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Abstract. Kleene algebras with tests provide a rigorous framework for
equational specification and verification. They have been used success-
fully in basic safety analysis, source-to-source program transformation,
and concurrency control. We prove the completeness of the equational
theory of Kleene algebra with tests and *-continuous Kleene algebra with
tests over language-theoretic and relational models. We also show decid-
ability. Cohen’s reduction of Kleene algebra with hypotheses of the form
r = 0 to Kleene algebra without hypotheses is simplified and extended
to handle Kleene algebras with tests.

1 Introduction

A Kleene algebra with tests is an algebraic structure consisting of a Kleene alge-
bra with an embedded Boolean subalgebra. This formalism provides a rigorous
framework for equational specification and verification of programs. It has been
applied successfully to problems in basic safety analysis, source-to-source pro-
gram transformation, and concurrency control [3, 4, 5, 17].

Kleene algebra dates back to a 1956 paper of S. C. Kleene [12] and was de-
veloped extensively in a 1971 monograph of Conway [7]. It has appeared in one
form or another in relational algebra [20, 25], semantics and logics of programs
[13, 23], automata and formal language theory [18], and the design and analysis
of algorithms [1, 11]. See [16] for an introduction and a comprehensive list of
citations.

Kleene algebra forms an essential component of Propositional Dynamic Logic
(PDL) [8], in which it is mixed with modal logic to give a theoretically appealing
and practical system for reasoning about computation at the propositional level.
Syntactically, PDL is a two-sorted logic consisting of programs and propositions
defined by mutual induction. A basic operator in PDL is the test operator 7,
by which a program ¢? can be formed from any proposition ¢. Intuitively, ¢?
acts as a guard that succeeds with no side effects in states satisfying ¢ and
fails or aborts in states not satisfying ¢. Tests are used to manipulate flow of
control, and are needed to model conventional programming constructs such as
conditionals and while loops.



From a practical standpoint, many simple program manipulations such as
loop unwinding and basic safety analysis do not require the full power of PDL, but
can be carried out in a purely equational subsystem using the axioms of Kleene
algebra. However, tests are an essential ingredient for modeling real programs.
This motivates the definition of Kleene algebra with tests (KAT), an equational
system introduced in [17]. In that paper, the utility of KAT was illustrated by
giving a purely equational proof of the following classical result: every while
program can be simulated by a while program with at most one while loop
[10, 19].

E. Cohen has taken a slightly different approach in which tests are defined
to be elements b satisfying the condition b < 1. He has given several practical
examples of the use of Kleene algebra with conditions in program verification,
such as lazy caching and concurrency control [4, 5]. He has shown that Kleene
algebra with extra conditions of the form 7 = 0 reduces to Kleene algebra with-
out extra conditions [3], and is therefore decidable. He has also given a direct
proof that *-continuous Kleene algebra in the presence of extra commutativity
conditions of the form pg = ¢p, even for atomic p and ¢, is undecidable (see [17]),
although with a little extra work this result can be shown to follow from a 1979
result of Berstel [2] (see also [9]).

The proof in [17] only needed extra commutativity conditions of the form
bp = pb, where b is a test. But as shown in that paper, this equation is equiv-
alent to bpb 4 bpb = 0. Thus if Cohen’s reduction of Kleene algebra with extra
conditions 7 = 0 to Kleene algebra without extra conditions could be carried over
to Kleene algebra with tests, then one could effectively get rid of the conditions
in the proof of [17]. We show that this is indeed the case.

The following are the main results of this paper.

1. A Kleene algebra with tests is called *-continuous if its Kleene algebra
satisfies the *-continuity axiom (7) below. The system KAT with this ad-
ditional axiom is called KAT*. We show that the equational theories of
KAT and KAT™ coincide.

2. We show that KAT is complete over relational models. This implies de-
cidability of the equational theory by an essentially trivial reduction to
Propositional Dynamic Logic (PDL). In [6], we show by different methods
that the problem is PSPACE-complete, thus of the same complexity as
Kleene algebra.

3. We show that the equational theory of Kleene algebra with tests ad-
mits free language-theoretic models consisting of regular sets of “guarded
strings”. This result is analogous to the completeness result of [16], which
states that the regular sets over a finite alphabet X' form the free Kleene
algebra on generators Y.

