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ABSTRACT
We provide a systematic numerical and analytical study of Klein–Nishina (KN) effects in the
spectrum produced by a steady-state, non-thermal source where rapidly accelerated electrons
cool by emitting synchrotron radiation and Compton up-scattering ambient photons produced
outside the source. We focus on the case where q, the ratio of the ambient radiation field
to source magnetic field energy densities, significantly exceeds unity. We show that the KN
reduction in the electron Compton cooling rate causes the steady-state electron spectrum to
harden at energies γ � γ KN, where γ KN = 1/4ε0 and ε0 = hν0/m ec2 is the characteristic
ambient photon energy. This hardening becomes noticeable in the synchrotron radiation from
electrons with energies as low as 0.1γ KN and changes the synchrotron spectral index relative to
its Thomson limit value by as much as �α ∼ 0.75 for q � 1. The source synchrotron spectrum
thus shows a high-energy ‘bump’ or excess, even though the electron acceleration spectrum
has no such excess. In contrast, the low-energy Compton gamma-ray spectrum shows little
distortion because the electron hardening compensates for the KN decline in the scattering rate.
For sufficiently high electron energies, however, Compton cooling becomes so inefficient that
synchrotron cooling dominates – an effect omitted in most previous studies. The hardening of
the electron distribution thus stops, leading to a rapid decline in Compton gamma-ray emission,
i.e. a strong spectral break whose location does not depend on the maximum electron energy.
This break can limit the importance of Compton gamma-ray pair production on ambient photons
and implies that a source’s synchrotron luminosity may exceed its Compton luminosity even
though q > 1. We discuss the importance of these KN effects in blazars, micro-quasars and
pulsar binaries.
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1 I N T RO D U C T I O N

Probably because of the initially greater sensitivity of radio tele-
scopes, studies of the emission from non-thermal sources, e.g. the
powerful radio jets found in active galactic nuclei (AGNs), focused
on synchrotron radiation from relativistic electrons moving in a mag-
netic field. It was quickly realized, however, that the same relativistic
electrons would also Compton up-scatter any ambient low-energy
photons to produce emission at much higher, e.g. X-ray and gamma-
ray, energies. A classic discussion of the emission spectrum expected
from a gas of relativistic electrons, where synchrotron radiation and
Compton scattering are the dominant energy loss mechanisms, may
be found, for example, in Felten & Morrison (1966). Several of the
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standard approximations still used today are presented there, e.g. the
delta function approximation which provides a one-to-one relation
between the energies of the electrons and the synchrotron and Comp-
ton up-scattered photons produced by them. Of particular interest,
these authors note that the processes of Compton up-scattering in
the Thomson regime and synchrotron radiation both lead to quasi-
continuous electron energy losses that are proportional to the square
of the electron Lorentz factor (this is, in fact, not a surprise given that
synchrotron radiation may be viewed as the Compton up-scattering
of virtual magnetic field photons; see Blumenthal & Gould 1970).
This implies that the shape of the energy distribution of cooled elec-
trons does not depend on which process dominates their cooling and
that the ratio of the luminosities for the resulting Compton and syn-
chrotron emission components simply goes as L C/L syn = u0/uB,
where u0 and uB are, respectively, the (comoving) low-energy radi-
ation and magnetic field energy densities inside the source. This is
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very useful to know, for example, because if one measures LC and
Lsyn and knows u0, e.g. if the relevant low-energy ambient photons
are due to the cosmic microwave background (CMB), then one can
immediately derive the magnetic field strength in the source. Also,
the shapes of the synchrotron and Compton emission spectra will be
similar, with the Compton spectrum simply shifted up in energy rel-
ative to the synchrotron one by the factor ε0/ε B where ε B = B/B cr,
B cr = 4.4 × 1013 G, and ε0 = hν 0/m ec2 is the typical ambient
photon energy. For mono-energetic ambient photons, the spectral
shapes are in fact identical except for the effects of self-absorption
in the low-energy portion of the synchrotron spectrum.

It is important to remember, however, that all of these convenient
rules of thumb, used in many interpretation papers, break down
when the electrons are sufficiently energetic to scatter with ambient
photons in the Klein–Nishina (KN) limit, i.e. when γ > γ KN =
1/4ε0 (e.g. Blumenthal & Gould 1970). In such a case, the rela-
tion between up-scattered and incident photon energy changes (the
up-scattered photon cannot have more energy than the incident elec-
tron), electrons can lose most of their energy in a single scattering
rather than cooling quasi-continuously as a result of many small en-
ergy losses, and to the extent that a cooling rate is relevant, the ratio
of Compton to synchrotron energy losses is now a decreasing func-
tion of energy and is less than u0/uB. A careful re-examination of
the implications of treating the Compton scattering process correctly
in this limit is timely now that satellite and ground-based gamma-
ray telescopes have shown many extragalactic and some galactic
compact objects to be strong emitters of GeV and TeV radiation. If
produced by Compton up-scattering, i.e. the inverse Compton (IC)
process, then these gamma-rays likely result from scatterings in the
KN regime, and we must be accordingly careful in the interpretation
of the multiwavelength observations for these objects.

Some of the possible KN ‘corrections’ have already been dis-
cussed or are well known. An obvious limit is the case when
the ambient (target) photon energy density in the source is small
and the energy density ratio q = u0/uB is thus �1. In this case,
synchrotron losses always dominate over Compton losses regard-
less of electron energy. If we have a source where electrons are
rapidly accelerated to high energies and subsequently cool via ra-
diative losses, then the steady-state spectrum of the source (assum-
ing on-going acceleration) is determined solely by the magnetic
field and the ‘injection’ energy spectrum of electrons produced by
the rapid acceleration process. We can therefore consider the elec-
tron distribution to be fixed, e.g. a power law with nγ ∝ γ −s , and
we just need to carry out the relatively easy computation of the
Compton spectrum up-scattered by such an electron power law. For
simplicity, let us assume that the ambient radiation field is approxi-
mately mono-energetic, again with characteristic energy ε0. In this
case, the resulting Compton emissivity is approximately a broken
power law, with the usual Thomson-limit result of j ε ∝ ε−(s−1)/2 for
ε � εKN, and the extreme KN-limit result of j ε ∝ ε−s log(ε) for
ε � εKN where εKN = γ KN (see, for example, Aharonian & Atoyan
1981). In other words, the synchrotron spectrum is unchanged from a
Thomson approximation calculation while the Compton spectrum
shows a strong spectral break at ε ∼ εKN with a change in spectral
index �α = (s + 1)/2. For s � 2, which seems typical for the known
very high-energy gamma-ray sources, �α � 1.5, i.e. is large, and
given the usually poor statistics at the highest energies, this spectral
break can easily be misinterpreted as an exponential cut-off due to
the maximum electron energy in the source.

A much less obvious but still important limit is the case q � 1.
For u0 sufficiently large, one can in principle go to the opposite
limit and ignore the effects of synchrotron cooling, solving directly

the kinetic equation for the evolution of electrons due to Compton
scattering. The steady-state electron and up-scattered photon spectra
obtained for continuous electron acceleration and complete elec-
tron cooling via Compton scattering are discussed in detail by
Zdziarski (1989) (see also Zdziarski & Krolik 1993). The main con-
clusion is that the equilibrium electron distribution hardens for γ >

γ KN compared to the Thomson approximation result. This is be-
cause electron energy losses are relatively less efficient in the KN
limit and electrons remain longer at higher energies. This hardening
of the electron spectrum compensates the decreased efficiency of
Compton up-scattering, and the resulting photon spectrum shows
no ‘KN break’ at ε ∼ ε IC,KN. Interestingly, for a rapid acceleration
process that effectively injects electrons into the source with an en-
ergy distribution Q(γ ) ∝ γ −p with p = 2, the Compton emissivity
is j ε ∝ ε−2, i.e. exactly the answer that would have been obtained
in the Thomson limit. Note, though, an important difference from
the Thomson result is that the correctly computed spectrum always
cuts off at ε ∼ γ max, the maximum electron Lorentz factor, and that
this cut-off is independent of the target photon energy ε0. Also, for
p �= 2, the Compton spectrum in the KN regime does not follow the
slope of the spectrum in the Thomson regime, steepening slightly if
p > 2, and hardening if p < 2.

