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Abstract

Background

Longitudinal data are data in which each variable is measured repeatedly over time. One

possibility for the analysis of such data is to cluster them. The majority of clustering methods

group together individual that have close trajectories at given time points. These methods

group trajectories that are locally close but not necessarily those that have similar shapes.

However, in several circumstances, the progress of a phenomenon may be more important

than the moment at which it occurs. One would thus like to achieve a partitioning where

each group gathers individuals whose trajectories have similar shapes whatever the time

lag between them.

Method

In this article, we present a longitudinal data partitioning algorithm based on the shapes of

the trajectories rather than on classical distances. Because this algorithm is time consum-

ing, we propose as well two data simplification procedures that make it applicable to high

dimensional datasets.

Results

In an application to Alzheimer disease, this algorithm revealed a “rapid decline” patient

group that was not found by the classical methods. In another application to the feminine

menstrual cycle, the algorithm showed, contrarily to the current literature, that the luteinizing

hormone presents two peaks in an important proportion of women (22%).
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1 Introduction

1.1 Clustering longitudinal data
Longitudinal data are data in which each variable is measured repeatedly over time. One way

of analyzing this type of data is to cluster them; i.e., divide the population into homogeneous

subgroups. For this, different methods were proposed among which variants of k-means [1–6]

and various model-based classification methods relying on mixture models [7–11]. The pros

and cons of these approaches are regularly discussed [12, 13] though there are no current rec-

ommendations on which method to prefer in a specific context.

The general idea behind partitioning is to group similar individuals within the same cluster.

Different approaches to the concept of “similarity” are possible. They may be based on the con-

cept of distance, resemblance, or likelihood. In the majority of the currently available approaches,

two individuals are considered similar when they have close trajectories at each time point. This

approach takes into account local similarities but not necessarily the general shapes of the trajec-

tories. In particular, two identical trajectories but shifted in time are considered different and

may be potentially assigned to distinct clusters. The immediate consequence is that the mean of

the group does not inform on the shapes whereas, in a number of cases, the progress of a phe-

nomenon may be more important than the moment at which it occurs. In such circumstances,

one would prefer a partitioning that groups individuals whose trajectories have similar shapes

whatever the shift in time. An example of this is shown Fig 1. With classical techniques, trajecto-

ries i1 and i2 (in orange) belong to the same cluster A while i3 and i4 (light blue) belong to another

cluster B. The mean of cluster A is in red; that of cluster B is in deep blue. Using “shape-respect-

ing clustering”, i1 and i3 (in orange) belong to cluster A while i2 and i4 (light blue) belong to clus-

ter B. The shape-respecting mean is in red for cluster A and in deep blue for cluster B.

1.2 Shape respecting tools
The problems of trajectories with similar shapes were mainly addressed in two ways: i) dis-

tances and ii) means.

Intuitively, a distance is a function that takes two individuals and returns a number. The

number should have a low value when the two individuals are close and a high value when the

two individuals are distant from each other. A shape-respecting distance is a distance that takes

a small value when individuals have trajectories with similar shapes but a big value otherwise.

Several shape-respecting distances have been proposed in the literature. The most studied

are the Fréchet distance [14] and the Dynamic Time Warping [15–18] but there are many

other alternatives like HCCA [19] or EDR (Edit Distance is Real sequence) [20] or longest

common subsequence [21].

Fig 1. Cluster longitudinal data according to their shapes. (a) four trajectories. (b) With classical techniques, trajectories i1 and i2 (in orange) belong to
the same cluster A while i3 and i4 (light blue) belong to another cluster B. The mean of cluster A is in red; that of cluster B is in deep blue. (c) Using “shape-
respecting clustering”, i1 and i3 (in orange) belong to cluster A while i2 and i4 (light blue) belong to cluster B. The shape-respecting mean is in red for cluster A
and in deep blue for cluster B.

doi:10.1371/journal.pone.0150738.g001
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The problem of the mean respecting the form of trajectories is more complex. Many solu-

tions exist. Curve alignment consists in deforming the trajectories so as to align some specific

points (minimums, maximums, inflexion points) [22–27]. In a second step, the deformed

curves are modeled according to mixture modeling. Or a simple Euclidean means is computed

on the deformed trajectory.

More recently, for a higher efficiency, a number of authors [28, 29] have chosen to partition

and align jointly. Currently, they are only few articles on method performance comparisons

[27, 30]; most articles tend to show that one of the most efficient methods is fdakma [31].

Unfortunately, most methods suffer from various weaknesses; mainly, they are efficient

only in populations with well-separated clusters and limited shifts.

1.3 Clustering according to shape
Using k-means with a classic distance does not allow solving the similar-shape clustering prob-

lem. But using a shape distance does not allow solving it either. Indeed, the use of the shape dis-

tance will form correctly the clusters by grouping individuals whose trajectories have similar

shapes, but the mean trajectory of each cluster will not necessarily be representative of the

group. Thus, the following iterations are affected.

Fig 2 gives an illustration of the impact of the methods on the partitioning process. The pop-

ulation is shown Fig 2.a. It is a mixture of two groups of trajectories: one whose tops are high

(between 0.75 and 0.85) and the other whose tops are lower (between 0.35 and 0.45). The

objective of the algorithm is to identify the two groups. During the initialization phase, two

individuals are randomly chosen (red and blue, Fig 2.b). The expectation phase assigns each

individual to the closest cluster. By using the Euclidean distance, both individuals i1 and i2 are

close to the red individual and will be classified in the red group whereas i3 and i4 will be classi-

fied in the blue group. This method leads to the partition presented Fig 2.c, then to the mean

trajectories shown Fig 2.e. This partition does not find the two groups that constituted the ini-

tial population. Using a shape-respecting distance, individuals i1 and i3 are close to the individ-

ual in blue and will be classified in the blue group whereas i2 and i4 will be classified in the red

group. This method leads to the partition presented Fig 2.d. Now, using a conventional way to

compute the mean leads to find the mean trajectories presented Fig 2.f. The groups identified

this way are correct, but the mean trajectories are not representative. The use of a shape-

respecting mean leads to find the mean trajectories shown in Fig 2.g. The groups are correct

and the mean trajectories are representative of the groups.

