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Abstract

The theory of flowchart schemes has arich history going back to lanov [6]; see
Manna [22] for an elementary exposition. A central question in the theory of pro-
gram schemes is scheme equivalence. Manna presents several examples of equiv-
alence proofs that work by simplifying the schemes using various combinatorial
transformation rules. In this paper we present a purely algebraic approach to this
problem using Kleene algebra with tests (KAT). Instead of transforming schemes
directly using combinatorial graph manipulation, we regard them as a certain kind
of automaton on abstract traces. We prove a generalization of Kleene's theorem
and use it to construct equivalent expressionsin the language of KAT. We can then
give apurely equational proof of the equivalence of the resulting expressions. We
prove soundness of the method and give a detailed example of its use.

1 Introduction

Kleene agebra (KA) is the algebra of regular expressions. It was first introduced by
Kleene[8]; the name Kleene algebra was coined by Conway [5], who developed much
of the algebraic theory. Kleene algebra has appeared in computer science in many
guises. semantics and logics of programs[9, 23], automata and formal languages [ 20,
21], and thedesign and analysisof algorithms[1, 7, 10]. Many authors have contributed
over the years to the development of the algebraic theory; see [13] and references
therein.

Kleene algebra with tests (KAT), introduced in [13], combines programs and as-
sertionsin apurely equational system. A Kleene algebra with testsis aKleene algebra
with an embedded Boolean subalgebra. KAT strictly subsumes propositional Hoare
Logic (PHL), is of no greater complexity than PHL, and is deductively complete over
relational models (PHL isnot) [17, 4, 14, 18]. KAT isless expressivethan propositional
Dynamic Logic (PDL), but also less complex (unless PSPACE = EXPTIME, which



complexity theorists generally regard as unlikely). Moreover, KAT requires nothing
beyond classical equational logic, in contrast to PHL or PDL, which depend on amore
complicated syntax involving partial correctness assertions or modalities.

KAT has been applied successfully in a number of low-level verification tasks in-
volving communication protocols, basic safety analysis, concurrency control, and com-
piler optimization [2, 3, 16]. A useful feature of KAT in this regard is its ability to
accommodate certain basic equational assumptions regarding the interaction of atomic
instructions. This feature makes KAT ideal for reasoning about the correctness of low-
level code transformations.

In this paper we further demonstrate the utility of KAT by showing how it can be
used to recast much of the classical theory of flowchart schemesinto apurely algebraic
framework. A flowchart scheme is a vertex-labeled graph that represents an uninter-
preted program. The vertices are labeled with atomic assignments and tests that can be
performed during execution, and the edges represent control paths. The primitive func-
tion and relation symbols appearing in vertex labels are uninterpreted; oneis typically
interested in the behavior of the program under al possible interpretations.

The theory of flowchart schemes has arich history going back to lanov [6]. The
text of Manna [22] gives an elementary exposition of the theory. A central question
that occupies much of Manna's attention is the problem of scheme equiva ence. Manna
presents several examples of equivalence proofs that work by applying a sequence of
local simplifying transformationsto the schemes. These transformations operate on the
graph itself and are combinatorial in nature.

In this paper we present a purely algebraic approach to the equivalence problem
using KAT. Instead of transforming the graphs of the schemes directly, we regard
them as automata of a certain generalized form and use a generalization of Kleene's
theorem to construct equivalent expressionsin the language of KAT. We can then give
a purely equational proof in KAT of the equivalence of the resulting expressions. All
our atomic transformationsare special cases of four fundamental transformations. Thus
the combinatorial graph manipulations of Manna are replaced with simple equational
rewriting. Thisapproach succeeds even for the most complicated of Manna’'sexamples,
aparticularly intricate equivalence due to Paterson (see [22]).

The chief advantage of this approach is that the objects we are manipulating are
linguistic expressions as opposed to combinatorial objects such as graphs. This gives
anumber of benefits. Since the semanticsis compositional, it is easier to give rigorous
proofs of soundness. Comparison of expressions to be simplified with the rules of
KAT helps to suggest tactics for simplification. Finally, since the formalism is based
on classical equational logic, it is more amenable to implementation.

2 Definitions

2.1 Flowchart Schemes

We follow Manna's development [22]. Let X be a fixed finite ranked alphabet con-
sisting of function symbols f, g, ... and relation symbols P, @, . . ., each with afixed
nonnegative arity (number of inputs). We omit any explicit notation for the arity of a



symbol, except that the mention of an expression f(t1,... ,t,) Of P(t1,...,t,) car-
ries with it the implicit proviso that f or P is n-ary. Function symbols of arity O are
called individual constants and are denoted a, b, . . . . In addition to the symbolsin ¥,
thereis aninfinite set of individual variablesz, y, z, . . . .

A termis awell-formed (i.e., arity-respecting) expression composed of individual
variables and function symbols of ¥. For example, if f is unary, g is binary, a is
nullary, and z,y are variables, then g(g(z,a), f(f(y))) isaterm. An atomic formula
isan expression of theform P(¢4, ... ,t,), wherethet,, ... ,t, areterms.

