational rules for nets) by writing eval(out(t)@self)@ℓ.P instead of out(t)@ℓ.P . The

execution of eval spawns process out(t)@self at site s2 (resulting from the evaluation of

ℓ) and, therefore, t is evaluated by using the local environment at s2.

When process P located at s1 wants to spawn a process Q at the remote site s2, a

dynamic scoping discipline is followed. The local environment ρ2 is used for giving meaning

to the localities which may be referred in Q. A static scoping discipline for eval can be

obtained by spawning Q{ρ1} rather than Q. More precisely, rule (4) in Table 6 could be

replaced by the following:

P1
e(Q)@ℓ
−−−→

ρ
P ′

1 s2 = ρ • ρ1 (ℓ) Q′ = Q{ρ1}

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 ≻→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 Q′ | P2
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In this case the remote spawning of process Q consists in transmitting Q packaged with

its allocation environment ρ1.

Again, eval with static scoping can be simulated via the primitives of the lan-

guage, in particular, by passing processes (and then closures) as fields of tuples and

using private localities to store intermediate results. With this in mind, we can write

newloc(u).out(Q)@u.in(!X)@u.eval(X)@ℓ.P instead of eval(Q)@ℓ.P . When eval(X)

is executed at site s2, X is bound to the process Q packaged with ρ1. Hence, a closure

rather than a plain process is activated at site s2, which is different from the case of

eval(Q).

4 Typing and Security

Security, e.g. privacy and integrity of data, is a key issue in the development of mobile

applications. One can easily imagine malicious mobile agents attempting to access private

information. A server receiving a mobile agent for execution thus needs to impose strong

requirements to ensure that the agent will not violate privacy and jeopardize the integrity

of the information. Similarly, mobile agents must ensure that their execution at the server

site will not damage them or compromise their security.

In this section we introduce a type system for Klaim and show how it can be used

to statically enforce security properties. More precisely, the type system permits one to

check whether the operations Klaim processes intend to perform over the sites of a net

really do comply with their access rights.

The typing analysis of Klaim programs is structured into two phases reflecting the

two–level syntax of Klaim. The first phase deduces process intentions (read, write, with-

draw, execute, . . . ) in relation to the various localities they are willing to interact with

or they want to migrate to. This is done by an inference system which assigns types to

processes, and also, partially, checks whether these behave in accordance with their de-

clared intentions. The second phase of the typing analysis checks whether each process

has the necessary rights to perform the intended operations, i.e. it does not violate the

access rights as granted by the net coordinator.

4.1 Types

We will use {r, i, o, e, n} to indicate the set of process capabilities; r denotes the capability

to execute a read operation, i the capability to execute an in operation, and so on.

Polarities are non–empty subsets of {r, i, o, e, n}. We use Π, ranged over by π (which

may be indexed), to denote the set of all polarities. Polarities are used differently by

processes and nets. The polarity of a locality or of a locality variable, say ℓ, within a

process contains information about the operations the process intends to perform at ℓ.

In a net, on the other hand, polarities are used to fix access rights. Type checking will
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guarantee that only intentions that match access rights, as granted by the coordinator,

are allowed.

Orderings between polarities can be used to model hierarchies of access rights. Obvi-

ously, if a process is able to perform an in operation at ℓ then it is also able to perform

a read at ℓ. Also, type checking should ensure that, if a process has capabilities π, then

it can execute all operations that require capabilities smaller (greater, in the ordering ⊑Π

defined below) than π. These intuitions lead to the subpolarity relation, obtained as the

least reflexive and transitive relation induced by the following rules:

{i} ⊑Π {r}
π1 ⊆ π2

π2 ⊑Π π1

π1 ⊑Π π′
1 π2 ⊑Π π′

2

(π1 ∪ π2) ⊑Π (π′
1 ∪ π′

2)

One could think of associating a polarity with each process or with each locality to

completely characterize the intentions of processes and the rights of localities. It is clear

that this would not be enough to take into account process migrations and the different

access rights of the different localities.

An obvious choice, for assigning types to a process, would be to associate with it a single

polarity that describes all the operations the process intends to perform, while ignoring

the specific localities it refers to. However, in this way, we would not characterize different

intentions relative to different localities. Associating polarities with each of the localities

referred to within a process would also be unsatisfactory. It hinders the possibility of

keeping track of the capabilities of remotely executed processes, which might be different

from those of sender processes. For example, consider a process that does not have the

right to access a remote tuple space (e.g. a database), but does have the right to send a

process for remote execution at a (server) node that is willing to grant the necessary right.

