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Abstract

The theory of flowchart schemes has a rich history going back to Ianov [6]; see
Manna [22] for an elementary exposition. A central question in the theory of pro-
gram schemes is scheme equivalence. Manna presents several examples of equiv-
alence proofs that work by simplifying the schemes using various combinatorial
transformation rules. In this paper we present a purely algebraic approach to this
problem using Kleene algebra with tests (KAT). Instead of transforming schemes
directly using combinatorial graph manipulation, we regard them as a certain kind
of automaton on abstract traces. We prove a generalization of Kleene’s theorem
and use it to construct equivalent expressions in the language of KAT. We can then
give a purely equational proof of the equivalence of the resulting expressions. We
prove soundness of the method and give a detailed example of its use.

1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. It was first introduced by
Kleene [8]; the name Kleene algebra was coined by Conway [5], who developed much
of the algebraic theory. Kleene algebra has appeared in computer science in many
guises: semantics and logics of programs [9, 23], automata and formal languages [20,
21], and the design and analysis of algorithms [1, 7, 10]. Many authors have contributed
over the years to the development of the algebraic theory; see [13] and references
therein.

Kleene algebra with tests (KAT), introduced in [13], combines programs and as-
sertions in a purely equational system. A Kleene algebra with tests is a Kleene algebra
with an embedded Boolean subalgebra. KAT strictly subsumes propositional Hoare
Logic (PHL), is of no greater complexity than PHL, and is deductively complete over
relational models (PHL is not) [17, 4, 14, 18]. KAT is less expressive than propositional
Dynamic Logic (PDL), but also less complex (unless PSPACE � EXPTIME , which
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complexity theorists generally regard as unlikely). Moreover, KAT requires nothing
beyond classical equational logic, in contrast to PHL or PDL, which depend on a more
complicated syntax involving partial correctness assertions or modalities.

KAT has been applied successfully in a number of low-level verification tasks in-
volving communication protocols, basic safety analysis, concurrency control, and com-
piler optimization [2, 3, 16]. A useful feature of KAT in this regard is its ability to
accommodate certain basic equational assumptions regarding the interaction of atomic
instructions. This feature makes KAT ideal for reasoning about the correctness of low-
level code transformations.

In this paper we further demonstrate the utility of KAT by showing how it can be
used to recast much of the classical theory of flowchart schemes into a purely algebraic
framework. A flowchart scheme is a vertex-labeled graph that represents an uninter-
preted program. The vertices are labeled with atomic assignments and tests that can be
performed during execution, and the edges represent control paths. The primitive func-
tion and relation symbols appearing in vertex labels are uninterpreted; one is typically
interested in the behavior of the program under all possible interpretations.

The theory of flowchart schemes has a rich history going back to Ianov [6]. The
text of Manna [22] gives an elementary exposition of the theory. A central question
that occupies much of Manna’s attention is the problem of scheme equivalence. Manna
presents several examples of equivalence proofs that work by applying a sequence of
local simplifying transformations to the schemes. These transformations operate on the
graph itself and are combinatorial in nature.

In this paper we present a purely algebraic approach to the equivalence problem
using KAT. Instead of transforming the graphs of the schemes directly, we regard
them as automata of a certain generalized form and use a generalization of Kleene’s
theorem to construct equivalent expressions in the language of KAT. We can then give
a purely equational proof in KAT of the equivalence of the resulting expressions. All
our atomic transformations are special cases of four fundamental transformations. Thus
the combinatorial graph manipulations of Manna are replaced with simple equational
rewriting. This approach succeeds even for the most complicated of Manna’s examples,
a particularly intricate equivalence due to Paterson (see [22]).

The chief advantage of this approach is that the objects we are manipulating are
linguistic expressions as opposed to combinatorial objects such as graphs. This gives
a number of benefits. Since the semantics is compositional, it is easier to give rigorous
proofs of soundness. Comparison of expressions to be simplified with the rules of
KAT helps to suggest tactics for simplification. Finally, since the formalism is based
on classical equational logic, it is more amenable to implementation.

2 Definitions

2.1 Flowchart Schemes

We follow Manna’s development [22]. Let � be a fixed finite ranked alphabet con-
sisting of function symbols f� g� � � � and relation symbols P�Q� � � � , each with a fixed
nonnegative arity (number of inputs). We omit any explicit notation for the arity of a
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symbol, except that the mention of an expression f�t�� � � � � tn� or P �t�� � � � � tn� car-
ries with it the implicit proviso that f or P is n-ary. Function symbols of arity 0 are
called individual constants and are denoted a� b� � � � . In addition to the symbols in �,
there is an infinite set of individual variables x� y� z� � � � .

A term is a well-formed (i.e., arity-respecting) expression composed of individual
variables and function symbols of �. For example, if f is unary, g is binary, a is
nullary, and x� y are variables, then g�g�x� a�� f�f�y��� is a term. An atomic formula
is an expression of the form P �t�� � � � � tn�, where the t�� � � � � tn are terms.

