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In this paper, we study Klein tunneling in random media. To this purpose, we simulate the
propagation of a relativistic Gaussian wavepacket through a graphene sample with randomly dis-
tributed potential barriers (impurities). The simulations, based on a relativistic quantum lattice
Boltzmann method, permit to compute the transmission coefficient across the sample, thereby pro-
viding an estimate for the conductivity as a function of impurity concentration and strength of
the potentials. It is found that the conductivity loss due to impurities is significantly higher for
wave-packets of massive particles, as compared to massless ones. A general expression for the loss of
conductivity as a function of the impurity percentage is presented and successfully compared with
the Kozeny-Carman law for disordered media in classical fluid dynamics.
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I. INTRODUCTION

As opposed to classical quantum mechanics where elec-
trons tunneling into a barrier are exponentially damped,
relativistic scattering was shown by Klein in 19291 to fol-
low a very unexpected behavior: If the potential is of the
order of the electron mass or higher the barrier becomes
virtually transparent to the electrons. This is called the
Klein paradox. Experimental realizations were not avail-
able until the recent discovery of graphene2,3. This ma-
terial has revealed a series of amazing properties, such
as ultra-high electrical conductivity, ultra-low shear vis-
cosity to entropy ratio, as well as exceptional structural
strength, as combined with mechanical flexibility and op-
tical transparency. Many of these fascinating properties
are due to the fact that, consisting of literally one single
carbon monolayer, graphene represents the first instance
ever of a truly two-dimensional material (the “ultimate
flatland”4). Moreover, due to the special symmetries of
the honeycomb lattice, electrons in graphene are shown
to behave like an effective Dirac fluid of massless chiral
quasi-particles, propagating at a Fermi speed of about
vF ∼ c/300 ∼ 106 m/s. This configures graphene as an
unique, slow-relativistic electronic fluid, where many un-
expected quantum-electrodynamic phenomena can take
place,5. For instance, since electrons are about 300 times
slower than photons, their mutual interaction is propor-
tionately enhanced, leading to an effective fine-structure
constant αgr = e2/~vF ∼ 1. As a result of such strong
interactions, it has been recently proposed that this pecu-
liar 2D graphene electron gas should be characterized by
an exceptionally low viscosity/entropy ratio (near-perfect
fluid), coming close to the famous AdS-CFT lower bound
conjectured for quantum-chromodynamic fluids, such as
quark-gluon plasmas5. This spawns the exciting prospect
of observing electronic pre-turbulence in graphene sam-

ples, as first pointed out in Ref.6 and confirmed by recent
numerical simulations7.

The zero-mass of electronic excitations in graphene
may have other spectacular consequences. For instance,
it has been recently pointed out8 that graphene could
offer the first experimental of the so-called Klein para-
dox, i.e. the capability of quantum wavefunctions to un-
dergo zero reflection from a potential barrier much higher
than the energy of the wavefunction itself. This prop-
erty, which relies exclusively upon the spinorial nature of
the Dirac wavefunction, stands in stark contrast with the
corresponding non-relativistic behavior, which predicts
an exponential decay of the transmission coefficient with
the difference V0 − E, V0 being the height of the barrier
and E the wavefunction energy. Based on an analytical
solution of the scattering problem for a monochromatic
plane wave, the authors were able to show that, depend-
ing on a series of geometrical and energy parameters,
special angles of incidence (resonant angles) provide lit-
erally zero reflectivity: the plane wave goes completely
across the barrier. Besides its intellectual charm, such
property is of great practical interest for the study of
electronic transport in graphene9,10, and it is expected
to play an important role in the understanding of the
minimum conductivity of graphene11. Furthermore, the
electronic spectrum of graphene can change depending on
the substrate, for instance on SiC the energy spectrum
presents a gap of width 2mv2F , which makes it possible to
model the electric transport by using the massive Dirac
equation12,13. Therefore, it is also interesting to study
the Klein tunneling in a random media for this kind of
gaped-samples (massive fermions case).

On the other hand, due to the fact that, under suit-
able conditions6, electronic excitations in graphene be-
have as an effective relativistic Dirac fluid, in the pres-
ence of a random media, transport laws similar to the
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FIG. 1. The transmission coefficient of a Gaussian
wavepacket, as computed with the analytical convolution,
Eq. (15), as a function of the incidence angle φ for σ/D =
0.15, 0.31, 0.46, 0.92, 1.85. The blue line corresponds to the
unfiltered case, σ →∞, corresponding to a plane wave.

ones ruling fluid motion in diluted porous media, may be
expected to apply. We refer here, e.g. to the Carman-
Kozeny law14,15, which relates the permeability of a
porous medium (conductivity of a graphene sample) to
the solid concentration (impurity density).