A flowchart scheme S over ¥ consists of afinite flow diagram, a designated finite
set of input variables, a designated finite set of output variables, and a designated
finite set of work variables. The sets of input, output, and work variables are pairwise
digoint. The flow diagramis composed of the following five types of statements:

1. Start statement:

|y1,...,yn::t1,...,tn|

2. Assignment statement:

Ylyeoo yYn i =1T1,... ,tpn

Y

3. Test statement:

\
|

4. Halt statement:

5. Loop statement:



Each flowchart scheme begins with a single start statement. Immediately after the
start statement, the work variables must be initialized with terms that depend only
on the input variables. Similarly, immediately before each halt statement, the output
variables must be assigned values depending only on the work variables and input
variables. The scheme may contain other assignment or test statements involving the
work variables only. These syntactic restrictions ensure that the output values depend
functionally on the input values. We might relax these restrictions to require only that
each work variable beinitialized beforeit is used and each output variable be set before
halting, but without syntactic enforcement these conditions are undecidable.

An interpretation for ¥ consists of a first-order structure D of signature ¥, which
provides meanings for all the symbols in . Each n-ary function symbol f € X is
interpreted as an n-ary function 2 : D™ — D and each relation symbol P € ¥ is
interpreted as an n-ary relation PP C D",

A flowchart program is a pair <S, D>, where S is a scheme and D is an in-
terpretation. The semantics of <S, D> is operational; see Manna [22] for a formal
definition. Under this semantics, each program denotes a partial function from the
set of input valuations (valuations of the input variables) over D to the set of out-
put valuations (valuations of the output variables) over D. The assignment statement
Yis--- ,Yn = t1,...,t, denotes the ssimultaneous assignment of the current values
of termsty, ... ,t, tothevariablesyy, ... ,y,. Theloop statement denotes an infinite
non-halting computation.

We may compare two schemes only if they have the same input variables and the
same output variables. Two such schemes are said to be compatible. For a given
pair of compatible schemes S and S’ and interpretation D, we say that the programs
<S,D>and <S’, D> areequivalent if they denote the same partial function from input
valuations to output valuations; that is, if for every input valuation, either

e both programsdo not halt, or
e both programs halt and produce the same output valuation.

Two compatible flowchart schemes S and S’ areequivalent if <S, D> and <S’, D> are
equivalent for every interpretation D.

In our treatment, we will make some simplifying assumptionsthat entail no loss of
generality.

e Werestrict our attention to smple assignmentsy := ¢ only. Parallel assignments
Yiy--- Yn :=t1,...,t, can besimulated by introducing new work variablesif
necessary.

¢ We assume the domain contains a designated neutral element | to which all
non-input variables are initialized immediately after the start and to which all
not-output variables are set immediately before halting. The value of L does not
matter. This obviates the need for the initialization of work variables and the
setting of output variables. Accordingly, our start and halt statements take the
simpler form



start Y
start|

respectively.

¢ We dispense with the loop statement, since it can be simulated easily.

2.2 KleeneAlgebrawith Tests

Kleene algebrawas introduced by S. C. Kleene [8] (see aso [5]). We define aKleene
algebra (KA) to be a structure (K, +, -, *, 0, 1), where (K, +, -, 0, 1) isan idem-
potent semiring, p*q is the least solution to q + px < x, and qp* the least solution to
q+ xp < x. Here “least” refers to the natural partial order p < q < p+q=gq. The
operation + gives the supremum with respect to <. This particular axiomatization is
from [11].

We normally omit the -, writing pq for p - q. The precedence of the operatorsis
* > . > 4. Thusp + qr* should be parsed p + (q(r*)).

Typical models include the family of regular sets of strings over a finite alphabet,
the family of binary relations on a set, and the family of n x n matrices over another
Kleene algebra.

The following are some elementary theorems of KA.

p* = 1+4pp* = 1+p"p = p'p* = p** 1)
p(ap)* = (pa)*p 2
p*(ap™)* = (p+a)* = (p*a)p" ©)
px=xq — p'x=xq" (4)

Theidentities (2) and (3) are called the dliding rule and the denesting rule, respectively.
These rules are particularly useful in program equivalence proofs. The property (4) is
akind of bisimulation property. It plays a prominent role in the completeness proof of
[11]. We refer the reader to [11] for further definitions and basic results.

A Kleene algebra with tests (KAT) [13] is a Kleene algebra with an embedded
Boolean subalgebra. More precisely, it isatwo-sorted structure (K, B, +, -, *, 7,0, 1),
where ~ is a unary operator defined only on B, suchthat B C K, (K, +, -, *, 0, 1)
isaKleene agebra, and (B, +, -, —, 0, 1) isaBoolean algebra. The elements of B
are called tests. We reserve the letters p, q,r,s,... for arbitrary elements of K and
a,b,c,... fortests.

When applied to arbitrary elements of K, the operators +, -, 0, 1 refer to nondeter-
ministic choice, composition, fail and skip, respectively. Applied to tests, they take on
the additional meaning of Boolean disjunction, conjunction, falsity and truth, respec-
tively. These two usages do not conflict; for example, sequentialy testing b and c is
the same as testing their conjunction bc.

The following are some basic theorems of KAT.

bg=gb — bg* = (ba)*b = q*b = b(gb)*
bg=qb ¢ bg=qgb < bgb+bgb=0.
See [13] for further definitions and basic results.



2.3 Semanticsof KAT

For applicationsin program verification, we usually interpret programs and tests as sets
of traces or sets of binary relations on a set of states. Both these classes of algebras are
defined in terms of Kripke frames. A Kripke frame over a set of atomic programs P
and a set of atomic tests B (not necessarily finite) is a structure (K, m ), where

mK:P—>2KXK mK:B—>2K.

Elements of K arecalled states. A tracein K isasequence ugpoti1 - - * Un—1Pn—1Un,
wheren > 0, u; € K, p; € P, and (ui,uH_l) € mK(pi) for0 <i<n-—1. We
denotetracesby o, 7, ... . Thefirst and last states of atrace o are denoted first(o) and
last(o), respectively. If last(o) = first(r), we can fuse o and 7 to get thetrace o 7.