In the present article, we introduce kmlShape, a new partitioning method that clusters tra-

jectories according to their shapes.

This method is based on a variation of the k-means algorithms in which we use a “shape-

respecting distance” and a “shape-respecting mean”. Regarding the shape-respecting distance,

we define a new method, the “generalized distance of Fréchet” which is a generalization of both

the Fréchet distance and the Dynamic Time Warping. Regarding the shape-respecting mean,

we define a new curve alignment solution. It is based on the construction of the Fréchet mean

between two curves, then between n curves.

This method can be time consuming in case of large datasets. We introduce thus two meth-

ods that reduce the data size while keeping the essential information contained in the initial

trajectories. The use of both data reduction and kmlShape yields a partitioning method that

preserves the shapes of the trajectories and may be used with high-dimensional data.

The sections below are organized as follows: we present first the methods used to partition

the trajectories according to their shapes. Next, the performances of the methods are evaluated

with artificial and real data. Then we discuss the results, the quality of the partitioning on the
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artificial data, and the originality of the method with real data; i.e., the ability of the algorithm

to reveal clusters that are undetectable with the classical methods.

2 Methods

2.1 General considerations
2.1.1 Notation. Let us consider a set S of n subjects. For each subject i, an outcome variable

Y is measured t times. For the sake of simplicity, we consider that all trajectories have the same

Fig 2. The impact of using the classical distance, the classical mean, the Fr´echet distance and the Fr´echet mean.

doi:10.1371/journal.pone.0150738.g002
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number of measurements t though trajectories with different numbers of measurements do not

add complexity to the algorithm. The time of the jth measurement for subject i is noted xij. The

value of the jth measurement for subject i is noted yij. The sequence

Yi: ¼
xi1

yi1

 !

;
xi2

yi2

 !

; :::;
xit

yit

 ! !

is called a trajectory.

2.1.2 k-means using shape-respecting distances. k-means is a partitioning algorithm that

belongs to Classification-Expectation-Maximization (CEM) methods [32]. This algorithm was

first used with classical data [33, 34] but is now widely used with longitudinal data in various

fields [5, 35–40]. The principle of k-means is to alternate two steps: i) an Expectation step that

calculates the distances between the individual trajectories and the mean trajectories of each

cluster; then each individual is assigned to the closest cluster; ii) a Maximization step that esti-

mates the mean trajectory of each cluster. Before alternating these two steps, an initialization

phase defines the “mean trajectories of each cluster” that will be used in the first maximization

step. Various initialization methods are possible, as detailed in [41–44]. Here, we use the classical

method that selects randomly k inidividuals and considers them as the k first clusters’ centers.

kmlShape is a new clustering algorithm that clusters trajectories according to their shape. It

applies k-means within the context of a shape-respecting partitioning. As briefly reminded

here, method k-means uses two tools: a distance and a mean. kmlShape requires both a dis-

tance and a mean that take the shapes into account. These tools (Fréchet distance and Fréchet

means) are presented in the next section.

Overall, kmlShape is a variant of k-means using: i) the Fréchet distance to calculate the dis-

tances between individuals and cluster centers; ii) Fréchet mean to construct the centers of the

clusters. The stopping condition is the stability of the algorithm: when the clusters are identical

at step s and step s − 1, the algorithm is terminated (with a limitation of the number of itera-

tions to avoid very long times before convergence). The pseudo code of the algorithm is given

in Algorithm 1.

Data: Population: n individuals Y1, . . . Yn
Result: Partition: Cluster vector of size n taking values in [1..k]

/� Step 0: Initialization �
/

k individuals C1, C2, . . ., Ck are randomly chosen in Y1, . . . Yn
s 0

Cluster0 (0, 0, . . ., 0) /� vector of size n �
/

repeat

s s + 1

/� Step s.1, phase expectation �
/

for i in 1..n do

for j in 1..k do

Compute DistFi, j (The Fréchet distance between Yi and Cj)

ClustersS(i) j such that DistFi, j is smaller than Disti, j0 for j0 6¼ j

end

end

/� Step s.2, phase maximization �
/

for j in 1..k do

Compute Mj, the Fréchet mean of clusters j (that is the Fréchet mean of all

the Yi such that ClusterS(i) == j)

end

until ClusterS == ClusterS − 1 or s >Max_Iteration

Algorithm 1: kmlShape
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2.2 Extension to the Fréchet distance
2.2.1 Fréchet distance. The Fréchet distance was introduced by Maurice Fréchet in [14].

Informally, it is often compared to a leash between two trajectories. The Fréchet distance is the

minimum length of a leash that would separate a master from his dog walking at different

speeds along two trajectories. In other words, each point of each trajectory is associated with

the nearest point on the other trajectory. The Fréchet distance is then the longest link between

the two trajectories.

Mathematically: let d
x
1

y
1

 !

;
x
2

y
2

 ! !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx
1
� x

2
Þ2 þ ðy

1
� y

2
ÞÞ2

q

be the Euclidian dis-

tance between points
x
1

y
1

 !

and
x
2

y
2

 !

. Let P and Q be two curves from [0, t] to R. A repara-

meterization of the interval [0, t] is a continuous function, increasing and surjective from [0, t]

to [0, t]. We denoteA the set of all reparameterizations of [0, t]. Let α and β two reparameteri-

zations inA and let s be a real belonging to [0, t].

Intuitively, curve P can be regarded as the mobile trajectory that would travel at constant

speed (e.g., two centimeter per second). So P � α is the same trajectory as P, but covered by

the mobile with a variable speed, speed defined by α (e.g., α can set 1 centimeter per second as

1� s� 3 and then 3 centimeters per second as 3< s� t).

The distance between curves P and Q reparameterized by α and β at time s is the distance

between
aðsÞ

PðaðsÞÞ

 !

and
bðsÞ

QðbðsÞÞ

 !