The analysis just mentioned, however, does not include syn-
chrotron losses and does not consider the synchrotron emission pro-
duced as a result of these losses. The condition q � 1, in fact, only
guarantees that synchrotron losses are negligible for γ < γ KN. At
higher energies, the Compton loss rate decreases due to KN effects
and eventually synchrotron cooling always dominates. Thus, sev-
eral effects that are potentially important for high-energy sources
may pass unnoticed. First, the hardening of electron distribution in
the KN regime leads to a hardening of co-spatially produced syn-
chrotron radiation. Prior work which touches on this aspect includes
the following. Dermer & Atoyan (2002) invoke KN effects to explain
the production of X-rays in large-scale jets via synchrotron radia-
tion. Ravasio et al. (2003) invoke KN effects to explain the soft X-ray
excess over the power-law high-energy synchrotron tail. Kusunose,
Takahara & Kato (2004) and Kusunose & Takahara (2005) study
KN effects in the context of flat-spectrum radio quasars (FSRQs).
Secondly, for sufficiently high electron energies, synchrotron losses
dominate and the electron distribution ‘saturates’ to one with the
same slope as in the Thomson regime, but with a normalization
factor q times larger. This effect was included by Khangulian &
Aharonian (2005) in their studies of outflows from compact objects
in high-mass X-ray binary (HMXB) systems, but not by Kusunose
& Takahara (2005), even though some of their calculations in-
volve electron energies high enough for synchrotron losses to be
important.

In this paper, we provide a systematic study of KN effects in
steady-state sources with q � 1, covering all the effects mentioned
above. We use accurate numerical techniques that solve the exact
integro-differential equations for the steady-state photon and elec-
tron energy distributions. However, we also present approximations
that allow us to follow the various effects analytically using sim-
ple algebraic functions. We focus our studies on the case where
the ambient radiation field is dominated by external photon sources
with mono-energetic or power-law spectra. The paper is organized
as follows. In Section 2 we analyse IC electron energy losses in the
KN regime and compare them with the corresponding synchrotron
energy losses. In Section 3 we present general and approximate for-
mulae for the IC emissivities for the cases of isotropic and beamed
ambient radiation fields. The energy distribution of relativistic elec-
trons in a steady-state source with continuous electron injection is

C© 2005 RAS, MNRAS 363, 954–966

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/363/3/954/1148881 by guest on 16 August 2022



956 R. Moderski et al.

discussed in Section 4. The KN effects in the synchrotron and IC
spectra produced by such a source are analysed in Section 5. Our
results are discussed in the context of specific astrophysical sources
in Section 6 and summarized in Section 7.

2 E L E C T RO N E N E R G Y L O S S E S

2.1 Inverse Compton energy losses

The rate of IC energy losses of relativistic, isotropically distributed
electrons is (see Appendix C)

|γ̇ |IC = 4cσT

3mec2
u0γ

2 FKN, (1)

where

FKN = 1

u0

∫ ε0,max

ε0,min

fKN(b̃)uε0 dε0, (2)

u0 = ∫ ε0,max

ε0,min
uε0 dε0 is the total energy density of the radiation field,

uε0 is the energy distribution of the ambient photons, and we re-
express the electron energy as b̃ = 4γ ε0 noting b̃ = 1 corresponds to
the transition between the Thomson and KN scattering regimes. The
function fKN(b̃) is given by equations (C5) and (C3) in Appendix C.
For b̃ � 1 (Thomson limit), f KN � 1; for b̃ � 1 (KN limit), fKN �
[9/(2b̃2)](ln b̃ − 11/6). For b � 104, fKN(b̃) can be approximated
by

fKN � 1

(1 + b̃)1.5
. (3)

To estimate the effects of having an extended target photon energy
distribution, let us assume that uε0 is a power law ∝ε−α

0 and that
bmax = 4ε0,maxγ max < 104, so we may use approximation (3). Then
we may write

FKN ∝
∫ ε0,KN

ε0,min

ε−α0 dε0 + ε1.5
0,KN

∫ ε0,max

ε0,KN

ε
−α0−1.5
0 dε0, (4)

where ε0,KN = 1/4γ . KN effects become important and F KN < 1 for
γ > γ KN ≡ 1/(4ε0,max). For α0 < −0.5, Compton energy losses for
electrons with γ > γ KN are dominated by scatterings on photons
with the highest energies, ∼ε0,max. We may then treat the photon
distribution as mono-energetic, with FKN � fKN(b̃ = 4γ ε0,max).
For −0.5 < α0 < 1, Compton losses are instead dominated by
scattering on photons with energy ∼ε0,KN. In this case, we may
make the so-called ‘Thomson-edge’ or ‘KN cut-off’ approximation
that

FKN �
∫ ε0,KN

ε0,min
ε

−α0
0 dε0∫ ε0,max

ε0,min
ε

−α0
0 dε0

� (ε0,KN/ε0,max)−α0+1 = bα0−1, (5)

if we rewrite the electron energy as b = 4ε0,maxγ and have ε0,min �
ε0,max. A useful approximation that extrapolates to the Thomson
limit for b → 0 and has good accuracy for 0 < α0 < 1 is then given
by

FKN � 1

(1 + b)1−α0
. (6)

If we instead have α0 > 1, the Compton losses of the electrons are
dominated by scatterings on the lowest energy photons available,
at ∼ε0,min. We may then use the approximation, FKN � fKN(b̃ =
4γ ε0,min). If we further have 4γ maxε0,min < 1, then in fact all scat-
terings are effectively in the Thomson regime even if higher-energy
ambient photons are present and bmax > 1. To gauge the accuracy of

Figure 1. The function F KN (b) computed for mono-energetic (‘mono’)
and power-law (α0 = 0.0 and α0 = 0.5) energy distributions of the external
photon field. The solid lines show the results of the exact calculations while
the dashed lines are the analytical approximations.

approximations (3) and (6), we compare in Fig. 1 the approximate
values of F KN(b) to the exact ones for three different ambient pho-
ton spectra: mono-energetic, and power laws with α0 ≡ −d ln u ε0/

d ln ε0 = 0.0 and 0.5. From a similar analysis to that for the power-
law case, we can show that FKN for a Planckian (thermal) distribution
is well approximated by treating the Planckian as a mono-energetic
photon distribution with energy 2.8 kT.

2.2 Synchrotron energy losses versus inverse
Compton energy losses

Noting that the rate of synchrotron losses in a tangled magnetic field
of strength B is

|γ̇ |syn = 4cσT

3mec2
uBγ 2 (7)

where uB = B2/8π is the magnetic energy density, we have (see
equation 1)

γ̇IC

γ̇syn
= q FKN, (8)

where q ≡ u0/uB. Because F KN < 1 for any value of b, for q <

1 the energy losses for all electrons are dominated by synchrotron
radiation. For q > 1, the energy losses for electrons with γ < γ s are
dominated by IC scattering while losses for electrons withγ >γ s are
instead dominated by synchrotron radiation, where γ s = bs/4 ε0,max,
and bs is the solution of the equation q FKN = 1, plotted in Fig. 2.
For a mono-energetic ambient photon spectrum (see equation 3)

bs � q2/3 − 1, (9)

while for a power-law spectrum with 0 < α0 < 1 (see equation 6)

bs � q1/(1−α0) − 1. (10)

The relative role of the IC and synchrotron energy losses is
illustrated in Fig. 3. We show there

γ̇IC

γ̇tot
= q FKN(b)

1 + q FKN(b)
, (11)
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Figure 2. bs versus q for mono-energetic and power-law ambient radiation
fields: solid lines, exact results; dashed lines, analytical approximations.