To take into account remote executions (migrations) of processes, we need to further

structure our types and to associate with each locality not just a polarity but also the

type that is required for the processes executed at that locality.

A type is a finite map that assigns pairs consisting of polarities and types to both

localities and locality variables. The first component of the pair associated with ℓ describes

the polarity of ℓ, while the second describes the types of the processes executed at ℓ.

Klaim types, ranged over by δ, are elements of a universe which is defined by the

following domain equation

∆ = Fin((Loc ∪ VLoc) 7−→ (Π × ∆))⊥ .

The construction of ∆ rests on a standard construction over complete partial orders

(cpo). Let 〈D,⊑
D
〉 be a cpo; then H(D) is the set of partial functions with finite domain

from Loc ∪ VLoc to the cpo Π × D defined by

H(D) = Fin((Loc ∪ VLoc) 7−→ (Π × D))⊥.
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This set of functions can be ordered via the relation ⊑
H(D)

stating that the more defined

the partial function the smaller it is.

1. ⊥ ⊑
H(D)

f , for all f ∈ H(D)

2. f ⊑
H(D)

g when

• dom(g) ⊆ dom(f), and

• ∀ℓ ∈ dom(g) : f(ℓ) ⊑Π×D
g(ℓ), where ⊑Π×D

is the obvious ordering on Π × D.

It is not difficult to show that if 〈D,⊑
D
〉 is a (ω–algebraic) cpo then also 〈H(D),⊑

H(D)
〉

is a (ω–algebraic) cpo.

Let 〈∆,�〉 be the initial solution1 of the recursive domain equation for ∆; � is called the

subtype relation. As usual, ⊓ shall denote the greatest lower bound, and φ shall denote the

element of ∆ with empty domain. If δ ∈ ∆, then δi(ℓ) is used to denote the i–th component

of the pair δ(ℓ), if it is defined; otherwise, δ1(ℓ) yields ∅ and δ2(ℓ) yields φ. Moreover, δ−−↓ℓ

denotes the greatest lower bound of the set {δ2(ℓ)}∪ {δ(ℓ′)−−↓ℓ | δ(ℓ′) is defined}. Notation

δ[δ1/(ℓ) := π] denotes a type δ1 such that δ1
1(ℓ) = π, δ2

1(ℓ) = φ if δ(ℓ) is undefined,

δ2
1(ℓ) = δ2(ℓ) otherwise, and δ1(ℓ

′) = δ(ℓ′) for ℓ′ 6= ℓ. Notation δ[δ1/δ2(ℓ)] has the same

effect as a substitution (thus δ[δ1/δ2(ℓ)] denotes δ itself if δ(ℓ) is undefined).

The typed version of Klaim is obtained by associating a type with locality variables

and with process variables whenever they are bound. Hereafter, for the sake of simplicity,

we will also call the typed version of the language Klaim.

The abstract syntax of terms (processes, as usual, are closed terms) is reported in

Table 7. Recall that ℓ stands for a generic locality or locality variable. To avoid name

clashing and thus overloading of types, we will assume that Vloc, the set of locality vari-

ables, is partitioned into two subsets: NVloc, used as arguments of newloc, and TVloc,

used as formals of tuples.

A type is associated with process and locality parameters of process identifiers and,

as usual, it is assumed that each process identifier A has a single defining equation

A(X̃ : δ̃, ũ : δ̃, x̃)
def
= P .

We are now ready to introduce the formal syntax of typed nets, whose role is to allocate

and coordinate processes, and to assign access rights. The type of sites is similar to that

of processes: it associates pairs 〈polarity, type〉 with localities and locality variables. This

1The construction H on cpos may be straightforwardly turned into a functor H in the category CPO
E,

the category of cpos with embeddings as morphisms. The action of the functor H on cpos is defined as for

H. If i : D ✁ D′ is an embedding, H(i) : H(D) −→ H(D′) (the action of the functor on embeddings) is

obtained as:
(H(i))(⊥) = ⊥ (H(i))(f) = i ◦ f.

By using standard techniques, we can prove that H is a continuous and covariant functor in CPO
E which

preserves ω–algebraicity [27]. Therefore, the theory in [36] ensures the existence and uniqueness in CPO
E

of the initial fixed point of the functor H, i.e. the initial solution of the recursive domain equation for ∆.
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P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ P1+P2

∣∣∣ X
∣∣∣ A〈P̃ , ℓ̃, ẽ〉

a ::= out(t)@ℓ
∣∣∣ in(t)@ℓ

∣∣∣ read(t)@ℓ
∣∣∣ eval(P )@ℓ

∣∣∣ newloc(u : δ)

t ::= e
∣∣∣ P

∣∣∣ ℓ
∣∣∣ !x

∣∣∣ !X : δ
∣∣∣ !u : δ

∣∣∣ t1, t2

Table 7: Typed Klaim Syntax

is declared by means of two functions, Λ and Υ. For each site s of the net, Λ describes

the access rights of processes located at s on the other sites of the net, while Υ describes

the locality variables that processes located at s may use.