, that is da;b;sðP;QÞ ¼ d
aðsÞ

PðaðsÞÞ

 !

;
bðsÞ

QðbðsÞÞ

 ! !

.

The distance between P and Q reparameterized by α and β is the maximum of the distances dα,

β, s(P, Q) while s varies from 0 to t: dα, β(P, Q) =Maxs(dα, β, s(P, Q)). Then the Fréchet distance

between P and Q is the smallest possible maximum between P and Q after reparameterization

of P and Q: DistFrechet(P, Q) = dα, β(P, Q).

The definition is the same in the discrete case with the exception that s takes values between

0 and t by intervals. Note that, contrarily to several classical distances, the calculation of Fréchet

distance does not require the same number of measurements or the same time points on the

two trajectories. Therefore, it can be used to cluster irregular trajectories, the use of imputation

methods for longitudinal data [45–48] is not necessary.

From a computational point of view, the Fréchet distance is rather easy to determine [49]

but the calculation time is longer than that required for Euclidian distance: O(t2) (the details of

all the computational complexity are given in Appendix).

The generalized Fréchet distance. Fréchet has given the seminal definition within the

context of two mathematical curves P and Q. Within the context of real data, there is a relative-

scale issue. The variable of interest and the time variable are not measured using the same unit.

This can be an important issue since a scale changes impact the Fréchet distance. Fig 3.a shows

three trajectories. According to the Fréchet distance, i1 is closer to i2 than to i3 (the segments

that materialize the distances between the trajectories are dotted). If the scale of the X-axis is

changed (Fig 3.b), i1 will be closer to i3 than to i2.

This scale-change is not trivial because it impacts the partitioning. This lead to the following

definition: the generalized Fréchet distance of parameter lambda between two curves P and Q

is the Fréchet distance obtained after an affine transformation A :
x

y

 !

!
l:x

y

 !

; that is,

DistFrechetlðP;QÞ ¼ Infða;bÞ2A2MaxðP � a � A;Q � boAÞ. This is what we called the generalized
Fréchet distance. λ is the time-scale parameters.

kmlShape: To Cluster Longitudinal Data According to Their Shapes

PLOS ONE | DOI:10.1371/journal.pone.0150738 June 3, 2016 6 / 24



One should notice that when λ = 0, the Fréchet distance matches with the Dynamic Time

Warping (DTW) distance (i.e., as in DTW, horizontal shifts have no impacts. See appendix A

for more details). On the opposite, when λ tends to +1, then DistFrechetλ tends toward the

classical maximum distance.

Therefore, the generalized Fréchet distance is a generalization of shape-respecting distance

(like DTW) but also of other classical distances (Maximum). Herein, for the sake of simplicity,

the generalized Fréchet distance will be referred as to the Fréchet distance.

The Fréchet mean between two trajectories. As mentioned above, Classification-Expecta-

tion-Maximization algorithms require the calculation of a mean. Informally, the Fréchet mean

between two trajectories is the middle of the leash that links the dog to the master when each

goes along its own way.

More precisely, calculating the Fréchet distance requires the explicit calculation of the two

reparameterizations α and β that minimize DistFrechetλ(P, Q). Using these two functions, it is

obvious to define the Fréchet mean as the mean of the distances between the points of the two

trajectories when these trajectories are run at speeds α and β:

MeanFrechetlðP;QÞ ¼
P�aðl:xð1ÞÞþQ�bðl:xð1ÞÞ

2

P�aðyð1ÞÞþQ�bðyð1ÞÞ
2

 !

; . . . ;

P�aðl:xðaÞÞþQ�bðl:xðaÞÞ
2

P�aðyðaÞÞþQ�bðyðaÞÞ
2

 ! !

that we will write

MeanFrechetlðP;QÞ ¼ P�a�AþQ�b�A
2

� �

An example of the Fréchet mean is given Fig 4.

The Fréchet mean of the two curves P and Q weighted by coefficients p and q works on the

same principle with a weighting on each curve:MeanFrechetlðP; p;Q; qÞ ¼ p:P�a�Aþq:Q�b�A
pþq .

Generalization to n curves. The definition of the Fréchet mean may be extended to n

curves. However, the complexity of the algorithm (O(tn)) would not be realistic for the analysis

of real data, even of very small size.

However, the Fréchet mean with n curves may be approximated with less complexity. The

calculation of the Fréchet mean between two curves is reasonable (O(t2)). In a population of n

individuals, it is possible to combine pairs of individuals (with weight 1), then combine the so-

obtained means (weighted by the number of individuals that generated them) until obtaining a

unique mean. The calculation cost of this “step by step”mean is O(n.t2).

Fig 3. Scale change. (a) i1 is closer to i2 than to i3 (b) i1 is closer to i3 than to i2.

doi:10.1371/journal.pone.0150738.g003
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Obviously, the order in which the combinations are made has an impact on the final result.

Let us mention three possible variants:

• RandomAll: the n individuals are randomly scattered on the leaves of a complete binary tree

(each knots has either zero or two leaves) having depth h with 2h� n< 2h+1. The value of

each non-terminal leaf is the mean of the two children-leaves. The Fréchet mean is thus the

value of the tree root. (Informally, this structure is close to that of a tennis tournament). The

complexity of this method is O(nt2).

• Hierarchical: the combination order between individuals is fixed in a deterministic way

through an ascending hierarchical classification; the closest individuals being combined first.

The complexity of this method is O(n2 t2).

• RandomSubset: This method is the RandomAll method applied to a sample of randomly

selected individuals. The complexity of the method is O(n0 t
2), n0 being the size of the ran-

dom sample.