Figure 3. The relative IC and synchrotron energy losses for an ambient
radiation energy distribution that is mono-energetic (solid lines) or power
law (α0 = 0.0, dotted lines; α0 = 0.5, dashed lines).

and

γ̇syn

γ̇tot
= 1

1 + q FKN(b)
, (12)

for three different spectra of the ambient radiation field, assuming
that γ̇tot = γ̇IC + γ̇syn.

3 I N V E R S E C O M P TO N E M I S S I V I T Y

The IC emissivity for isotropically distributed electrons is

jε(IC) =
∫

∂Pε(IC)(γ )

∂	
nγ dγ , (13)

where
∂Pε(IC)(γ )

∂	
= ∂Ṅsc(ε, γ )

∂ε∂	
εmec

2, (14)

is the IC power per unit photon energy per unit solid angle per
electron and Ṅ sc is the scattering rate of photons on isotropically
distributed electrons.

For two particular cases, mono-directional beams of target pho-
tons and an isotropic radiation field, the respective scattering rates
are given by equations (A1) and (B1), respectively. Inserting these
into equation (13) gives, for the beamed mono-energetic external
radiation field

ε jε(IC)(θ ) = 3

16π
cσTu0

(
ε

ε0

)2 ∫
nγ

γ 2
f (γ, ε, ε0, θ ) dγ, (15)

and for the isotropic ambient radiation field

ε jε(IC) = 3

16π
cσTu0

(
ε

ε0

)2 ∫
nγ

γ 2
fiso(γ, ε, ε0) dγ, (16)

where θ is the scattering angle (the angle between the photon beam
and the direction to the observer). The functions f (γ , ε, ε0, θ ) and
f iso(γ , ε, ε0) are given by equations (A3) and (B4). These formulae
can easily be generalized for any spectrum of external radiation field
by replacing u0 by u ε 0 dε0 and integrating them over ε0.

A useful first approximation for the IC spectrum (see, for example,
Coppi & Blandford 1990) may be obtained by making the delta
function approximation f (ε, γ, ε0) ∝ δ[ε − ε̄(IC)(γ )], where

ε̄IC(γ, θ ) =
∫

ε f (γ, ε, ε0, θ ) dε∫
f (γ, ε, ε0, θ ) dε

(17)

ε̄IC(γ ) =
∫

ε fiso(γ, ε, ε0) dε∫
fiso(γ, ε, ε0) dε

(18)

are the average energies of photons produced by the scattering of
photons of energy ε0 by electrons with energy γ . A useful quantity
is the scattering inelasticity of a single electron, i.e. the average
fraction of its incident energy that is transferred to the scattered
photon: A = ε̄IC(γ )/γ . This quantity is shown in Fig. 4 for the case
of a mono-energetic ambient photon field.

Figure 4. Inelasticity, A = ε̄IC(γ )/γ for electron Compton scatterings
off a mono-energetic ambient radiation field: dotted line, isotropic ambient
radiation field; solid lines, beamed ambient radiation field, for scattering
angles cos θ = −1.0, 0.0 and 0.6.
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Inserting the delta function approximation into equations (15) and
(16), we can rewrite the IC emissivities as

ε jε(IC)(θ ) � nγ γ

4π
|γ̇ |ICmec

2χ (γ, θ )
d ln γ

d ln ε̄(IC)(θ )
, (19)

and

ε jε(IC) � nγ γ

4π
|γ̇ |ICmec

2 d ln γ

d ln ε̄(IC)
, (20)

respectively, where

χ (γ, θ ) =
∫

f (ε, ε0, γ, θ )ε dε∫
fiso(ε, ε0, γ )ε dε

≡ ε̄IC(γ, θ )

ε̄IC(γ )
. (21)

Note that in the Thomson limit, ε̄IC ∝ γ 2, so that d ln γ /d ln ε̄IC =
1/2, while in the KN limit, ε̄IC ∼ γ , so that d ln γ /d ln ε̄(I C) = 1.

We can make an analogous approximation for the synchrotron
emissivity, provided that the magnetic fields are isotropic and
γ max < B cr/(4B). We have then,

ε jε(syn) � nγ γ

4π
|γ̇ |synmec

2 d ln γ

d ln ε̄(syn)
= 1

2

nγ γ

4π
|γ̇ |synmec

2 (22)

where ε̄syn = (4/3)γ 2(B/Bcr) and B cr ≡ 2πm2
ec3/(he) � 4.4 × 1013

G.

4 S T E A DY- S TAT E E L E C T RO N
E N E R G Y D I S T R I BU T I O N

Under the assumptions that the time-scales for the acceleration of
individual electrons are much shorter than the time-scales of their
energy losses, that electrons do not escape from the cooling region,
and that they also do not suffer adiabatic losses, the evolution of the
electron energy distribution, nγ , can be described by the integro-
differential equation (Blumenthal & Gould 1970)

∂nγ

∂t
= − ∂

∂γ
(nγ |γ̇ |) − nγ

∫ γ

1

C(γ, γ ′) dγ ′

+
∫ γmax

γ

nγ C(γ ′, γ ) dγ ′ + Q, (23)

where |γ̇ | is the energy loss rate due to loss processes that may be
approximated as being continuous, e.g. synchrotron radiation, C(γ ,
γ ′) is the probability per unit time for Compton scattering of an
electron with energy γ to energy γ ′, and Q is the electron injection
function, i.e. the electron production rate per unit time, per energy
and per volume. The transition rates C(γ , γ ′) have been derived
by Jones (1968) for a mono-energetic ambient radiation field, and
by Zdziarski (1988) for power-law ambient radiation fields.

To illustrate in a simple way the effects of KN corrections, we
use a continuity version of the kinetic equation

∂nγ

∂t
= − ∂

∂γ
(nγ |γ̇ |tot) + Q, (24)

despite the fact that in the KN regime the fractional electron en-
ergy losses per scattering are not negligible (see Fig. 4). Such a
simplification can be justified by noting that the results obtained by
Zdziarski (1989) show that the electron distributions obtained by
using the exact integro-differential equation versus the continuity
equation are qualitatively very similar and that significant differ-
ences (up to a factor few) occur only if both the electron injection
function and the ambient radiation field are mono-energetic. In the
cases studied here, the differences are further reduced by the increas-
ingly important role of the (continuous) synchrotron energy losses
at the highest energies, particularly if bmax > bs. We demonstrate
this explicitly in Figs 5–7 where we compare the results of exact

Figure 5. Steady-state electron energy distributions for the power-law elec-
tron injection function, Q ∝ γ −p , and mono-energetic ambient radiation
field: solid lines, exact results; dotted lines, results obtained using the con-
tinuous energy loss approximation for all Compton scattering. The model
parameters are: p = 2, q = 30; bmax = 1; 10; 100; 103.

Figure 6. IC plus synchrotron spectra of steady sources with model pa-
rameters p = 2; q = 30; bmax = 1, 10, 102, 103, 104; ε0 = 10−4; B =
1 G. Upper panel: mono-energetic ambient radiation field. Lower panel:
power-law ambient radiation field with α0 = 0.5. Solid lines denote exact
calculations. Dotted lines denote calculations using continuous energy loss
approximation. Dashed lines denote Compton spectra computed using the
continuous energy loss approximation and the delta function approximation.
The dot-dashed line in the lower panel is the asymptotic power law (α =
−0.5) for the IC spectrum at ε > ε IC,s given by equation (27). To show con-
vergence to this spectrum for increasing bmax, the lower panel also shows
the IC spectra obtained for bmax = 105, 106 and 107.
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Figure 7. Same as the upper panel of Fig. 6 (mono-energetic radiation
field), but for p = 1.

calculations made using the code of Coppi (1992) with the approx-
imate results obtained by treating Compton losses continuously in
that code. For many applications that do not involve fitting data and
thus do not require very high accuracy, the continuous energy loss
approximation should suffice.