A net is a triple N : 〈Λ,Υ〉 where N is as defined in Section 2.3, and Λ and Υ have

the following structure: Λ : st(N) −→ (st(N) −→ Π) and Υ : st(N) −→ V Loc.

4.2 Deriving Processes Types

This section presents an inference system that assigns types to processes. The type system

records the operations that processes are willing to perform at specific localities and checks

whether process operations comply with the declared types of the variables.

Type contexts Γ are functions mapping process variables and identifiers into types.

Hereafter, φ will denote the empty context. The auxiliary function update, defined struc-

turally over tuples syntax, will be used to update type contexts; it behaves like the identity

function for all fields but !X : δ. Formally, it is defined by:

update(Γ, t) =





update(update(Γ, t1), t2) if t = t1, t2

Γ[δ/X] if t = !X : δ

Γ otherwise

The type judgments for processes take the form Γ | P : δ where Γ is a type context

providing the type of process variables and identifiers of P . A statement such as Γ | P : δ

asserts that the capabilities of P are those in δ, within the context Γ.

The type of a process variable or identifier is always determined by the type context, Γ,

that has been set up by the other inference rules. Definedness of Γ(X) (Γ(A)) is guaranteed

by the fact that processes are closed terms.

Γ | X : Γ(X) Γ | A : Γ(A)

The simplest process (the null process) has no capability.

Γ | nil : φ
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The process out(t)@ℓ.P puts the tuple t in the tuple space whose address is specified

by ℓ and then behaves like P . The typing rule of the out operation

Γ | P : δ

Γ | out(t)@ℓ.P : δ[δ1(ℓ) := δ1(ℓ) ∪ {o}]

states that the type of out(t)@ℓ.P (possibly) extends that of P at ℓ with capability o.

Since out is not a binder, P is typed within the same context (Γ) as out(t)@ℓ.P .

The typing rules for read and in update the context with the types of the process

variables they bind. The second half of their premises checks whether process P does not

misuse the locality variables bound by read and in. Thus, for each locality variable u

with type δu one checks that the remote operations of P at u (δ−−↓u) really do respect δu.

The resulting type is obtained by extending the type of P at ℓ with the corresponding

capability (r or i).

update(Γ, t) | P : δ δu � δ−−↓u for all (!u : δu) ∈ fields(t)

Γ | read(t)@ℓ.P : δ[δ1(ℓ) := δ1(ℓ) ∪ {r}]

update(Γ, t) | P : δ δu � δ−−↓u for all (!u : δu) ∈ fields(t)

Γ | in(t)@ℓ.P : δ[δ1(ℓ) := δ1(ℓ) ∪ {i}]

where {ũ} are all the locality variables bound by read and in.

The typing rule of eval extends the type of P at ℓ with e and records that the remote

operations of P have to be extended with those (δ′) of the spawned process Q.

Γ | P : δ Γ | Q : δ′

Γ | eval(Q)@ℓ.P : δ[δ1(ℓ) := δ1(ℓ) ∪ {e}][(δ2(ℓ) ⊓ δ′)/δ2(ℓ)]

The typing rule for newloc extends the type of P at self with n and at u with the

type δ′ declared for u, while it checks whether the operations that P is willing to perform

at u (δ2(u)) comply with δ′.

Γ | P : δ δ′ � δ−−↓u

Γ | newloc(!u : δ′).P : δ[δ1(self) := δ1(self) ∪ {n}][δ′/δ2(u)]

The typing rules for parallel composition and choice state that the intentions of the

composed processes are in both cases the union, formally the greatest lower bound, of

those of the components. The binding context is left unchanged.

Γ | P : δ1 Γ | Q : δ2

Γ | P+Q : δ1 ⊓ δ2

Γ | P : δ1 Γ | Q : δ2

Γ | P | Q : δ1 ⊓ δ2

The typing rule for process definition, first updates the type context with the types

of the process variables that occur as parameters of A and with a candidate type δ for
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A. The resulting context is exploited to infer the type δ for P . Secondly, for each formal

locality variable ui, one checks that the operations of P at ui (i.e. δ2(ui)) match the type

declaration δui
. Finally, the inferred type is assigned to A.