A flowchart scheme S over � consists of a finite flow diagram, a designated finite
set of input variables, a designated finite set of output variables, and a designated
finite set of work variables. The sets of input, output, and work variables are pairwise
disjoint. The flow diagram is composed of the following five types of statements:

1. Start statement:

start

�
y�� � � � � yn �� t�� � � � � tn

�

2. Assignment statement:

�
y�� � � � � yn �� t�� � � � � tn

�

3. Test statement:

�
P �t�� � � � � tn�

� �

F T

4. Halt statement:

�
z�� � � � � zn �� t�� � � � � tn

�
halt

5. Loop statement:

�
loop
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Each flowchart scheme begins with a single start statement. Immediately after the
start statement, the work variables must be initialized with terms that depend only
on the input variables. Similarly, immediately before each halt statement, the output
variables must be assigned values depending only on the work variables and input
variables. The scheme may contain other assignment or test statements involving the
work variables only. These syntactic restrictions ensure that the output values depend
functionally on the input values. We might relax these restrictions to require only that
each work variable be initialized before it is used and each output variable be set before
halting, but without syntactic enforcement these conditions are undecidable.

An interpretation for � consists of a first-order structure D of signature �, which
provides meanings for all the symbols in �. Each n-ary function symbol f � � is
interpreted as an n-ary function fD � Dn � D and each relation symbol P � � is
interpreted as an n-ary relation P D � Dn.

A flowchart program is a pair <S�D>, where S is a scheme and D is an in-
terpretation. The semantics of <S�D> is operational; see Manna [22] for a formal
definition. Under this semantics, each program denotes a partial function from the
set of input valuations (valuations of the input variables) over D to the set of out-
put valuations (valuations of the output variables) over D. The assignment statement
y�� � � � � yn �� t�� � � � � tn denotes the simultaneous assignment of the current values
of terms t�� � � � � tn to the variables y�� � � � � yn. The loop statement denotes an infinite
non-halting computation.

We may compare two schemes only if they have the same input variables and the
same output variables. Two such schemes are said to be compatible. For a given
pair of compatible schemes S and S � and interpretation D, we say that the programs
<S�D> and <S �� D> are equivalent if they denote the same partial function from input
valuations to output valuations; that is, if for every input valuation, either

� both programs do not halt, or

� both programs halt and produce the same output valuation.

Two compatible flowchart schemes S and S � are equivalent if <S�D> and <S �� D> are
equivalent for every interpretation D.

In our treatment, we will make some simplifying assumptions that entail no loss of
generality.

� We restrict our attention to simple assignments y �� t only. Parallel assignments
y�� � � � � yn �� t�� � � � � tn can be simulated by introducing new work variables if
necessary.

� We assume the domain contains a designated neutral element � to which all
non-input variables are initialized immediately after the start and to which all
not-output variables are set immediately before halting. The value of� does not
matter. This obviates the need for the initialization of work variables and the
setting of output variables. Accordingly, our start and halt statements take the
simpler form
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start
�

�
halt

respectively.

� We dispense with the loop statement, since it can be simulated easily.

2.2 Kleene Algebra with Tests

Kleene algebra was introduced by S. C. Kleene [8] (see also [5]). We define a Kleene
algebra (KA) to be a structure �K� �� �� �� �� ��, where �K� �� �� �� �� is an idem-
potent semiring, p�q is the least solution to q� px � x, and qp� the least solution to
q� xp � x. Here “least” refers to the natural partial order p � q� p� q � q. The
operation � gives the supremum with respect to �. This particular axiomatization is
from [11].

We normally omit the �, writing pq for p � q. The precedence of the operators is
� � � � �. Thus p� qr� should be parsed p� �q�r���.

Typical models include the family of regular sets of strings over a finite alphabet,
the family of binary relations on a set, and the family of n 	 n matrices over another
Kleene algebra.

The following are some elementary theorems of KA.

p� � �� pp� � �� p�p � p�p� � p�� (1)

p�qp�� � �pq��p (2)

p��qp��� � �p� q�� � �p�q��p� (3)

px � xq � p�x � xq� (4)

The identities (2) and (3) are called the sliding rule and the denesting rule, respectively.
These rules are particularly useful in program equivalence proofs. The property (4) is
a kind of bisimulation property. It plays a prominent role in the completeness proof of
[11]. We refer the reader to [11] for further definitions and basic results.

A Kleene algebra with tests (KAT) [13] is a Kleene algebra with an embedded
Boolean subalgebra. More precisely, it is a two-sorted structure �K� B��� �� �� � �� ��,
where is a unary operator defined only on B, such that B � K, �K� �� �� �� �� ��
is a Kleene algebra, and �B� �� �� � �� �� is a Boolean algebra. The elements of B
are called tests. We reserve the letters p� q� r� s� � � � for arbitrary elements of K and
a� b� c� � � � for tests.

When applied to arbitrary elements of K, the operators �� �� �� � refer to nondeter-
ministic choice, composition, fail and skip, respectively. Applied to tests, they take on
the additional meaning of Boolean disjunction, conjunction, falsity and truth, respec-
tively. These two usages do not conflict; for example, sequentially testing b and c is
the same as testing their conjunction bc.

The following are some basic theorems of KAT.

bq � qb � bq� � �bq��b � q�b � b�qb��

bq � qb � bq � qb � bqb� bqb � ��

See [13] for further definitions and basic results.
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2.3 Semantics of KAT

For applications in program verification, we usually interpret programs and tests as sets
of traces or sets of binary relations on a set of states. Both these classes of algebras are
defined in terms of Kripke frames. A Kripke frame over a set of atomic programs P
and a set of atomic tests B (not necessarily finite) is a structure �K� mK�, where

mK � P� �K�K mK � B� �K �

Elements of K are called states. A trace in K is a sequence u�p�u� � � �un��pn��un,
where n 
 �, ui � K, pi � P, and �ui� ui��� � mK�pi� for � � i � n � �. We
denote traces by �� �� � � � . The first and last states of a trace � are denoted first��� and
last���, respectively. If last��� � first���, we can fuse � and � to get the trace �� .