The means obtained through RandomAll and Hierarchical are very close and, in the case of

simulations with artificial data, are also very close to the real mean. The choice of one of theses

two methods has thus no impact on the final partitioning. On the contrary, the performance of

RandomSubset is dependent on the sample size. Besides, the Hierarchical method is determin-

istic, which, in the case of an algorithm run several time (such as k-means) is a disadvantage

because, in case of convergence toward a local maximum, an additional run of the algorithm

Fig 4. The Fréchet mean. Two trajectories P andQ are in red and blue, respectively. The segments linking P toQ after reparameterization
are in black. The mean trajectory as defined by the middles of these segments is in violet.

doi:10.1371/journal.pone.0150738.g004
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will lead to the same maximum. Finally, its complexity is O(n2 t2) whereas that of randomAll is

O(nt2). Thus, it is RandomAll that should be preferred.

2.3 Data size reduction
Reduction of the number of individuals. The use of the Fréchet mean approximation

shifts the complexity of our first algorithm from O(tn) to O(nt2). This is an important gain,

however insufficient for applying the method to large databases (thousand or tens of thousand

individuals). One optimization option is to reduce the number of individuals by an identifica-

tion of a small number of comparable trajectories. This suggestion of simplification is based on

two facts: i) in large populations, some groups of individuals have close trajectories (because

the limited number of typical trajectories); this is all the more true as the population becomes

larger; ii) when two trajectories are very close, the Euclidian mean and the Fréchet mean are

close (see Fig 5). It becomes then locally satisfactory to approximate the Fréchet mean through

the Euclidian mean.

With these facts, in case of large populations, it is convenient to replace close groups of indi-

viduals by representatives (in the same way senators represent populations of states). In addi-

tion, the Fréchet mean may be approximated through the Euclidian mean without changing

the forms of the trajectories. In the end, this reduction of the number of individuals may be

obtained using a classical classification algorithm such as k-means with a Euclidian distance.

Fig 5. Comparison between Euclidian mean and the Fréchet mean in case of two close curves. The means are almost identical.

doi:10.1371/journal.pone.0150738.g005
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Practically, k-means is carried out on a population of size n, with, say, nS = 128 groups. This

is equivalent to make the not very constraining hypothesis that there is a set of 128 representa-

tive trajectories so that each individual trajectory is close to at least one of them. The cost of

this preliminary classification (we would conveniently name “election”) is O(nS nt). After-

wards, kmlShape with weighting may be used with nS senators stemming from the election.

The cost of kmlShape is then O(nS t
2). The overall complexity is O(nS nt + nS t

2).

Reduction of the number of measurements. In an orthogonal way, it is generally possible

to simplify the trajectories by reducing the number of measurements made without much loss

of information. These techniques are known as “Segmentation Time Series” [50, 51], “Line-

simplification” [52] or “Trajectories compression” [53] In his survey, Keogh proposes three

kinds of methods: the Sliding Windows, the Top-Down, and the Bottom-up. For our purpose,

the Top-Down are the ones that have the best complexity. In this article, we will focus on

Douglas-Peuker algorithm [54], also known as Ramers algorithm [55] or “Iterative End-Points

Fits” [56].

Let us consider a trajectory Y of length t and an �. The Douglas-Peuker algorithm [54]

allows finding a curve YDP of length tDP� t so that the distance (projection of one point of one

curve on the other curve) between Y and YDP is, in each point, less than �. The Douglas-Peuker

algorithm is recursive; as long as the simplified trajectory YDP is not at a distance less than epsi-

lon from the original trajectory Y, the point of Y the farthest from YDP is added to YDP. This

algorithm makes it possible to set the quality of the approximation of Y through YDP. Note that

many amelioration of this algorithm exist [53].

In our present problematic, it may be more interesting to set the adequate length tDP for the

simplified trajectory because this length has a direct impact on the computation time. This

may be obtained through a simple modification of Douglas-Peuker algorithm. Instead of con-

sidering a calculation-stopping condition that depends on the distance between Y and YDP, we

may choose to set the maximum number of points for YDP: as long as the simplified trajectory

YDP has less than tDP points, the point of Y the farthest from YDP is added to YDP. With nS indi-

viduals, the complexity of this algorithm is Oðt2DPnStÞ. Fig 6 shows the two types of simplifica-

tion with 5 and 15 points, respectively.

Note that the modification of the stopping condition induces that the error is no longer

explicitly controlled. In some specific cases, this might lead to a simplified trajectory that is no

longer close to the initial trajectory (for example, the trajectory sin(t) with t in [0, 3π] approxi-

mated with only 3 points). To inform the user on the size of the error, the modified Douglas-

Fig 6. Approximation of a trajectory (in black). (a) using 5 points; (b) using 15 points.

doi:10.1371/journal.pone.0150738.g006
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Peuker algorithm returns the greatest distance between the simplified curve and the initial

curve. Thus, if the user has no direct control on the error, he/she has an estimation of it. He/

She can then decide whether the size of the error seems too big for him/her to increase the

number of points used by the Douglas-Pecker algorithm. The user may feel also free to use the

classical Douglas-Pecker algorithm (control the error but not the number of points). In the lat-

ter case, the time complexity of the algorithm kmlShape is not guaranteed.

2.4 Overall complexity
In the end, the election cost is O(nS nt). The cost of senator simplification is Oðt2DPnStÞ. One
may then use kmlShape with the nS simplified senators at cost OðnSt

2

DPÞ. The overall complexity

is OðnSnt þ t2DPnSt þ nSt
2

DPÞ, tDP and nS being constants set by the user. So, the final complexity

is O(nt).

Fig 7 summarizes the steps needed to partition data using algorithm kmlShape in a reason-

able time.

Fig 7. Steps for data partitioning with kmlShape the final complexity is inO(nt).

doi:10.1371/journal.pone.0150738.g007
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3 Performance assessment

3.1 Simulation study
Generation of artificial data. Let us consider three populations of small (n = 20, t = 21),

medium (n = 40, t = 41), and large size (n = 500, t = 501). Each population has k subgroups.

Each subgroup G is defined by a typical trajectory y = fG(x). We have considered two cases:

• Case 1: two groups A and B (k = 2) with fA(x) = ψ(x, 0.5, 0.1) × 0.125 and fB(x) = ψ(x, 0.5,

0.1) × 0.25.