The powerset of the set of all tracesin K formsa KAT inwhich + isset union, - is
the operation

AB Y {or|o€ A, € B, last(o) = first(r)},

and A* is the union of dl finite powers of A. The Boolean elements are the sets of
traces of length O, i.e. traces consisting of asingle state. A canonical interpretation for
KAT expressionsover P and B is given by

[pl < {upv| (u,v) € mg(p)}, peEP
[blx = mg(b), beB,

extended homomorphically. A set of tracesis regular if itis [pl x for some KAT
expression p. The subalgebraof all regular sets of traces of K isdenoted Tr x [19].

Theset of al binary relationson K aso formsaKAT under the standard interpreta-
tion of the KAT operators (see[19]). The operator - is ordinary relational composition.
The Boolean elements are subsets of the identity relation. As above, one can define a
canonical interpretation

plx ¥ mx(p), peP

blx {(u,u) |u € mg(b)}, beB.

A binary relation is regular if itis [p] x for some KAT expression p. The relational
algebra consisting of all regular sets of binary relationson K is denoted Rel k.
These classes of algebras are related by the KAT homomorphism

Ext: X — {(first(o),last(o)) |0 € X},
which maps Tr g canonically onto Rel x in the sense that
Ext(Iplx) = I[plx ©)

for al expressionsp [19, §3.4].
When B is finite, alanguage-theoretic interpretation is given by the algebra of reg-
ular sets of guarded strings [17]. Let Ag denote the set of atoms (minimal nonzero



elements) of the free Boolean algebra generated by B. A guarded string is a sequence
QopPoQ1 * - Ap_1Pn_10n, Wherea; € Ag and p € P. The agebra of regular sets of
guarded stringsis most easily described as the regular trace algebra Tr ; of the Kripke
frame G whose states are Ag and
def

mg(p) = Ag X.AB, p e P

mg(b) ¥ {ae€dAs|a<b}, beB.
There is a natural homomorphism from this algebra to the regular trace algebra Tr
of any Kripke frame K over P, B [19, Lemma3.2].

3 Schematic KAT

Schematic KAT (SKAT) isaversion of KAT whose intended semantics coincides with
the semantics of flowchart schemes over a ranked alphabet 3 as described in Section
2.1. Theatomic programsP of SKAT areassignmentsz := ¢, wherex isavariableand
t is a X-term, and the atomic tests B are P(t4, ... ,t,), where P is an n-ary relation
symbol of ¥ and ¢4, ... ,t, are X-terms.

3.1 Semanticsof Schematic KAT

We are primarily interested in interpretations over Kripke frames of a special form
defined with respect to a first-order structure D of signature . Such Kripke frames
are caled Tarskian. The structure D provides arity-respecting interpretations for the
atomic function and relation symbolsin ¥. States are valuations, or functions that
assign a value from D to each individua variable. Valuations over D are denoted
6,n,... . Theset of all such valuationsis denoted Val ;. The action of the assignment
x := t isto change the state in the following way: the expression ¢ is evaluated in the
input state and assigned to x, and the resulting valuation is the output state. Formally,

mp(z:=t) € {(@,n)|n=0[z/6(t)}
mp(Pty,... tn)) = {8 PPO(t1),... ,0(t.))},

where 8]z /a] denotes the valuation that agrees with 6 on al variables except possibly
x, onwhich it takes the value a. As described in Section 2.3, a Tarskian frame D gives
riseto aregular trace algebra Tr p and aregular relational algebraRel p.

3.2 Schematic Automata

To obtain an expression of SKAT from a given scheme, wewill view aschemeasakind
of generalized finite automaton called a schematic automaton. Schematic automata are
a generalization of automata on guarded strings (AGS) introduced in [15]. AGS are
like ordinary finite automata, except that they take guarded strings as inputs. In turn,
schematic automataover X arelike AGS, except that they take traces of Kripke frames
over ¥ asinputs.



AGS are defined asfollows. Let B bethe set of tests built from afinite set of atomic
tests B. Note that B is infinite in general. An AGS over P, B is alabeled transition
graph with labels P U B and designated sets of start and accept states. Transitions
labeled with atomic programs are called action transitions and those [abeled with tests
are called test trangitions.

Informally, a nondeterministic AGS works as follows. Aninput is aguarded string
x over P, B. We start with a pebble on an input state with the input pointer reading
first(x). At any point in the computation, the pebbleis occupying a state, and the input
pointer is pointing to an atom somewherein x. If thereis an action transition from the
current state labeled with p € P, and the next program symbol in x is p, then we may
nondeterministically choose to move the pebble along that transition and advance the
input pointer beyond p. If thereis atest transition from the current state labeled with a
test b € B, then that transition is enabled if the current atom « in x satisfies b, where
we regard a as atruth assignment to B. We may nondeterministically choose to move
the pebble aong any enabled test transition, but we do not advance the input pointer.
Theinput is accepted if the pebble ever occupies an accept state while the input pointer
isreading last(x).

Ordinary finite automata with e-transitions can be regarded as the specia case in
which B = &, giving the two-element Boolean algebra {0, 1}. Ane-transitionisjust a
test transition with Boolean label 1. Inthiscasethe only atomis 1, whichis suppressed
in the input string.