Γ[δ̃X/X̃][δ/A] | P : δ δui
� δ2(ui) for all ui ∈ {ũ}

Γ | A : δ

where A(X̃ : δ̃X , ũ : δ̃u, x̃)
def
= P is the defining equation for the process identifier A.

The typing rule for process invocation, first determines the type of the process identifier

and those of the process arguments. It then, checks whether each of the types inferred

for the process arguments agree with the one of the corresponding formal parameter. No

requirement is imposed on the other arguments. The type of locality variables is controlled

when one of the rules for in, read and newloc is applied. Localities are controlled when

well–typedness of nets is checked.

Γ | A : δ Γ | Pi : δi and δXi
� δi for all Pi ∈ {P̃}

Γ | A〈P̃ , ℓ̃, ẽ〉 : δ{ℓ̃/ũ}

where δ{ℓ̃/ũ} is such that δ{ℓ̃/ũ}(ℓi) = 〈δ1(ui) ∪ δ1(ℓi), (δ
2(ui) ⊓ δ2(ℓi)){ℓ̃/ũ}〉, for ℓi ∈

{ℓ̃}, and δ{ℓ̃/ũ}(ℓ′) = 〈δ1(ℓ′), δ2(ℓ′){ℓ̃/ũ}〉, for ℓ′ 6∈ {ℓ̃} such that δ(ℓ′) is defined. The

inferred type states that A〈P̃ , ℓ̃, ẽ〉 intends to perform at ℓ̃ and ũ the same operations that

A〈X̃, ũ, x̃〉 intends to perform at ũ. Indeed, statically we are unable to establish which

occurrences of ui ∈ {ũ} in δ must be replaced by ℓi.

4.3 Typing Nets

This section presents the criteria for establishing whether a net is well–typed. The types

of the processes in a net will be required to agree with those of the sites where they are

located. More specifically, the types of the processes, as determined by the type inference

system, are checked against those fixed by the net coordinator, taking into account where

each process has been located.

The pair of functions, Λ and Υ associate a type with each site of a net. This is the

type that is compared with the one for located processes (which expresses their expected

behaviour) to check whether the net is well–typed.

Given a net N : 〈Λ,Υ〉, the type δs of each site s ∈ st(N) is obtained as:

∀ℓ ∈ (dom(ρs) ∪ dom(Υ(s))) :

δs(ℓ) =





〈Λ(s)(ρs(ℓ)), δρs(ℓ)〉 if ℓ ∈ dom(ρs)

〈{i, o, e, n}, δs〉 if ℓ ∈ dom(Υ(s)) ∩ NVloc

〈{i, o, e, n},⊥〉 if ℓ ∈ dom(Υ(s)) ∩ TVloc

Notice that, for any site s, δs is well–defined since, by definition of net, if ℓ ∈ dom(ρs)

then Λ(s)(ρs(ℓ)) is a polarity. Namely, the first item of the definition of δs uses the
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allocation environment ρs of s to determine the site associated to ℓ, hence its polarity and

type. The last two items deal with locality variables; the only restriction we statically put

on them is that a fresh node inherits the rights of the creating one.

In [17] a soundness theorem is proved, namely well–typed Klaim nets (and processes)

never lead to run–time errors due to misuse of access rights. For a net be well–typed, it

will be required that the types of the processes in the net agree with the access rights of the

sites where they are located. More specifically, the types of the processes, as derived by the

type inference system, are checked against those fixed by the net coordinator, while taking

into account where each process has been located. The soundness theorem establishes that

well–typedness is an invariant of the operational semantics. This result is essentially a

variant of standard subject reduction, that takes into account the fact that new sites can

be dynamically created. The soundness theorem and the related technicalities are not

presented here since they are not needed to appreciate the primitives and the pragmatics

of Klaim.

To highlight the utility of Klaim types, let us consider a system composed of a process

Server, which makes available in its local space a tuple containing locality l, and two

identical processes Client1 and Client2, which access the tuple space at lS to read an

address u and then send process P for execution at u.

Server
def
= out(l)@self.nil Clienti

def
= read(!u)@lS .eval(P )@u.nil

If P has type δ, each process Clienti, i = 1, 2, has type

δc = lS 7−→ 〈{r}, φ〉, u 7−→ 〈{e}, δ〉

Suppose now that only Client1 has the right to send processes for evaluation at the

location denoted by u. The net coordinator can thus allocate Server on site s and the

two processes Client on sites s1 and s2, and can give the following access rights to s1 and

s2

δs1 = s 7−→ 〈{r}, φ〉, u 7−→ 〈{e}, δ〉 δs2 = s 7−→ 〈{r}, φ〉

Remark 4.1 There are some similarities between types in Klaim and Telescript [41]

permit and authority. The latter are used to limit the access rights of mobile agents2.