• Case 2: four groups A, B, C and D (k = 4) with fA(x) = ψ(x, 0.5, 0.1) × 0.125, fB(x) = F(x, 0.4,

0.1) × 0.5, fC(x) = ψ(x, 0.5, 0.1) × 0.25 and fD(x) = F(x, 0.4, 0.1).

with ψ the normal law distribution cðx;m; sÞ ¼ 1

s
ffiffiffiffi

2p
p exp � 1

2

x�m
s

� �2
� �

and F its cumulative

distribution function (see Fig 8).

Then each trajectory yi belonging to subgroup G is a distortion of fG. To create yi, we choose

a coefficient of distortion σ. Three types of distortion may be considered:

• Simple distortion it consists in a mere horizontal translation of fG: yij = fG(xij + b1), with

b1 � Uð�s;þsÞ

• Multiple distortion it consists not only in vertical and horizontal translations but also in ver-

tical and horizontal deformations (compression and stretching): yij = a2.fG(a1.xij + b1) + b2,

with ða1; a2Þ � Uð1� s; 1þ sÞ2 and ðb1; b2Þ � Uð�s;þsÞ2.

• Noisy distortion it consists in a multiple distortion (as described above) together with a

Gaussian random noise: yij = a2.fG(a1.xij + b1) + b2 + eij, with ða1; a2Þ � Uð1� s; 1þ sÞ2,
ðb1; b2Þ � Uð�s;þsÞ2 and eij � N ð0; sÞ.

with Uða; bÞ the uniform distribution with minimum a and maximum b. For each type of

distortion, σ takes values in {0.05, 0.1, 0.25}. At the end, (3 possible populations) times (2 possi-

ble cases) times (3 possible distortions) times (3 possible σ) gives 54 possible datasets. Each

dataset was generated 500 times.

Small datasets were partitioned using (1.a) kmlShape (methods randomAll, λ = 0.1), (1.b)

kmlShape using DTW (methods randomAll, λ = 0), (1.d) classical Euclidian k-means, and (1.e)

Fig 8. Artificial data. (a) Case 1: fA is in red, fB in green; (b) Case 2: fA is in red, fB in green, fC in deep blue and fD in light blue.

doi:10.1371/journal.pone.0150738.g008
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fdakma [27, 31]. Medium datasets were partitioned using (2.a) kmlShape (randomAll, λ = 0.1),

(2.b) kmlShape using DTW (randomAll, λ = 0), (2.c) kmlShape with simplification (nS = 32,

tDP = 21, randomAll, λ = 0.1), (2.d) classical Euclidian k-means and (2.e) fdakma.

Large datasets were partitioned using (3.c) kmlShape with simplification (nS = 32, tDP = 21,

randomAll, λ = 0.1) and (3.d) classical Euclidian k-means; the other methods were too time-

consuming.

The study of (1.a, 1.b, 1.d, 1.e, 2.a, 2.b, 2.c, 2.d and 2.e) will allow us to compare kmlShape

using Fréchet, kmlShape using DTW, classical k-means and fdakma in various conditions. The

comparison of (2.a) and (2.c) will allow us to study the impact of the simplification procedures.

(3.c) and (3.d) will allow the comparison of kmlShape with simplification and k-means perfor-

mance on large data set.

The indicated parameters were chosen because they reflect an equilibrium between a slight

deformation of the original data (that requires high nS and tDP values) and a reasonable calcula-

tion time (that requires low nS and tDP values).

3.2 Performance
To measure the performance, we used the Correct Classification Rate (cRate) which is the per-

centage of agreement between the partitioning found P and the true partitioning PT. We have

also used the adjusted Rand Index (aRand) [57] which is a variant of the Rand Index [58]; the

cRand index being the proportion of pairs of individuals (i, j) who are either in the same cluster

in P or in PT or in separate clusters in P or in PT. The adjusted rand index is simply aRand =

(cRand − theoretical cRand) / (Maximum cRand − theoretical cRand). This adjustment makes

the aRand take value 0 when it measures the agreement between two random partitions. These

two measures of agreement between classifications have been already used by several authors

[5, 9, 30, 59].

4 Results

4.1 Method comparisons
The respective performances of kmlShape, fdakma, and k-means with small and medium data-

sets, case 1 and 2, are shown Table 1. We observed that kmlShape performs better than fdakma

and k-means regarding the classification indices. The same was found when only one specific

subgroup was analyzed (e.g., only Case 1 with σ = 0.05). However, the differences between

kmlShape and the other methods were more marked in Case 1 than in Case 2. Also, these dif-

ferences tended to decrease slightly when σ increased.

Note that for these two examples, the results of kmlShape with λ = 0.1 and kmlShape using

DTW (i.e. λ = 0) were identical. Thus we give only the results of kmlShape with λ = 0.1.

Table 1. Performance of classical k-means, fdakma, and kmlShape in case of small andmedium data-
sets (mean value ± standard deviation).

Classical k-means kmlShape fdakma

Case 1

cRate 0.75 (± 0.12) 0.84 (± 0.15) 0.57 (± 0.07)

aRand 0.56 (± 0.2) 0.71 (± 0.26) 0.37 (± 0.1)

Case 2

cRate 0.66 (± 0.14) 0.94 (± 0.12) 0.57 (± 0.07)

aRand 0.14 (± 0.27) 0.84 (± 0.32) 0.01 (± 0.06)

doi:10.1371/journal.pone.0150738.t001
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4.2 Impact of simplification in terms of time or number of individuals
The respective performances of kmlShape, classical k-means, and simplified kmlShape with

medium size data are shown Table 2. We observed that the performance of simplified

kmlShape was close to (similar or slightly lower) the performance of kmlShape without simpli-

fication. In all cases, the performance of kmlShape was clearly better than that of a classical

partitioning.

The performances of classical k-means and simplified kmlShape with large datasets are

shown Table 3. The simplified kmlShape outperformed clearly the classical k-means. We also

observed that the performance of kmlShape with simplification was quite close to that of

kmlShape without simplification.