It was shown in [15, Theorem 3.1] that a version of Kleene's theorem holds for
automata on guarded strings. given any AGS, one can efficiently construct an equiv-
alent KAT expression, and vice versa. Here equivalence means that the AGS and the
KAT expression represent the same set of guarded strings. Moreover, the constructions
in both directions are the same as in the usual version of Kleene's theorem. A more
formal treatment and further details can be found in [15].

AGS are unsuitable for schematic interpretations over . One complication is that
the set B of atomic tests is infinite in general. It is true that only finitely many tests
occur in any fixed program, but thisis insufficient for our purposes because our trans-
formation rules of Section 4.1 do not respect this restriction.

For schematic automata M over X, B is the (possibly infinite) set of atomic for-
mulas over X, B isthe set of quantifier-free first-order formulas, and the inputs are no
longer guarded strings but traces ugpou1 - + - Upn—1pn_1u, Of aKripkeframe K over X.
Let uscall the states of K nodes and the states of M states to avoid confusion. At any
point in time, the input pointer is reading a node « of the input trace, and the atomic
formulas true at that node determine which test transitions from the current stete are
enabled. Specifically, atest transition with label b isenabled if u F b; that is, if bisa
logical consequence of

{P(t1,...,tn) |u € mg(P(t1,...,tn))}
U {-P(t1,... ,tn) |[u € mg(P(t1,... ,tn))}.
The formal definition of acceptance for schematic automatais similar to AGS. Let

R(M) be the set of strings over the alphabet (P U B)* accepted by M under the
classical definition of finite automaton acceptance. Each stringx € (P U B) * isaKAT



expression, therefore represents a set of traces [x]] . A trace o of K is accepted by
M if there existsan x € R(M) suchthat o € [xIk; thatis, if o € Hg(R(M)),
where

Hi(4) = |J Iplk.
pEA

We denote by L i (M) the set of traces of K accepted by M.

The following lemma is Kleene's theorem for schematic automata. It is a direct
generalization of [15, Theorem 3.1] for AGS. The proof is a straightforward modifica-
tion of the proof of that theorem.

Lemma 3.1 Schematic automata accept all and only regular sets of traces. That is, for
each schematic automaton M over X, one can construct an equivalent KAT expression
p over ¥, and for each KAT expression p over 3, one can construct an equivalent
schematic automaton A/ over X. Here equivalent means that for any Kripke frame K
over X, Lg(M) = [plk-.

Proof. Given p, consider it as aregular expression over the alphabet P U B with
the classical interpretation, and construct an equivalent finite automaton A with input
alphabet P U B asin the usual proof of Kleene's theorem (see e.g. [12]). Conversely,
given afinite automaton M with input alphabet P U B, construct an equivalent regular
expression p. Let R(p) denote the regular subset of (P U B)* denoted by p under the
classical interpretation of regular expressions. In both constructions, R(p) = R(M).

We claim that in both constructions, [pll x = Lx(M). To show this, it suffices
to show that Lx (M) = Hg(R(M)) and [plx = Hk(R(p)). The former equa-
tion is just the definition of acceptance for schematic automata. For the latter, it is
easily shown that the map Hg is a homomorphism with respect to the regular opera-
tors. Moreover, the maps [-1 ¢ and Hx o R agree on the generators P and B, since
Hi(R(p)) = Hr({p}) = [pllk forp € P U B, and Hx(R(0)) = [0 = &.
It follows by induction that [[-1 x and Hx o R agree on all regular expressions over
PUB. |

4 Soundness of the Method

Our method of proving the egquivalence of compatible flowchart schemes proceeds as
follows. We assume that all non-input variables of both schemes are initialized with
y := L at the start in both schemes and that all non-output variables of both schemes
areset by y := L in both schemes before halting. This does not affect the semantics
of the scheme. (In practice, we do not write the assignments y := _L explicitly, but we
assumethat they arethere.) We view each scheme as a schematic automaton as defined
in Section 3.2. Schemes and schematic automata are essentially notational variants of
each other; the only differenceisthat the labels are on the edgesin schematic automata
instead of on the nodes as in flowchart schemes. The start state is the start statement
and the accept states are the halt statements. See Figs. 1-4 for a comparison of these
two views. We use the construction of Kleene's theorem (Lemma 3.1) to write an



equivalent SKAT expression for each automaton. We then use the axioms of KAT in
conjunction with certain additional valid identities given below in Section 4.1 to prove
the equivalence of the resulting expressions.

The soundness of our method is based on the following theorem.

Theorem 4.1 Let S and T" be two compatible flowchart schemes over 3, and let p and
q bethe SKAT expressions obtained by applying the above procedureto .S and T'. For
any interpretation D over X, [plp = [qlp ifandonlyif <S, D> and <T, D> are
equivalent in the sense of Section 2.1.

Proof. Since schemes are deterministic, each pair <S, D> and starting valuation
6 € Vap determine a unique finite or infinite trace o such that first(c) = 6. The
trace o isfinite iff the program <S, D> halts on input valuation #, and in that case its
output valuationislast(c). By the semantics of schematic automata, the set of all such
finite traces is just Lp(.S), the set of traces accepted by .S viewed as a schematic au-
tomaton, and <S, D> and <T', D> are equivalent iff the partial functions Ext(L p(5))
and Ext(Lp(T")) from input valuations to output valuations are the same. (Our con-
vention regarding the initialization of non-input variables and the setting of non-output
variablesto the neutral element L makes the distinction between the different types of
variablesirrelevant.) By Lemma3.1 and (5), thisoccursiff [p]l p = [qlp. |

The significance of Theorem 4.1 is that scheme equivalence amounts to the equa-
tional theory of theregular relation algebras Rel p of Tarskian frames D over ¥. From
a practical standpoint, this theorem justifies the use of the KAT axioms in scheme
equivalence proofs. Sincethe Rel p are Kleene algebraswith tests, any theoremp = q
of KAT holds under the interpretation [-] . Moreover, any additional identities that
can be determined to hold under all such interpretations can be used in scheme equiv-
alence proofs. We identify some useful such identities in the next section.