The advantage of our approach is that the use of the type system makes mechanical static

verifications of access rights possible.

Type systems have already been proposed for calculi of mobile processes, though not

addressing security issues. Here, we mention the type system proposed by Pierce and

Sangiorgi [34] and refined by Kobayashi, Pierce and Turner [28]. In [34], a type system

is developed for π-calculus [32] which uses types of channels to record information on

2In Telescript an agent permit can also specify allowances of a mobile agent, e.g. the maximum lifetime

in seconds, the maximum size in bytes and so on.
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whether channels are used to read or to write. This type system was extended in [28] by

associating multiplicities with types in order to describe how many times each channel can

be used. The main difference with our approach lies in the treatment of localities and,

more importantly, in the role played by type information at the level of the net coordinator

to check and enforce access rights of processes.

The present work shares parts of its underlying rationale with the work by Volpano

and Smith [40], though those authors only consider a sequential procedural language and

the type system is used to control a specific non interference security property.

5 Programming Mobile Code Applications

In this section we illustrate how to use Klaim to program Mobile Code Applications

(MCAs). In the programming examples, we assume that natural numbers and identifiers

are basic values.

MCAs are distributed applications whose distinctive feature is the exploitation of

“code mobility”. According to the classification proposed in [14], we can single out three

paradigms, apart from the traditional client–server paradigm (CS), which are largely used

to build MCAs:

• Remote Evaluation (RE). Any component of a distributed application can invoke

services from other components by transmitting both the data needed to perform

the service and the code that describes how to perform the service.

• Mobile Agent (MA). A process (i.e. a program and an associated state of execution)

on a given node of a network can migrate to a different node where it continues its

execution from the current state.

• Code On–Demand (COD). A component of a distributed application running on a

given node, can dynamically download from a different component and link the code

to perform a given task.

Suitable programming constructs are needed to support these approaches. Indeed,

several programming languages, such as Java [3], Facile [23], Obliq [7] and Telescript [41]

were designed to provide facilities for process mobility and distribution; see [14] for a

detailed survey.

Our aim here is to show, by means of simple programming examples, that the Klaim

programming constructs are powerful enough to implement the programming paradigms

of MCAs.

Both the CS and RE paradigms can be programmed by exploiting the flexibility of

Klaim data structures, i.e. tuples. Indeed, tuple fields may contain both data values and

processes (i.e. program codes). Let us now show how to program RE (which is basically
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a CS in a language with higher order facilities like Klaim). Suppose we want to require

that server located at location l executes (evaluates) code P where the values v1, . . . , vn

must be assigned to variables x1, . . . , xn. To this end, we can use the instruction

out(in(!y1, . . . , !yn)@l.A〈y1, . . . , yn〉, v1, . . . , vn)@l

where we assume that A(x1, . . . , xn)
def
= P and that the server performs

in(!X, !x1, . . . , !xn)@self.out(x1, . . . , xn)@self.X

or a similar activity.

Suppose now that we want to execute process P at a (perhaps remote) location l, the

paradigm MA can be implemented by means of

- the instruction eval(P )@l, if a dynamic scoping discipline for resolving location

names is adopted,

- the sequence newloc(!u).out(P )@u.in(!X)@u.eval(X)@l, otherwise.

Since P is a closed term, i.e. P does not contain free variables, we can think of P as

a closure 〈process,data〉. Thus we have that processes migrate while taking their states

with them.

Finally, if we want to download a program code P stored in a tuple with one field

only (which contains P ) from a (perhaps remote) location l, the COD paradigm is simply

programmed by means of an instruction of the form read(!X)@l.

In the next three subsections we discuss three specific examples that take advantage

of the above described facilities.

5.1 Remote Procedure Call

A caller process, caller, sends a request to the callee, callee, and waits for a response. The

request, together with the name of the procedure and its actual parameters, contains the

caller’s private locality where the response has to be delivered.

caller = newloc(u). out(procid, e1, . . . , en, u)@ℓcallee.

in(! y1, . . . , ! yk)@u. 〈next behaviour 〉.