The paper is organized as follows: first, we introduce
a brief description of the quantum lattice Boltzmann
(QLB) method16; second, we study the case of Klein tun-
neling of a Gaussian wave packet through a rectangular
potential barrier. Subsequently, we present numerical so-
lutions of the Dirac equation in the presence of random
impurities, thereby providing an estimate for the effects
of the impurity concentration on the conductivity of the
graphene sample, for both cases, massless and massive
Dirac fermions. The simulations are performed using a
QLB model, which is also introduced as a new tool to
study transport phenomena in graphene. Finally, we dis-
cuss and summarize the results.

II. THE QUANTUM LATTICE BOLTZMANN
METHOD

The quantum lattice Boltzmann (QLB) method16 is a
quantum-kinetic technique that was originally devised for
non-relativistic quantum problems and recently shown
to provide a second-order accurate solver for relativistic
wave scattering and propagation17. Since the method
is relatively new in the relativistic context, for the sake
of self-containedness, we revisit here its main technical
aspects. For full details, see our recent work18,19.

The quantum lattice Boltzmann equation was initially
derived from a formal parallel between the kinetic lat-
tice Boltzmann equation and the single-particle Dirac
equation16,20,21. For our purpose, it proves expedient to
transform the standard form of the Dirac equation into
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FIG. 2. The transmission coefficient of a Gaussian wavepacket
as a function of the incidence angle φ for σ = 24, 48 and 96
(in lattice units), corresponding to σ/D = 0.46, 0.92, 1.85, as
computed via convolution (solid line) and by QLB simulations
(line with dots).

the Majorana form, in which all matrices are real22,

[∂t + c(−αx∂x + β∂y − αz∂z) + iωcα
y − igI]ψ = 0, (1)

This form is obtained by multiplying the standard Dirac
equation on the left and right by the involution matrix
U = 2−1/2(αy+β). In the above, c is the light speed, ~ is
the reduced Planck’s constant, I is the identity operator,
and ωc = mc2/~ is the Compton frequency for a particle
of mass m. The wavefunction ψ is a complex four-spinor,
and α and β are the standard Dirac matrices. The last
term couples the wavefunction to an applied scalar poten-
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FIG. 3. Snapshots of the wavepacket density at various in-
stants, t = 0, 420, 1050 (lattice units), for the case φ = 0 (left)
and φ = 2π/9 (middle), and φ = π/3 (right) for σ/D = 1.85.
In the middle, as one can see, after significant distortion in the
intermediate stage of the evolution, the wavepacket manages
to be transmitted across the barrier to a substantial extent
(T = 0.76). On the other hand, at the right, the packet is
mostly bounced-back by the barrier, with transmission coeffi-
cient as low as T = 0.13. For visualization purposes, the color
bar scale has been modified independently for each figure.

tial V (x, y, z) via the coefficient g = qV/~, where q is the
electric charge22. Note that since the spin states mix-up
during propagation (spinning particles), there is no basis
in which all three matrices αx, αy, αz are simultaneously
diagonal.

Let us consider a one-dimensional version of the Dirac
equation. In particular, let Z be a unitary matrix, diag-
onalizing the streaming matrix −αz:

Z =
1√
2

0 −1 0 1
1 0 −1 0
0 1 0 1
1 0 1 0

 . (2)

Applying the matrix Z to Eq. (1), the streaming matrix
along z is diagonalized and the collision matrix is also
transformed accordingly[
∂t + cZ−1(−αz)Z∂z

+ Z−1(−cαx∂x + cβ∂y + iωcα
y − igI)Z

]
Z−1ψ = 0.

(3)
Neglecting any dependence of ψ on the x and y co-
ordinates, Eq. (3) may be written as a pair of one-
dimensional Dirac equations

∂tu1,2 + c∂zu1,2 = ωcd2,1 + igu1,2,

∂td1,2 − c∂zd1,2 = −ωcu2,1 + igd1,2,
(4)

for the variables (u1, d2) and (u2, d1) that represent the
rotated wavefunction Z−1ψ = (u1, u2, d1, d2)T . The
components u and d propagate up and down the z axis
respectively, and the subscripts indicate the spin up (1)
and spin down (2) states, respectively. The system of Eq.
(4) may be treated as a Boltzmann equation for a pair of
complex distribution functions u1,2 and d1,2

16. Equation
(4) may thus be discretized using the same approach as
in lattice Boltzmann method, i.e. by integrating along
the characteristic light-cones dz = ±cdt.

The resulting system of algebraic equations reads as
follows

û1,2 − u1,2 =
1

2
m̃(d2,1 + d̂2,1) +

1

2
ig̃(u1,2 + û1,2),

d̂1,2 − d1,2 = −1

2
m̃(u2,1 + û2,1) +

1

2
ig̃(d1,2 + d̂1,2),

(5)

where the hat superscript (̂) indicates that the wave-
function is evaluated at the end-point of the correspond-
ing streaming step, namely

û1,2 = u1,2(z + ∆z, t+ ∆t), u1,2 = u1,2(z, t)

d̂1,2 = d1,2(z −∆z, t+ ∆t), d1,2 = d1,2(z, t).
(6)

The dimensionless Compton frequency is m̃ = ωc∆t, and
the dimensionless scalar potential is g̃ = g(z, t)∆t.