4. As mentioned above, Cohen [3] shows that Kleene algebra with extra con-
ditions » = 0 reduces efficiently to Kleene algebra without conditions. We
simplify Cohen’s construction and generalize it to handle Kleene algebra
with tests.



2 Kleene Algebra with Tests

A Kleene algebra with tests [17] is a Kleene algebra with an embedded Boolean
subalgebra. Formally, it is a two-sorted structure

(’C’ Ba +a Yy *a _7 0’ 1)

where ~ is a unary operator defined only on B, such that

_BCK
— (K, +, -, *, 0, 1) is a Kleene algebra, and
— (B, +, -, 7, 0, 1) is a Boolean algebra.

The elements of B are called tests. We reserve the letters p,q,r, s for arbitrary
elements of K and a, b, ¢ for tests. In PDL, a test would be written 67, but since
we are using different symbols for tests we omit the ?.

As is customary, we omit the -, writing pq instead of p - ¢. The precedence of
the operators is = >*> - > +. Thus p + ¢r* should be parsed p + (g(r™*)).

2.1 Kleene Algebra

There have been many competing axiomatizations of Kleene algebra. The for-
mulation we adopt here (KA) is from [16]. Succinctly put, a Kleene algebra is an
idempotent semiring under +,-,0, 1 satisfying the additional properties

1+pp* =p*

1+p*p = p*
g+pr<r—pfg<r
g+ <r—qp* <
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where < refers to the natural partial order on K:

def
p<qg<=ptg=gq.

The operation + gives the supremum with respect to the natural order <. Instead
of (3) and (4), we might take the equivalent axioms

pr<r—pr<r (5)
rp<r—rpt<r. (6)

Typical models include the family of regular sets over a finite alphabet, the
family of binary relations on a set, and the family of n x n matrices over another
Kleene algebra.

A Kleene algebra is said to be *-continuous if it satisfies the infinitary con-
dition

pq*r = suppg™r (7)
n>0



where

0 def n+1 def n
= = 499

q 1 q

and the supremum is with respect to the natural order <.

In the presence of the other axioms, the *-continuity condition (7) implies
(3-6), and is strictly stronger in the sense that there exist Kleene algebras that
are not *-continuous [14].

The main result of [16] says that all true identities between regular expres-
sions, interpreted as regular sets of strings, are derivable from the axioms of
Kleene algebra [16], and only such identities are derivable. In other words, the
algebra of regular sets of strings over the finite alphabet X is the free Kleene
algebra on generators X. It is also the free *-continuous Kleene algebra on gener-
ators X; i.e., the equational theory of the Kleene algebras and the *-continuous
Kleene algebras coincide.

Two useful identities of Kleene algebra are

p*(ap")* = (p+)* (8)
p(gp)* = (pg)"p - (9)

All the operators are monotone with respect to <. In other words, if p < ¢,
then pr < g7, p+ 7 < g+, and p* < ¢* for any r.
See [16] for a more thorough introduction.

2.2 The Boolean Subalgebra

The Boolean subalgebra B admits a Boolean negation operator ~ defined only on
B. Join and meet are given by the Kleene algebra operators + and -, respectively.
B satisfies the axioms of Boolean algebra in addition to the Kleene algebra axioms
given above.

2.3 The Language of Kleene Algebra with Tests

Let X and B be disjoint finite sets of symbols. Elements of X' are called primitive
actions and elements of B are called primitive tests. Terms and Boolean terms
are defined inductively:

— any primitive action p is a term

— any primitive test b is a Boolean term

— 0 and 1 are Boolean terms

— if p and q are terms, then so are p + ¢, pg, and p* (suitably parenthesized
if necessary)

— if b and ¢ are Boolean terms, then so are b + ¢, bc, and b (suitably paren-
thesized if necessary)

— any Boolean term is a term.



The set of all terms over X and B is denoted Tz,B' The set of all Boolean terms
over B is denoted Tf.

An interpretation over a Kleene algebra with tests K is any homomorphism
(function commuting with the distinguished operations and constants) defined
on TE,B and taking values in X such that the Boolean terms are mapped to
elements of the distinguished Boolean subalgebra.