4.1 Additional Schematic | dentities

In manipulating SKAT expressions, we will need to make use of extra equational pos-
tulatesthat arevalidin al relational algebras Rel p of Tarskian frames. These play the
same role as the assignment axiom of Hoare Logic and may be regarded as axioms of
SKAT. All such postulates we will need in this paper are instances of the following
four identities:

pimsiyimt = ye=tl/sivi=s WERNG) ()
Ti=s5;y:=t = z:=s;y:=tlz/s] (z&FV(s)) (7
x:=s;x:=t = x = tx/s] (8
plzft] =t = xi=t;p 9

wherein (6) and (7), x and y are distinct variables and FV (s) denotes the set of vari-
ables occurringin s. Special cases of (6) and (9) are the commutativity conditions

r =S

¥

= y=tiz=s (¢ gFVQE), y gRV(s)) (10)

Sy
T = x:=t;p (x ¢ FV(p)) (11)

t
t

10



The notation ¢[z/t] or s[z/t] denotes the result of substituting the term ¢ for all
occurrences of z in the formula ¢ or term s, respectively. Thisis not to be confused
with 6]z /a] for valuations 8 defined previously in Section 3.1. We use both notations
below. They are related by the equation

O(tlz/s]) = 6[z/0(s)](t), (12)

which is easily proved by induction on ¢.

We will prove the soundness of (6)—(11) below (Theorem 4.3). Note that these
identitiesarenot valid inthetrace algebras Tr p, but they are valid in the corresponding
relational algebrasRel p.

It is interesting to compare (9) with the assignment axiom of Hoare Logic. The
Hoarepartial correctnessassertion {b}p{c} isencodedin KAT by the equationbpc = 0
or equivalently, bpc = bp. Intuitively, theformer saysthat the program p with preguard
b and postguard ¢ has no halting execution, and the latter says that testing c after exe-
cuting bp is aways redundant.

The assignment axiom of Hoare Logic is

{olz/t]} © =t {o},
which is represented in schematic KAT by either of the two equivalent equations

ple/tl;z:=t;o = glz/t];z:=t (13)
plzft] ;z:=1t; = 0. (14)

Theinteresting fact isthat (9) is equivalent to two applications of the Hoare assignment
rule, onefor ¢ and one for —¢. This can be seen from the following lemma by taking
b, p, and c to be p[z/t], z := t, and ¢, respectively.

Lemma 4.2 Thefollowing equations of KAT are equivalent:
(i) bp = pc
(i) bp = pc
(i) bp€ + bpc = 0.

Proof. We prove the equivalence of (i) and (iii); the equivalence of (ii) and (iii)
is symmetric. If bp = pc, then bpC + bpc = pcc + bbp = 0. Conversely, suppose
bpc + bpc = 0. Then bpt = 0 and bpc = 0, therefore

bp = bp(c+¢) = bpc+bpc = bpc = bpc+bpc = (b+b)pc = pc.

We conclude this section with a proof of soundness of the identities (6)—(11).

Theorem 4.3 Equations (6)—11) hold under the interpretation [-] p, for any Tarskian
frame D over Y.

11



Proof. We need only prove the result for (6)—9), since (10) and (11) are special
cases.
Aninstance of (6) is of the form

r:i=8;y:=t = y:=tlz/s];z:=s

where z and y are distinct variablesand y ¢ FV(s). We need to show that for any
Tarskian frame D,

[z:=s;y:=tlp = ly:=t[z/s];z:=slp.
We have
[x:=s;y:=1tlp
= [z:=s]lpoly:=tlp
= {(8,6[z/0(s)]) |6 € Valp}o{(n,nly/n(t)]) | n € Vap}
= {(0,00x/0(s)]ly/0[x/0(s)](t)]) | 6 € Valp}
and similarly,

ly :=t[z/s]; z:=slp

ly :=t[z/s]lpo [x:=slp

{(6,00y/0(¢z/sD)) | 6 € Valp} o {(n, nlz/n(s) | n € Valp}
{(6,0[y/0(t[x/s])][x/6y/6(t[x/sDI(s)]) | 0 € Valp}

so it suffices to show that for all § € Va p,
0lz/6(s)|ly/6[z/0(s)](1)] = Oly/0(t[z/s])][z/Bly/0(t[z/s])](s)]-

Starting from the right-hand side,
Oly/0(t[z/sD]lx/0ly/0(t[x/s])](s)]

)l
Oly/0(t[w/s])]lx/6(s)] y ¢ FV(s)
0[z/6(s)|[y/0(t[x/s])] x and y aredistinct

0[z/6(s)ly/0x/6(s)](£)] by (12).
The proofsfor (7) and (8) are similar. For (9),

lplz/t] sz :=tlp lp[z/t]lp o [z :=tlp
{(6,0) [0 € Vap, 6 F plz/t]} o {(6,0[x/0(t)]) | 6 € Valp}

{(0,6[z/6(1)]) | 6 € Valp, 6 F plz/t]},

[z:=t;plp = I[z:=tlpo [plp
= {(6,0z/6(1)]) | 6 € Ve p}o{(n,n)|neVap, nk e}
= {(0,0[z/0(t)]) | 6 € Valp, 0x/6(t)] F ¢},
and 6 E p[z/t] iff 6[z/0(t)] E ¢ by (12). O
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In addition to our previous usage, we will also use the name SKAT to refer to the
axiomatization consisting of the axioms of KAT plusthe identities (6)—9). Henceforth,
the equality symbol = between schematic KAT expressions denotes provable equality
in this system; that is, equality in the free KAT over the language > modulo (6)—(9).