The pair of equations (5) can be solved algebraically,

delivering explicit expressions for û1,2 and d̂1,2:

û1,2 = au1,2 + bd2,1,

d̂1,2 = ad1,2 − bu2,1,
(7)

where the coefficients a and b are

a =
1− Ω/4

1 + Ω/4− ig̃
, b =

m̃

1 + Ω/4− ig̃
, Ω = m̃2 − g̃2.

These coefficients satisfy |a|2 + |b|2 = 1, so that the right
hand side of Eq. (7) corresponds to multiplying the ro-
tated wavefunction Z−1ψ = (u1, u2, d1, d2)T by the uni-
tary collision matrix

Q =

 a 0 0 b
0 a b 0
0 −b a 0
−b 0 0 a

 . (8)

The streaming step propagates u1,2 upwards and d1,2
downwards, along the light cones given by ∆z = ±c∆t.
Note that this unitary operation is numerically exact,
without round-off error, because the distribution func-
tion is integrally transferred from the source to the desti-
nation site, and no fractional transport is involved. Since
both streaming and collisions step are unitary, the overall
QLB scheme evolves the discrete wavefunction through a
sequence of unitary operations for any value of the dis-
crete time step ∆t. In addition, since streaming pro-
ceeds upwind only (no centered spatial differences) along
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the discrete light-cones associated with each component
Ψi , the QLB dispersion relation is automatically free
from fermion-doubling,23. This, together with the ex-
cellent efficiency of the method, especially on parallel
computers24, should make QLB a potentially appealing
candidate for computational studies of electron transport
in graphene.

The scheme extends to multiple dimensions through
an operator splitting technique. Within this method,
the three-dimensional Dirac equation splits into the sum
of three one-dimensional equations, each involving spa-
tial derivatives along one single direction. Each of the
three stages representing evolution by a timestep dt is
accomplished by rotating ψ to diagonalise the relevant
streaming matrix, taking one timestep of the existing
one-dimensional QLB scheme described above, and ro-
tating ψ back to its original basis. The algorithm is thus
composed of the following three steps: 1) Rotate ψ with

X−1, collide with X−1Q̂X, stream along x, rotate back

with X; 2) Rotate ψ with Y −1, collide with Y −1Q̂Y ,
stream along y, rotate back with Y ; 3) Rotate ψ with

Z−1, collide with Z−1Q̂Z, stream along z, rotate back
with Z. This form emphasizes the symmetry between
the three steps, but since the streaming matrix along y
is already diagonal in the Majorana form, Y = I is the
identity matrix. The matrix X reads as follows:

X =
1√
2

−1 0 1 0
0 1 0 −1
1 0 1 0
0 1 0 1

 , (9)

and the Z matrix is given in Eq. (2) above.
The collision term splits into three parts, each of which

is combined with the corresponding streaming step. The
collision matrix thus coincides, up to a unitary transfor-
mation, with the collision matrix for the one-dimensional
QLB scheme, with a timestep 1

3dt (see Ref.19). In par-

ticular, Q̂ is given by

Q̂ =


â 0 0 −b̂
0 â b̂ 0

0 −b̂ â 0

b̂ 0 0 â

 , (10)

where the coefficients

â =
1− Ω3/4

1 + Ω3/4− ig̃3
, b̂ =

m̃3

1 + Ω3/4− ig̃3
,

are written in terms of the rescaled dimensionless Comp-
ton and potential frequencies

Ω3 = m̃2
3 − g̃23 , m̃3 =

1

3
ωcdt, g̃3 =

1

3
gdt.

The pattern of + and − signs in the b̂ terms on the off-

diagonal of Q̂ follows the same pattern as the αy matrix.

INLET IMPURITIES OUTLET

FIG. 4. Sketch of the domain setting used in our simula-
tions of the propagation of a Gaussian wave packet through
a porous medium.

The rotated matricesX−1Q̂X and Z−1Q̂Z have the same

sign pattern as Q, but Q̂ does not.
Summarizing, QLB provides a unitary, explicit algo-

rithm for quantum wavefunctions in which information
propagates along classical trajectories represented by a
sequence of three one-dimensional light-cones, thereby
avoiding any mixing of the spinorial components dur-
ing the streaming step. Although detailed comparisons
with other techniques remain to be developed, there are
reasons to believe that such simplification may result in
enhanced computational efficiency, especially with par-
allel computers in mind. Finally, we wish to point out
that the same algorithm describes both relativistic and
non-relativistic quantum wavepackets, depending on the
value of the mass m and the characteristic strength of
the potential energy.