The powerset of the set of all traces in K forms a KAT in which � is set union, � is
the operation

AB
def
� f�� j � � A� � � B� last��� � first���g�

and A� is the union of all finite powers of A. The Boolean elements are the sets of
traces of length 0, i.e. traces consisting of a single state. A canonical interpretation for
KAT expressions over P and B is given by

[[p]]K
def
� fupv j �u� v� � mK�p�g� p � P

[[b]]K
def
� mK�b�� b � B�

extended homomorphically. A set of traces is regular if it is [[p]]K for some KAT

expression p. The subalgebra of all regular sets of traces of K is denoted TrK [19].
The set of all binary relations onK also forms a KAT under the standard interpreta-

tion of the KAT operators (see [19]). The operator � is ordinary relational composition.
The Boolean elements are subsets of the identity relation. As above, one can define a
canonical interpretation

[p]K
def
� mK�p�� p � P

[b]K
def
� f�u� u� j u � mK�b�g� b � B�

A binary relation is regular if it is [p]K for some KAT expression p. The relational
algebra consisting of all regular sets of binary relations on K is denoted RelK .

These classes of algebras are related by the KAT homomorphism

Ext � X �� f�first���� last���� j � � Xg�

which maps TrK canonically onto RelK in the sense that

Ext�[[p]]K� � [p]K (5)

for all expressions p [19, x3.4].
When B is finite, a language-theoretic interpretation is given by the algebra of reg-

ular sets of guarded strings [17]. Let AB denote the set of atoms (minimal nonzero
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elements) of the free Boolean algebra generated by B. A guarded string is a sequence
��p��� � � ��n��pn���n, where �i � AB and p � P. The algebra of regular sets of
guarded strings is most easily described as the regular trace algebraTrG of the Kripke
frame G whose states are AB and

mG�p�
def
� AB 	AB� p � P

mG�b�
def
� f� � AB j � � bg� b � B�

There is a natural homomorphism from this algebra to the regular trace algebra TrK
of any Kripke frame K over P�B [19, Lemma 3.2].

3 Schematic KAT

Schematic KAT (SKAT) is a version of KAT whose intended semantics coincides with
the semantics of flowchart schemes over a ranked alphabet � as described in Section
2.1. The atomic programs P of SKAT are assignments x �� t, where x is a variable and
t is a �-term, and the atomic tests B are P �t�� � � � � tn�, where P is an n-ary relation
symbol of � and t�� � � � � tn are �-terms.

3.1 Semantics of Schematic KAT

We are primarily interested in interpretations over Kripke frames of a special form
defined with respect to a first-order structure D of signature �. Such Kripke frames
are called Tarskian. The structure D provides arity-respecting interpretations for the
atomic function and relation symbols in �. States are valuations, or functions that
assign a value from D to each individual variable. Valuations over D are denoted
�� �� � � � . The set of all such valuations is denoted ValD. The action of the assignment
x �� t is to change the state in the following way: the expression t is evaluated in the
input state and assigned to x, and the resulting valuation is the output state. Formally,

mD�x �� t�
def
� f��� �� j � � �	x���t�
g

mD�P �t�� � � � � tn��
def
� f� j PD���t��� � � � � ��tn��g�

where �	x�a
 denotes the valuation that agrees with � on all variables except possibly
x, on which it takes the value a. As described in Section 2.3, a Tarskian frame D gives
rise to a regular trace algebra TrD and a regular relational algebra RelD.

3.2 Schematic Automata

To obtain an expression of SKAT from a given scheme, we will view a scheme as a kind
of generalized finite automaton called a schematic automaton. Schematic automata are
a generalization of automata on guarded strings (AGS) introduced in [15]. AGS are
like ordinary finite automata, except that they take guarded strings as inputs. In turn,
schematic automata over � are like AGS, except that they take traces of Kripke frames
over � as inputs.
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AGS are defined as follows. LetB be the set of tests built from a finite set of atomic
tests B. Note that B is infinite in general. An AGS over P�B is a labeled transition
graph with labels P 
 B and designated sets of start and accept states. Transitions
labeled with atomic programs are called action transitions and those labeled with tests
are called test transitions.

Informally, a nondeterministic AGS works as follows. An input is a guarded string
x over P�B. We start with a pebble on an input state with the input pointer reading
first�x�. At any point in the computation, the pebble is occupying a state, and the input
pointer is pointing to an atom somewhere in x. If there is an action transition from the
current state labeled with p � P, and the next program symbol in x is p, then we may
nondeterministically choose to move the pebble along that transition and advance the
input pointer beyond p. If there is a test transition from the current state labeled with a
test b � B, then that transition is enabled if the current atom � in x satisfies b, where
we regard � as a truth assignment to B. We may nondeterministically choose to move
the pebble along any enabled test transition, but we do not advance the input pointer.
The input is accepted if the pebble ever occupies an accept state while the input pointer
is reading last�x�.

Ordinary finite automata with 	-transitions can be regarded as the special case in
which B � �, giving the two-element Boolean algebra f�� �g. An 	-transition is just a
test transition with Boolean label �. In this case the only atom is �, which is suppressed
in the input string.

It was shown in [15, Theorem 3.1] that a version of Kleene’s theorem holds for
automata on guarded strings: given any AGS, one can efficiently construct an equiv-
alent KAT expression, and vice versa. Here equivalence means that the AGS and the
KAT expression represent the same set of guarded strings. Moreover, the constructions
in both directions are the same as in the usual version of Kleene’s theorem. A more
formal treatment and further details can be found in [15].

