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Abstract— Despite web access on mobile devices becom-

ing commonplace, users continue to experience poor web

performance on these devices. Traditional approaches

for improving web performance (e.g., compression, SPDY,

faster browsers) face an uphill battle due to the fundamen-

tally conflicting trends in user expectations of lower load

times and richer web content. Embracing the reality that

page load times will continue to be higher than user toler-

ance limits for the foreseeable future, we ask: How can we

deliver the best possible user experience?

To this end, we present KLOTSKI, a system that prioritizes

the content most relevant to a user’s preferences. In design-

ing KLOTSKI, we address several challenges in: (1) account-

ing for inter-resource dependencies on a page; (2) enabling

fast selection and load time estimation for the subset of re-

sources to be prioritized; and (3) developing a practical im-

plementation that requires no changes to websites. Across a

range of user preference criteria, KLOTSKI can significantly

improve the user experience relative to native websites.

1 Introduction

Web access on mobile platforms already constitutes a

significant (more than 35%) share of web traffic [28] and

is even projected to surpass traditional modes of desktop-

and laptop-based access [19, 23]. In parallel, user ex-

pectations of web performance on mobile devices are in-

creasing. Industry analysts report that 71% of users ex-

pect websites to load as quickly as on their desktops, and

33% of annoyed users are likely to visit competing sites,

resulting in lost revenues [30, 10].

To cater to this need for a faster mobile web, there

are a range of proposed solutions such as customiz-

ing content for mobile devices [18, 7], specialized

browsers [21], in-cloud acceleration solutions for ex-

ecuting scripts [2], new protocols [25], and compres-

sion/caching solutions [2, 8]. Despite these efforts, user

experience on mobile devices is still woefully short of

user expectations. Industry reports show that the median

web page takes almost 11 seconds to load over mobile

networks even on state-of-art devices [1]; this is the case

even for top mobile-optimized retail websites [15]. In

fact, several recent studies show that the benefits from the

aforementioned optimizations are marginal [37, 59, 3],

and they may even hurt performance [56].

Our thesis is that the increasing complexity of web

page content [12, 5, 33] and decreasing user tolerance

will outpace the benefits from such incremental perfor-

mance enhancements, at least for the foreseeable future.

For instance, though RTTs on mobile networks halved

between 2004 and 2009 [54], the average number of

resources on a web page tripled during the same pe-

riod [5]. Therefore, rather than blindly try to improve

performance like prior approaches, we argue that we

need to improve the user experience even if load times

will be high.

Our high-level idea is to dynamically reprioritize web

content so that the resources on a page that are critical

to the user experience get delivered sooner. For instance,

user studies show a typical tolerance limit of 3–5 sec-

onds [39, 32, 48]. Thus, our goal is to deliver as many

high utility resources as possible within this time. Our

user studies, however, suggest that the content consid-

ered high utility significantly varies across users. There-

fore, point solutions that optimize for a single notion of

user utility, e.g., by statically rewriting web pages or by

dynamically prioritizing above-the-fold objects [14, 35]

will not suffice. Instead, we want to develop a general

solution that can handle arbitrary user preferences.

However, there are three key challenges in making this

approach practical:

• Inferring resource dependencies: Scheduling the re-

sources on a web page requires a detailed understand-

ing of the loading dependencies between them. This is

especially challenging for dynamically generated web

content, which is increasingly common.

• Fast scheduling logic: We need a fast (tens of ms)

scheduling algorithm that can generate near-optimal

schedules for arbitrary user utility functions. The chal-

lenge is that this scheduling problem is NP-hard and is

inefficient to solve using off-the-shelf solvers.

• Estimating load times: Predicting the load time for a

given web page is hard due to the complex manner in

which browsers parallelize the loading of resources on

a web page. Our problem is much worse—we need to

estimate the load times for arbitrary loading schedules

for subsets of web resources. Furthermore, we need

to be able to do so across heterogeneous device and

network conditions.

In this paper, we present the design and implemen-

tation of KLOTSKI, a practical dynamic reprioritization

layer that delivers better user experience. Conceptually,

KLOTSKI consists of two parts: a back-end measurement

engine and a front-end proxy. The back-end uses offline

measurements to capture key invariant characteristics of

a web page, while the front-end uses these characteris-

tics along with user preferences and client conditions to
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prioritize high-utility content. In tackling the above chal-

lenges, KLOTSKI’s design makes three contributions:

• Though the specific URLs on a page vary across loads,

we develop techniques to merge multiple loads of a

page to extract the page’s invariant dependency struc-

ture and capture how resource URLs vary across loads.

• We design a fast and near-optimal greedy algorithm to

identify the set of resources to prioritize.

• We create an efficient load time estimator, based on the

insight that the key bottleneck is the link between the

client and the KLOTSKI front-end. Thus, we can effec-

tively simulate this interaction to estimate load times.

We implement KLOTSKI as an integrated proxy-

browser architecture [21, 2] that improves user experi-

ence on legacy devices and web pages by using standard

web protocols to implement our reprioritization scheme.

Using a range of measurements, system benchmarks, and

across a variety of user utility functions, we demonstrate

that: (1) on the median web page, KLOTSKI increases

the fraction of high utility resources delivered within 2

seconds from 25% to roughly 60%; (2) our dependency

representations are robust to flux in page content and typ-

ically only need to be updated once every 4 hours; and (3)

our load time estimates achieve near-ideal accuracy.

Looking beyond our specific design and implemen-

tation, we believe that the principles and techniques in

KLOTSKI can be more broadly adopted and are well

aligned with emerging web standards [6, 13, 25]. More-

over, while our focus here is on mobile web access, we

show that KLOTSKI can also improve traditional desktop

browsing as well.

2 Motivation

We begin by confirming that: 1) web performance on

mobile devices is still below expectations, and 2) these

performance issues exist even with popular optimiza-

tions. We also argue that these issues stem from the

growing complexity of web content and that this growth

is outpacing improvements in network performance.

Web performance on mobile devices: The grow-

ing adoption of the mobile web has been accompanied

by a corresponding decrease in user tolerance—users to-

day expect performance comparable to their desktops on

their phones [30]. To understand the state of mobile

web performance, we compared the page load times1 of

the landing pages of the top 200 websites (as ranked by

Alexa) under three scenarios: 1) on a HTC Sensation

smartphone using a 4G connection, 2) on the same phone

using WiFi, and 3) on a desktop connected to the same

WiFi network. For each web page, we run these three

scenarios simultaneously to avoid biases due to content

1We measure page load time by the time between when a page load

was initiated and when the browser’s onLoad event was fired.

(a) (b)

Figure 1: Load time comparison for top 200 websites.

Figure 2: Comparison of page load times with various well-

known performance optimization techniques.

variability across loads. For each page, we report the

median load time across 5 loads.