If K is a Kleene algebra with tests and [ is an interpretation over X', we write
K,IF g if the formula ¢ holds in K under the interpretation I according to the
usual semantics of first-order logic. We write KAT E ¢ (respectively, KAT* & ¢)
if the formula ¢ is a logical consequence of the axioms of KAT (respectively,
KAT*). In this paper the only formulas we consider are equations or equational
implications (universal Horn formulas).

3 A Language-Theoretic Model

Let X' and B be disjoint finite sets of symbols. Our language-theoretic model of
Kleene algebras with tests is based on the idea of guarded strings over X and B.
We obtain a guarded string from a string z € X™* by inserting atoms interstitially
among the symbols of z. An atom is a Boolean expression representing an atom
(minimal nonzero element) of the free Boolean algebra on generators B.

Formally, an atom of B = {b1,...,b;} is a string of literals cicq - - - ¢, where
each ¢; € {b;,b;}. This assumes an arbitrary but fixed order by < by < -+ < by,
on B; for technical reasons, we require the literals in an atom to occur in this
order. There are exactly 2* atoms. We denote atoms of B by a,3,ag,... The
set of all atoms of B is denoted 1g (this notation is chosen because 1g will turn
out to be the multiplicative identity of our language-theoretic model G).

If b € B and « is an atom of B, we write a < b if b occurs positively in o and
o < b if b occurs negatively in a. This notation is consistent with the natural
order in the free Boolean algebra generated by B.

Intuitively, the symbols of X’ can be thought of as instructions and atoms as
conditions that must be satisfied at some point in the computation. If a < ¢;,
then o asserts that ¢; holds (and ¢; fails) at that point in the computation.

Definition1. A guarded string over X and B is any element of (1gX)*1g, i.e.,
any string
ap1oapr - Paln , N 20,

where each «; is an atom of B and each p; € Y. Note that a guarded string
begins and ends with an atom. In the case n = 0, a guarded string is just a
single atom.

The set of all guarded strings over X' and B is denoted GSZ‘,B’ or just GS
when X and B are understood.

Let B = {b| b € B}. We denote strings in (¥ U B U B)*, including guarded
strings, by the letters z,y, 2,1, ...
The analog of concatenation for guarded strings is coalesced product (o).



Definition 2. The coalesced product operation ¢ is a partial binary operation
on GS defined as follows:

def zay, ifa= 5
zacofy = { undefined, otherwise.

In other words, if the terminal atom of the first string is the same as the
initial atom of the second string, then the two strings can be coalesced. This is
like concatenation, except that we combine the two intermediate atoms into one.

If A,B C GS, define

A<>Bd§f{:n<>y|$eA,yeB}.

Thus A ¢ B consists of all existing coalesced products of guarded strings in A
with guarded strings in B.

Whereas the operation ¢ is partial when applied to guarded strings, it is
total when applied to sets of guarded strings. Note that if there are no existing
coalesced products of strings from A and B, then Ao B = @. It is not difficult
to show that ¢ is associative, that it distributes over union, and that it has
two-sided identity 1g.

We now define a language-theoretic model G = QEB based on guarded
strings. The elements of G will be the regular sets of guarded strings over X
and B (although we have not yet defined regular in this context). We will also
give a standard interpretation of terms in Ty, g over G analogous to the standard
interpretation of regular expressions as regular sets.

For A C GS, define inductively

A0 €, o YL
The asterate operation for sets of guarded strings is defined by

AFE (] ar.

n>0

Let ~ denote set complementation in 1g. That is, if A C 1g, then 4 = 1g — A.
Consider the structure

PZB = (QGS, 219, U, o, *, o, 9, lg) .

We write P for PZJ,B when ¥ and B are understood. It is quite straightforward
to verify that P is a *-continuous Kleene algebra with tests, i.e. is a model of
KAT*. The Boolean algebra axioms hold for 2'¢ because it is a set-theoretic
Boolean algebra.

The *-continuity condition follows immediately from the definition of * and
the distributivity of coalesced product over infinite union. We have that

AoB*oC=Ao(|JB"oC=|]AeB"oC.
n>0 n>0



Both of these expressions denote the set
{zoyoz|zeAd, 2€C, Inye B"}.