AGS are unsuitable for schematic interpretations over �. One complication is that
the set B of atomic tests is infinite in general. It is true that only finitely many tests
occur in any fixed program, but this is insufficient for our purposes because our trans-
formation rules of Section 4.1 do not respect this restriction.

For schematic automata M over �, B is the (possibly infinite) set of atomic for-
mulas over �, B is the set of quantifier-free first-order formulas, and the inputs are no
longer guarded strings but traces u�p�u� � � �un��pn��un of a Kripke frameK over �.
Let us call the states of K nodes and the states of M states to avoid confusion. At any
point in time, the input pointer is reading a node u of the input trace, and the atomic
formulas true at that node determine which test transitions from the current state are
enabled. Specifically, a test transition with label b is enabled if u � b; that is, if b is a
logical consequence of

fP �t�� � � � � tn� j u � mK�P �t�� � � � � tn��g


 f�P �t�� � � � � tn� j u �� mK�P �t�� � � � � tn��g�

The formal definition of acceptance for schematic automata is similar to AGS. Let
R�M� be the set of strings over the alphabet �P 
 B�� accepted by M under the
classical definition of finite automaton acceptance. Each string x � �P 
 B�� is a KAT
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expression, therefore represents a set of traces [[x]]K . A trace � of K is accepted by
M if there exists an x � R�M� such that � � [[x]]K ; that is, if � � HK�R�M��,
where

HK�A� �
�

p�A

[[p]]K �

We denote by LK�M� the set of traces of K accepted by M .
The following lemma is Kleene’s theorem for schematic automata. It is a direct

generalization of [15, Theorem 3.1] for AGS. The proof is a straightforward modifica-
tion of the proof of that theorem.

Lemma 3.1 Schematic automata accept all and only regular sets of traces. That is, for
each schematic automatonM over �, one can construct an equivalentKAT expression
p over �, and for each KAT expression p over �, one can construct an equivalent
schematic automaton M over �. Here equivalent means that for any Kripke frame K
over �, LK�M� � [[p]]K .

Proof. Given p, consider it as a regular expression over the alphabet P 
 B with
the classical interpretation, and construct an equivalent finite automaton M with input
alphabet P 
 B as in the usual proof of Kleene’s theorem (see e.g. [12]). Conversely,
given a finite automaton M with input alphabet P 
 B, construct an equivalent regular
expression p. Let R�p� denote the regular subset of �P 
 B�� denoted by p under the
classical interpretation of regular expressions. In both constructions, R�p� � R�M�.

We claim that in both constructions, [[p]]K � LK�M�. To show this, it suffices
to show that LK�M� � HK�R�M�� and [[p]]K � HK�R�p��. The former equa-
tion is just the definition of acceptance for schematic automata. For the latter, it is
easily shown that the map HK is a homomorphism with respect to the regular opera-
tors. Moreover, the maps [[-]]K and HK � R agree on the generators P and B, since
HK�R�p�� � HK�fpg� � [[p]]K for p � P 
 B, and HK�R���� � [[�]]K � �.
It follows by induction that [[-]]K and HK � R agree on all regular expressions over
P 
 B. �

4 Soundness of the Method

Our method of proving the equivalence of compatible flowchart schemes proceeds as
follows. We assume that all non-input variables of both schemes are initialized with
y �� � at the start in both schemes and that all non-output variables of both schemes
are set by y �� � in both schemes before halting. This does not affect the semantics
of the scheme. (In practice, we do not write the assignments y �� � explicitly, but we
assume that they are there.) We view each scheme as a schematic automaton as defined
in Section 3.2. Schemes and schematic automata are essentially notational variants of
each other; the only difference is that the labels are on the edges in schematic automata
instead of on the nodes as in flowchart schemes. The start state is the start statement
and the accept states are the halt statements. See Figs. 1–4 for a comparison of these
two views. We use the construction of Kleene’s theorem (Lemma 3.1) to write an
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equivalent SKAT expression for each automaton. We then use the axioms of KAT in
conjunction with certain additional valid identities given below in Section 4.1 to prove
the equivalence of the resulting expressions.

The soundness of our method is based on the following theorem.

Theorem 4.1 Let S and T be two compatible flowchart schemes over �, and let p and
q be the SKAT expressions obtained by applying the above procedure to S and T . For
any interpretation D over �, [p]D � [q]D if and only if <S�D> and <T�D> are
equivalent in the sense of Section 2.1.

Proof. Since schemes are deterministic, each pair <S�D> and starting valuation
� � ValD determine a unique finite or infinite trace � such that first��� � �. The
trace � is finite iff the program <S�D> halts on input valuation �, and in that case its
output valuation is last���. By the semantics of schematic automata, the set of all such
finite traces is just LD�S�, the set of traces accepted by S viewed as a schematic au-
tomaton, and <S�D> and <T�D> are equivalent iff the partial functions Ext�LD�S��
and Ext�LD�T �� from input valuations to output valuations are the same. (Our con-
vention regarding the initialization of non-input variables and the setting of non-output
variables to the neutral element � makes the distinction between the different types of
variables irrelevant.) By Lemma 3.1 and (5), this occurs iff [p]D � [q]D. �

The significance of Theorem 4.1 is that scheme equivalence amounts to the equa-
tional theory of the regular relation algebrasRelD of Tarskian framesD over �. From
a practical standpoint, this theorem justifies the use of the KAT axioms in scheme
equivalence proofs. Since theRelD are Kleene algebras with tests, any theorem p � q

of KAT holds under the interpretation [-]D. Moreover, any additional identities that
can be determined to hold under all such interpretations can be used in scheme equiv-
alence proofs. We identify some useful such identities in the next section.