Figure 1(a) shows the CDF of load times for the three

scenarios, and Figure 1(b) shows the normalized load

times on the smartphone w.r.t. the desktop case. We see

that the mobile load times are significantly worse, e.g.,

the median webpage is 5× worse on 4G and 3× worse

even on WiFi. The tail performance is particularly bad,

with the 80
th percentile ≥ 10s on both 4G and WiFi.

Limitations of performance optimizations: We

study three prominent classes of web optimizations used

today: split-browsers such as Opera Mini [21], Google

SPDY [25], and recommended compression strategies.

For the latter two cases, we relay page loads through a

SPDY-enabled NodeJS proxy and through Google’s data

compression proxy (DCP) [8], respectively. We use the

HTC Sensation smartphone with a 4G connection for

these measurements.

Initially, we loaded the top 200 websites using these

performance optimizations. However, we saw no im-

provement in load times (not shown). To see if these

optimizations can potentially help other websites, we

pick the landing pages of 100 websites chosen at random

from the top 2000 websites and compare the load times

with and without these optimizations in Figure 2. While

the optimizations help improve load times on some web

pages, we see that they increase load times on other web

pages, thus resulting in little change in the overall distri-

bution; load times remain considerably higher than the 5-

second tolerance threshold typically observed in usabil-

ity studies [30]. These observations are consistent with

other recent studies [59, 37, 56].

Complexity vs. Performance: A key reason why

these protocol-, network-, and browser-level optimiza-

tions are largely ineffective is because web pages have
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Figure 3: Page load time when using Google’s compression

proxy vs. the number of resources loaded on the page.

become highly complex [12, 5, 33]. For instance, the

number of resources included on a web page is a key fac-

tor that impacts load times [58, 33]. Indeed, even in our

measurements, Figure 3 shows that the load time for ev-

ery web page using Google’s compression proxy shows

a strong correlation with the number of resources on the

page; i.e., even with the optimizations, the number of re-

sources continues to be a dominant factor.

Furthermore, past trends indicate that increase in page

complexity tends to match or even outpace improve-

ments in network performance. For example, prior stud-

ies show that the average number of resources on a web

page tripled from 2004 to 2009 [5], while RTTs on mo-

bile networks only halved over the same period [54].

Takeaways: In summary, we see that web page loads

take a significant amount of time on mobile devices, and

that common optimizations offer limited improvements

for complex pages. Given that page complexity is likely

to grow at the same or faster rate than improvements

in network performance, we need to rethink current ap-

proaches to improve the mobile web experience.

3 System overview

Embracing the reality that load times will be high despite

performance optimizations, we argue that rather than

purely focusing on improving performance, we should

be asking a different question:

How can we deliver good user experience under the as-

sumption that page load times will be high?

In this section, we start with the intuition underlying

our approach and discuss practical challenges associated

with realizing this goal. Then, we present an overview of

the KLOTSKI system to address these challenges.

3.1 Approach and Challenges

Our high-level approach is to ensure that resources that

the user considers important are delivered sooner. Note

that we do not block or filter any content, so as to not risk

rendering websites unusable. Based on studies showing

that users have a natural frustration or tolerance limit of

a few seconds [39, 32, 48], our goal is to deliver as many

high utility URLs on the page as possible within a (cus-

tomizable) tolerance threshold of M seconds.

To see how this idea works, consider a hypothetical

“oracle” proxy server whose input is the set of all URLs

O = {oi} on a web page. Each oi has an associated

load time ti and a user-perceived utility Util i . The oracle

picks a subset of URLs O � ⊆ O that can be loaded within

the time limit M such that this subset maximizes the total

utility
∑

oi∈O′ Util i . The proxy will then prioritize the

delivery of these selected URLs.

Using this abstract problem formulation, we highlight

several challenges:

• Page dependencies and content churn: First, this sub-

set selection view ignores inter-resource dependen-

cies, e.g., when a page downloads an image as a result

of executing a script on the client, the script is a nat-

ural parent of the image. To prioritize a high-utility

URL oi , we must also prioritize all of oi ’s ances-

tors. Second, because dynamically generated content

is common on today’s web pages, we may not even

know the set O of URLs before loading the page.

• Computation time: Selecting the subset O � that max-

imizes utility is NP-hard even ignoring dependen-

cies, and adding dependencies makes the optimization

more complex. Since the number of URLs fetched on

a typical web page is large (≈ 100 URLs [4]), it is in-

feasible to exhaustively evaluate all possible subsets.

Note that running this step offline does not help as it

cannot accommodate diversity across user preferences

and operating conditions (e.g., 3G vs. LTE).

• Estimating load times: Any algorithm for selecting

URLs to prioritize will need to estimate the load time

for any subset of URLs, to check that it is ≤ M .

This estimation has to be reasonably accurate; under-

estimation will result in some of the selected high util-

ity URLs failing to load within the user’s tolerance

threshold, whereas over-estimating and choosing ad-

ditional high utility URLs to load if all the selected

URLs load well within the time limit M may lead

to suboptimal solutions. Unfortunately, predicting the

load time for a given subset of URLs is non-trivial.

In addition to the dependencies described above, it is

hard to model how browsers parallelize requests, parse

HTML/CSS files, and execute scripts.

• Deployment considerations: Requiring custom fea-

tures from clients or explicit support from providers

reduces the likelihood of deployment and/or restricts

the benefits to a small subset of users and providers.

Thus, we have a practical constraint—the prioritiza-

tion strategy should be realizable even with commod-

ity clients and legacy websites.

3.2 KLOTSKI Architecture

To tackle the above challenges, we develop the KLOTSKI

system shown in Figure 4. We envision KLOTSKI as a

cloud-based service for mobile web acceleration. There

are many players in the mobile ecosystem who have

natural incentives to deploy such a service, including

browser vendors (e.g., Opera Mini), device vendors (e.g.,
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Figure 4: Overview of KLOTSKI’s architecture.

Kindle Fire’s Silk), cellular providers (offering KLOTSKI

as a value-added service), and third-party content deliv-

ery platforms (e.g., Akamai). While KLOTSKI requires

no changes to client devices or legacy webservers and

makes minimal assumptions about their software capa-

bilities, it can also incorporate other optimizations (e.g.,

caching, compression) that they offer.

We assume there is some process for KLOTSKI users

to specify their preferences; we discuss some potential

approaches in Section 9. Our focus in this paper is on

building the platform for content reprioritization, and we

defer the task of learning user preferences to future work.

The KLOTSKI back-end is responsible for captur-

ing page dependencies and dynamics via offline mea-

surements using measurement agents.2 For every page

fetched, the agents record and report key properties such

as the dependencies between resources fetched, the size

(in bytes) of every resource, the page load waterfall, and

every resource’s position on the rendered display. The

back-end aggregates different measurements of the same

page (across devices and over time) to generate a com-

pact fingerprint fw per web page w . At a high-level, fw
is a DAG, where each node i is associated with a URL

pattern pi . (The role of this URL pattern will become

clearer below.) In this paper, we focus specifically on the

fingerprint generation algorithm (§4) and do not address

issues such as coordinating measurements across agents.