A steady-state solution of the continuity equation, ∂nγ /∂t = 0,
is

nγ = 1

|γ̇tot|

∫
γ

Q dγ = 3mec

4σTuB

∫
γ

Q dγ

γ 2(1 + q FKN)
, (25)

where we assume that electron energy losses are dominated by the
IC process and by synchrotron radiation, i.e. that

|γ̇tot| = |γ̇syn| + |γ̇IC| = 4cσTuB

3mec2
γ 2(1 + q FKN). (26)

For bmax � bs and q � 1, the steady-state distribution has two
asymptotes: one for b � 1, where electron energy losses are domi-
nated by Thomson scatterings, i.e. F KN = 1; and one for bs � b �
bmax, where electron energy losses are dominated by synchrotron
radiation, i.e. q F KN � 1. The respective equilibrium electron dis-
tributions are γ 2nγ ∝ ∫

γ
Q dγ /(1 + q) and γ 2nγ ∝ ∫

γ
Q dγ . For

1 < b < bs, despite the decrease of the KN cross-section, electron
energy losses are still dominated by the IC process and the electron
distribution is γ 2nγ ∝ ∫

γ
Q dγ /(q FKN).

For a rapid acceleration mechanism that produces a power-law
electron injection spectrum, Q ∝ γ −p , with p > 1, the two asymp-
totes of the steady-state distribution (for b � 1 and b � bs) are
power laws with the same spectral index, s = p + 1, where s ≡
−d ln nγ /d ln γ . For 1 � b � bs, i.e. for γ KN < γ < γ s, the elec-
tron distribution is harder than in the asymptotic regions, with a
spectral index reaching s = p + 1 + �s, where �s � d ln F KN/

d ln γ <0. Using the analytical approximations for FKN given in Sec-
tion 2 and going to the limit q � 1, we find that for ambient radiation
fields with mono-energetic or very sharply peaked photon energy
distributions, �s � −1.5, while for softer external fields, with α0 >

0.0, �s � α0 − 1. When q � 103, the maximum hardening, �s,
of the electron distribution is a function of q and decreases with
decreasing q. (See Fig. 8 for an example of how the corresponding
hardening of the electron synchrotron depends on q.) Note that this

Figure 8. Synchrotron spectral ‘hardening’, �α, as a function of b. Model
parameters: bmax = ∞, and q = 10, 102, 103.

result is independent of the injection index p as long as the contin-
uous Compton cooling approximation holds. Of course, for bmax <

bs the electron energy distribution will not have the maximum de-
viation possible from the Thomson-limit (b � 1) asymptote and
�s may not reach its maximum value. In this case, the KN induced
bump or ‘excess’ at the high-energy end of the electron distribution
is correspondingly less prominent. This is demonstrated in Fig. 5,
where the electron distribution is computed for four different values
of bmax.

5 S P E C T R A

5.1 Klein–Nishina effects

Examples of the steady-state electromagnetic spectra produced for
the case of power-law electron injection function are shown in Figs 6
and 7. The IC spectra are computed assuming an isotropic ambient
radiation field. The characteristic photon energies marked on the
figures have the following definitions (see equation 18): εIC,KN ≡
ε̄IC(γKN); εIC,s ≡ ε̄IC(γs); εsyn,KN ≡ ε̄syn(γKN); εsyn,s ≡ ε̄syn(γs); and
ε+ ≡ 2/ε0,max, which is the approximate threshold energy for
photon–photon pair production on the ambient photon distribution.

As one can see, the high-energy parts of the IC and synchrotron
spectra behave very differently. The IC spectra do not change very
much after crossing ε IC,KN. This is because for q � 1, Compton
scattering still dominates the cooling of the electrons responsible
for IC photons at ε � ε IC,KN. Even though those electrons scatter
in the KN regime, the decreased efficiency of Compton scattering
is compensated by the corresponding increase in their equilibrium
density, as discussed in Zdziarski & Krolik (1993). As one moves
to higher photon energies, however, synchrotron cooling becomes
relatively more important for the electrons responsible for these
IC photons. Eventually, when the energy of the relevant electrons
exceeds γ s, synchrotron cooling rapidly dominates and the fraction
of the electron’s energy going into the Compton component plum-
mets. The result is a sharp steepening or break of the IC spectrum at
energy ε IC,s, which is independent of the maximum electron energy
γ max > γ s.
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When one instead considers synchrotron emission, the harden-
ing of the electron distribution at γ > γ KN is directly reflected
in the synchrotron spectrum. The result is a synchrotron spectrum
that can harden dramatically at ε > ε syn,KN, forming a synchrotron
‘bump’ if bmax < bs. Note that if q � 1, the hardening of the
synchrotron component can already be noticeable at even lower en-
ergies, ∼ε̄syn(0.1γKN). For bmax � bs, the synchrotron spectrum at
ε > ε syn,s converges to a spectrum with the same slope as the low-
energy (Thomson regime) asymptote but with a normalization that
is a factor q higher.

An interesting consequence of the very different behaviours of
the high-energy portions of IC and synchrotron spectra is that for
the case of a flat electron injection spectrum (p < 2) with bmax >

bs, the luminosity of the synchrotron peak – located around
εsyn,max ≡ ε̄syn(γmax) – will exceed the luminosity of the IC peak
(located around ε IC,s), no matter how large we make q. This domi-
nance of the synchrotron component, even though q = 30 � 1, is
demonstrated in Fig. 7.

All the spectral features just described can be reproduced analyt-
ically, by using the equations

ε jε(IC) � mec2

4π

q FKN

1 + q FKN
γ

∫
γ

Q dγ
d ln γ

d ln ε̄IC
(27)

and

ε jε(syn) � 1

2

mec2

4π

1

1 + q FKN
γ

∫
γ

Q dγ, (28)

which are obtained after insertion of equation (25) into equa-
tions (20) and (22), respectively. For γ max � γ s and q � 1, the
latter implying bs � 1, i.e. γ s � γ KN, the IC and synchrotron spec-
tra can be characterized as the superposition of three components
produced by electrons with γ � γ KN, γ KN � γ � γ s and γ s � γ

� γ max. These components are

4πε jε(IC)

mec2
∼ γ

∫
γ

Q dγ

{
1/2 if ε � εIC,KN

1 if εIC,KN � ε � εIC,s

q FKN if εIC,s � ε � εIC,max

, (29)

where γ �
√

(3/4)(ε/ε0,max) if ε � ε IC,KN, and ε � γ if ε � ε IC,KN,
and

4πε jε(syn)

mec2
∼ γ

∫
γ

Q dγ

×
{

1/(2q) if ε � εsyn,KN

1/(2q FKN) if εsyn,KN � ε � εsyn,s

1/2 if εsyn,s � ε � εsyn,max

, (30)

where γ = √
3εBcr/(4B).

For electron injection Q ∝γ −p and p >1, the various components
are power laws, i.e. we have

4πε jε(IC)

mec2
∝

{
ε−p/2 if ε � εIC,KN

ε−(p−1) if εIC,KN � ε � εIC,s

ε−(p−1+δα) if εIC,s � ε � εIC,max

, (31)

where δα ∼ 1.5 for α0 < −1, and δ α ∼ 1 − α0 for 0 < α0 < 1,
while

4πε jε(syn)

mec2
∝

{
ε−p/2 if ε � εsyn,KN

ε−(p/2+�α) if εsyn,KN � ε � εsyn,s

ε−p/2 if εsyn,s � ε � εsyn,max

, (32)

where �α = −[d ln(1/F KN)/d lnε]|b∝ε1/2 . For α0 < −1, �α ∼
−0.75, while for 0 <α0 < 1, �α ∼−(1 −α0)/2. We should empha-

Figure 9. IC spectra for a beamed ambient radiation field. The model
parameters are: q = 30, bmax = 10, 103; ε0 = 10−4; cos θ = −1.0, 0.0, 0.6.
For comparison, the IC spectra for an isotropic ambient radiation field are
also shown (dotted lines).

size here that estimation of the hardening of synchrotron spectrum
slope in the band [ε syn,KN; ε syn,s ] is very crude and corresponds to
its maximum value, which as noted previously, can be reached only
for q � 103. As shown in Fig. 8, the synchrotron spectral hardening
will be weaker for lower values of q.