For p € X and b € B, define

def
G(p) = {apB|a,B € 1g} (10)
GH)E {aelg|a<b}.
The structure G = G, g is defined to be the subalgebra of P generated by the

elements G(p) for p € ¥ and G(b) for b € B. Elements of G are called regular
sets.

3.1 Standard Interpretation

The map G defined on primitive actions and primitive tests in (10) extends
uniquely by induction to a homomorphism G : Ty, g — G-

G(p+q) = G(p) UG(q) G(pg) = G(p) © G(q)
G(1) = 1g G(b) = 1g — G(b)
G0)=2 G(p*) = G(p)* .

The map G is called the standard interpretation over G.

4 Relational Models

Relational Kleene algebras with tests are interesting because they closely model
our intuition about programs. In a relational model, the elements of K are binary
relations and - is interpreted as relational composition. Elements of the Boolean
subalgebra are subsets of the identity relation.

Formally, a relational Kleene algebra with tests on a set X is any structure

(’C’ B’ U’ o, *’ _7 Z, l’)
such that
(}Ca U7 o, *7 Qz [')

is a relational Kleene algebra, i.e. K is a family of binary relations on X, o is
ordinary relational composition, * is reflexive transitive closure, and ¢ is the
identity relation on X; and

(Ba U, o, 7, &, L)

is a Boolean algebra of subsets of ¢ (not necessarily the whole powerset).

All relational Kleene algebras with tests are *-continuous. We write REL |= ¢
if the formula ¢ holds in all relational Kleene algebras in the usual sense of first-
order logic.



5 Completeness of KAT* under the Standard
Interpretation

In this section we prove that an equation p = ¢ is a theorem of *-continuous
Kleene algebra with tests iff it holds under the standard interpretation over
g&B, where Y and B contain all primitive action and test symbols, respectively,
appearing in p and ¢. We will later strengthen this result in §7 by removing the
assumption of *-continuity.

Theorem 3. Let p,q € T, g. Then
KAT* Ep =g < G(p)=G(q) .

Equivalently, G, g is the free *-continuous Kleene algebra with tests on genera-
tors X and B.

The forward implication is easy, since G is a *-continuous Kleene algebra.
The converse is a consequence of the following lemma.

Lemmad4. For any *-continuous Kleene algebra with tests K, interpretation
I: TZJ,B — K, and p,q,r € TZJ,B’

I(pgr) = sup I(pzr)
z€G(gq

where the supremum is with respect to the natural order in K. In particular,

I(q) = sup I(z).
z€G(q)

This result is analogous to the same result for Kleene algebras [15, Lemma
7.1, p. 35] and the proof is similar. Note that the *-continuity axiom is a special
case.

Proof of Lemma 4. We proceed by induction on the structure of ¢. The basis
consists of cases for primitive tests, primitive actions, 0 and 1. We argue the
case for primitive actions and primitive tests explicitly.

For a primitive action ¢ € X, recall that

G(q) ={agB | o, B € 15} .
Then
I(pgr) = 1(p)1(1)I(q)I(1)1(7)
= sup{I(p)/(a)I(g)I(B)I(r) | o, B € 15}
= sup{I(pagfr) | o, B € 1¢}
=sup{I(pzr) |z € G(q)} .

Finite distributivity was used in the second step.



For a primitive test b € B, recall that
Gb) ={a|a<b}.
Then

I(pbr) = 1(p)1(b)I(r)
= sup{I(p)I(@)I(r) | a < b}
= sup{I(par) | o < b}
= sup{I(pzr) |z € G(b)} .
Again, finite distributivity was used in the second step.
The induction step consists of cases for +, -, *, and ~. The cases other than

- and ~ are the same as in [15, Lemma 7.1, p. 35].
For the case -, recall that

G(qq') = G(a) 0 G(d) = {yaz | ya € G(q), az € G(¢)} -
Applying the induction hypothesis twice,

I(pgq'r) = sup{I(pqvr) | v € G(q')}
= sup{sup{/(pwvr) | v € G(q)} | v € G(¢')}
= sup{I(puvr) |u € G(q), v € G(¢')} .
The last step follows from a purely lattice-theoretic argument: if all the suprema
in question on the left hand side exist, then the supremum on the right hand

side exists and the two sides are equal.
Now

sup{I(puvr) | u € G(g), v € G(q)}
= sup{I(pyaBer) | ya € G(q), Bz € G(q)
= sup{I(pyaazr) | ya € G(q), az € G(q")
= sup{I(pyazr) | ya € G(q), az € G(¢')}
= sup{I(par) | z € G(qq')} .