The KLOTSKI front-end is an enhanced web proxy

that prioritizes URLs that the user considers important. It

uses legacy HTTP to communicate with webservers, and

communicates with clients using SPDY, which is now

supported by popular web browsers [26]. When a re-

quest for a page w from user u arrives (i.e., the GET for

index.html), the front-end uses fw , the user’s prefer-

ences, and a load time estimator (§6) to compute the set

of resources that should be prioritized (§5).

The front-end can preemptively push static resources

that need to be prioritized. For other selected resources

that are dynamic, however, it cannot know the URLs in

the current load until the page load actually executes.

Thus, when a new GET request from the client arrives,

2The measurement agents can be KLOTSKI’s clients that occasion-

ally run unoptimized loads, or the KLOTSKI provider can use dedicated

measurement clients (e.g., [16]).

Figure 5: Fraction of replaced URLs, comparing loads an

hour apart, a day apart, and a week apart.

the front-end matches the URL requested against the

URL patterns for the selected resources. If a match is

found, the front-end prioritizes the delivery of the con-

tent for these URLs over other active requests.

4 Page fingerprint generation

Next, we describe how the KLOTSKI back-end generates

web page fingerprints. It takes as input multiple loads of

a given webpage w as input, and generates the fingerprint

fw that captures parent-children dependencies across re-

sources on w as well as high-level URL patterns describ-

ing each resource on the page.

4.1 High-level approach

Prior works such as WebProphet [42] and WProf [58] in-

fer dependencies across URLs for a single load of a web

page. Unfortunately, this single-load dependency graph

cannot be used as our fw because the URLs on a page

change frequently. Figure 5 shows a measurement of the

URL churn for 500 web pages. We see that at least 20%

of URLs are replaced for ≥ 30% of web pages over the

course of an hour and for ≥ 60% of web pages over a

week. Due to this flux in content, the dependencies in-

ferred from a prior load of w may cause us to incorrectly

prioritize URLs that are no longer on the page or fail to

prioritize the new parent of a high utility URL.

Now, even though the set of URLs changes across

page loads, there appears to be an intrinsic dependency

structure for every web page that remains relatively

static. Suppose we construct an abstract DAG from ev-

ery load of a web page, with an edge from every URL

o to its parent p. Then, for 90% of the same 500 pages

considered above, changes in this DAG, captured by tree

edit distance, are less than 20% even after a week (not

shown). That is, most pages appear to have a stable set

of inter-resource dependencies, with only the URL cor-

responding to every resource changing across loads.

Based on this insight, we generate the fingerprint

fw as follows. We take multiple measurements of w

over a recent interval of ∆ hours. From this set of

measurements, Loadsw ,∆, we identify a reference load

RefLoadw . While there are many possible choices, we

find using the load with the median page load time within

Loadsw ,∆ works well. Given that the dependency struc-

ture is quite stable, we use the dependency DAG for
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O1 O2

Figure 6: Given O1 and O2

fetched in two loads of the same

web page, we map URLs in

(O1−O2) to ones in (O2−O1).

a.com/index.htm

cdn1.b.com/img.jpg

c.com/ad.php?arg1

a.com/style.css

d.com/script.js

d.com/n#92@H/a.js

a.com/index.htm

c.com/ad.php?arg2

a.com/style.css

d.com/script.js

d.com/%tB#3v/a.js

cdn2.b.com/img.jpg

a.com/index.htm

c.com/ad.php?*

a.com/style.css

d.com/script.js

d.com/*/a.js

*.b.com/img.jpg

(a) (b) (c)

Figure 7: Illustrative example showing dependency structures (a) and (b) being merged

into aggregated dependency structure (c).

RefLoadw ; in Section 7, we describe how we obtain this

dependency DAG in our implementation of KLOTSKI.

However, one challenge remains. To ensure that this

DAG is reusable across loads, we need to annotate every

node in the DAG with a URL pattern that captures the

variations of the URLs for this node across loads. We

do this as follows. We initialize the page’s dependency

structure D as the DAG between URLs fetched during

the reference load RefLoadw . We then iteratively update

D by reconciling the differences between D and other

loads in Loadsw ,∆. First, for every o ∈ RefO (the set of

URLs in RefLoadw ) that is absent in some other (non-

reference) load O , we identify the URL o′
∈ O that re-

placed o. Then, for every such matched URL, we update

the URL pattern at the node in D with a regular expres-

sion that matches both the previous URL annotation and

the URL for o′.

Thus, we have two natural subtasks: (1) Given two

different loads Load1 and Load2, we need to map URLs

that have replaced each other; and (2) We need to cap-

ture the variations in a resource’s URL across loads to

generate robust URL patterns. We describe these next.

4.2 Identifying replacements in URLs

Let O1 and O2 be the sets of URLs fetched in two dif-

ferent loads within Loadsw ,∆. While some URLs are

present in both loads, some appear only in one. Our goal

here is to establish a bijection between URLs fetched

only in the first load (O1−O2) and those fetched only in

the second load (O2 −O1), as shown in Figure 6.

<span class="yt-thumb-default">

<span class="yt-thumb-clip">

<img aria-hidden="true" alt="" width="175"

src="//i1.ytimg.com/vi_webp/k2waw0wZ7VA/mqdefault.webp">

<span class="vertical-align">

</span></span></span></span>

(a) Load 1

<span class="yt-thumb-default">

<span class="yt-thumb-clip">

<img aria-hidden="true" alt="" width="175"

src=" //i1.ytimg.com/vi/GSjA3voJydk/mqdefault.jpg">

<span class="vertical-align">

</span></span></span></span>

(b) Load 2

Figure 8: Example snippets from two loads of youtube.

com that illustrate the utility of local similarity based match-

ing. URLs that replace each other are shown in bold.

To this end, we rely on three key building blocks:

• Identical parent, lone replaced child: We identify

the parent(s) for each URL in O1 and O2. Then, we

consider every URL p that appears in both loads and

has children in both loads. Now, if p has only one un-

matched child o in O1 and only one unmatched child

o′ in O2, i.e., p’s remaining children appear in both

loads3, then we consider o′ to have replaced o.

• Similar surrounding text: In practice, a single parent

resource p may have several children replaced across

loads; e.g., a script may fetch different URLs across

executions, or the URLs referenced in a page’s HTML

may be rewritten across loads. In such cases, we need

to identify the mapping between an URL p’s children

in (O1 −O2) and its children in (O2 −O1).
Here, we observe that the relative position of these

children in their parent’s source code is likely to be

similar. Figure 8 shows an example snippet from the

main HTML on youtube.com, which fetches dif-

ferent images across loads. As we can see, even as

the HTML gets rewritten to fetch a different image,

the text within the code surrounding the reference to

either image is almost identical.