Although we have only presented and discussed emission spectra
computed for an isotropic ambient radiation field, we would like to
emphasize that with our generic assumption of isotropic distribu-
tion of electrons, the electron energy losses, as well as the distri-
bution of electrons (equation 25) and their synchrotron emissivity
(equation 22), do not depend on the angular distribution of the ambi-
ent radiation field. Hence, in the case of a beamed ambient radiation
field, the IC spectrum can be simply computed from equations (15)
or (19) by using the electron distribution given by equation (25). In
Fig. 9 we show such spectra for three different scattering angles and
compare them with that computed for the isotropic ambient radia-
tion field. One can see that the deeper one is in the KN regime, the
weaker is anisotropy of the scattered radiation. Suppression of the
anisotropy is caused by the recoil effect.

5.2 Further effects that may modify the observed spectrum

To highlight the spectral effects caused by the modification of
the electron energy distribution due to Compton scatterings in the
KN regime, we have considered only spectra produced in the fast
electron cooling regime, and we have ignored possibly important
processes such as photon–photon pair production and synchrotron
self-Compton radiation. We also did not consider effects due to the
relativistic propagation of the source, which is important in objects
such as blazars. We discuss below how our results can be affected
by the inclusion of some of these complications.

5.2.1 Fast versus slow cooling regime

Assuming that electron energy losses are dominated by radiative
processes, the cooling time-scale for an electron of energy γ is (see
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equation 26)

tc ≡ γ

|γ̇ | = 3mec

4σTuBγ (1 + q FKN)
. (33)

For sources with a finite (comoving frame) lifetime tQ, the only
electrons that have time to cool significantly are those with t c < tQ.
Looking first at the Thomson limit (γ � γ KN) of this expression,
we find the usual result that only electrons with γ > γ c have time
to cool, where

γc = 3mec

4σTu0tQ
(34)

for q � 1. The number density of electrons at a given energy that can
accumulate in the source is roughly Q(γ )min[t c(γ ), tQ]. For power-
law electron injection, the electron energy distribution of electrons
therefore hardens by �s = 1 for γ < γ c, leading to a hardening of
the synchrotron or Compton spectrum by �α = 0.5.

For γ > γ KN, q � 1, and a mono-energetic ambient photon
distribution, the cooling time increases for γ > γ KN, reaching a
local maximum at γ ≈ γ s, when synchrotron cooling begins to
dominate. Efficient KN cooling therefore requires t c(γ s) < tQ. From
equation (33), we have

tc(γs) = 3mec

8σTuBγs
= 3mecε0

2σTu0

q

bs
. (35)

Hence, fast cooling in the KN regime requires

q

bs
<

2σTu0tQ

3ε0mec
(36)

or, equivalently using bs ∼ q2/3 for 1 � q � 103,

q <

(
2σTu0tQ

3ε0mec

)3

. (37)

Of course, if we have bmax < bs, the upper limit on q is correspond-
ingly weaker.

For a power-law photon distribution with 0 � α0 � 1, we may
use equation (33) and approximation (6) to show that t c ∼ γ −α0 .
For α0 > 0, this is a monotonically decreasing function of γ , so
fast cooling throughout the KN regime is simply guaranteed by the
condition t c(γ KN) � tQ, or equivalently γ KN > γ c. This can be
translated into the following requirement on the energy density of
the external radiation field,

u0 >
3mec

4γKNσTtQ
= 3mecε0

σTtQ
. (38)

For a photon distribution that is harder than α0 = 0 or softer than
α0 = 1, i.e. for a radiation field that is effectively mono-
energetic (see discussion in Section 2.1), we must instead require
t c(γ s) � tQ.

5.2.2 Photon–photon pair production

Because (i) the cross-section for photon–photon pair production
is similar in magnitude to that for Compton scattering, and (ii) the
photon threshold energy for pair production, ε+ ∼1/ε0,max, is almost
the same as the electron energy γ KN ∼ 1/ε0,max, it is often stated that
strong pair production is unavoidable in sources where KN effects
are important. This is not always true, however.

First, in many applications a better estimate for the threshold
energy is in fact ε+ = 2/ε0,max. Moreover, KN effects are actu-
ally important at energies well below 1/ε0,max, i.e. at γ < γ KN =
1/4ε0,max. Furthermore, from Fig. 4, A(γKN) ∼ 0.1–0.3, so that an

electron of energy γ KN actually Compton up-scatters photons to typ-
ical energies εIC,KN = AKNγKN � ε+. Taking A at larger energies
to be ∼0.5, we see that we in fact need a source with bmax > b+ =
γ +/γ KN ∼ �16. Because KN distortions of the electron spectrum
already produce visible distortions in the synchrotron spectrum for
electron energies b ∼ 0.1, this means there is a factor of ∼100 in
electron energy for which KN corrections are important but pair
production is not possible. Because ε̄syn ∝ b2, this corresponds to a
factor of 104 in synchrotron frequency.

Secondly, even if we have bmax � b+, pair production may still not
be important. When one includes the effects of synchrotron cool-
ing, left out of KN pair production studies such as Zdziarski (1988),
we have seen that one obtains a strong break at ε IC,s correspond-
ing to the electron energy bs where synchrotron cooling starts to
dominate. Thus, if b+ < bmax but b+ > bs, pair production occurs
but the luminosity of the pairs that are produced (and the spectral
distortions they induce) will not be bolometrically important. For a
mono-energetic photon distribution, bs � q2/3, and one thus has bs <

b+ for any q � 60, independent of the actual value of the maximum
electron energy, bmax, e.g. see Figs 6(a) and 7. Note, though, that
for an ambient photon distribution that is not mono-energetic, e.g.
a power law with α0 � −0.5, KN effects are not as strong as for
the mono-energetic case because lower-energy photons that scat-
ter in the Thomson regime are available. The spectral break due to
ε IC,s therefore occurs at higher energy and pair production can be
important for much lower q, e.g. see Fig. 6(b).

Even if pair production is energetically possible, the preceding
discussion says nothing about whether the optical depth to pair pro-
duction τ γγ actually exceeds unity, and it ignores the effects of
photon anisotropy (which raise the pair production threshold). In a
realistic source, the extent and geometry of the external radiation
field must be taken into account as well as its absolute intensity. In
galactic pulsar wind applications, for example, the ambient radia-
tion field due to the companion star is often highly anisotropic in
the source region of interest. In the most general case, τ γγ must be
treated as a free parameter. In particular, if the source region has
an effectively infinite lifetime and is not expanding, which avoids
the problem of adiabatic losses, we are essentially free to choose
as low an external field energy density as we like without violating
the fast KN cooling constraints discussed above. If the source is not
static, though, there are interesting limits we can place on τ γγ if we
demand efficient KN cooling. For example, consider a source of size
R with a characteristic lifetime or expansion time-scale ∼R/c. For
simplicity, assume also that the radiation field is mono-energetic.
Then, taking τ γγ � 0.2n0σ T R where n0 = u0/ε0 and using the
fast-cooling condition of equation (35), we have

τγγ � 3

10
q1/3. (39)

This implies, for example, that we can be in the fast KN regime and
still have τ γγ < 1 for q � 37.