4.3 Application to real data
Cohort ICTUS. Ictus (see S1 File) is a cohort of 1380 patients with Alzheimer disease fol-

lowed-up in 12 European countries [60, 61]. These patients were included between February

2003 and July 2005 in 29 centers specialized in neurology, geriatrics, psychiatry or psycho-geri-

atrics with a recognized experience in the diagnosis and management of Alzheimer disease.

Most of these patients were seen during memory consultations and included consecutively.

These patients were examined at six-month intervals over two years. Each examination

included (though not exclusively) an Instrumental Activities of Daily Living (IADL)

assessment.

A classical analysis of IADL trajectories using either mixture models or k-means revealed 4

groups (Fig 9.a). The main feature of these groups is to show close consistent declines. Using

kmlShape (after using the data size reduction ns = 128, no curve simplification) with 4 groups

(Fig 9.b), three of these groups were similar to those found by other classical algorithms

whereas a fourth “rapid decline” group was detected by kmlShape only.

The identification of this group makes it possible to predict and anticipate the needs of

these patients in terms of informal help or professional care. Such a planning is of utmost

Table 2. Performance of classical k-means, kmlShape, and simplified kmlShape with medium datasets (mean value ± standard deviation).

Classical k-means kmlShape Simplified kmlShape

Case 1

cRate 0.64 (± 0.13) 0.94 (± 0.12) 0.94 (± 0.12)

aRand 0.13 (± 0.25) 0.84 (± 0.31) 0.82 (± 0.32)

Case 2

cRate 0.75 (± 0.11) 0.84 (± 0.15) 0.82 (± 0.14)

aRand 0.56 (± 0.19) 0.72 (± 0.25) 0.7 (± 0.24)

doi:10.1371/journal.pone.0150738.t002

Table 3. Performances of classical k-means and simplified kmlShape with large data (mean
value ± standard deviation).

Classical k-means Simplified kmlShape

Case 1

cRate 0.59 (± 0.12) 0.92 (± 0.15)

aRand 0.09 (± 0.22) 0.79 (± 0.38)

Case 2

cRate 0.71 (± 0.11) 0.8 (± 0.15)

aRand 0.56 (± 0.18) 0.68 (± 0.23)

doi:10.1371/journal.pone.0150738.t003
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importance for the health professionals and the families. Applying the same methods on other

functions of these patients (cognition, behavior) would help clarifying the natural history of

the disease. Applying these methods before diagnosis would help targeting the population to

include in clinical trials for the prevention of Alzheimer disease. Indeed, such trials may use

aggressive agents (e.g., monoclonal antibodies) which makes it necessary, from an ethical point

of view, to target only the subpopulation with “rapid decline”, which is not possible with the

classical classification methods.

Quidel database. The QUIDEL database aims to gain better knowledge on hormone pro-

files of women without fertility problems. This database has been described as the largest exist-

ing database on hormone profiles in normally menstruating women and includes ovary

ultrasound scans on the day of ovulation [62]. The database includes 107 women and 283

cycles with identification of the day of ovulation and daily titrations of the levels of the four

main hormones of the ovulation cycle. It has been already the subject of publications [63, 64]

The use of classical classification methods regarding the luteinizing hormone (LH) provided

three typical trajectories with similar features but with slight shifts in time (Fig 10.a). This is a

typical finding in medicine but is currently strongly questioned [62, 65]. The use of kmlShape

(after using the data size reduction ns = 128, tDP = 20) with three groups led to identifying: i) a

classical profile that would concern 25% of the women; ii) a two LH-peak profile that would

concern 22% of the women; and, iii) a profile with a single peak followed by a slow decline over

several days that would concern the remaining 53% of the women (Fig 10.b).

These results will enrich the current debate on the role of the LH peak in the maintenance

of corpus luteum. Indeed, as indicated by its name, the LH was first described as luteinizing

but, as LH peaks occur close to the day of ovulation, LH was made responsible for triggering

ovulation. However, recent works [66] have demonstrated that the course of LH during the

Fig 9. IADL trajectories, in 4 clusters. (a) with a classical method; (b) with kmlShape. kmlShape is able to identify a “rapid decline” cluster that is not be
found using the classical method.

doi:10.1371/journal.pone.0150738.g009
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days that follow ovulation may be important to understand some abnormalities of corpus

luteum and, thus, the implantation of the embryo in the uterus. The identification of 22% of

women with LH double peak profiles is important for further research in reproductive biology.

UCR-CBF. The two last examples (CBF and Trace, see below) are extracted from the

“UCR Time Series Classification Archive” [67], a collection of real and artificial datasets dedi-

cated to studies of time series and longitudinal data. Contrarily to the approach we have

adopted in our simulation study, these datasets are generated once.

CBF (Cylinder-Bell-Funnel, [68]) is a dataset of 900 trajectories measured 128 times. These

trajectories are divided into three clusters of sizes 302, 300, and 298. The mean trajectories of

each cluster are shown Fig 11.a. We partitioned the data with different methods:

• classical Euclidian k-means;

• kmlShape using DWT with simplification (nS = 64, tDP = 30, randomAll, λ = 0)

• kmlShape with simplification (nS = 64, tDP = 30, randomAll, λ = 0.1) and

The other methods were too time-consuming or did not converge. The classical classifica-

tion methods found three groups with identical shapes shifted in time (Fig 11.b). kmlShape

using DTW identified three groups with similar shapes but different heights (Fig 11.c). With

Fig 11. CBF trajectories. (a) real means (b) means found using a classical method; (c) means foung using kmlShape with DTW (d) means found using
kmlShape with λ = 0.1. kmlShape found the real means.

doi:10.1371/journal.pone.0150738.g011

Fig 10. LH trajectories, in 3 clusters. (a) with a classical method; (b) with kmlShape. kmlShape shows typical trajectories with two peaks that are not found
with the classical method.

doi:10.1371/journal.pone.0150738.g010

kmlShape: To Cluster Longitudinal Data According to Their Shapes

PLOS ONE | DOI:10.1371/journal.pone.0150738 June 3, 2016 16 / 24



these two classification methods, the number of misclassified trajectories was quite important

(Table 4) and the average trajectories obtained were quite different from the average trajecto-

ries used to generate groups (Fig 11.a). kmlShape with λ = 0.1 gave good results in terms of

individual ranking as in terms of identification of the average trajectory (Fig 11.d).