Process callee waits for an invocation, executes the related procedure and sends back the

results using the locality, passed together with the service request.

callee = in(! pid, !x1, . . . , !xn, !u)@self.(callee |

〈 pid(x1, . . . , xn)〉.out(r1, . . . , rk)@u.nil ).
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When processes are allocated in a net, the local environment of caller assigns to the

locality ℓcallee the site where callee is located. Hence, we have:

N = s1 ::{s1/self,s2/lcallee} caller ‖ s2 ::{s2/self} callee

A crucial role in this example is played by newloc(u) which permits a private data space

to be created and accessed only via the variable u.

5.2 Dynamic Newsgatherer

We now consider remote programming. This programming discipline permits writing

agents which can dynamically move over the network and can interact locally with other

agents. An agent placed by a user at the server’s location can thus be decoupled from the

user and interact with the server without using the net.

Consider the following scenario. User P needs additional information on a piece of data

represented by item (item could be, for example, the title of a book whose price P wants to

know). Part of the behaviour of P depends on this information. However, there are some

activities which are independent of it. P can look for the required information in a database

distributed over the network. We assume that at each node of the database reachable from

ℓitem contains either a tuple of the form (item, v), with the desired information, or a tuple

of the form (item, ℓnext), with the information about the next node to search for the

additional information.

The user process P asks for the execution at ℓitem (the starting point of the search,

which can be chosen according to the search key item) of the agent gatherer, which

dynamically travels between nodes looking for a tuple that contains information on item.

This agent takes as its parameters the research key item and a fresh locality u, which

provides the address of the user’s private tuple space where the result of the search has

to be placed. Once gatherer has been spawned, P splits its behaviour into two parallel

components: one waits for the additional information and the other proceeds. Thus,

those activities that do not need the additional information are decoupled from the search

activity, which might be complex and expensive.

P = newloc(u).eval(gatherer(item, u))@ℓitem.((in(!x)@u.P1)|P2)

Process gatherer can match two alternative tuples. The first one captures the addi-

tional information on item (e.g. the price). If this is found then it is placed at locality

u and gatherer terminates. The second tuple is used to obtain the address of the node

where the search has to be repeated.

gatherer(item, u) = read(item, ! x)@self.out(x)@u.nil

+ read(item, !u′)@self.eval(gatherer(item, u))@u′.nil
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Our assumption about the structure of the distributed database guarantees that

gatherer never deadlocks (because either the associated information or a location where

the search can be repeated certainly found), but it does not ensure that the search activ-

ity will terminate successfully: gatherer might loop indefinitely. This could happen if its

second tuple, the one with location information, always finds a match in the tuple spaces.

5.3 An Electronic Marketplace

By means of an example borrowed from [41], we illustrate now how to use Klaim to

program mobile agents.

Assume that a client (process) P wants to buy a specific camera, c. To decide where to

purchase the camera, P activates a migrating agent A and passes the following information

to it:

1. c, the make and the model of the camera chosen,

2. locD, the locality of the directory of the electronic marketplace, and

3. a length measure, which will be used to identify the geographical area of interest.

P expects A to return the name, address and telephone number of the closest (within the

chosen area) camera shop with the lowest price for c. The following could be part of the

behaviour of P

P
def
= . . . eval(A〈c, locD, length〉)@self.in(c, !x, ! y)@self. . . .

where x will retain the name, address and telephone number of the camera shop from

where to buy c at cost y.

The agent A behaves as follows:

1. It obtains the site where P is located, which will be used both to return the outcome

of the query and to identify the geographical area which is of interest for pricing

information. This is done by putting a tuple containing self into a new tuple space

u′, in order to force the evaluation of self within the local tuple space, and by

withdrawing the tuple.

2. It migrates to the site of the marketplace directory and asks for (and obtains) the

list of all camera shops whose location is close to the site of P . Each item in the list

contains the name, address and telephone number of a camera shop. A function l

will return the locality information within an item.

3. It visits each camera shop in turn and obtains the local price for c. The agent retains

information about the shop only if a lower price than that currently stored is offered.

4. After visiting all the camera shops on the list, it sends back to the site of P the

information about the shop that offers the lowest price for c. It then terminates.
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For the sake of simplicity, in defining agents we use a conditional construct (which can be

programmed by exploiting the dynamic creation of new sites and the choice operator) and

a data type list (with the usual operators hd, tl and empty).

A(x, u, y)
def
= newloc(u′).out(self)@u′.in(!u′′)@u′.

eval(B〈x, u′′, y〉)@u.nil

B(x, u, y)
def
= out(cshop, u, y)@self.in(cshop, ! list)@self.

if empty(list) then out(x, nocloseshop,−1)@u.nil

else I〈x, list, u, l(hd(list))〉

I(x, y, u, u′′′)
def
= eval(read(x, ! cost)@self.