5.2.3 Up-scattering of photons produced inside the source

The steady-state distribution of electrons comes from balancing the
injection of electrons by their radiative energy losses and, in general,
one should include both up-scattering of photons produced outside
the source as well as up-scattering of photons produced inside the
source. The latter involves the synchrotron-self Compton (SSC)
process and multiple-Compton scatterings of photons resulting
from Comptonization of external radiation and from Comptoniza-
tion of SSC photons. These processes (SSC + multiple-Compton
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scatterings) are assumed in the present work to have negligible ef-
fects on the electron energy distribution. The assumption can be
justified by comparison of a rate of energy losses via SSC and
multiple-Compton scatterings, γ̇SSC+MC, with the total energy losses
rate, γ̇tot. We have

γ̇SSC+MC ∝
∫

fKNuε dε (40)

and

γ̇tot ∝ uB +
∫

fKNuε0 dε0 +
∫

fKNuε dε, (41)

where u ε is the energy density of the radiation emitted within the
source (it includes all radiative components: synchrotron, SSC,
Comptonized external radiation, SSC and higher-order Compton
components). In the steady-state case∫

uεdε = uinj ≡ R

c

∫
Q(γ − 1)mec

2 dγ, (42)

and introducing the new parameter, q inj ≡ u inj/uB, we obtain

γ̇SSC+MC

γ̇tot
= qinj FKN(inj)

1 + q FKN + qinj FKN(inj)
, (43)

where FKN(inj) = (1/uinj)
∫

fKNuε dε. Hence, γ̇SSC+MC/γ̇tot � 1 if
q inj � q, i.e. if u inj � u ext. In particular, if energy injected via
electrons is equiparteted with magnetic fields, i.e. q inj ∼ 1, then the
effects of SSC and of multiple-Compton scatterings on the electron
energy distribution are negligible for any q � 1.

5.2.4 Relativistic source propagation effects

If a source is moving with relativistic speed (bulk Lorentz factor
� � 1), and the external radiation field in such a frame is isotropic,
and with an energy density u0 peaked at photon energies ∼ε0, then
in the source rest frame, the energy density of the external radiation
is �2 times larger and the energies of seed photons are � times
higher. Then the rest-frame quantities relevant to our discussion of
KN effects are b = 4 �γ ε0, and, in particular, γ KN � 1/(4 �γ ε0),
and q � �2u0/uB. Because for � � 1 the head-on approximation
applies, the IC emissivity can be computed using equation (15)
with

cos θ = −cos ψ ′
obs = − cos ψobs − β

1 − β cos ψobs
, (44)

where ψ ′
obs is the angle between the jet axis and the direction to the

observer in the comoving frame while ψ obs is the same angle but as
measured in the lab frame. The observed source flux is then

εobs Fεobs = D4
∫

ε jε(θ ) dV

d2
L

, (45)

where εobs = εD/(1+ z),D = 1/[�(1−β cos ψobs)] is the Doppler
factor, dL is the distance (luminosity distance for cosmological ob-
jects), z is the redshift, and V is the volume of the source as measured
in its rest frame. The lifetime of the source measured in the lab frame
is �tQ.

6 A P P L I C AT I O N S

6.1 Blazars

The clearest and probably the most numerous examples of high-q
(radiation-dominated) non-thermal sources are FSRQs – radio-loud

quasars seen at small angles to the jet axis. Many of these are catego-
rized as optically violent variables (OVVs) and/or highly polarized
quasars (HPQs), and together with on average much less luminous
BL Lac objects, they form the subclass of AGNs called ‘blazars’.
The Doppler boosted non-thermal radiation from quasar jets is of-
ten strongly dominated by gamma-rays (von Montigny et al. 1995;
Mukherjee et al. 1997). Day–week variability time-scales suggest
that these sources are located at (sub)parsec distances from the cen-
tre. There, the external radiation field, as viewed in the jet comoving
frame, is dominated by the powerful broad emission line (BEL) re-
gion radiation. For u0 � L BEL/(4πr 2

BELc) and uB �LB/[π(rθ j )2c�2]

q(r ∼ rBEL) � �2u0

uB
� 25

LBEL,45(�/10)2(�θ j )2

4L B,45
, (46)

where LB is the magnetic energy flux carried by the jet and θ j =
R/r is the half-opening angle of a jet.

Let us determine now the values of γ KN and γ s and the corre-
sponding IC and synchrotron photon energies for such an external
radiation field, assuming that q � 1 and γ max > γ s. Noting that the
energies of BELs peak around ∼10 eV (ε0 ≈ 2 × 10−5) and that
they are seen in the jet comoving frame as boosted by a factor ∼�,
i.e. b = 4ε 0γ�, we have

γKN = 1

4ε0�
∼ 103(�/10)−1 (47)

and

γs = bsγKN ∼ 104(q/30)2/3(�/10)−1. (48)

These electrons Comptonize external photons up to average energies

εobs
IC,KN � AKNγKND ∼ 2 × 103(AKN/0.14)(D/�)

(∼1 GeV . . .) (49)

and

εobs
IC,s � AsγsD � 6 × 104(As/0.5)(q/30)2/3(D/�)

(∼30 GeV . . .), (50)

and produce synchrotron photons with average energies

εobs
syn,KN = 4

3
γ 2

KN

B

Bcr
D∼ 2 × 10−7 L1/2

B,45(D/�)

RBEL,18(�/10)

(∼3 × 1013 Hz . . .), (51)

εobs
syn,s = b2

s ε
obs
syn,KN � q4/3εobs

syn,KN (52)

∼2 × 10−5(q/30)4/3 L1/2
B,45(D/�)

RB E L,18(�/10)

(∼3 × 1015 Hz . . .). (53)

Hence, sources with q � 1, 1 < bmax < bs and power-law elec-
tron injection should produce synchrotron ‘bumps’ peaking in the
infrared–ultraviolet (IR–UV) spectral band. The closer a given bmax

is to bs, the more prominent the bump. As discussed, the presence
of ‘excess’ synchrotron emission (the bump) in this case is simply
due to KN effects and should not be interpreted as indicating the
presence of a new electron acceleration component or a hardening
of the low-energy injection spectrum.

We have just estimated the electron injection parameters that
would put a luminous blazar into the KN regime studied here.
Are there any blazars that actually populate this region of param-
eter space? Because, for even the brightest blazars, the Energetic
Gamma-Ray Experiment Telescope (EGRET) could not detect
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Klein–Nishina effects in non-thermal sources 963

gamma-rays much beyond 1 GeV, the extension of the electron
energy distribution into KN regime cannot be established using
EGRET data. However, quite significant constraints on the high-
energy tails of the electron energy distribution are provided by ob-
servations of their synchrotron spectra. In the study of Padovani
et al. (2003), about half of the objects in their sample of powerful
blazar objects have synchrotron spectra peaking at ν > 3 × 1013 Hz,
which implies b > 1. In most cases the spectra steepen in the UV
band, indicating an injection function with a cut-off or break at
b ∼ a few, i.e. KN effects may be moderately important. There
are a few of these blazars, though, that have a synchrotron peak
clearly located in the UV to soft X-ray band and may have bmax �
1. For these objects, assuming the external BEL radiation field is
dominant with the characteristics described above, we then pre-
dict a high-energy spectral break of the IC component at ε IC,s ∼
30 GeV, independent of the observed synchrotron cut-off energy
(i.e. bmax) provided that it is sufficiently large. If the electron injec-
tion spectrum for these objects is not unusually soft, i.e. we have
p � 3, then as shown in Figs 6–8, for example, a significant fraction
of their bolometric luminosity actually emerges in the synchrotron
component. In particular, their IC luminosity should be comparable
to their synchrotron luminosity, i.e. they would not be gamma-ray
loud objects (with L IC/L syn � 1).

It would be very convenient if powerful blazars had gamma-ray
spectra extending to TeV energies, e.g. they would provide very
bright sources that could be used to constrain the intensity of the ex-
tragalactic background light via the absorption of their gamma-rays
(Coppi & Aharonian 1999). Unfortunately, for the BEL parameters
we have used, this is impossible unless q is extremely (and implausi-
bly) large. One caveat to this conclusion is that we have not included
SSC effects in our estimates, and because the synchrotron emission
is much broader in energy than the BEL one, γ s and ε IC,s could move
to higher values. Note, though, that ε+, the energy above which pair
production on the BEL becomes possible, is only �50 GeV. Strong
Compton TeV emission therefore seems unlikely unless it occurs
far from the BEL region and the typical ambient photon energy is
in the near-infrared range. Indeed, so far no single FSRQ has been
detected in the TeV band – all TeV detected blazars belong to the
lower-luminosity, BL Lac class of objects which have either weak
or non-existent BEL regions.