4.1 Additional Schematic Identities

In manipulating SKAT expressions, we will need to make use of extra equational pos-
tulates that are valid in all relational algebrasRelD of Tarskian frames. These play the
same role as the assignment axiom of Hoare Logic and may be regarded as axioms of
SKAT. All such postulates we will need in this paper are instances of the following
four identities:

x �� s � y �� t � y �� t	x�s
 � x �� s �y �� FV�s�� (6)

x �� s � y �� t � x �� s � y �� t	x�s
 �x �� FV�s�� (7)

x �� s � x �� t � x �� t	x�s
 (8)


	x�t
 � x �� t � x �� t � 
 (9)

where in (6) and (7), x and y are distinct variables and FV�s� denotes the set of vari-
ables occurring in s. Special cases of (6) and (9) are the commutativity conditions

x �� s � y �� t � y �� t � x �� s �x �� FV�t�� y �� FV�s�� (10)


 � x �� t � x �� t � 
 �x �� FV�
�� (11)
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The notation 
	x�t
 or s	x�t
 denotes the result of substituting the term t for all
occurrences of x in the formula 
 or term s, respectively. This is not to be confused
with �	x�a
 for valuations � defined previously in Section 3.1. We use both notations
below. They are related by the equation

��t	x�s
� � �	x���s�
�t�� (12)

which is easily proved by induction on t.
We will prove the soundness of (6)–(11) below (Theorem 4.3). Note that these

identities are not valid in the trace algebrasTrD, but they are valid in the corresponding
relational algebras RelD .

It is interesting to compare (9) with the assignment axiom of Hoare Logic. The
Hoare partial correctness assertion fbgpfcg is encoded inKAT by the equation bpc � �,
or equivalently, bpc � bp. Intuitively, the former says that the program p with preguard
b and postguard c has no halting execution, and the latter says that testing c after exe-
cuting bp is always redundant.

The assignment axiom of Hoare Logic is

f
	x�t
g x �� t f
g�

which is represented in schematic KAT by either of the two equivalent equations


	x�t
 � x �� t � 
 � 
	x�t
 � x �� t (13)


	x�t
 � x �� t � �
 � �� (14)

The interesting fact is that (9) is equivalent to two applications of the Hoare assignment
rule, one for 
 and one for �
. This can be seen from the following lemma by taking
b, p, and c to be 
	x�t
, x �� t, and 
, respectively.

Lemma 4.2 The following equations of KAT are equivalent:

(i) bp � pc

(ii) bp � pc

(iii) bpc� bpc � �.

Proof. We prove the equivalence of (i) and (iii); the equivalence of (ii) and (iii)
is symmetric. If bp � pc, then bpc� bpc � pcc� bbp � �. Conversely, suppose
bpc� bpc � �. Then bpc � � and bpc � �, therefore

bp � bp�c� c� � bpc� bpc � bpc � bpc� bpc � �b� b�pc � pc�

�

We conclude this section with a proof of soundness of the identities (6)–(11).

Theorem 4.3 Equations (6)–(11) hold under the interpretation [-]D for any Tarskian
frame D over �.

11



Proof. We need only prove the result for (6)–(9), since (10) and (11) are special
cases.

An instance of (6) is of the form

x �� s � y �� t � y �� t	x�s
 � x �� s

where x and y are distinct variables and y �� FV�s�. We need to show that for any
Tarskian frame D,

[x �� s � y �� t]D � [y �� t	x�s
 � x �� s]D�

We have

[x �� s � y �� t]D

� [x �� s]D � [y �� t]D

� f��� �	x���s�
� j � � ValDg � f��� �	y���t�
� j � � ValDg

� f��� �	x���s�
	y��	x���s�
�t�
� j � � ValDg

and similarly,

[y �� t	x�s
 � x �� s]D

� [y �� t	x�s
]D � [x �� s]D

� f��� �	y���t	x�s
�
� j � � ValDg � f��� �	x���s�
� j � � ValDg

� f��� �	y���t	x�s
�
	x��	y���t	x�s
�
�s�
� j � � ValDg

so it suffices to show that for all � � ValD,

�	x���s�
	y��	x���s�
�t�
 � �	y���t	x�s
�
	x��	y���t	x�s
�
�s�
�

Starting from the right-hand side,

�	y���t	x�s
�
	x��	y���t	x�s
�
�s�


� �	y���t	x�s
�
	x���s�
 y �� FV�s�

� �	x���s�
	y���t	x�s
�
 x and y are distinct

� �	x���s�
	y��	x���s�
�t�
 by (12).

The proofs for (7) and (8) are similar. For (9),

[
	x�t
 � x �� t]D � [
	x�t
]D � [x �� t]D

� f��� �� j � � ValD� � � 
	x�t
g � f��� �	x���t�
� j � � ValDg

� f��� �	x���t�
� j � � ValD� � � 
	x�t
g�

[x �� t � 
]D � [x �� t]D � [
]D

� f��� �	x���t�
� j � � ValDg � f��� �� j � � ValD� � � 
g

� f��� �	x���t�
� j � � ValD� �	x���t�
 � 
g�

and � � 
	x�t
 iff �	x���t�
 � 
 by (12). �
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In addition to our previous usage, we will also use the name SKAT to refer to the
axiomatization consisting of the axioms ofKAT plus the identities (6)–(9). Henceforth,
the equality symbol � between schematic KAT expressions denotes provable equality
in this system; that is, equality in the free KAT over the language � modulo (6)–(9).