III. RELATIVISTIC GAUSSIAN
WAVEPACKETS

Since we are interested in applications on graphene,
hereafter, our simulations will be performed in two spa-
tial dimensions, (for more details see Ref.19). The prop-
agation of a plane wave through a rectangular potential
barrier was discussed in Ref.8. However due to the fact
that it only applies to monochromatic plane waves, i.e.
infinitely extended states which may not necessarily be
realized under all experimental conditions , it is of inter-
est to explore to what extent are such results affected by
the finite extent of the wavefunction. Here, for simplicity,
we consider a Gaussian wavepacket of the form

ψl(x, y) =
Ak

(4πσ2)
1/2

e−
r2

4σ2 ei(kxx+kyy), l = 1, 2 (11)

where r2 = x2 + y2, A1 = 1/A, A2 = eiφ/A with A =√
A2

1 +A2
2. The rectangular box potential of height V0

and width D is defined as follows:

V (x) =

{
V0, if 0 < x < D,
0, elsewhere.

(12)

Given the linearity of the Dirac equation and the fact
that wavepackets are constituted by a Gaussian superpo-
sition of plane waves, it is natural to express the trans-
mission coefficient of a Gaussian wavepacket of size σ
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through the following convolution:

Tσ(kx, ky) =

∫
Sf

G

(
~k − ~k′

σk

)
T (k′x, k

′
y)dk′xdk

′
y (13)

where Sf = πk2F , with k2F = k2x + k2y, denotes the Fermi
area, and G a Gaussian kernel of width σk = 1/σ in
mometum space. The function T (kx, ky) is the transmis-

sion coefficient of a plane wave with vector ~k ≡ (kx, ky),
which according to Ref. 8, can be calculated as T =
1− |r|2 with

r =
2ieiφ(ss′)−1 sin(qxD)(sinφ− ss′ sin θ)

[e−iqxD cos(φ+ θ) + eiqxD cos(φ− θ)]− 2i sin(qxD)
,

(14)
being φ the incidence angle, q2x = (E − V0)2/~2v2F ,
θ = tan−1(ky/qx) the refraction angle, s = sign(E),
s′ = sign(E − V0), and E the Fermi energy.

Since the transmission coefficient for a plane wave only
depends on the wave number ky, and due to the fact that
the x component of the wave vector experiences a perfect
transmission, as a first-order approximation, we perform
the convolution in just one dimension, ky, that is:

Tσ(k) =

∫ kF

−kF
G

(
k − k′

σk

)
T (k′)dk′ (15)

where we have defined k ≡ ky. By setting k′ = k + q,
and expanding T (k + q) around q = 0 to second order,
Eq. (15) delivers

Tσ(k) ∼ T (k) +
σ2
k

2
T ′′(k) +O(σ2

k) (16)

where T ′′ is the second derivative of T with respect to
k. The above expression means that resonant peaks
(T ′(kr) = 0, T ′′(kr) < 0) are smoothed out whenever
the filter width σk, is sufficiently high, or, more precisely,

σ2
k >

|T ′′(k)|
2T (k) . This smoothing is the effect of non-resonant

wavenumbers. Given that σ = 1/σk, one could readily
estimate the minimal width σ above which the secondary
resonant peak would no longer be seen by the Gaussian
wavepacket. However, the asymptotic expansion given
by Eq. (16) fails to represent the actual transmission co-
efficient of the Gaussian wavepacket near the secondary
resonant peak, the reason being that, around that peak,
a second order expansion is grossly inaccurate because
σ2T

′′ ∼ 1 and higher orders will be even less accurate.
As a result, the convolution integral, Eq. (15), needs to
be computed.

A. Computing the convolution

To gain a quantitative sense of the dependence of the
transmission coefficient of the Gaussian wavepacket with
the spatial spread σ, we have numerically computed the
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FIG. 5. Transmission coefficient as a function of time for the
impurity potential set at V = 50, 100, and 285 meV while
varying the impurity percentage C (C =0.1%, 0.5%, 1% and
5%) for m = 0.

convolution integral of Eq. (15), for the following val-
ues σ/D = 0.15, 0.31, 0.46, 0.92, 1.85, where D = 100
nm is the width of the potential barrier. The param-
eters are the same as in Ref.8, namely E = 0.08 eV,
V0 = 0.2 eV and D = 100 nm. The results are shown
in Fig.1. From this figure, it is seen that, for φ = 0,
T (kr) = T (kF cos(φr)) goes from 1 to 0.7348, slightly over
a 25 percent reduction. The same figure also shows that
around the secondary resonance (at φ = 2π/9), narrow
wavepackets with σ/D < 0.46 feature T ∼ 0.5, with no
sign of the secondary resonant peak. On the other hand,
the secondary peak is seen to re-emerge for σ/D > 0.92,



6

i.e. when σ is of the order of 100 nm, comparable with
the barrier width. With σ/D = 1.85, the secondary peak
is recovered, but only to about 80 percent. Note that, for
φ = π/2, the transmission coefficient is not zero, which is
a consequence of the approximation made to obtain Eq.
(15) from Eq. (13). However, as shown in Sec. III B,
the numerical simulation of the transmission coefficient
using QLB, shows generally a pretty satisfactory agree-
ment with the approximation Eq. (15).