The justification for step (11) is that if a # 3, then the product in K is 0 and

does not contribute to the supremum.
For the case 7, recall that

G =1g-Cb)={alagb)={a]a<b).

}
} (11)

Then
I(pbr) = sup{I(par) | a < b} = sup{I(par) | a € G(b)} .

Proof of Theorem 3. If KAT* = p = ¢ then G(p) = G(q), since G is a *-
continuous Kleene algebra with tests. Conversely, if G(p) = G(g), then by Lemma
4, for any *-continuous Kleene algebra with tests K and any interpretation I over
K, I(p) = I(q). Therefore KAT* |= p = q.



6 Completeness over Relational Models

In this section we establish completeness over relational models. It will suffice
to construct a relational model isomorphic to G. This construction is similar to
a construction of Pratt [22] for regular sets.

For A any set of guarded strings, define

hA) = {(z,30y) |5 €GS, ye A}

Lemmab5. The language-theoretic model P and its submodel G are isomorphic
to relational models.

Proof. We show that the function h : P — 265%GS defined above embeds P
isomorphically onto a subalgebra of the Kleene algebra of all binary relations on
GS.

It is straightforward to verify that h is a homomorphism. We present the case
for ¢ as an example.

h(AoB)={(z,z0p0q)|2€GS, pe A, ¢ € B}
={(z,z0p) | 2 € GS, pe A}
o{(zop,zopoq) | 2€GS, pe A, q € B}
={(z,z0p) | 2€GS, pe A} o {(y,yoq) |y € GS, ¢ € B}
= h(A)o h(B) .

The function k is injective, since A is uniquely recoverable from h(A):
A={y|3a(ay) € h(A)}.

The submodel G is perforce isomorphic to a relational model on GS, namely
the image of G under h.

The following theorem establishes the completeness of KAT* over relational
models.

Theorem 6. Let REL denote the class of all relational Kleene algebras with tests.
Let p,q € T, g. The following are equivalent:

(i) KAT* Ep=g¢
(1) G(p) = G(q)
(iii)) RELE p = q.

Proof. The equivalence of (i) and (ii) was proved in Theorem 3. Since all re-
lational models are *-continuous Kleene algebras with tests, (i) implies (iii).
Finally, (iii) implies (ii) by Lemma 5.



7 Completeness of KAT

In this section we show that the equational theories of the Kleene algebras with
tests and the *-continuous Kleene algebras with tests coincide by showing that
every term p can be transformed into a KAT-equivalent term p such that G(p),
the set of guarded strings represented by 7, is the same as R(p), the set of strings
represented by P under the ordinary interpretation of regular expressions. The
Boolean algebra axioms are not needed in equivalence proofs involving such
terms, so we can apply the completeness result of [16] directly.

Consider the set B = {b | b € B}, the set of negated atomic tests. We can
view B as a separate set of primitive symbols disjoint from B and X. Using
the DeMorgan laws and the law b = b of Boolean algebra, every term p can be
transformed to a KAT-equivalent term p’ in which ~ is applied only to primitive
test symbols, thus we can view p’ as a regular expression over the alphabet
Y UBUB. As such, it represents a set of strings

R(p') € (YUBUB)*

under the standard interpretation R of regular expressions as regular sets.

In general, the sets R(p') and G(p') may differ. For example, R(q) = {q} for
primitive action ¢, but G(q) = {agB | @, 8 € 1g}.

Our main task will be to show how to further transform p’ to another KAT-
equivalent string p such that all elements of R(p) are guarded strings and R(p) =
G(P). We can then use the completeness result of [16], since p and ¢ will be KAT-
equivalent iff $ and 7 are equivalent as regular expressions over X UB U B, i.e.,
if they can be proved equivalent in pure Kleene algebra.

In our inductive proof, it will be helpful to maintain terms in the following
special form. Call a term externally guarded if it is of the form « or g3, where «
and 3 are atoms of B. Define the coalesced product of two such terms as follows:

def [ras,if a=p
raofis = {0, if o £ f.