4.2 Some Useful Metatheorems

Thefollowing is a general metatheorem with several useful applications.

Lemma4.4 Let f and g be homomorphisms of KAT expressions, and let x be a fixed
KAT expression. Consider the condition

flP)x = xg(p). (15)
If (15) holds for all atomic p, then (15) holds for all p.

Proof. The proof is by induction on p. If p is atomic, then (15) holds for p by
assumption. For the case of -, by two applications of the induction hypothesis and the
fact that f and g are homomorphisms,

flpa)x = f(p)f(a)x = f(p)xg(a) = xg(p)g(a) = xg(pq).

The cases of +, 0, and 1 are equally straightforward. The case of ~ follows from
Lemma4.2. Findly, for *, we have f(p*)x = f(p)*x and xg(p*) = xg(p)* since f
and g are homomorphisms. Theresult is then immediate from the induction hypothesis
and (4). |

One immediate consequence of Lemma 4.4 is that if x commutes with all atomic
expressions of p, then x commuteswith p. Thisis obtained by taking f and g to be the
identity maps.

Here are two more useful applications.

Lemma 4.5 (Elimination of useless variables.) Let p be an expression of SKAT and
y a variable such that y does not appear on the right-hand side of any assignment or
in any test of p. (Thus the only occurrences of y in p are on the left-hand sides of
assignments.) Let g(p) be the expression obtained by deleting all assignments to y.
Then

p;y:=L1 = g(p);y:=L

Proof. We apply Lemma 4.4 with f the identity, ¢ the erasing homomorphism
defined in the statement of the lemma, and x the assignment y := L. The assumptions
of Lemmad4.4 are

ri=t;y:=1 = y:=_1L;zx:=t Iifzandyaredistinct
y=t;y=1L = y:=1
piy=L = y=1L9
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which hold by (10), (8), and (11), respectively. By Lemma4.4,
p;y:=L = y:=1;9(p).

Also, since y does not appear in g(p), we have by (10) and (11) that y := L commutes
with all atomic programs and tests of g(p). Again by Lemma4.4,

y:=1L;9(p) = g(p);y:=L
O

Lemma 4.6 (Change of work variable.) Let p be an expression of SKAT and z,y
variables such that y does not occur in p. Let p[z/y] be the expression obtained by
changing all occurrencesof x inp to y. Then

z:=1l;y=1l;ps;x:=L;y:=1
= z:=1;y:=L;plz/y]l;z:=L;y:=L1.

Proof. Wefirst apply Lemma4.4 with f the identity, g the homomorphism defined
by

g(z:=t) = z:=t[z/y], =zdifferentfromz
glo=1) E z=tla/y];y=t/y
gp) = elz/yl,

and x the assignment y := z. The preconditions of Lemma4.4 are

zi=tyy:=x = y:=x;z:=tlz/y (16)
ri=tiy=r = y:=x;z:=tz/y];y:=tz/y] 17
piyi=z = y=u;9z/y] (18)

Equations (16) and (18) are immediate from (6) and (9), respectively, since y does not
occur int or ¢. For (17), since y does not occur in ¢,

r:=t;y:=x = y:=t;r:=t by (6)
= y:=t;z:=y by (7)
= yi=z;y:=txfyl;z:=y by (8)
= y:=x;z:=tx/yl;y:=tlz/y] by(6).
Then

ri=Llip;y:=1

= z:=L1l;psy=z;y:=1 by (8)

= z:=1L;y=x;9p);y:=1 by Lemma4.4

= z:=1L;y:=1;9(p);y:=1L by(,



therefore
z:=1l;y=~1L;p;x:=L;y:=1
= gz =1l;y:=1L;9(p);z:=1L;y:= 1.

But g(p) isjust p[z/y] with some extra useless assignments to z, which can be elimi-
nated by Lemma4.5. a

5 An Extended Example

In this section we illustrate the equival ence technique by applying it to an example of
Paterson (see Manna[22, pp. 253-258]).

The two schemes to be proved equivalent are called Sg 4 and Sgg. They areillus-
trated in Figs. 1 and 2, respectively. Thisisaparticularly intricate equivaence problem
requiring considerable ingenuity. Manna's proof technique is to apply various local
graph transformationsthat work directly on the flow diagram itself. He transformsS ¢ 4
through a chain of equivalent schemes S, Sec, and Sgp, finadly arriving at Sg .

Define the following abbreviations:

a; def P(y;) a & P(y)

b, € P(f(y:) b € P(f(y)

o € PU(fw) ¢ € P(f(fW)

d € P(f(a))

xi & yi=u x L oy=g

Pij e Yi -Zf(yj) p o Yy Zf(y)
aijr = yi= gy, ) a € oyi=gy)

d:f yi == f(f(y;)) r dzf y = f(f())

si = yi=f(z) s = y:=f(a)

t Y y=g(f(@), f(2)) t 2 yi=g(f(a), f(z)
ik dzf yi == g(F(Fyi), F(f (i) u dzf y = g(f(F®). F(F)))
Z; é =Y z :e Z=19Y

Yi o yi=1L1 y def yi=1

Our first step isto convert the two schemes to schematic automata. As previously
noted, the schematic and automatic forms are merely notational variants of each other.
The resulting schematic automata are shown in Figs. 3 and 4.