R〈x, y, cost, hd(y), u〉)@u′′′.nil

R(x, y, w, z, u)
def
= if empty(y) then out(x, z, w)@u.nil

else C〈x, tl(y), w, z, u, l(hd(tl(y)))〉

C(x, y, w, z, u, u′′′)
def
= eval(read(x, ! cost)@self.if cost < w

then R〈x, y, cost, hd(y), u〉

else R〈x, y, w, z, u〉)@u′′′.nil

The following will be part of the behaviour of each camera shop Si

Si
def
= . . . |out(c, price(c))@self.nil| . . .

Let D denote the marketplace directory process. The net could be initially structured

as follows:

sP ::{sD/locD} P ‖ sD ::{s1/cs1,...,sn/csn} D ‖ s1 ::{} S1 ‖ . . . ‖ sn ::{} Sn

If now we are interested in inferring the type δ of P , we have that:

δ : rec ν.(self 7−→ 〈{o, i, e, n}, ν〉, u′ 7−→ 〈{o, i, e, n}, ν〉, locD 7−→ 〈{e}, δ′〉)

δ′ : self 7−→ 〈{o, i}, φ〉, u′′ 7−→ 〈{o}, φ〉, u′′′ 7−→ 〈{e}, δ′′〉

δ′′ : rec ν.(self 7−→ 〈{r}, φ〉, u′′ 7−→ 〈{o}, φ〉, u′′′ 7−→ 〈{e}, ν〉)

These types state that P performs any kind of operation both at the site where it is

located (addressed by self) and at the site it dynamically creates (namely u′). More-

over, when (a process activated by) P migrates to the site of the marketplace directory

(addressed by locD), it performs both local out and in, remote out at u′′ (to return the

outcome of the initial query), and migration to u′′′ (the site of a camera shop). Finally,

when running at the site of a camera shop, (a process activated by) P performs local

read (to read the local price for the camera c), remote out at the original site of P , and

migrations to the sites of other camera shops.
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6 Klava: Klaim in Java

In this section we describe the prototype implementation of Klaim. To ensure portability

over different platforms we choose Java [3] as the implementation language. Of course,

here we assume a basic knowledge of Java.

The implementation of Klaim in Java (JDK 1.1), called Klava [5], extends Java

packages with two new packages, Linda and Klaim.

The Linda package implements standard Linda primitives. The main classes of this

package are Tuples and TupleSpace. The class Tuples provides the methods to build and

handle tuples. The class TupleSpace provides the mechanisms to build, access and update

a tuple space. In particular, the Linda operations in, out and read are implemented as

methods of this class.

The Klaim package supports the implementation of Klaim. The main classes of this

package are Net, Node, K-Process and NodeMsg.

The class Net implements Klaim coordination language, i.e. a Klaim net is an object

of this class. A net object behaves like a server and contains the code to register the sites

of a net. In the current implementation, localities are implemented as strings. Sites, on

the other hand, are Internet addresses.

An object of the class Node implements a Klaim node. Hence, it encapsulates a tuple

space and a set of processes. Klaim primitives (in, read, out, eval) are implemented as

methods of this class. One of the parameters of these methods is the locality of the node.

A Klaim process is an object of the class K-Process. The main method of this class

is the method execute(). This method is invoked to run a process on a node, such as the

method run of the class Thread.

The objects of the class NodeMsg are used to implement node communications. A

message object contains the sender node, the receiver node, the operation code, and a

content field of type Object. This feature permits transmission of processes. However,

the receiver node may not know the class the process belongs to. Therefore, the process

must be sent together with the corresponding .class file. Each node has also a specific

NodeClassLoader which performs the dynamic linkage of the class received from other

nodes of the net.

The main method of the class NodeClassLoader is addClassBytes which is invoked

when a node receives a process from the net. The method addClassBytes inserts the

.class files into a local hash table. The method loadClass uses the hash table to load

the class definitions of remote processes before starting their execution. Note that a

similar approach was adopted in the implementation of the AGLETS library [26]. Figure 1

presents part of our Java code implementing the NodeClassLoader.