4.2 Some Useful Metatheorems

The following is a general metatheorem with several useful applications.

Lemma 4.4 Let f and g be homomorphisms of KAT expressions, and let x be a fixed
KAT expression. Consider the condition

f�p�x � xg�p�� (15)

If (15) holds for all atomic p, then (15) holds for all p.

Proof. The proof is by induction on p. If p is atomic, then (15) holds for p by
assumption. For the case of �, by two applications of the induction hypothesis and the
fact that f and g are homomorphisms,

f�pq�x � f�p�f�q�x � f�p�xg�q� � xg�p�g�q� � xg�pq��

The cases of �, �, and � are equally straightforward. The case of follows from
Lemma 4.2. Finally, for �, we have f�p��x � f�p��x and xg�p�� � xg�p�� since f
and g are homomorphisms. The result is then immediate from the induction hypothesis
and (4). �

One immediate consequence of Lemma 4.4 is that if x commutes with all atomic
expressions of p, then x commutes with p. This is obtained by taking f and g to be the
identity maps.

Here are two more useful applications.

Lemma 4.5 (Elimination of useless variables.) Let p be an expression of SKAT and
y a variable such that y does not appear on the right-hand side of any assignment or
in any test of p. (Thus the only occurrences of y in p are on the left-hand sides of
assignments.) Let g�p� be the expression obtained by deleting all assignments to y.
Then

p � y �� � � g�p� � y �� ��

Proof. We apply Lemma 4.4 with f the identity, g the erasing homomorphism
defined in the statement of the lemma, and x the assignment y �� �. The assumptions
of Lemma 4.4 are

x �� t � y �� � � y �� � � x �� t� if x and y are distinct

y �� t � y �� � � y �� �


 � y �� � � y �� � � 
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which hold by (10), (8), and (11), respectively. By Lemma 4.4,

p � y �� � � y �� � � g�p��

Also, since y does not appear in g�p�, we have by (10) and (11) that y �� � commutes
with all atomic programs and tests of g�p�. Again by Lemma 4.4,

y �� � � g�p� � g�p� � y �� ��

�

Lemma 4.6 (Change of work variable.) Let p be an expression of SKAT and x� y
variables such that y does not occur in p. Let p	x�y
 be the expression obtained by
changing all occurrences of x in p to y. Then

x �� � � y �� � � p � x �� � � y �� �

� x �� � � y �� � � p	x�y
 � x �� � � y �� ��

Proof. We first apply Lemma 4.4 with f the identity, g the homomorphism defined
by

g�z �� t�
def
� z �� t	x�y
� z different from x

g�x �� t�
def
� x �� t	x�y
 � y �� t	x�y


g�
�
def
� 
	x�y
�

and x the assignment y �� x. The preconditions of Lemma 4.4 are

z �� t � y �� x � y �� x � z �� t	x�y
 (16)

x �� t � y �� x � y �� x � x �� t	x�y
 � y �� t	x�y
 (17)


 � y �� x � y �� x � 
	x�y
� (18)

Equations (16) and (18) are immediate from (6) and (9), respectively, since y does not
occur in t or 
. For (17), since y does not occur in t,

x �� t � y �� x � y �� t � x �� t by (6)

� y �� t � x �� y by (7)

� y �� x � y �� t	x�y
 � x �� y by (8)

� y �� x � x �� t	x�y
 � y �� t	x�y
 by (6).

Then

x �� � � p � y �� �

� x �� � � p � y �� x � y �� � by (8)

� x �� � � y �� x � g�p� � y �� � by Lemma 4.4

� x �� � � y �� � � g�p� � y �� � by (7),

14



therefore

x �� � � y �� � � p � x �� � � y �� �

� x �� � � y �� � � g�p� � x �� � � y �� ��

But g�p� is just p	x�y
 with some extra useless assignments to x, which can be elimi-
nated by Lemma 4.5. �

5 An Extended Example

In this section we illustrate the equivalence technique by applying it to an example of
Paterson (see Manna [22, pp. 253–258]).

The two schemes to be proved equivalent are called S�A and S�E . They are illus-
trated in Figs. 1 and 2, respectively. This is a particularly intricate equivalence problem
requiring considerable ingenuity. Manna’s proof technique is to apply various local
graph transformations that work directly on the flow diagram itself. He transforms S �A

through a chain of equivalent schemes S�B , S�C , and S�D , finally arriving at S�E .
Define the following abbreviations:

ai
def
� P �yi� a

def
� P �y�

bi
def
� P �f�yi�� b

def
� P �f�y��

ci
def
� P �f�f�yi��� c

def
� P �f�f�y���

d
def
� P �f�x��

xi
def
� yi �� x x

def
� y �� x

pij
def
� yi �� f�yj� p

def
� y �� f�y�

qijk
def
� yi �� g�yj � yk� q

def
� y �� g�y� y�

rij
def
� yi �� f�f�yj�� r

def
� y �� f�f�y��

si
def
� yi �� f�x� s

def
� y �� f�x�

ti
def
� yi �� g�f�x�� f�x�� t

def
� y �� g�f�x�� f�x��

uijk
def
� yi �� g�f�f�yj��� f�f�yk��� u

def
� y �� g�f�f�y��� f�f�y���

zi
def
� z �� yi z

def
� z �� y

yi
def
� yi �� � y

def
� y �� ��

Our first step is to convert the two schemes to schematic automata. As previously
noted, the schematic and automatic forms are merely notational variants of each other.
The resulting schematic automata are shown in Figs. 3 and 4.