We use this observation to identify URL replacements

as follows. For every URL, KLOTSKI’s measurement

agents log the location within its parent’s source code

where it is referenced. Then, for every pair (o, o′) that

have the same parent p, we compute a local text simi-

larity score between the portions of p that reference o

in the first load and o′ in the second load. We compute

this similarity score as the fraction of common con-

tent 4 across (1) 500 characters of text on either side of

the URL’s reference, and (2) the lines above and below

the URL’s reference. We iterate over (o, o′) pairs in

decreasing order of this score, and declare o′

i
as having

replaced oi if either URL has not already been paired

up and if the score is greater than a threshold.

• Similar position on display: Local similarity may fail

to identify all URL replacements as not all URLs are

directly referenced in the page’s source code (e.g., al-

gorithmically generated URLs). Hence, we also iden-

3Or equivalently, all the other children have already been matched.
4We apply Ratcliff and Metzener’s pattern matching algorithm [52],

which returns a value in [0, 1] for the similarity between two strings.
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tify URL replacements based on the similarity in their

position on the display when the page is rendered.

Again, KLOTSKI’s measurement agents log the coor-

dinates of the top-left and bottom-right corner of the

visible content of every URL (details in §7). We then

declare o� in one load as having replaced o in another

load if the sum of the absolute differences between the

coordinates of their corners is less than 5 pixels.

Putting things together: We combine the above

building blocks as follows. First, we map URLs that

have an identical parent and are the only child of their

parent that changes across loads. We apply this tech-

nique first since it rarely yields false positives. Then, we

identify mappings based on the local similarity scores,

following which we leverage similarity in screen posi-

tions. After these steps match many URLs in O1 and O2,

there may now be new URLs that share a parent and are

the only unmatched child of their parent. Thus, we ap-

ply the first step again to further match URLs. At this

point, there remain no more URL pairs that are the sole

replaced children of their common parent and all URLs

that can be matched based on similarity in surrounding

text or screen position have already been matched.

4.3 Generating URL patterns

Now that we are able to identify how URLs fetched on a

web page are replaced across loads, we next discuss how

KLOTSKI generates the URL patterns.

While one could use complex algorithms to merge

URLs into regular expressions (e.g., [61]), our empirical

analysis of thousands of websites shows that over 90% of

URL replacements fall in one of three categories:

• URL argument changes: When URL o in one load

is replaced by o� in another, they often differ only in

the associated arguments, i.e., the part of the URL fol-

lowing the ‘?’ delimiter. This is common in adver-

tisements, as the argument is dynamically rewritten to

select the ad shown. For example, c.com/ad.php?

arg1 in Figure 7(a) is replaced by c.com/ad.php?

arg2 in Figure 7(b). In such cases, we merge URLs

into a regular expression that preserves the common

prefix and indicates that any argument is acceptable;

c.com/ad.php?* in our example.

• Single token in the URL changes: Second, when

URLs o and o� are split into tokens using ‘/’ as the de-

limiter, they often differ only in one token. This hap-

pens when an image on a page is replaced by another

image with the same path name, or when an URL in-

cludes a hash value that is randomly generated on ev-

ery load, e.g., in Figures 7(a) and 7(b), d.com/%tB#

3v/a.js replaces d.com/n#92@H/a.js. Here,

the merged URL pattern we create is the URL for o,

but the token that differs from o�’s URL is replaced

with a wildcard; d.com/*/a.js in our example.

Figure 9: Choosing a dependency-compliant subset of re-

sources that maximizes utility within load time budget. Each

node represents a resource; shaded nodes have high utility.

• Resources fetched from CDNs: Last, we account for

content served via CDNs. For such URLs, the host-

name portion of the URL changes across loads only in

the first token, when the hostname is split into tokens

based on ‘.’. The regular expression that we use re-

places only the portion of the hostname that changes

with a wildcard, e.g., in Figure 7, the regular expres-

sion *.b.com/img.jpg captures cdn1.b.com/

img.jpg replacing cdn2.b.com/img.jpg.

One concern is that these merging techniques may be-

come too generic (i.e., too many wildcards), producing

many false matches at the front-end. We show in §8 that,

with a suitable choice of ∆ to refresh the DAG, this is

unlikely to occur.

5 Optimizing page loads

When a client loads a web page w via the KLOTSKI

front-end, the front-end does two things. First, it selects

the subset of resources on the page that it should priori-

tize. Thereafter, as the client executes the page load, the

front-end alters the sequence in which the page’s content

is delivered to the client, in order to prioritize the deliv-

ery of the selected subset of resources. Next, we discuss

how the KLOTSKI front-end performs these tasks.

5.1 Selecting resources to prioritize

Recall from §3.2 that the KLOTSKI front-end begins se-

lecting the subset of resources to prioritize on a page w

once it receives the request for w ’s main HTML.

The front-end’s resource selection for w uses the pre-

viously computed fingerprint fw that characterizes the de-

pendencies and features of resources on w . Using fw
in combination with the user’s preferences, the front-end

computes per-resource utilities and constructs an anno-

tated DAG where every node corresponds to a resource

on w and is annotated with that resource’s utility.

As shown in Figure 9, our goal is to select a suitable

DAG-cut in this structure, i.e., a cut that also satisfies

the dependency constraints. Formally, given a page’s de-

pendency structure D and a time budget M for user per-

ceived load time, we want to select the optimal cut C ∗

that can be loaded within time M and maximizes the ex-
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pected utility. Now, selecting the optimal cut is NP-hard

and it is inefficient to solve using off-the-shelf solvers.5

It is clear that we need a fast algorithm for resource

subset selection because it is on the critical path for load-

ing web pages—if the selection itself takes too long,

it defeats our goal of optimizing the user experience.

Hence, we heuristically adapt the greedy heuristic for the

weighted knapsack problem as follows.

We associate every resource oi in the page, whose util-

ity is Util i , with an initial cost Ci equal to the sum of its

size and its ancestors’ sizes in D . Then, in every round

of the greedy algorithm, we iterate through all the unse-

lected resources in the descending order of Util i

Ci
. When

considering a particular resource, we estimate the time

(using the technique in §6) that will be required to load

the selected DAG-cut if this resource and all of its an-

cestors were added to the cut. If this time estimate is

within the budget M , then we add this resource and all

of its ancestors to the selected DAG-cut; else, we move

to the next resource. Every time we add a resource and

its ancestors to the DAG cut, we update the cost Ci as-

sociated with every unselected resource oi as the sum of

its size and the sizes of all of its ancestors that are not

yet in the DAG cut. We repeat these steps until no more

resources can be accommodated within the budget M (or

all resources have been selected).

5.2 Prioritizing selected resources

Having selected the resources to prioritize, there are two

practical issues that remain. First, the front-end does

not have the actual content for these resources; fw only

captures dependencies, sizes, and position on the screen.