Now we convert the schematic automatato KAT expressions using the construction
of Kleene'stheorem (Lemma 3.1). This gives the following expressions:

Sea = X1P41P11Q214Q311(51P11QQ14Q311)*31P13
((Fs + 8!4(52Pzz)*3253F>41P11)(1214(1311(51P11C1214C1311)*811F>13)>|<
34(52P22)*323322 (19)
Seg = saq(araq)*az. (20)
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Figure 1: Scheme Sg4 [22, p. 254]
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Figure 2: Scheme Sgg [22, p. 258]

We now proceed to simplify (19) using the axioms of KAT and theidentities (6)—(9)
to obtain (20). Our simplifications are guided by the form of the expressions.
First notethat (19) hasanested loop. This suggeststhat we should first try to denest
it using the denesting rule (3). By the dliding rule (2), (19) is equivalent to
X1P41P1192149311 (51P11QQ14Q311)*
(a1p13(3s + a4(32p22) *a233p41P11)d2149311 (31P1192149311) ™) *
a1p13a4(a2p22) *a2a322 (21)
Now using the denesting rule (3), this becomes

X1P41P1192149311
(31p1192149311 + a1p13(3s + 34(52P22)*3253P41 F>11)(]214C]311)>|<
a1p1324(32p22) *araszy (22)

and by distributivity,

X1P41P1192149311
(31P1192149311 + a1P133492140311 + 31P13a4(52Pzz)*3253P41P11QQ14Q311)*
a1p13as(32p22) *ara32> (23)
Using the commutivity rules (10) and (11), distributivity, and the implicit undefining
operator y; to dispose of the last occurrence of p;3, we obtain
X1P41P1192149311
(3134p1192149311 + 3134P1192149311
+ a134p1392149311 + 3134P13(52Pzz)*3253P41P11qQ14Q311)*
(32p22) *a122a32420 (24)
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start

X1

pPa1

p11

Q214

qs3i11

ai

P13

p22 a4

a2

as

Z2

accept

Figure 3: Scheme Sg 4, automatic form
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start

w

[l

N

accept

Figure 4. Scheme S¢ g, automatic form

Now we observe informally that if the outer loop is ever entered with a4 false, it
isimpossible to escape, since neither p13q2149311 NOr p1192149311 changesthe value of
a4 and there is a postguard a4. To exploit thisideaformally, we use the following little
lemma:

w=uw=0 — (u+v)*w = v*w. (25)

To prove(25), supposeuv = uw = 0. Thenu*v = v + u*uv = v, and similarly u*w =
w. Using denesting (3),

(u+v)*w = (U*v)*u*w = v*w.

Applying (25) to (24) with

U = 2a134P1192149311 + a131P1392140311
— — X —
v = 3134P11QQ14Q311+3134P13(32P22) a2a3P41P1192149311
— *
w = (32p22) a1a2azaszy
we obtain
X1P41P1192149311
— — X = *
(3134P11QQ14Q311 + 3134P13(32P22) 3233P41P11Q214Q311)
— *
(azpzz) d1d2a3d47Z2 (26)

The conditionsuv = uw = 0 hold because 3, commutes with everything to itsright in
u and a, commutes with everything to itsleft inv and w.
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Now we make a similar observation that the first term inside the outer loop of (26)
can never be executed, because the program p 41p11 causes a; and a4 to have the same
truth value. Formally,

parpir = wa:= f(y1) sy = f(y1)
= P(f(y1)) © P(f(y1)) 5ya:= f(y1) ;91 == f(y1)  Boolean agebra
= ya:=f(n); P(f(y1) © Pya) ;1 := f(n1) by (9)
= ya:=f() 591 = fy1); Py1) < P(ya) by (9)

= P41P11(31 A4 a4).

To eliminate the first term of the outer loop of (26), we can use our little lemma (25)
again. We actually useits dual

vu=wu=0 — wu+v)* = w*
with
U = a1a4p1192149311
v = 3134P13(52P22)*3253P41P11Q214Q311
W = X1P41P1192149311,
giving

X1 P41P11Q214Q311(3134P13(52P22)*3253P41 I1>11<1214C1311)>|< (52P22)*313233a422 (27)

To show that the preconditionsvu = wu = 0 are satisfied, it sufficesto show

Pa1p119214931131a4 = 0. (28)

Thisfollowsfromthefact ps1p11 = paip11(a1 <> as) proved above, the commutativity
of a; «» a4 with 2149311, and Boolean algebra. Thus (27) isjustified.
At this point we can eliminate the variable y 4 by the following steps:

(i) rewrite assignments to eliminate occurrences of ¢4 on the right-hand side;
(ii) show that al testsinvolving y, are redundant;
(iii) use Lemma4.5 to removeall assignmentswith i, on the left-hand side.

For (I), we show that P41P119214 = P41P119211. Intuitively, after the first two as-
signments, y; and y4, contain the same value, so we might as well use y; in the last
assignment instead of y4. This result would be easy to prove in the presence of equal-
ity, but we show how to do it without.