Now we convert the schematic automata to KAT expressions using the construction
of Kleene’s theorem (Lemma 3.1). This gives the following expressions:

S�A � x�p��p��q���q����a�p��q���q����
�a�p��

��a� � a��a�p���
�a�a�p��p���q���q����a�p��q���q����

�a�p���
�

a��a�p���
�a�a�z� (19)

S�E � saq�araq��az� (20)
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y� �� f�y��

�

halt

Figure 1: Scheme S�A [22, p. 254]
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start

�
y �� f�x�

�
r

P �y�

��

F T

y �� g�y� y�

�
P �y�

��

F T

loop

z �� y

�
halt

y �� f�f�y��

�

Figure 2: Scheme S�E [22, p. 258]

We now proceed to simplify (19) using the axioms ofKAT and the identities (6)–(9)
to obtain (20). Our simplifications are guided by the form of the expressions.

First note that (19) has a nested loop. This suggests that we should first try to denest
it using the denesting rule (3). By the sliding rule (2), (19) is equivalent to

x�p��p��q���q����a�p��q���q����
�

�a�p���a� � a��a�p���
�a�a�p��p���q���q����a�p��q���q����

���

a�p��a��a�p���
�a�a�z� (21)

Now using the denesting rule (3), this becomes

x�p��p��q���q���

�a�p��q���q��� � a�p���a� � a��a�p���
�a�a�p��p���q���q����

�

a�p��a��a�p���
�a�a�z� (22)

and by distributivity,

x�p��p��q���q���

�a�p��q���q��� � a�p��a�q���q��� � a�p��a��a�p���
�a�a�p��p��q���q����

�

a�p��a��a�p���
�a�a�z� (23)

Using the commutivity rules (10) and (11), distributivity, and the implicit undefining
operator y� to dispose of the last occurrence of p��, we obtain

x�p��p��q���q���

�a�a�p��q���q��� � a�a�p��q���q���

� a�a�p��q���q��� � a�a�p���a�p���
�a�a�p��p��q���q����

�

�a�p���
�a�a�a�a�z� (24)
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Figure 3: Scheme S�A, automatic form
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Figure 4: Scheme S�E , automatic form

Now we observe informally that if the outer loop is ever entered with a � false, it
is impossible to escape, since neither p��q���q��� nor p��q���q��� changes the value of
a� and there is a postguard a�. To exploit this idea formally, we use the following little
lemma:

uv � uw � � � �u� v��w � v�w� (25)

To prove (25), suppose uv � uw � �. Then u�v � v � u�uv � v, and similarly u�w �
w. Using denesting (3),

�u� v��w � �u�v��u�w � v�w�

Applying (25) to (24) with

u � a�a�p��q���q��� � a�a�p��q���q���

v � a�a�p��q���q��� � a�a�p���a�p���
�a�a�p��p��q���q���

w � �a�p���
�a�a�a�a�z�

we obtain

x�p��p��q���q���

�a�a�p��q���q��� � a�a�p���a�p���
�a�a�p��p��q���q����

�

�a�p���
�a�a�a�a�z� (26)

The conditions uv � uw � � hold because a� commutes with everything to its right in
u and a� commutes with everything to its left in v and w.
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Now we make a similar observation that the first term inside the outer loop of (26)
can never be executed, because the program p ��p�� causes a� and a� to have the same
truth value. Formally,

p��p�� � y� �� f�y�� � y� �� f�y��

� P �f�y���� P �f�y��� � y� �� f�y�� � y� �� f�y�� Boolean algebra

� y� �� f�y�� � P �f�y���� P �y�� � y� �� f�y�� by (9)

� y� �� f�y�� � y� �� f�y�� � P �y��� P �y�� by (9)

� p��p���a� � a���

To eliminate the first term of the outer loop of (26), we can use our little lemma (25)
again. We actually use its dual

vu � wu � � � w�u� v�� � wv�

with

u � a�a�p��q���q���

v � a�a�p���a�p���
�a�a�p��p��q���q���

w � x�p��p��q���q����

giving

x�p��p��q���q����a�a�p���a�p���
�a�a�p��p��q���q����

��a�p���
�a�a�a�a�z� (27)

To show that the preconditions vu � wu � � are satisfied, it suffices to show

p��p��q���q���a�a� � �� (28)

This follows from the fact p��p�� � p��p���a� � a�� proved above, the commutativity
of a� � a� with q���q���, and Boolean algebra. Thus (27) is justified.

At this point we can eliminate the variable y� by the following steps:

(i) rewrite assignments to eliminate occurrences of y� on the right-hand side;

(ii) show that all tests involving y� are redundant;

(iii) use Lemma 4.5 to remove all assignments with y� on the left-hand side.