6.2 Micro-blazars?

Only two or three EGRET sources have been identified with micro-
quasars (Paredes et al. 2000; Combi et al. 2004; Massi et al.
2004). The fact that these objects are HMXB systems containing
massive and very luminous companion stars strongly suggests a
Compton origin for their gamma-rays. As in blazars, the EGRET
observations unfortunately do not provide constraints on γ max for
these objects. Furthermore, because these sources are relatively
weak and completely dominated in the optical/UV band by radia-
tion from the companion stars, their synchrotron component cannot
be identified. However, GRS 1915+105 proves that X-ray bina-
ries (XRBs) have the ability to produce much more powerful and
relativistic jets (Fender & Belloni 2004) than in the sources just
mentioned. If such a powerful jet were to occur in an HMXB and it
pointed toward us, we would see a micro-blazar, with relativistically
boosted non-thermal radiation dominating over all spectral bands
(Georganopoulos, Aharonian & Kirk 2002). Because the spectra of
HMXB companion stars peak at ∼10 eV, the same value for the
BEL in quasars, the values of γ KN and γ s, and of ε IC,KN and ε IC,s

are of the same order as for blazars and, therefore, like blazars,

they are expected to be GeV emitters and not strong TeV emitters.
Due to the much stronger magnetic fields in micro-quasar jets, the
synchrotron spectral bumps, produced if bmax � 1, are predicted
to peak in the UV/soft X-ray band. Hence, if some of the ultra-
luminous X-ray (ULX) sources are in fact micro-blazars pointed
at us, they should be strong gamma-ray emitters (Georganopoulos
et al. 2002).

However, we must remember that very large q is available only on
size scales comparable to those of the binary system. For electron
acceleration occurring well down the jet, outside the binary sys-
tem, the companion star radiation chases the relativistically mov-
ing emission region from behind and its energy density is thus
Doppler deboosted when viewed in the jet frame. The energy den-
sity of the companion star radiation field will be further reduced
by the usual factor, ∝1/r 2 where r is the distance from the bi-
nary, but this effect can be cancelled out by the fact that the mag-
netic field energy in a conically expanding jet also drops as 1/r 2.
Closer in to the central object, jets typically have much stronger
magnetic fields and, therefore, synchrotron radiation will dominate
electron energy losses, even in the Thomson regime. In this case
the IC spectrum is expected to break at ε IC,KN, i.e. ∼1 GeV. This
would be the case if, as in blazars, the jet energy is dissipated at
103−4 (r/r g), where rg is the gravitational radius of the compact
object, i.e. on scales 103 times smaller than the typical size of an
XRB system.

It should be noted that because the radiation field of the compan-
ion star is not symmetric about the jet axis, detailed computations
of the non-thermal spectra from XRBs require the integration of
emissivities given by equation (15) over the energy distribution of
the external radiation field, taking into account that in the source
comoving frame, the radiation is boosted by a Doppler factor that
depends on the direction of the incoming photons (Khangulian &
Aharonian 2005). In other words, the exact geometry of the system
is important.

6.3 Pulsars in high-mass X-ray binaries

PSR B1259–63 and PSR J0045–73 provide examples of non-
accreting binary pulsars with massive companions (Johnston et al.
1992; Kaspi et al. 1994). Additionally, PSR B1259–63 was recently
identified as a TeV source (Aharonian et al. 2005). Ball & Kirk
(2000) envisaged two scenarios for production of high-energy ra-
diation in such systems: Comptonization of the radiation field of
the companion luminous star directly by the pulsar ultrarelativistic
wind (i.e. a bulk Compton scenario) or by particles accelerated in
the terminal wind shock formed due to the confinement of the pul-
sar wind by the wind from the companion star. Because for finite
values of q � 1, the IC spectrum has a high-energy break at ε IC,br =
min(ε IC,s, ε IC,max), the condition for efficient TeV production is
ε IC,s � 106 and ε IC,max � 106. Because ε IC,s ∼ γ sbsγ KN, where
γ KN = 1/(4ε0) ∼ 104, this translates into the condition bs > 100,
i.e. for a mono-energetic field, we again need a very large q � 103.
In the shocked wind scenario, this condition provides an upper limit
on the strength of the magnetic field in the shocked plasma. In the
bulk Compton scenario, the condition is satisfied even for strongly
magnetized winds. This is because electrons are cold and frozen
to the magnetic field lines. Hence, their energy losses via the syn-
chrotron mechanism are negligible and, effectively, the value of q
is infinite. Of course, to reach TeV energies in this scenario, the
bulk Lorentz factor of the wind is required to be of the order of 106,
which is consistent with estimations of the wind speed in the Crab
nebula (Rees & Gunn 1974).
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6.4 Kiloparsec-scale jets

Jets in quasars encounter a variety of radiation fields as they make
their way out from the central black hole, starting from the radiation
field of the black hole accretion disc and ending with the CMB. For
jets that are relativistic from the start, the largest q would be reached
near the base of the jet. The lack of bulk Compton features in the soft
X-ray band suggests this is not the case (Moderski et al. 2004), and
thus that the energetically dominant Compton interactions of a jet
with external radiation field seem to take place not earlier than in the
BEL region, i.e. around 0.1–1 parsec from the centre. Large values
of q are also expected in sources triggered at 1–10 parsec distances
where the diffuse component of the external field is likely domi-
nated by the thermal emission from hot dust (Sikora et al. 2002). At
progressively larger distances, the jet undergoes Compton interac-
tions with narrow emission lines, with stellar radiation, and finally
the CMB. As of now there is no direct evidence that at such dis-
tances electrons are injected with bmax � 1, but this may simply be
due to the sensitivity and angular resolution of present gamma-ray
detectors. Indirect evidence in favour of bmax � 1 and q � 1 for
kpc-scale jets may come from the work of Dermer & Atoyan (2002).
They argued that a purely synchrotron emission model, with a jet
magnetic energy density less than the CMB energy density, can suc-
cessfully explain not just the observed radio-to-optical jet radiation,
but also the X-ray flux detected by Chandra, despite the fact that the
Chandra flux often lies above an extrapolation of the radio–optical
spectrum. This is achieved by the formation of a synchrotron bump
above ε syn,KN due to the KN effects we have described here. We note,
however, that this particular model requires extremely large γ max,
at least one order of magnitude larger than γ KN = 1/(4�εCMB) �
2 × 107/(�/10)(1 + z), where εCMB (z = 0) ∼ 10−9.

7 C O N C L U S I O N S

We have studied, both analytically and using accurate numerical
codes, the electromagnetic spectra produced by relativistic electrons
in a magnetized non-thermal source that is immersed in a dense ra-
diation field originating outside the source. We consider the case
when the steady-state electron energy distribution is determined by
the injection energy spectrum of the accelerated electrons and their
energy losses, dominated by synchrotron radiation and Compton
scattering which may extend deeply into the KN regime. We con-
centrate on the poorly studied region of parameter space in which
the energy density of the radiation field inside the source exceeds
that of the magnetic field, i.e. values of the parameter q = u0/uB >

1. Fig. 10 summarizes the three main regions we find for the overall
parameter space for our problem.

(i) In zone I (q < 1), the electron distribution is determined by
synchrotron cooling and KN effects do not appear in the synchrotron
spectrum. The Compton spectrum, however, shows a strong break at
ε IC,KN due to the strong KN reduction in the Compton scattering rate
that starts for electron energies γ > γ KN. Assuming the maximum
electron acceleration energy, γ max, is sufficiently large that ε IC,max >

ε IC,KN, the position of this break is independent of γ max. In zone Ib
(1 < q � 3), we start to see a hardening of the electron distribution
that is reflected in the synchrotron emission spectrum. The hardening
occurs because Compton cooling is now an important contribution to
the total electron cooling rate, and Compton losses decrease at high
energies due to the KN effect. The effect is not large, however. The
Compton spectrum does not show significant differences because
synchrotron losses start to dominate again at γ s < γ KN.