Second, the URLs for many of the resources will only be

determined after the client parses HTML/CSS files and

executes scripts; the KLOTSKI front-end does not parse

or execute the content that it serves.

Given these constraints, the front-end prioritizes trans-

mission of the selected resources to the client in two

ways. First, for every static resource (i.e., a resource

whose node in the page’s fw is represented with a URL

pattern without wildcards), the front-end pre-emptively

requests the resource from the corresponding web server

and pushes the resource’s content to the client without

waiting for the client to request it. However, the front-

end cannot do this for any resource whose URL pattern

is not static, as the front-end does not know which of the

various URLs that match the URL pattern will be fetched

in this particular load. Hence, the front-end matches ev-

ery URL requested by the client against the URL patterns

corresponding to the selected resources, and it prioritizes

the delivery to the client of URLs that find a match over

5We can formally prove via a reduction from the weighted knapsack

problem, but do not present it for brevity.

those that do not. We describe how we implement these

optimizations via SPDY features in §7.

6 Load time estimation

As discussed in the previous section, our greedy algo-

rithm needs a load time estimator to check if a candidate

subset of resources can be delivered within the load time

limit M . In this section, we begin by discussing why

some natural strawman solutions fail to provide accurate

load time estimation, and then present our approach.

Strawman solutions: One might consider modeling

the load time for a subset of resources as some func-

tion of key features such as the number of resources,

the total number of bytes fetched, or the number of

servers/domains contacted. Unfortunately, due to the

inter-resource dependencies and the complex (hidden)

ways in which browsers issue requests (e.g., interleav-

ing HTML/CSS parsing and script execution vs. actual

downloads), these seemingly natural features are poorly

correlated with the effective load time. Alternatively, to

incorporate the dependencies, we could try to extend the

resource loading waterfall (i.e., the sequence in which

URLs are fetched and the associated timings) from the

reference load RefLoadw . However, this approach also

has two key shortcomings: (1) since we are explicitly

changing the sequence of requests, the original waterfall

is no longer accurate, and (2) it is fragile due to the diver-

sity in load times across clients and network conditions.

Our approach: To account for the dependencies and

accurately estimate the load time for a given subset of re-

sources, we need to estimate four key timing variables for

each URL oi : (a) ClientStart i , when the client requests

oi ; (b) ProxyStart i , when the front-end starts delivering

oi to the client; (c) ClientReady i , when the client can

begin to render or use oi ; and (d) ProxyFini , when the

front-end finishes delivering oi .
6 Together, this gives us

all the information we need to model the complete page

download process for a given subset of resources.

Intuitively, if the link between the client and the front-

end is the only bottleneck and the bandwidth is shared

equally across current downloads [46], then we can use a

lightweight fluid-model simulation of the client-frontend

interaction. Given this assumption, we use a simple ana-

lytical model to estimate the values of the four variables

as described below. We explain this with the example

in Figure 10, where we have 5 URLs with the DAG D

shown and everything except o5 is selected to be prior-

itized. For clarity of presentation, we describe the case

when each o has only one parent.

1. ClientStart i : This depends on the finish time of

oi ’s parent as well as delays for the client to pro-

cess the parent; e.g., in Figure 10, o3 is requested

6All times are specified in terms of the client clock.
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Client GET
Requests

O1

O1

O2

O2

O2

O3

O3, O5

O5 O4

O2

Time t1 t2 t3 t4 t5 t6 t7

O4

Figure 10: Illustrative execution of load time estimator.

Shaded resources are high utility resources selected for pri-

oritization. Times shown are for events fired in the simulator.

some time after the completion of o1. Specifically,

ClientStart i = ClientReadypi
+ Gapi , where pi is

the parent. Gapi is the processing delay between the

parent and the child; we capture these parent-child

gaps from KLOTSKI’s measurements, store these in

fw , and replay the gaps with a simple linear extrap-

olation to account for CPU differences between the

measurement agent and the current client.

2. ClientReady i : In the simplest case, we can sim-

ply set ClientReady i = ProxyFini ; i.e., when the

front-end has finished sending the object. How-

ever, there is a subtle issue if the front-end had de-

cided to push URL oi . In particular, the client

may not have processed oi ’s parent when the front-

end completes delivering oi . This means that the

client will start consuming an URL only when it is

ready to issue the request for that URL. Thus, we

modify the above expression to ClientReady i =
max(ProxyFini ,ClientStart i). In our example, o2
finishes downloading at ProxyFini = t4, but the

client finishes processing the parent to issue the re-

quest for o2 at ClientStart i = t7.

3. ProxyStart i : The time at which the front-end can

start delivering oi depends on two scenarios. If oi
was chosen to be pushed (see §5.2) , then it can start

immediately. Otherwise, the front-end needs to wait

until the request arrives (e.g., for dynamically gener-

ated URLs). If Latency is the latency between the

client and the front-end, we have:

ProxyStart i =

{

0, if oi is pushed

ClientStart i + Latency , otherwise

In our example, the front-end has to wait until the

dynamically generated URL o4 has been requested

before starting to deliver it.

4. ProxyFini : Finally, to compute the time for the front-

end to finish delivering an URL, we model the front-

end as a priority but work-conserving scheduler with

fair sharing. That is, if there are no high-priority

URLs to be scheduled, then the front-end will chose

some available low priority URL; e.g., in [t4, t5], there

were no high priority URLs to schedule as o4 has not

yet been requested, so the front-end tries to deliver the

low priority URL o5, but after o4 is ready, it preempts

o5. Moreover, the bandwidth between the client and

the front-end is equally shared across concurrently de-

livered URLs, e.g., in intervals [t1, t2] and [t3, t4].

Together, this simple case-by-case analysis provides

the necessary information to model the complete page

download process for a given subset of resources. As

we will see later, our assumptions on the bottleneck link

and fair sharing holds reasonably well in practice and this

model provides accurate load time estimations.

7 Implementation

Measurement agent: We implement Android-based

measurement agents that load web pages in the Chrome

browser. We use Chrome’s Remote Debugging Proto-

col to extract the inter-URL dependencies in any partic-

ular page load. For every URL fetched, this gives us the

mime-type, size, parent, and the position within that par-

ent’s source code where this URL is referenced. In ad-

dition, when the onLoad event in the browser fires, we

inject a Javascript into the web page. This script traverses

the DOM tree constructed by the browser while loading

the page and dumps several pieces of information con-

tained within the node for every resource, e.g., whether

it is visible, and if so, its coordinates on screen.

Front-end: We implement the KLOTSKI front-end

by modifying the NodeJS proxy with the SPDY mod-

ule enabled [27]. Our front-end uses SPDY to commu-

nicate with clients and HTTP(S) to communicate with

webservers. For any resource delivered by the proxy to

a client, it maps the resource to one of SPDY’s 7 priority

levels as follows: a web page’s main HTML is mapped

to priority 0, pushed resources have priority 1, resources

that are dynamically prioritized (by matching their URLs

against regular expressions in the web page’s fingerprint)

are assigned priority 2, and all other resources are spread

across lower priority levels in keeping with the order in

which the NodeJS proxy assigns priorities by default.