In order to use the plane-wave approximation, one
needs to ensure that the condition σ > D is fulfilled,
which sounds pretty plausible. However, this condition
is strongly dependent on the angle of incidence. In partic-
ular, it is far more stringent for oblique than for head-on
(φ = 0) incidence. Indeed, for φ = 0, σ/D ∼ 0.5 yields
a substantial T = 0.9 for φ = 0, while at φ = 2π/9,
we obtain a mere T ∼ 0.4. At σ/D ∼ 2, perfect trans-
mission, T = 1, is practically recovered at φ = 0, while
for φ = 2π/9, T ∼ 0.8, i.e. about 80% percent of full
transmission.

We conclude that, for head-on incidence (φ ∼ 0), the
transmission coefficient of Gaussian packets is still similar
to the one of plane waves, as soon their extent becomes
comparable to the barrier width. On the other hand, the
secondary resonance, at oblique incidence, is highly af-
fected by the finite-size of the wavepacket, and full recov-
ery of perfect transmission seems to require wavepacket
extents significantly larger than the barrier width.

B. Numerical simulations

The analytical expression of Eq. (15) has been com-
pared against direct numerical simulation of the Dirac
equation, using the quantum lattice Boltzmann (QLB)
method. In order to back-up the previous findings, we
have computed full numerical solutions of the Dirac equa-
tion using a quantum lattice Boltzmann solver. The
simulations are performed on 10242, 20482 and 40962

grids, depending on the size of the Gaussian packet.
Lattice units are chosen such that D̃ = D/∆x = 52,
dt = dx/vF = 1.92 × 10−15 seconds and energy is nor-
malized in units of ~/dt. The physical parameters are
taken from Ref.8, that is E = 0.080 eV, V0 = 0.200 eV
and D = 100 nm. The following sequence of wavepack-
ets spreading, σ = 24, 48, 96 has been simulated, with
D = 52, all in lattice units. The results of the QLB sim-
ulations appear substantially in line with the prediction
of the convolution integral, i.e. they clearly show the dis-
appearance of the secondary peak for σ/D < 0.46, and
its progressive reappearance above this threshold (see
Fig.2). Note that, different from the solution of the con-
volution integral, Eq. (15), the transmission coefficient
measured by the simulation is zero for φ = π/2, as should
be expected, but the appearance of the second resonant
peak is still retained.

In Fig. 3, we show typical snapshots of the wavepack-
ets for the cases φ = 0, 2π/9, and π/3, for σ/D = 1.85.

The snapshots clearly show that, in the case φ = 0, the
wavepacket crosses the barrier totally unperturbed, with
literally no distortion at any stage of the evolution. In
the case of oblique resonant propagation, the packet still
manages to cross the barrier to a large extent, (T = 0.76),
with significant distortions in the intermediate stages of
the evolution, leaving 24 percent of the packet behind.
Finally, in the case of oblique non-resonant propagation,
φ = π/3, the packet is mostly bounced-back by the bar-
rier, with a transmission coefficient as low as T = 0.13.

IV. KLEIN PARADOX IN RANDOM MEDIA

One of the major technological challenges in cur-
rent graphene research is to manufacture larger sam-
ples, above 10 microns, for practical use in engineering
devices25. As the sample size is increased, however, it
becomes more and more difficult to secure the purity of
the sample, i.e. avoid crystalline inclusions (impurities)
which alter the local structure of the graphene honey-
comb lattice. Such impurities are indeed known to sig-
nificantly affect the macroscopic properties of the sam-
ple, primarily its electrical conductivity. To gain insight
into this problem, it is therefore of interest to investi-
gate the propagation of relativistic wavepackets within a
disordered sample.

The conductivity of two-dimensional massless fermions
in disordered media has made the object of intense stud-
ies in the literature,26. The contribution of the present
work to this subject relates to the following three di-
rections, i) Investigate the Klein-Paradox for the case
of Gaussian wave-packets rather than plane waves, both
for single barriers and disordered samples, ii) Discuss
the viability of semi-classical descriptions of electrons
excitations in disordered media, based on quantitative
analogies with flows in porous media, iii) Expose the
quantum lattice Boltzmann method as a new compu-
tational tool for electron transport in graphene, which
might bear a special interest for prospective implementa-
tions on parallel computers. Notwithstanding points i-iii)
above, we wish to point out that, being our solution based
on the single-particle Dirac equation (no many-body ef-
fects), any conclusion on transport phenomena in actual
graphene samples must be taken with great caution. We
also wish to remark that the Klein tunneling is expected
to be relatively mild in the present set up, for two reasons.
First, because the Gaussian wavepacket always includes
non-resonant frequencies suffering partial reflection; sec-
ond, because, being the wavepacket wider than the ob-
stacle size (see below), it can split and turn around the
obstacle like a classical fluid, hence be partially transmit-
ted, without any quantum tunneling through the barrier.