Figure 10. Schematic illustration showing the location of the high-energy
break in the Compton spectra as a function of q. (For details, see text.)

(ii) In zones II and III, q � 1, and the distortion in the electron
distribution due to the reduction in Compton cooling is very large.
The synchrotron spectrum correspondingly shows a strong, hard
excess over the Thomson limit asymptote. The Compton spectrum
below ε IC,s, however, does not show a strong deviation from the
low-energy Thomson limit because the KN decline in the Comp-
ton rate is compensated by the corresponding increase in the elec-
tron density. The distinction between zones II and III is that in
zone II, the maximum electron energy is such that γ max > γ s.
Above γ s synchrotron cooling dominates. The energy distributions
of the electrons and the synchrotron radiation reach asymptotes with
the same slopes as in the Thomson regime but with amplitudes en-
hanced by a factor q. The Compton spectrum, on the other hand,
shows a strong break at ε IC,s because the KN reduction in the scatter-
ing is no longer compensated by a hardening of the electron energy
distribution. In zone II, then, the Compton spectrum breaks at an en-
ergy independent of γ max. In zone III, instead, the synchrotron losses
never dominate, and the location of the Compton high-energy break
is determined by the maximum electron energy just as it is for the
synchrotron component. The combination of the high-energy break
and the hardening of the synchrotron spectrum at lower energies
leads to the formation of a strong synchrotron bump.

The specific conclusions of our study are as follows.

(i) The IC spectra have high-energy breaks at ε IC,max, if bmax <

bs, or at ε IC,s, if bmax > bs. The former is related to the high-energy
cut-off of the electron injection function, and the latter to the strong
steepening of the IC spectrum, caused by domination of energy
losses of electrons with γ > γ s by synchrotron mechanism.

(ii) Synchrotron spectra undergo strong hardening at ε > ε syn,KN,
with |�α| reaching ∼0.5–0.75 for q > 30. Hence, for very hard
electron injection spectra, with p < 1, the spectral index α (=0.5 −
|�α|) can even reach negative values. The hardening is visible al-
ready at ε � 0.1ε syn,KN.

(iii) For 1 < bmax � bs, the hardening of the synchrotron spectrum
combined with the high-energy break at ε s,max leads to the formation
of a ‘bump’ in the high-energy portion of the synchrotron spectrum.
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For bmax � bs, the hardening of the synchrotron spectrum stops
at ε syn,s and the spectrum continues with the same slope as in the
Thomson regime but with a normalization q times larger.

(iv) For hard electron injection functions (p < 2) and bmax > bs,
the luminosity of the synchrotron component is larger than the lu-
minosity of the IC component, even for q � 1. This is because for
a hard injection function most of the power is supplied to electrons
with γ > γ s, and the energy losses for these electrons are domi-
nated by synchrotron radiation. For p = 2 the luminosities of the
synchrotron and IC spectral peaks are of the same order.

(v) When KN effects are important, both the IC and especially
the synchrotron component can have spectra harder than the hardest
spectrum possible in the Thomson limit for fast cooling electrons
(α = 0.5).

(vi) Generally, photon–photon pair production of the Compton
gamma-rays on the ambient radiation field may be important for
γ max � γ KN. However, for a pair production energy threshold ex-
ceeding ε IC,s, the fraction of the gamma-ray luminosity converted
into pairs is not significant, even if the opacity for pair production
is large.

(vii) The continuous energy loss approximation for the evolution
of the electron distribution appears to work reasonably well, even
for γ max � γ KN. Use of this approximation can save considerable
computing time.

(viii) The KN effects we have discussed can be important in pow-
erful blazars and HMXBs, with the latter including accreting com-
pacts objects and rotationally powered pulsars.
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A P P E N D I X A : S C AT T E R I N G O F D I R E C T E D
P H OTO N B E A M S O N I S OT RO P I C A L LY
D I S T R I BU T E D R E L AT I V I S T I C E L E C T RO N S

The general formula for the distribution in energy and angle of the
scattered photons per electron per unit time for the photon beams is
given by equation (14) in Aharonian & Atoyan (1981). For ε � ε0

and γ � 1, this formula takes the form (see equations 20 and 21 in
Aharonian & Atoyan 1981)

∂Ṅsc(ε, γ, θ)

∂ε∂	
� 3

16π
cσT

∫
ε0,m (γ,θ )

nε0

ε0γ 2
f (ε, ε0, γ, θ) dε0, (A1)

where ε0 and ε are energies of the incident and scattered photons in
m ec2 units, respectively, θ is the scattering angle, nε0 is the photon
number density per energy,

ε0,m(γ, θ ) = ε

2(1 − cos θ )γ 2[1 − (ε/γ )]
, (A2)

and

f (ε, ε0, γ, θ) = 1 + w2

2(1 − w)
− 2w

bθ (1 − w)
+ 2w2

b2
θ (1 − w)2

, (A3)

where bθ = 2(1 − cos θ )ε0γ , and w = ε/γ .

A P P E N D I X B : S C AT T E R I N G O F
I S OT RO P I C A L LY D I S T R I BU T E D P H OTO N S
O N I S OT RO P I C A L LY D I S T R I BU T E D
R E L AT I V I S T I C E L E C T RO N S

For an isotropic radiation field

∂Ṅsc(ε, γ )

∂ε∂	
= 1

4π

∂Ṅsc(ε, γ )

∂ε

= 3

16π
cσT

∫
ε0,m (γ )

nε0

ε0γ 2
fiso(ε, ε0, γ ) dε0, (B1)

where (see equation 23 in Aharonian & Atoyan 1981)

ε0,m(γ ) = ε

4γ 2[1 − (ε/γ )]
, (B2)

and

fiso(ε, ε0, γ ) = 1

4π

∫
θmin

f (ε, ε0, γ, θ) d	

= 1

2

∫ cos θmin

f (ε, ε0, γ, θ) d cos θ, (B3)
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where cos θ min = 1 − 2w/[b(1 − w)]. Integration in equation (B3)
can be performed analytically giving (see equation 22 in Aharonian
& Atoyan 1981)

fiso(ε, ε0, γ ) = 1 + w2

2(1 − w)
+ w

b̃(1 − w)
− 2w2

b̃2(1 − w)2

− w3

2b̃(1 − w)2
− 2w

b̃(1 − w)
ln

b̃(1 − w)

w
, (B4)

where b̃ = 4ε0γ . Note that f iso is fully equivalent to the term brack-
eted in equation (9) in Jones (1968).

A P P E N D I X C : E L E C T RO N E N E R G Y L O S S E S

The rate of IC energy losses of electrons is

|γ̇ |IC � 3

4
cσT

1

γ 2

∫
nε0

ε0

[∫
fiso(ε, ε0, γ )ε dε

]
dε0. (C1)

The inner integral has an analytical solution (see equation 46 in
Jones 1968)∫

fiso(ε, ε0, γ )εdε = γ 2g(b̃)

b̃
, (C2)

where

g(b̃) =
(

1

2
b̃ + 6 + 6

b̃

)
ln(1 + b̃) −

(
11

12
b̃3 + 6b̃2 + 9b̃ + 4

)

× 1

(1 + b̃)2
− 2 + 2Li2(−b̃) (C3)

and Li 2 is the dilogarithm. Hence,

|γ̇ |IC = 4cσT

3
γ 2

∫
fKN(b̃)ε0nε0 dε0, (C4)

where

fKN(b̃) = 9g(b̃)/b̃3. (C5)
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