In addition, we require one modification to typical

client-side browser configurations in order for them to

be compatible with the KLOTSKI front-end. By default,

browsers accept resources delivered using SPDY PUSH

only if the domain in the resource’s URL is the same

as the one from which the page is being loaded [25].

We select the configuration option in Chrome for An-

droid which makes it accept pushed resources from any

domain. However, since Chrome accepts a HTTPS re-

source via SPDY PUSH only if it is pushed by the do-

main hosting it, we consider all such resources only for

dynamic prioritization.

8 Evaluation

Our evaluation of KLOTSKI comprises two parts. First,

we showcase the improvements in user experience en-

abled by KLOTSKI across a range of scenarios. Then,
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(a)

(b)

Figure 11: Comparison of fraction of high utility resources

loaded within load time budget: (a) Box and whisker plots

showing spread across websites, and (b) CDF across websites

of difference between KLOTSKI and the original website.

we evaluate each of KLOTSKI’s components in isolation.

We begin with a description of our evaluation setup.

8.1 Evaluation setup

All experiments were conducted using a HTC Sensation

smartphone, running Android 4.0.3, as the client. This

client connected to a WiFi hotspot exported by a Mac

Mini, which in turn obtained its Internet connectivity via

a T-Mobile 4G dongle. We use this setup, rather than

the phone directly accessing a 4G network, so as to log a

pcap of the network transfers during page loads.

For most of our experiments, we use the landing pages

of 50 websites chosen at random from Alexa’s top 200

websites. We load the full version of these web pages us-

ing Google Chrome version 34.0.1847.116 for Android.

We host the KLOTSKI front-end in a small instance VM

in Amazon EC2’s US West region.

8.2 Improvement in user experience

We evaluate the improvement in user experience enabled

by KLOTSKI, compared to page loads that go through

an unmodified proxy, in a variety of client/network set-

tings and across a range of user preferences; note that we

see little difference in load times when our client directly

downloads page content from webservers and when it

does so via a vanilla web proxy. In all cases, though re-

sources not visible to the user (e.g., CSS and Javascripts)

have a utility score of 0, KLOTSKI may choose to prior-

itize such resources if doing so is necessary in order to

prioritize a high utility resource, due to dependencies.

Prioritizing above-the-fold content: First, we con-

sider all resources on a page that appear “above-the-fold”

(i.e., resources that are visible without the user having to

(a) Original page load (b) Page load with KLOTSKI

Figure 12: Screenshots comparing loads of an example site

(http://huffpost.com), 3 seconds into the page load,

without and with KLOTSKI.

scroll) as high utility. We assign a utility score of 1 for

every high utility object and a score of 0 for all others.

We then load every web page on our smartphone client

first without any optimization, and then via the KLOTSKI

front-end. In either case, we log the sequence in which

resources were received at the client and later identify the

high utility resources delivered within the load time bud-

get. We ran this experiment varying the load time bud-

get value between 1 and 4 seconds; prior studies suggest

most users have a tolerance of at most 5 seconds [30].

For each load time budget value, Figure 11(a) shows

the utility delivered to the client within the budget, using

either of the page load strategies. For each (time budget,

strategy) pair, we present a box and whiskers plot that

shows the 10
th, 25th, 50th, 75th, and 90

th percentiles

across websites. We see that KLOTSKI consistently de-

livers a significantly better user experience. When user

tolerance is 2 seconds, the fraction of high utility re-

sources loaded within this limit on the median web page

increases from 25% with the original website to roughly

60% with KLOTSKI. Similarly, we see KLOTSKI increas-

ing the utility delivered on the median web page from

50% to almost 80% when the time budget is 3 seconds.

In addition, in Figure 11(b), we plot the distribution

across websites of the difference between KLOTSKI and

the original website in terms of the fraction of high util-

ity resources loaded within the budget. KLOTSKI consis-

tently fares better or no worse than the original website.

For time budgets of 1–4 seconds, KLOTSKI manages to

deliver an additional 20% of the high utility resources on

roughly 20–40% of the websites.

Figure 12 illustrates these benefits offered by KLOT-

SKI by comparing the screenshots 3 seconds into the

page load when loading an example website.
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(a) (b) (c)

Figure 13: Comparison of utility delivered when (a) varying the function used to compute the utility values for high utility

objects, (b) loading full versions of web pages (by faking a desktop’s User-Agent), and (c) loading web pages on a desktop.

We also compared the utility improvements offered by

KLOTSKI to that obtained when loading web pages via a

caching proxy. We consider the best case scenario where

the proxy has cached all cacheable resources on every

web page. However, we found that the user experience

with a caching proxy is almost identical to that obtained

with a proxy that simply relays communication between

clients and webservers without any caching. Caching at

the proxy does not offer any benefits because the 4G net-

work between the client and the proxy is the bottleneck

here. Hence, KLOTSKI’s proactive delivery of static high

utility content to the client is critical to enabling the im-

provements in user experience that it offers.

Impact of utility function: While we assigned a util-

ity score of 1 to all high utility resources in the above ex-

periment, one can also consider assigning different pos-

itive scores to different high utility resources. For ex-

ample, among all above-the-fold resources, the user may

derive larger utility from larger objects.

To evaluate the impact on KLOTSKI’s benefits when

varying the utility score across different high utility re-

sources, we rerun the previous experiment with two util-

ity functions. For any above-the-fold resource that is B

bytes large and occupies an area A on the display, we as-

sign a utility score of log
10
(A) in one case and log

10
(B)

in the other case. For a time budget of 2 seconds, Fig-

ure 13(a) compares the improvement in user experience

offered by KLOTSKI in these two cases as well as with

the binary utility function that we used above. While the

precise improvements vary across the utility functions,

KLOTSKI improves the utility delivered on the median

web page by over 60% in all three cases.

Utility for full versions of web pages and on desk-

tops: Though our primary motivation in developing

KLOTSKI is to improve user experience on the mobile

web, its approach of reprioritizing important content

can also be beneficial in other scenarios. For example,

though many websites offer mobile-optimized versions,

nearly a third of users prefer the full site experience [20]

and 80% of mobile-generated revenue is generated when

users view the full site [24]. However, page load times

for these full versions are even worse than the poor per-

formance on the average mobile-optimized web page.

Similarly, though page load times are typically within 5

seconds on desktops (Figure 1(a)), recent surveys [11]

show that 47% of users expect a page to load within 2

seconds and that 67% of users expect page loads on desk-

tops to be faster than on mobile devices.

We evaluate KLOTSKI’s ability to improve the web ex-

perience in these two scenarios by first loading full ver-

sions of web pages on a smartphone, and thereafter, by

loading web pages on a desktop with a wired connection.