Note that, in this example, the use of the DTWmethod gave a different (worse) result than

the Fréchet mean with λ = 0.1. The reasons for this will be discussed in the appendix A.

UCR-Trace. The Trace database [69] (also extracted from the “UCR Time Series Classifi-

cation Archive”) was obtained from EDF (Electricité de France). The database includes 200 dif-

ferent transient classes (Fig 12.a). We clustered the data using:

• classical Euclidian k-means;

• kmlShape using DWT with simplification (nS = 64, tDP = 30, randomAll, λ = 0)

• kmlShape with simplification (nS = 64, tDP = 30, randomAll, λ = 0.1) and

The other methods were too time-consuming or did not converge. kmlShape λ = 0.1 and

kmlShape using DTW gave exactly the same results (we report here only kmlShape with

λ = 0.1). The classical classification method identified perfectly one of the three groups (the

group in blue Fig 12.b) but failed to distinguish between the two others. The kmlShape identi-

fied three groups without errors and found the right average trajectories (Fig 12.c and Table 5.)

Fig 12. Trace trajectories. (a) real means (b) means found using a classical method; (c) means found using kmlShape with λ = 0.1. kmlShape found the real
means.

doi:10.1371/journal.pone.0150738.g012

Table 4. Performance of classical k-means, simplified kmlShape using DTW and simplified kmlShape with λ = 1 on CBF dataset.

Classical k-means Simplified kmlShape with DTW Simplified kmlShape with λ = 1

cRate 0.65 0.59 0.95

aRand 0.34 0.25 0.86

doi:10.1371/journal.pone.0150738.t004

Table 5. Performance of classical k-means, simplified kmlShape using DTW and simplified kmlShape
with λ = 0.1 on Trace dataset.

Classical k-means Simplified kmlShape

cRate 0.77 1

eRand 0.73 1

doi:10.1371/journal.pone.0150738.t005
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5 Discussion

In the present article, we introduce kmlShape, a novel method of data partitioning. This method

provides clusters on the basis of trajectory shape. This allows especially grouping individuals

whose trajectories have similar forms but shifted positions in time. Given the high algorithmic

complexity of kmlShape, we present two data-simplification methods that allow reducing the

lengths of the trajectories or the number of the individuals of the population under study.

In comparison with other shape-based partitioning methods, kmlShape demonstrated

higher performances with the datasets tested whatever the variance, the population size, or the

number of clusters. In addition, the search for loss of information due to data simplification

has shown that the final partitioning is only slightly affected by this simplification (Table 2).

Another advantage was that each of the partition steps (reduction of the number of measure-

ments or of the population size) is mathematically simple, graphically displayable, and easily

checkable. At any moment, the user can decide to invalidate any excessive “data simplifica-

tion”. Finally, with real datasets, kmlShape makes it possible to detect groups of individuals of

non-negligible sizes that would not be detected by other classical methods. Thus, the method

paves the way to new perspectives in terms of data analysis.

Within the general context of data partitioning, the problem of the optimal number of clus-

ters is still an open issue. Numerous criteria exist, either parametric (BIC [70], AIC [71], AICc

[72], global posterior probability [73], . . .) or non-parametric (Caliskin & Harabatz [74], Ray

& Turi [75], Davies & Bouldin [76], . . .). These criteria are regularly compared using artificial

data [77, 78]. With real data, they often suffer from bias. For example, Calinski & Harbatz crite-

ria (which is the best criterion according to both [77] and [78]) often select the lowest number

of clusters. Also, different authors advise to choose the number of clusters on the basis of clini-

cal relevance rather than an index [13].

In the case of partitioning using the Fréchet distance, the problem is more complicated

because the classical criteria are designed to be used with classical distances. To date, there is

no quality criterion that can help selecting the correct number of clusters within the context of

respecting-shape partitioning. Finding such a quality index would be a non-negligible progress

in the field of data partitioning.

Regarding the choices of nS and tDP, the present study showed that nS = 32 and tDP = 20 is a

good compromise between a reasonable simplification and an acceptable calculation time.

Obviously, these parameters may be adapted according to the type of data (with complex and

long curves, tDP = 20 seems to be insufficient; with simple curves tDP = 10 may be sufficient)

and the power of the computer involved. In a medium term, new high-performance statistical

software programs will probably overcome the current limitations.

The choice of λ is more complex. As shown Fig 3, it changes the relative weight of the dis-

tance between two trajectories according to the x-axis and the y-axis. If the x-scale and the y-

scale are identical, setting λ = 0.1 gives ten times more weight to a vertical offset than to a hori-

zontal offset. This case is close to the one shown in the right panel Fig 3: i1 is close to i3 because

the “horizontal offset” is very important. When λ is 1, the horizontal and the vertical offsets

have the same importance. When λ = +1, the horizontal offsets becomes very expensive, the

Fréchet distance is then identical to the classical maximum distance. When λ = 0, the horizon-

tal offsets becomes free, the Fréchet distance is then identical to the dynamic time warping dis-

tance. With our artificial examples, a value of λ = 0.1 or less allowed a correct identification of

the groups. More detail about λ can be find appendix A.

When the scales are not the same (which is true in the majority of cases in the present study

because one axis represents time and the other the variable of interest), the data can be stan-

dardized by dividing by the range of x and multiplying by the range of y. On our real examples,
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the value used was l ¼ Maxðyit Þ�MinðyijÞ
MaxðjÞ�MinðjÞ � 0:1. This value is the one that gave the most relevant

results from the clinical point of view and has identified groups undetected by conventional

techniques.

A How to choose λ?