ParP11d2is = Ya:= f(y1) 501 = f(y1) 5 92 := 9(y1,94)
= y1:=fy1) s ya :=y1 5 ¥2 := g(Y1,9a) by (6)
= y1:=fy1) s ya = y1 592 := g(Y1,91) by (7)
= ya:=fy) ;v = f(y1) 592 :=g(y1,41) by (6)
= P41pP119211.
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Thus (27) is equivalent to
X1 P41P11Q211Q311(3134P13(52P22)*3253P41 I1>11<1211C1311)>|< (52P22)*313233a422 (29)
For step (ii), we use diding (2) to get
X1 (P41P11Q211Q3113134P13(52P22)*3253)*P41 P11Q211Q311(52P22)*313233a422 (30)

NOw pa1p11 = pa1pi1(a1 <> as4) as shown above. It follows from this, commutativity,
and Boolean agebrathat ps1p1192119311a1a4 = pa1p1192119311a1, therefore the tests
as areredundant. This allows usto eliminate all occurrencesof a4 in (30), giving

x1(Pa1P11G211G31131P13 (32P22) *2233) *Parp1192119311 (32p22) *a1223322 (31)
Now Lemma4.5 applies, allowing usto get rid of all assignmentsto y 4. Thisgives
x1(P119211031121 P13 (32P22) ¥ 2233) *P1192119311 (32P22) * 21222320 (32)
By dliding and commutativity, we have
x1P11(d2110311(32P22) *a12233p13P11) * Q2119311 (32p22) *a1223322 (33)
and by two applications of (8), we have
s1(92119311(32p22) *a12233113) * 92119311 (32p22) *a1222322 (34)

Now we eliminate the variable y3 as we did for y, above. For step (i), use commuta-
tivity to get

51(31QQ11Q311F13(52P22)*3253)*Q211Q311(52P22)*31323322 (35)
We then have
Qudsuiniz = Y2 :=g,y1) ;Y3 = g(,y) ;v = f(f(y3))
= Y :=9WLy1) ;Y3 :=v2 ;1= f(f(y3)) by (7)
= y2:=gW,y) ;Y3 :=y2;y1 = f(f(y2)) by (7)
= yo:=g,y) ;Y3 :=g,y) ;v = f(fly2)) by (?)

= (2119311r12,

which alows usto rewrite (35) as

s1(a192119311 F12(52P22)*3253)*Q211Q311(52P22)*31323322 (36)

For step (ii), we would like to show that testsinvolving a3 areredundant. As above,

wehaveqo11qs11 = qo119311(a2 > a3), thusqo119311a2 = qp11931133 AN q211q31132 =
g2119311a3. By commutativity, (36) is equivaent to

S1 (31Q211Q31153r12(52P22)*32)*Q211Q31133(52P22)*313222

= s1(a19211931132112 (52P22)*32)*QQ11Q31132(52P22)*313222- (37)
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The assignmentsto y3 are now useless and can be eliminated by Lemma 4.5, giving

51(31Q21152f12(52P22)*32)*Q21132(52P22)*313222 (38)

Furthermore, because of the preguard a, and postguard a,, the loop (32p22)*as
occurring inside the outer loop of (38) must be executed at least once. Similarly, be-
cause of the preguard a», the loop (32p22)*a, occurring outside the outer loop cannot
be executed at all. Formally,

B(3pn)*ar = @ar + AP (3p2n)*ar
= @p2(32p2)*ay,

a(@2p22)¥as = ararx + axarpaa(32pa2) a2
= aj.

Thus we can rewrite (38) as

s1(a19211r1232p22(32p22) *22) *qa11212225. (39)

Moreover, the remaining inner loop (32p.»)*a, can be executed at most twice. To
show this, we use sliding and commutativity to get
s1a10211(r1232p22 (52P22)*3231Q211)*3222

= 5131Q211(52r1231P22(52P22)*32Q211)*3222 (40)

As above,
ripaipaaspzeaz < ripaipoop22ar

ripairaa by (8)

rior22aia

= rorp(ar ¢ az)a1d@
= 0, (41)

therefore

r12a1p22(32p22)
r12a1p22(1 + 32p22 + 32203222 (32p22) ™)
= r1paipae + r12a1P22@p22 + 12a31P2232P2232p22 (32p22)
= r12a1p22 + r1231P2232p22

Thus (40) is equivalent to
$1a10211(32r12a1P22a20211 + 2r12a1 P22§2P2232Q211)*3222 (42)

Now (41) aso |mp||05that r12a1p22a2pP22 = r12a1pP22az2pP22aa, therefore (42) can be
rewritten

— - = *
5131Q211(32r1231P228IQQ211 + 32r1231P2232P22QQ11) a2Zp (43)
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which by (8) is equivaent to

— — = %
5131QQ11(32F1231P22GQQQ11 + 32f1231P2232Q211) axZy
— = %
= 5131Q211(32r1231P22(32 + az)an) axZy
— %
= 5131Q211(32r1231P22Q211) 273

= 5131Q211(52f1231Q211)*3222 (44)

Thefinal step isto get rid of the variable y,. We have

s1a1qp11 = dsiQoir by (9)
= dsity by (7)
ripaidoir = CorioQoir by (9)

= corppuxny by (7)
thus (44) is equivalent to
ds1to(32Car12uU222) *a225 (45)
We can eliminate the assignmentsto i, by Lemma4.5, giving
dta(32c2u222) *a225 (46)
Finally, we have

dt, = dSz(]zzQ by (8)
S2a2q222 by (9)

CoUppy = Corppqoye by (8)
= rpaxqyy by (9)
giving
5232Q222(52r2232Q222)*3222 (47)

After achange of variable (Lemma4.6), we are done.
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