To analyze these transport phenomena, we simulate
the propagation of a relativistic Gaussian wavepacket
through a two-dimensional domain composed of three
regions: an inlet region, where the wave packet is po-
sitioned at the initial time t = 0; the impurity region,
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FIG. 6. Momentum transmission coefficient TJz as a function
of time for the impurity potential set at V = 50, 100, and
285 meV while varying the impurity percentage C (C =0.1%,
0.5%, 1% and 5%) for m = 0.

i.e. the central part of the domain where randomly dis-
tributed barriers (impurities) are located; and the outlet
region, which is the final region, where measurements of
the transmitted wave packet are taken. Due to the large
effective fine structure constant in graphene, we will ne-
glect in our study the Coulomb interaction between carri-
ers. The impurity concentration is given by C = Nd2/A,
where N is the number of square obstacles of cross sec-
tion d2, distributed over an area A = Ly × Lz. For the
present simulations d = 8 (larger than the typical lat-
tice distante of graphene) and C is varied in the range
0.001 ÷ 0.05. In Fig. 4, the computational domain is
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FIG. 7. Time at which 90% of the wave packet has been
transmitted, t0.9, as a function of the impurity percentage
for fixed values of V and m = 0. The potential barriers are
as follows: V = 50, 100, 200 and 285 meV. The impurity
percentage values are C =0.1%, 0.5%, 1% and 5%.

FIG. 8. Wave packet density ρ at times = 0, 900, 1500, and
1800 (lattice units) for the simulation performed with impu-
rity percentage C = 0.5% and V = 50 meV.

sketched, periodic boundary conditions are imposed at
top and bottom boundaries, while a bounce-back condi-
tion is enforced at the inlet , and an open boundary con-
dition is imposed at the outlet (so that the transmitted
wave packet is not reflected back). We use a square lattice
of size 2048×512 cells, such that the regions [0, 512)×512,
[512, 1536)×512, and [1536, 2048]×512 correspond to the
inlet, impurity, and outlet regions, respectively. The cell
size is chosen to be ∆x = 0.96nm, and the spreading
of the initial Gaussian wave packet σ = 48 (in lattice
units), leading to a Fermi energy EF = 0.117 (80meV in
physical units). In our study, we use two values for the
mass of the particles, m = 0 (ungaped graphene) and
m = 0.1 (gaped graphene), and vary the impurity po-
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tential and the concentration. Five barrier heights are
considered, namely V = 25, 50, 100, 200, 285 meV. Note
that, while the first two lie below EF , hence can be over-
come classically, the others can only be traversed head-on
via quantum tunnelling. It should be further observed,
though, that since the wavepacket is wider than the sin-
gle impurity, i.e. σ > d, even in the case EF < V ,
the wavepacket can split and turn around the obstacle
like a ”classical” fluid. Our results can be classified ac-
cording to the energy of the particles, the potential of
the barrier, and their mass as follows: weak potentials,
V < EF − mv2F ; intermediate potentials, EF − mv2F <
V < EF + mv2F ; and strong potentials, V > E + mv2F .
The transmission coefficient T (t) is obtained by comput-
ing T (t) =

∫
z>zoutlet

ρ(z, y, t)dzdy, where ρ is the wave

packet density defined as ρ = |u1|2 + |u2|2 + |d1|2 + |d2|2,
with ψ = (u1, u2, d1, d2)T being the Dirac quadrispinor.

A. Wave packet mass m = 0

In this first set of simulations, we fix m = 0, and vary
the impurity concentration, C, and the strength of the
impurity potential, V . In Fig. 5, we fix the value of V and
we compare T while varying the impurity percentage, in-
cluding the reference value for the pure sample C = 0.
From this figure, we observe that the wave packet takes
longer to regroup for high impurity concentration and
high impurity potential. This is a natural consequence
of the randomness induced in the wavefunction by the
disordered media. However, in all cases, the complete
wave packet is reconstructed after some time, with no
stagnant regions left behind. This can be related to the
momentum loss due to the presence of the impurities,
and therefore the motion of the wave packet experiences
a corresponding slow-down. Note that, in order to re-
cover the complete wave function, the simulations have
been performed in a longer domain. Otherwise the right-
moving wave-packet would leave the outlet region too
early while the left-mover is still in the domain. In order
to provide a measurement of momentum dissipation, i.e.
the loss of conductivity due to impurities, we compute
the momentum transmission coefficient as follows:

TJz(t) =

∫
z>zout

Jz(z, y, t) dzdy, (17)

where

Jz = ~ψ†Az ~ψ + ~ψ†A†z
~ψ, (18)

is the z-component of the current density with Az the

streaming matrix along z and ~ψ = (u1, u2, d1, d2)T the
Dirac quadrispinor.

In Fig. 6, we fix the value of V and compare TJz, while
varying the impurity percentage. The subscript Jz de-
notes the transmission coefficient due to the z-component
of the current density, Jz. As a reference, we also plot
TJz(t) when the impurity percentage is set to C = 0.
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FIG. 9. Transmission coefficient as a function of time for the
impurity potential set at V = 50, 100, and 285 meV while
varying the impurity percentage (C = 0.1%, 0.5%, 1% and
5%) for m = 0.1.

From Fig. 6 we can observe that, unlike the density, the
momentum transmission coefficient does not saturate at
unity (its value in the inlet region at the beginning of the
simulation), because momentum is irreversibly lost in the
impurity region. Furthermore, as expected, the momen-
tum loss increases with increasing impurity potential and
concentration.