The choice of λ is of considerable impact on the final clustering. There is no “best” value for λ

as there is no “best clustering techniques ever”, it must be selected depending on the problem.

For that, according to the specific problem, the user has to define the curves that should be con-

sidered as “close curves”. To make this decision, it is important to keep in mind the principle of

working of λ.

Consider Fig 13.a. The black trajectory represents an individual i. The three colored trajec-

tories represent three cluster centers. The question is to decide which i should be the closest.

Suppose that the trajectories represent the intensity of a disease. From a public health perspec-

tive, it is important to know when the vaccines should be ready so it is interesting to group i

with A. For a researcher who wants to understand the disease, the type of disease progression is

more important than the time of its outbreak so it will be more relevant to group i and C

because. In some other problems, it might be interesting to group i and B.

Consider now the Fréchet distance between i and the cluster centers (represented by the seg-

ments between the curves in dash). In this example, i is close to the average trajectory B (the

dashed blue line is shortest than the green or the red lines). If we represent the same data but

divide the scale of the x axis by two (Fig 13.b), i is closer to C (the green dashed line is the short-

est). If we represent the same data but multiply the scale of the x by 2 (Fig 13.c), i is close to A

(the red dashed line is the shortest).

From a mathematical perspective, this is easy to understand: the calculation of the length of

a segment involves two components; the differences in values along axis x and along axis y.

Changing the scale of x changes the relative importance of the two differences (reducing the x’

scale decreases the importance of the difference along the axis of x). In Fig 13.a, a horizontal

shift has a great impact on the calculation of the distance. So i is close to A. In Fig 13.b, a hori-

zontal shift has a little impact on the distance calculation. So i is close to C. In extreme cases,

when λ tends to +1, a small difference on the x-axis increases greatly the distance between the

curves. The Fréchet distance is reached when “man and dog” keep the same abscissa at any

point (as a difference of δ causes an increase in the distance of δ × λ which tends to +1 as λ

tends to +1). The Fréchet distance is then identical to the max distance.

Conversely, when λ is 0, the distance between points (x1, y1) and (x2, y2) is just |y1 − y2|. The

difference along the x-axis has no impact on the distance between the curves. The Fréchet dis-

tance matches the DTW.

Fig 13. The impact of λ on the distance between the trajectory i and the clusters mean’s trajectories A, B andC.

doi:10.1371/journal.pone.0150738.g013
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In summary, the role of λ is to allow the user to choose the case in which he wishes to be.

Suppose that the initial population is shown Fig 13.b. If, according to the problem, it is relevant

to cluster i with A, then λ should be small (λ<<1). If i should be clustered with B, then λ = 1

will be a correct choice. If i should be close to C, then λ should be big (λ>>1).

B Appendix: Computational complexities

B.1 Euclidean distance

The formula for calculating the Euclidean distance is Distðyi:; yi0 :Þ ¼
Pt

j¼1 ðyij � yi0jÞ
2
, that is

subtraction and a square for each j, then t − 1 additions. The overall complexity is O(t).

B.2 The Fréchet distance
The calculation of the Fréchet distance needs the calculation of the distance matrix between

each pair of points
j

yij

 !

;

j0

yi0 ;j0

 ! !

. This is a matrix of size t2. The complexity of the calcu-

lation of the distance between each pair of points is a constant, so the complexity of the Fréchet

distance is O(t2).

The computing complexity of the Fréchet path is identical because, in addition to the com-

putation of the matrix distance between each pair of points, it only requires browsing the

matrix once to find the path.

B.3 The Fréchet mean between two trajectories
The computing complexity of the Fréchet mean between two trajectories needs the calculation

of the Fréchet path (cost: O(t2)). The length of the Fréchet path is bounded by 2t − 2. Then the

computation of the mean needs up to 2t − 2 additions and divisions. Thus the overall complex-

ity is O(t2).

B.4 The Fréchet mean between two trajectories
The generalization of the Fréchet mean to n trajectories requires the calculation of an index for

each tuple
j
1

yi1 j1

 !

;

j
2

yi2 ;j2

 !

; :::; ;

jn

yin ;jn

 ! !

, that is, a matrix of size tn. The complexity of

the calculation is therefore at least O(tn).

B.5 The Fréchet mean, method RandomAll
Method RandomAll merges n individuals two by two. It takes n − 1 merges (cost: O(t2)). The

overall complexity is O(nt2).

B.6 The Fréchet mean, method Hierarchical
Method Hierarchical computes the Fréchet distance (cost: O(t2)) between all possible couples

(n(n − 1)/2 couples) for a total cost of O(n2 t2). Then, it merges the n individuals two by two.

Each merging has a cost of O(t2). The final complexity is O(n2 t2).

B.7 The Fréchet mean, method RandomSubset
Method RandomAll merges n0 individuals two by two. It takes n0 − 1 merges. Each merge costs

O(t2). The overall complexity is O(n0 t
2).
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B.8 k-means
At each stage of k-means, nk Euclidean distances (cost: O(t)) between n individuals and k

groups centers are calculated (cost: O(tnk)). Then, in each group g, the mean of the ng individu-

als belonging to the group is calculated; that is, tng additions per group with n = ∑ng. The final

complexity is O(tnk) (the number of iterations is neglected here because it is generally

bounded, it is therefore a constant).

B.9 kmlShape
At each stage of k-means, nk Fréchet distances (complexity O(t2)) between n individuals and k

groups centers are calculated (cost: O(t2 nk)). Then, in each group g, the mean of ng individuals

in the group is calculated. The cost is O(ng t
2) per group with method RandomAll, Oðn2

g t
2Þ with

method hierarchical. The final complexity is O(knt2) with method RandomAll andO(n2 t2) with

method Hierarchical.

B.10 Douglas-Peuker algorithm
For a curve which must be simplified into t0 points, each iteration requires the calculation of

the distance between the t points and the current curve (cost: O(t.t0)). This has to be done t0
times. So, for n curves, the complexity is Oðntt2

0
Þ.
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