To give the reader a flavour of Klava programming, we report in Figure 2 the source

code of the CameraClient agent of the example presented in Section 5.3.
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public class NodeClassLoader extends ClassLoader {

private Hashtable classes = new Hashtable();

private Hashtable classData = new Hashtable();

Node thisNode;

public NodeClassLoader() {

}

synchronized public void addClassBytes( String className, byte classBytes[] ) {

if( classData.get( className ) == null && classBytes != null )

classData.put( className, classBytes );

}

:

public synchronized Class loadClass(String className, boolean resolveIt)

throws ClassNotFoundException {

Class result;

byte classData[];

result = (Class)classes.get(className); /* Check local cache of classes */

if (result != null) {

return result;

}

classData = getClassBytes(className); /* Load the class from the repository */

if (classData == null) {

try {

result = super.findSystemClass(className);

return result;

} catch (Exception e) {

System.err.println("NodeClassLoader : " + e );

e.printStackTrace();

throw new ClassNotFoundException( className );

}

}

result = defineClass(classData, 0, classData.length); /* Parse the class file */

if (result == null) {

throw new ClassFormatError();

}

if (resolveIt) {

resolveClass(result);

}

classes.put(className, result);

return result;

}

}

Figure 1: NodeClassLoader.java
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public class CameraClient extends K-Process {

protected KString CameraMake;

protected Locality MarketPlaceDir;

protected KInteger distance;

protected MarketPlaceAgent mAgent;

public CameraClient( KString c, Locality m, KInteger d ) {

CameraMake = c;

MarketPlaceDir = m;

distance = d;

}

public void execute() {

PhysicalLocality newLoc;

PhysicalLocality KLoc = new PhysicalLocality();

KString ShopName = new KString();

KInteger CameraPrice = new KInteger();

newLoc = (PhysicalLocality)newloc();

out( self, newLoc );

in( KLoc, newLoc );

mAgent = new MarketPlaceAgent( CameraMake, KLoc, distance );

eval( mAgent, MarketPlaceDir );

in( CameraMake, ShopName, CameraPrice, self );

Print( CameraMake + " at " + ShopName + " costs " + CameraPrice );

}

public static void main( String args[] ) throws IOException {

Node node;

PhysicalLocality ClientLoc = new PhysicalLocality( "CameraClient" );

KString CameraMake = new KString( "CameraX" );

Locality MarketLoc = new PhysicalLocality( "MarketPlace" );

KInteger distance = new KInteger( 10 );

if ( args.length > 0 )

ClientLoc = new PhysicalLocality( args[0] );

if ( args.length > 1 )

CameraMake = new KString( args[1] );

if ( args.length > 2 )

MarketLoc = new PhysicalLocality( args[2] );

if ( args.length > 3 )

distance = new KInteger( Integer.parseInt( args[3] ) );

node = new NodeG( "CameraClient", ClientLoc, "localhost", 9999 );

K-Process P = new CameraClient( CameraMake, MarketLoc, distance );

node.start();

node.addProcess( P );

}

}

Figure 2: CameraClient.java
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Remark 6.1 Java has also been used to implement a dialect of Linda called Jada [12].

Jada supports a version of Linda with multiple tuple spaces. Tuple spaces are the key

notion of Jada; they are autonomous entities, distributed over the nodes of a net and

identified by the internet address of the nodes where they are placed. In Jada there

is no distinction between logical and physical addresses. Processes use tuple spaces by

connecting to the nodes where they are placed and by invoking their methods. Jada does

not support process mobility, namely the eval primitive is not implemented and processes

cannot be exchanged in communications.

7 Concluding Remarks

In this paper we have presented a kernel programming language which supports mobile ap-

plications. An operational semantics, which focuses on the coordination of mobile agents,

is provided. A type system that permits one to statically detect violations of security

properties related to capabilities and access control has been developed. Programming

examples have been presented that illustrate how mobile applications can be expressed in

Klaim. Finally, a prototype implementation in Java has been described.

The Klaim type system provides a first step towards the ambitious goal of demon-

strating that typing information can be systematically used to guarantee that well–typed

processes enjoy security properties. We plan to extend the type system by introducing:

- user–defined capabilities,

- allowance capabilities (e.g. maximum life–time in seconds, maximum size in bytes,

etc.),

- multi–level security (e.g. structuring localities into levels of security), and

- dynamic transmission of access rights.

Klaim can also be equipped with cryptographic primitives as done in spi–calculus [1].

We plan to develop observational semantics as a foundation for programming logics

and verification techniques. To this end, our starting point will be the testing framework

developed for a process calculus based on Linda in [18, 37].

We are currently exploring the possibility of allowing nets to communicate and move

processes and tuples between them. The current Klava implementation appears to be

well–suited also to program this feature, that will lead to providing Klaim and Klava

with hierarchical nets.

Klaim has been implemented via Java packages, hence programmers have to adopt

the Java (object–oriented) programming discipline to use Klaim. A compiler from Klaim
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extended with Pascal–like primitives in Klava is under development, together with the

implementation of the typed version of Klava.
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