As a characteristic quantity associated with the dy-
namics of the transmission coefficient T , in Fig. 7, we
report the escape time, t0.9, i.e. the time at which the
transmission coefficient reaches 90%, (i.e. at 90% of the
wave packet is transmitted through the obstacle region).
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FIG. 10. Momentum transmission coefficient TJz as a func-
tion of time for the impurity potential set at V = 50, 100, and
285 meV while varying the impurity percentage (C = 0.1%,
0.5%, 1% and 5%) for m = 0.1.

As above, we plot t0.9 as a function of the impurity per-
centage for two values of V . We notice that for high
impurity concentration the Gaussian wave packet takes
longer to cross the impurity barrier. The same effect oc-
curs when the impurity potential is increased. At low
impurity concentration, C = 0.001, the effect of the po-
tential barrier is relatively minor, but, as the concentra-
tion is increased, the escape time grows approximately
linearly with the barrier voltage.

In Fig. 8, we show some representative snapshots of the
first 1800 time steps of the simulation, for impurity per-
centage C = 0.5% and V = 50 meV. Here, we can see the

FIG. 11. Wave packet density ρ at times 0, 900, 1500, and
1800 (lattice units) for the simulation performed with impu-
rity percentage = 0.5% and V = 50 meV and with m = 0.1.

way how the wave packet is scattered by the impurities,
generating a plane front, as a result of the fragmentation
of the wavefunction due to the random obstacles.

B. Wave packet mass m = 0.1

Next, we repeat the same simulations for the case
of massive particles, with m = 0.1. Note that, since
mv2F /EF = 0.83, the rest energy is a significant frac-
tion of the kinetic energy, and therefore the wavefunction
comes in the form of a superposition of two wavepackets,
both moving at the Fermi speed, along opposite direc-
tions, and mixing through the non-zero mass term.

In Fig. 9, we fix the value of V and compare T , while
varying the impurity concentration C. As a reference, we
also plot T with C = 0. From the results, we observe that
the wave packet takes longer to cross the impurity region
than for the case of m = 0 (the time it takes to reach a
unit value of the transmission coefficient is longer). This
is due the slow-down of the wavefunction as compared to
the Fermi speed, because of the non-zero particle mass.
Note the peak in the transmission coefficient, once the
wave packet exits from the impurity region. This is due
to the fact that TJz takes negative values in the late
stage of the evolution, indicating the prevalence of the
left-moving component of the wavepacket once the right-
moving one has left the domain.

We compute the momentum transmission coefficient
using equations (17) and (18). In Fig. 10, we fix the
value of V and compare TJz while varying the impurity
percentage. As a reference, we also plot TJz(t) when
the impurity percentage is set to zero. Note that, as
expected, due to the inertia when the mass is increased,
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the curve of the momentum transmission becomes wider
than for the case of zero mass, reflecting the fact that
the wave packet takes longer to move across the impurity
region. In addition, the maximum momentum is smaller
than for the case of zero mass, which indicates higher
momentum losses. Thus, a non-zero mass of the (quasi)-
particles, results in higher momentum losses. Also to be
noted, are the negative values of TJz in the late stage
of the evolution, indicating the presence of a left-moving
component, most likely due to a spurious reflection at
the outlet boundary.

In Fig. 11, we show selected snapshots from the first
1800 time steps of the simulation for impurity percentage
C = 0.5% and V = 50 meV. From this figure, we observe
that a portion of the wave packet gets “trapped”, mov-
ing at lower speed, within the impurity medium, while
another portion manages to move out faster.

C. Momentum Transmission Coefficient TJz

In order to summarize the results obtained in the pre-
vious sections, we inspect the maximum of the transmis-
sion coefficient TJz in Figs. 6 and 10, as a function of the
impurity potential and concentration, for three different
values of mass, m = 0, 0.05, 0.1 (see Fig. 12). These data
summarize the loss of momentum, hence resistivity, due
to the random impurities, formally measured by

η(C, V ) = max(TJz (C, V )) . (19)

From these figures, we observe that at high impurity con-
centration, C = 0.05, and a barrier V = 100 meV, the rel-
ativistic wavepacket looses about 50% of its momentum,
as compared the case of a pure sample (C = 0). At the
same concentration, a massive wave packet with m = 0.1,
would loose more than 80%, indicating a significant drop
of transmissivity due to inertia. At low impurity level,
C = 0.001, both massless and massive wave-packets show
a mild reduction of transmittivity, below 10%.

Let us now define the following “transmittance”:

Σ(C, V ) ≡ η

1− η
. (20)

This definition allows to draw a quantitative parallel with
the concept of permeability of a classical fluid moving
through a porous medium. That is, when the transmit-
tance is unity, the conductivity goes formally to infinity,
whereas zero transmittance connotes zero conductivity.