We vary user tolerance from 2 to 5 seconds in the former

case, and from 0.7 to 1.3 seconds in the latter. In both

cases, we assign a utility score of 1 for all the above-

the-fold resources and a score of 0 for other resources.

Figure 13(b) and 13(c) show that KLOTSKI’s reprioriti-

zation of important content helps significantly improve

the user experience even in these cases.

Personalized preferences: So far, we considered

all above-the-fold content important. We next evaluate

KLOTSKI when accounting for user-specific preferences.

To capture user-specific utility preferences, we sur-

veyed 120 users on Mechanical Turk. On our survey

site (http://object-study.appspot.com), we

show every visitor snapshots of 30 web pages—the land-

ing pages of 30 websites chosen at random. For each

page, we pick one resource on the page at random and

ask the user to rate their perceived utility of each resource

on a range varying from “Strong No” to “Strong Yes”

(i.e., on a Likert scale from -2 to 2). We only consider

data from respondents who 1) chose the correct rating for

4 objects known definitively to be very important or in-

significant, and 2) gave consistent responses when they

were asked again for their opinion on 5 (chosen at ran-

dom) of the 30 objects that they had rated.

We observe significant variances in user preferences.

For example, Figure 14 shows the distribution of utilities

for four types of resources—has a link, in the top third of

a page, larger than 100x100 pixels, or is above-the-fold.

In each case, we see that the fraction of resources con-

sidered important (“Yes” or “Strong Yes”) greatly varies

across users. This validates the importance of KLOT-

SKI’s approach of being able to account for arbitrary util-

ity preferences, instead of existing approaches [14, 22]

that can only optimize above-the-fold content.
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(a)

(b)

Figure 14: (a) Variance across users of utility perceived in a

few types of objects. (b) For 20 users, spread across websites

of the difference between KLOTSKI and the original website in

the fraction of high utility resources loaded within 2 seconds.

ATF considers all above-the-fold content important.

For a given user, we use her survey responses to esti-

mate the utilities that she would perceive from the con-

tent on other web pages as follows. We partition all

URLs into 9 categories, which are such that any given

user’s ratings are consistently positive or consistently

negative across all the URLs that they rated in that cate-

gory. For every (user, category) pair, we assign a utility

score of 1/0 to all URLs in that category if a majority

of the user’s ratings for URLs in the category were posi-

tive/negative.

We consider the data gathered from 20 random users

and evaluate KLOTSKI taking their preferences into ac-

count. For each of the 20 users, Figure 14 shows the

distribution across websites of the difference between

KLOTSKI and the native unmodified page load in terms

of the fraction of high utility resources delivered within

2 seconds. For almost all users, we see that KLOTSKI

increases the fraction of high utility resources loaded

within 2 seconds by at least 20% on over 25% of web-

sites. Moreover, most users see an increase as high as

50% on some websites. On the flip side, only few users

see a worse experience on any website.

8.3 Evaluation of KLOTSKI’s components

The improvement in user experience with KLOTSKI is

made possible due to its combined use of several compo-

nents. We evaluate each of these in isolation next.

8.3.1 Fingerprint generation

Matching replaced resources: First, we evaluate the

accuracy with which the KLOTSKI back-end can map

URL replacements across page loads. The primary chal-
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Figure 15: False positive/negative matches as a function of

back-end’s aggregation window for merging dependencies.

lenge in doing so is that we do not have ground truth data

(i.e., pairs of URLs which indeed replaced each other

across page loads). It is very hard to identify matches

manually, and no prior techniques exist for this task.

Hence, we instead use the following evaluation strat-

egy. We gathered a dataset wherein we fetched 500 web

pages once every hour for a week. For every web page,

we compare every pair of loads. As mentioned earlier,

we find that our first technique for mapping replaced re-

sources – identical parent, lone replaced child – is almost

always accurate. Therefore, we consider all replace-

ments identified using this technique as the ground truth,

and use this data to evaluate our other two techniques

for mapping replaced resources: similar surrounding text

and similar position on display. When we apply these

two techniques one followed by the other, we find that

the matches obtained with a threshold of 100% for the

local text similarity and 5 pixels for the display position

similarity yield a 96% true positive rate and a 3% false

positive rate. While local text similarity and display po-

sition similarity result in reasonably high false negative

rates when applied in isolation, they enable accurate de-

tection of URL replacements when used in combination.

Aggregation of dependency structures: Recall that

KLOTSKI’s back-end generates a fingerprint per web

page by aggregating its measurements of that page over

an aggregation window ∆, i.e., it aggregates measure-

ments from ∆ hours ago until now. Here, we ask: what

should be the value of ∆? The smaller the value of ∆,

the URL patterns stored in a page’s dependency struc-

ture would not have converged sufficiently to capture

the page’s dynamics. The larger ∆, these URL patterns

may become too generic, resulting in many false positive

matches when the KLOTSKI front-end uses these patterns

for dynamic prioritization of URLs.

We examine this trade-off with the same dataset as

above where we loaded 500 pages once an hour for a

week. After every hour, we applied the KLOTSKI back-

end to generate a dependency structure for every page by

aggregating measurements of that page over the past ∆

hours. We then compute the number of false positive and

false negative matches when using the patterns in the ag-

gregated dependency structure to match URLs fetched in

the next load of that page. Varying ∆ from 1 to 24 hours,
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Figure 16: Comparison of no. of resources selected to load

and no. of resources loaded in practice within the budget.

Time budget (sec) 1 2 3 4 5

Median runtime (ms) 1 3 4 6 7

Table 1: Runtime of resource selection algorithm for the me-

dian web page as a function of time budget.

Figure 15 plots the false positive rate and false negative

rate on the median web page. We see that an aggregation

window of 4 hours presents the best trade-off.

8.3.2 Resource selection

Having already demonstrated the utility improvements

offered by KLOTSKI, we now evaluate the correctness

and efficiency of its selection of resources to prioritize.

First, we evaluate KLOTSKI’s ability to accurately ac-

count for flux in page content when selecting resources.

For every web page, we evaluate whether the number of

resources selected by KLOTSKI’s front-end for prioritiza-

tion for a load time budget of 2 seconds match the num-

ber of high utility URLs received by the client within 2

seconds. These two values can differ due to errors in

KLOTSKI’s load time estimates and due to inaccuracies

in KLOTSKI’s dependency structure. Figure 16 plots the

distribution across web pages of the absolute value of the

relative difference between these two values. We see that

our error is less than 20% on roughly 80% of websites

(i.e., the number of resources delivered within the budget

is within 20% of the number selected by the front-end),

thus validating the correctness of KLOTSKI’s fingerprints

and the accuracy of its load time estimator.