(Here we must distinguish between a guarded string as a guarded string and a
guarded string as a term, since coalesced product is undefined for incompatible
pairs of guarded strings.)

For any two externally guarded terms ¢ and r,

G(gor)=G(q)oG(r),

and g o7 is externally guarded.
If 37, ¢i and > 7; are sums of zero or more externally guarded terms, define

Doa)e (o) = D aors .

For any two sums ¢ and 7 of externally guarded terms,
G(gor)=G(q) o G(r),

and gor is a sum of externally guarded terms.



Lemma 7. For every term p, there is a term P such that

(i) KAT Ep=5
(ii) R(P) = G(5)

(iit) D is a sum of zero or more externally guarded terms.

Proof. As argued above, we can assume without loss of generality that all oc-
currences of ~ in p are applied to primitive tests only, thus we may view p as a
term over the alphabet ¥ UB UB.

We define p by induction on the structure of p. For the basis, take

~ def def
PEY g, 0pB, pel 1Y .0
b <Y, a, beBUB 0% 0.

In each of these cases, it is straightforward to verify (i), (ii), and (iii).
For the induction step, suppose we have terms p and ¢ satisfying (ii) and
(iil). We take
praSp+te = poq.
These constructions are easily shown to satisfy (i), (ii), and (iii).
It remains to construct ]/); We proceed by induction on the number of ex-

ternally guarded terms in the sum p.
For the basis, we define

7
o
(agf)* L T+ag8, a#p (12)
(aga)* ¥ T+ ag(ag)*a . (13)

For the induction step, let p = ¢ + r, where 7 is an externally guarded
term and ¢ is a sum of externally guarded terms, one fewer in number than

in p. By the induction hypothesis, we can construct ¢’ = q/; with the desired
properties. Suppose the initial atom of the externally guarded term r is a. Then
KAT |= 7 = ar. Moreover, the expression (7¢'a)* is KAT-equivalent to (rog'oa)™,
which by distributivity can be put into a form in which (12) or (13) applies,
yielding a term ¢" satisfying (ii) and (iii).
Reasoning in KAT,
(q +7)*
¢*(rg")* by (8)
=q'(r¢")*

! !
=4 +4'rd(rq")
=q +q'r¢'(arg)*
=q +Q(7"q a)*rg’ by (9)
=q¢ +dq¢"r¢
=q¢ +q'oq"oroq,

! *

by (1) and distributivity

(
(



which is of the desired form.

Theorem 8.
KAT Ep=q <+ G(p)=G(q) -

In other words, the equational theories of the Kleene algebras with tests and the
*.continuous Kleene algebras with tests coincide.

Proof. The forward implication is immediate, since G is a Kleene algebra with
tests.

For the reverse implication, suppose G(p) = G(q). By Lemma 7(i) and The-
orem 3, G(p) = G(q). By Lemma 7(ii), R(p) = R(7). By the completeness result
of [16], KA |= p = ¢. Combining this with Lemma 7(i), we have KAT = p = g.

Since we have shown that the equational theories of the Kleene algebras with
tests and the *-continuous Kleene algebras with tests coincide, we can henceforth
write = p = ¢ unambiguously in place of KAT* |= p = ¢ or KAT = p = ¢.

8 Eliminating Hypotheses r = o

Cohen [3] shows that in Kleene algebra, any equational implication of the form
r = 0 — p = ¢ reduces efficiently to a single equation. In this section we simplify
Cohen’s proof and extend it to handle Kleene algebras with tests.

Let p,q,7 € T&B. Let u be the universal expression (p1 + -+ + pm)™, where
Y ={p1,...,Pm}- Under the standard interpretation over the language-theoretic
model G, the term u represents the set of all guarded strings.

The main property of the universal expression is that for any xz € Tz,Bv
FE 2 < w. This can be shown easily in two steps: first, F z < z', where z’ is
obtained from z by deleting all Boolean symbols; this holds because F b < 1 for
all Boolean expressions b. Then, F ' < u by ordinary Kleene algebra.

Theorem 9. The following are equivalent:
(i) KATEr=0—-p=gq

(ii) KAT er =0 —p=gq

(iti) E o+ uru = q+ uru.