Using Eq. (21), we have found that the numerical re-
sults are satisfactorily fitted by the following analytical
expression:

Σ(C, V ) = A
(1− C)n+1

Cn
+ Σ0 , (21)

where A,n,Σ0 are fitting parameters, which depend on
the strength of the potential and the mass of the par-
ticles. In Fig. 12, we report the results of the fitting
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FIG. 12. Maximum value of TJz as a function of the impurity
percentage for each value of the impurity potential V = 50÷
285. For three values of the mass, m = 0 (top), 0.05 (middle),
0.1 (bottom).
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V (meV) 25 50 100 200 285
A 1.09 0.26 0.046 0.017 0.0097

m=0 n 0.8 0.85 0.98 0.97 0.94
Σ0 0.51 0.23 0.17 0 0
A 0.68 0.16 0.03 0.009 0.005

m=0.05 n 0.84 0.88 0.99 1.01 1.01
Σ0 0 0 0 0 0
A 0.27 0.053 0.011 0.0053 0.0039

m=0.1 n 0.89 0.96 1.04 1.01 1.00
Σ0 0 0 0 0 0

TABLE I. Set of parameters that has been obtained by fitting
the numerical results for Σ using Eq.(21).

(solid line), showing good agreement with the numerical
data. We have plotted η instead of Σ, in order to avoid
the divergence at C = 0. The values of the parameters
can be found in Table I. From this Table, we appreciate
that the residual Σ0, is zero when the mass is different
from zero, which points to this minimum permeability
(conductivity) as to a property of massless particles. On
the other hand, massive particles show a closer adher-
ence to the Kozeny-Carman law, in the context of clas-
sical fluid dynamics14,15, where no residual conductivity
is observed at C = 1. Also, note that for low potential
barriers, the exponent is around n ∼ 0.85, while for in-
termediate and strong potentials it is near n ∼ 1, i.e.
the value it takes for classical fluid dynamics in a di-
lute disordered medium. Thus, for strong potentials, the
classical analogy shows satisfactory results, while for in-
termediate and weak potentials, it presents deviations,
typically of the order of 15%. Finally, we observe that
the case m = 0 shows a significantly higher transmission
than the corresponding data with m > 0, which is due to
the higher momentum losses in the impurity region. It
appears plausible to interpret the non-negligible surplus
of relativistic conductivity, especially for the three cases
with Fermi energy EF < V , as an indirect manifestation
of Klein tunneling.

V. CONCLUSIONS AND DISCUSSION

In this paper we have performed a numerical study of
a relativistic Gaussian wave-packet propagating through
a disordered medium, which we modeled as a set of ran-
domly located potential barriers.

From the numerical results, we conclude that for high
concentration of impurities, the wave packet presents
higher losses in momentum. Furthermore, for a given im-
purity concentration, by increasing the potential of each
impurity, we also find a loss of momentum. Systems with
massive excitations are also studied, which can be of rel-
evance to the case of gaped graphene samples. A non-

zero mass is found to produce higher losses of momen-
tum in the impurity region. The actual numerical values
show that at high impurity concentration, C = 0.05, the
wavepacket looses more than half of its momentum with
barriers of 100 meV and up to 85% with V = 285 meV.
At low concentrations, C = 0.001, however, the losses are
much milder, going from about 5− 20%, for V = 100 to
285 meV, respectively.

These data can be regrouped into an analytical ex-
pression, which bears a strong similarity with the per-
meability of porous media, as a function of the porosity.
We have estimated the value of the conductivity from
the transmission coefficient and fitted it by using the
Carman-Kozeny law for porous media, relating the per-
meability with the concentration of impurities We have
found that this analogy works pretty well for the massive
case, which shows no residual conductivity and a scal-
ing exponent pretty close to unity. On the other hand,
the massless case shows a residual conductivity, which
can possibly be related to the minimum conductivity of
graphene. Moreover, for weak and intermediate poten-
tial strengths, the exponent is not unity, corresponding
to a fractional Kozeny-Carman law. On the other hand,
for strong potentials, the exponent 1 is recovered to a
good accuracy, bringing the results closer to the analogy
with classical fluids27. The applicability of this classi-
cal analogy indicates that, at least for the parameter set
investigated in this paper, quantum tunneling is not the
dominant transport mechanism, as compared to the semi-
classical dynamics of the wave-function, which can turn
around the obstacles in a similar way as a classical fluid
would do. The results of this paper are expected to be
amenable to experimental validation. For this purpose,
samples of graphene with local chemical doping could be
used8,28. In addition, for validating the results with mas-
sive particles, a substrate of SiC will also be required, in
order to generate the gap due to the presence of particle
mass. Finally, as a byproduct, we have introduced a new
tool to model electronic transport in graphene, namely
the quantum lattice Boltzmann method (QLB). QLB
shares a remarkable computational efficiency, especially
on parallel computers, and easy handling of complex ge-
ometries with its well-established classical LB counter-
part. As a result, it is hoped and expected that the
present model can make a contribution to the compu-
tational study of transport phenomena in graphene and
other physical systems governed by the Dirac equation.
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