Second, we examine the overhead of KLOTSKI’s

greedy resource selection algorithm. Recall that the exe-

cution of this algorithm is on the critical path of loading

a web page, since the front-end begins executing the al-

gorithm only when it receives the request for the page’s

main HTML. Table 1 shows that, across a range of bud-

get values, the runtime of the front-end’s resource selec-

tion is within 10 ms for the median web page. Given that

the load time of the main HTML is itself greater than

500 ms on over 90% of web pages, combined with the

fact that the average size of KLOTSKI’s fingerprint for

a web page is 1.6 KB (more than an order of magnitude

lesser than the average size of the main HTML [12]), this

shows that the front-end can fetch the fingerprint and fin-

ish executing the resource selection algorithm before it

completes delivering the main HTML to the client.

(a) (b)

Figure 17: (a) Absolute and (b) relative errors in KLOTSKI’s

load time estimates. Comparison with intrinsic variability.

8.3.3 Load time estimation

Finally, we evaluate the accuracy of KLOTSKI’s load

time estimator. We apply KLOTSKI to estimate the load

time when web pages are loaded via the front-end, albeit

without the front-end prioritizing any content. We com-

pute the absolute and relative error in KLOTSKI’s load

time estimates compared to measured load times. Since

a source of error here is the intrinsic variability in load

times, we get a distribution of load time variability as

follows. We load every web page 10 times and parti-

tion these loads into two sets of 5 loads each. For each

page, we then compute the difference between the me-

dian measured load times in the two partitions. Figure 17

shows that the errors in KLOTSKI’s load time estimates

closely match the distribution of this intrinsic variability.

9 Discussion

Optimizing other metrics: Though KLOTSKI maxi-

mizes the utility delivered within a time budget, our de-

sign can easily accommodate other optimization criteria.

For example, to help users cope with data caps, KLOT-

SKI’s greedy algorithm can be modified to select a subset

of resources that maximizes utility subject to a limit on

the total number of bytes across the selected resources;

all unselected resources can be blocked by the front-end.

Similarly, given appropriate models of energy consump-

tion, the front-end can deliver a subset of resources that

keep energy consumed on the client within a limit.

Utility function: To obtain a user’s preferences, we

can have the user take a one-time survey (similar to our

user study in Section 8.2) when she first begins using

KLOTSKI. Alternatively, since going over several objects

and rating them upfront can be onerous, KLOTSKI can

initially start with a default utility function for every user,

and on any web page that the user visits, we can provide

the user the option of marking objects as low utility (say,

whenever the page takes too long to load); e.g., the Ad-

block Plus browser extension similarly lets users mark

ads that the user wants it to block in the future.

Measurement scheduling and personalized web-

sites: Since websites differ in the rate of flux in their

content, KLOTSKI’s back-end can adaptively vary mea-

surements of different web pages. For example, the back-

end can more frequently load pages from news websites
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as compared to websites used for reference, since content

in the former category changes more often than in the lat-

ter category. In addition, for any web page that person-

alizes content, the back-end can load the web page using

different user accounts to capture which parts of the page

stay the same across users and which parts change.

10 Related work

Our contribution here is in recognizing the need for,

and presenting a practical solution for, improving mobile

web experience by dynamically prioritizing content im-

portant to the user, rather than trying to reduce page load

times. Here, we survey prior work related to KLOTSKI.

Measuring and modeling web performance: Prior ef-

forts have analyzed the complexity of web pages [12, 17,

33] and how it impacts page load times [33, 60, 34] and

energy consumption [58, 31, 55]. Our work is motivated

by such measurements.

Characterizing webpage content: Song et al. [57]

develop techniques to partition webpages into logical

blocks to identify blocks that users consider important.

Other related efforts compare different pages in the same

website [62, 43] or use the DOM tree [40]. Unlike

these previous efforts, KLOTSKI associates utilities with

individual resources rather than blocks. The closest

works on dependency inference are WebProphet [42] and

WProf [58]. KLOTSKI infers a more high-level structure

robust to the flux in content across loads.

Better browsers and protocols: There are several pro-

posals for new web protocols (e.g., SPDY [25]), guide-

lines for optimizing pages (e.g., [9]), and optimized

browsers (e.g., [45, 44, 21]) and hardware [47, 63]. Many

studies have shown that these do not suffice, e.g., two re-

cent studies [59, 37] show that SPDY-like optimizations

do not improve performance significantly and interact

poorly with cellular networks. KLOTSKI pursues a com-

plementary approach to prioritize important resources.

Cloud-based mobile acceleration: KLOTSKI’s archi-

tecture is conceptually similar to recent cloud-based mo-

bile web acceleration services (e.g., [2, 21]). A recent

study suggests that these can hurt performance [56]. The

key difference is that our objective is to maximize user-

perceived utility rather than optimize page load times.

Web prefetching: A widely studied approach for im-

proving web performance on mobile devices has been

to prefetch content [50, 41, 38]. However, despite the

large body of work on accurately predicting what content

should be prefetched [51, 49, 36], prefetching is rarely

used in practice on mobile devices due to the overheads

on energy and data usage imposed by prefetching content

that is never used [53]. KLOTSKI’s approach of pushing

high utility resources on a web page to a client only once
the client initiates the load of that page improves user

experience without delivering unnecessary content.

Prioritizing important content: Concurrent to our

work, some startups (e.g., InstartLogic and StrangeLoop

Networks) try to deliver higher priority resources earlier.

Based on public information [29, 20], these appear to op-

timize certain types of content such as images and Flash,

and do not incorporate user preferences like KLOTSKI.

We are not aware of published work that highlights how

they address the challenges w.r.t. dependencies, opti-

mization, and load time estimation that we tackle. More-

over, their approach requires website providers to use

their CDN services, whereas KLOTSKI does not explic-

itly require any changes to web providers.

Older efforts that dynamically re-order the delivery of

web content are limited to prioritizing above-the-fold re-

sources [14, 35]. Based on the observation from our

study that users significantly differ in the content that

they consider important on the same page, we instead

design and implement KLOTSKI to account for arbitrary

utility functions.

11 Conclusions

Our work tackles a set of contradictory trends in the mo-

bile web ecosystem today – users desire rich content but

have decreasing tolerance, even as current performance

optimizations yield low returns due to increasing web-

site complexity. In light of these trends, KLOTSKI takes

the stance that rather than blindly try to improve per-

formance, we should try to dynamically reprioritize the

delivery of a web page to deliver higher utility content

within user tolerance limits.

We addressed several challenges to realize this ap-

proach in practice: dependencies across content on a

page, complexity of the optimization, difficulty in esti-

mating load times, and delivering benefits with minimal

changes to clients and webservers. Our evaluation shows

that KLOTSKI’s algorithms tackle these challenges effec-

tively and that it yields up to a 60% increase in user-

perceived utility. While our focus was on the imminent

challenge of improving mobile web user experiences, the

ideas in KLOTSKI are more broadly applicable to other

scenarios (e.g., desktop) and requirements (e.g., energy).
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