Note that the equivalence of (i) and (ii) does not follow immediately from
Theorem 8, since they are not equations but equational implications.

Proof. We first define a congruence on the set T'y, g of terms in the language of
Kleene algebra with tests. For s, € Ty, g, define

sztg:d:s+uru:t+u7"u.

The relation = is an equivalence relation. We show that it is a *-continuous
Kleene algebra congruence.



If s =t is a theorem of KAT, then s = ¢, since F s = ¢ implies F s + uru =
t+ uru.

To show = is a congruence with respect to 4+, we need to show that s = ¢
implies s + w = ¢ + w. But this says only that F s + uru = ¢t + uru implies
Fs+w+uru =t + w+ urw, which is immediately apparent.

To show = is a congruence with respect to -, we need to show that s = ¢
implies sw = tw and ws = wt. We establish the former; the latter follows by
symmetry.

Fs4+uru==¢t+ uru
= F sw+ uruw = tw + uruw
= F sw+ wrvw + uru = tw + urvw + uru

= F sw+ uru = tw + urw .

To show = is a congruence with respect to *, we need to show that s = t implies
s* = t*.

Fs+uru=1t+uru

= F (s4uwru)* = (t +wru)*

= F s*(uwrus®)* = t* (urut™)*

= F s*(1 +urus® (urus™)*) = t*(1 + urut™ (urut™)*)

= F s + s*urus™ (wrus™)* + uru = ¢* + Furut® (wrut™)* + uru

=>Es*turu=t*+uru.

To show = is a congruence with respect to =, we need to show that for Boolean
terms b, ¢, if b = ¢ then b =¢. This case follows from previous results. If b =,
then b +¢ =c+¢ = 1, thus ¢ = (b +¢)b = b. By symmetry, ¢b = ¢, therefore
b=rc.

Finally, to show that = respects *-continuity (7), we need only show that if
st +y =y for all n, then st*v +y =y:

E(st"v+y)+uru=y+uruforalln

= F st"v+ (y +uwru) = y + wru for all n

= Est*v+ (y +uru) =y +uru (14)
=F (st'v+y) +uru =y +uru .

The crucial step (14) follows {rom the fact that if st"v <y +urw for all n in all
*_continuous Kleene algebras, then st*v < y + urw in all *-continuous Kleene
algebras.

Since = is a KAT* congruence on T&B7 we can form the quotient TE,B/E
and canonical interpretation s — [s], where [s] denotes the =-congruence class
of s, and this structure is a *-continuous Kleene algebra with tests. The equation
r = 0 is satisfied under this interpretation, since

FEr+uru =uru=0+uru,



sor =0.

Now we are ready to prove the equivalence of the three conditions in the
statement of the theorem.

(i) = (ii) Any formula true in all Kleene algebras with tests is certainly
true in all *-continuous Kleene algebras with tests.

(i) = (ili) If KAT* =7 =0 — p = g, then since Ty g/= is a *-continuous
Kleene algebra with tests and Ty, g/=,[ | F r =0, we have Ty, g/=,[ | Fp=¢.
By definition, p = ¢q, which is what we wanted to show.

(ili) = (i) Suppose = p + uru = ¢ + uru. Let K be an arbitrary Kleene
algebra with tests and let I be an arbitrary interpretation over K such that
K,JE7r=0. Then K,] Ep=p+uwru = g+ uru = ¢. Since K and I were
arbitrary, KATEr=0—-p=gq.

9 Decidability

Once we have Theorem 6, the decidability of the equational theory of Kleene
algebra with tests follows almost immediately from a simple reduction to Propo-
sitional Dynamic Logic (PDL). Any term in the language of KAT is a program
of PDL (after replacing Boolean terms b with PDL tests b?), and it is known
that two such terms p and ¢ represent the same binary relation in all relational
structures iff

PDL ': <p>c — <g>c

where ¢ is a new primitive proposition symbol [8]. By Theorems 6 and 8, this is
tantamount to deciding KAT-equivalence.

PDL is known to be exponential time complete [8, 21], thus the equational
theory of KAT is decidable in no more than exponential time. It is at least
PSPACE-hard, since the equational theory of Kleene algebras is [24].

It can be shown by different methods that the equational theory of KAT is
PSPACE-complete [6].
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