For (i), we show that p��p��q��� � p��p��q���. Intuitively, after the first two as-
signments, y� and y� contain the same value, so we might as well use y� in the last
assignment instead of y�. This result would be easy to prove in the presence of equal-
ity, but we show how to do it without.

p��p��q��� � y� �� f�y�� � y� �� f�y�� � y� �� g�y�� y��

� y� �� f�y�� � y� �� y� � y� �� g�y�� y�� by (6)

� y� �� f�y�� � y� �� y� � y� �� g�y�� y�� by (7)

� y� �� f�y�� � y� �� f�y�� � y� �� g�y�� y�� by (6)

� p��p��q����
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Thus (27) is equivalent to

x�p��p��q���q����a�a�p���a�p���
�a�a�p��p��q���q����

��a�p���
�a�a�a�a�z� (29)

For step (ii), we use sliding (2) to get

x��p��p��q���q���a�a�p���a�p���
�a�a��

�p��p��q���q����a�p���
�a�a�a�a�z� (30)

Now p��p�� � p��p���a� � a�� as shown above. It follows from this, commutativity,
and Boolean algebra that p��p��q���q���a�a� � p��p��q���q���a�, therefore the tests
a� are redundant. This allows us to eliminate all occurrences of a � in (30), giving

x��p��p��q���q���a�p���a�p���
�a�a��

�p��p��q���q����a�p���
�a�a�a�z� (31)

Now Lemma 4.5 applies, allowing us to get rid of all assignments to y �. This gives

x��p��q���q���a�p���a�p���
�a�a��

�p��q���q����a�p���
�a�a�a�z� (32)

By sliding and commutativity, we have

x�p���q���q����a�p���
�a�a�a�p��p���

�q���q����a�p���
�a�a�a�z� (33)

and by two applications of (8), we have

s��q���q����a�p���
�a�a�a�r���

�q���q����a�p���
�a�a�a�z� (34)

Now we eliminate the variable y� as we did for y� above. For step (i), use commuta-
tivity to get

s��a�q���q���r���a�p���
�a�a��

�q���q����a�p���
�a�a�a�z� (35)

We then have

q���q���r�� � y� �� g�y�� y�� � y� �� g�y�� y�� � y� �� f�f�y���

� y� �� g�y�� y�� � y� �� y� � y� �� f�f�y��� by (7)

� y� �� g�y�� y�� � y� �� y� � y� �� f�f�y��� by (7)

� y� �� g�y�� y�� � y� �� g�y�� y�� � y� �� f�f�y��� by (7)

� q���q���r���

which allows us to rewrite (35) as

s��a�q���q���r���a�p���
�a�a��

�q���q����a�p���
�a�a�a�z� (36)

For step (ii), we would like to show that tests involving a� are redundant. As above,
we have q���q��� � q���q����a� � a��, thus q���q���a� � q���q���a� and q���q���a� �
q���q���a�. By commutativity, (36) is equivalent to

s��a�q���q���a�r���a�p���
�a��

�q���q���a��a�p���
�a�a�z�

� s��a�q���q���a�r���a�p���
�a��

�q���q���a��a�p���
�a�a�z�� (37)
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The assignments to y� are now useless and can be eliminated by Lemma 4.5, giving

s��a�q���a�r���a�p���
�a��

�q���a��a�p���
�a�a�z� (38)

Furthermore, because of the preguard a� and postguard a�, the loop �a�p���
�a�

occurring inside the outer loop of (38) must be executed at least once. Similarly, be-
cause of the preguard a�, the loop �a�p���

�a� occurring outside the outer loop cannot
be executed at all. Formally,

a��a�p���
�a� � a�a� � a�a�p���a�p���

�a�

� a�p���a�p���
�a��

a��a�p���
�a� � a�a� � a�a�p���a�p���

�a�

� a��

Thus we can rewrite (38) as

s��a�q���r��a�p���a�p���
�a��

�q���a�a�z�� (39)

Moreover, the remaining inner loop �a�p���
�a� can be executed at most twice. To

show this, we use sliding and commutativity to get

s�a�q����r��a�p���a�p���
�a�a�q����

�a�z�

� s�a�q����a�r��a�p���a�p���
�a�q����

�a�z� (40)

As above,

r��a�p��a�p��a� � r��a�p��p��a�

� r��a�r��a� by (8)

� r��r��a�a�

� r��r���a� � a��a�a�

� �� (41)

therefore

r��a�p���a�p���
�

� r��a�p����� a�p�� � a�p��a�p���a�p���
��

� r��a�p�� � r��a�p��a�p�� � r��a�p��a�p��a�p���a�p���
�

� r��a�p�� � r��a�p��a�p��

Thus (40) is equivalent to

s�a�q����a�r��a�p��a�q��� � a�r��a�p��a�p��a�q����
�a�z� (42)

Now (41) also implies that r��a�p��a�p�� � r��a�p��a�p��a�, therefore (42) can be
rewritten

s�a�q����a�r��a�p��a�q��� � a�r��a�p��a�p��q����
�a�z� (43)
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which by (8) is equivalent to

s�a�q����a�r��a�p��a�q��� � a�r��a�p��a�q����
�a�z�

� s�a�q����a�r��a�p���a� � a��q����
�a�z�

� s�a�q����a�r��a�p��q����
�a�z�

� s�a�q����a�r��a�q����
�a�z� (44)

The final step is to get rid of the variable y�. We have

s�a�q��� � ds�q��� by (9)

� ds�t� by (7)

r��a�q��� � c�r��q��� by (9)

� c�r��u��� by (7)

thus (44) is equivalent to

ds�t��a�c�r��u����
�a�z� (45)

We can eliminate the assignments to y� by Lemma 4.5, giving

dt��a�c�u����
�a�z� (46)

Finally, we have

dt� � ds�q��� by (8)

� s�a�q��� by (9)

c�u��� � c�r��q��� by (8)

� r��a�q��� by (9)

giving

s�a�q����a�r��a�q����
�a�z� (47)

After a change of variable (Lemma 4.6), we are done.
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