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Abstract

We show that microlensing event KMT-2016-BLG-1107 displays a new type of degeneracy between wide-binary
and close-binary Hollywood events in which a giant-star source envelops the planetary caustic. The planetary
anomaly takes the form of a smooth, two-day “bump” far out on the falling wing of the light curve, which can be
interpreted either as the source completely enveloping a minor-image caustic due to a close companion with mass
ratio q=0.036, or partially enveloping a major-image caustic due to a wide companion with q=0.004. The best
estimates of the companion masses are both in the planetary regime ( -

+ M3.3 1.8
3.5

jup and -
+ M0.090 0.037
0.096

jup) but differ by
an even larger factor than the mass ratios due to different inferred host masses. We show that the two solutions can
be distinguished by high-resolution imaging at first light on next-generation (“30 m”) telescopes. We provide
analytic guidance to understand the conditions under which this new type of degeneracy can appear.

Key words: gravitational lensing: micro

1. Introduction

Gould (1997) proposed a “Hollywood” strategy of searching
for microlensing planets by “following the big stars”, which
made use of the fact that planets normally betray their presence
in microlensing events when the source star passes over, or
very close to, a caustic generated by the planet. For low-mass
planets (hence, small caustics), the probability for the source to
pass over the caustic is therefore proportional to the size of the
source, rather than of the much smaller caustic. Gould &
Gaucherel (1997) showed that for “wide” (s> 1) topologies,
the excess magnification ΔA (relative to the case of a point lens
without planetary companions) when the source fully envelops
the caustic is
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i.e., exactly the same value as would be the case if the planet

were isolated. Here, =q m Mp is the planet-host mass ratio, s

is the planet-host separation normalized to the Einstein radius
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1 1 is the lens-source relative parallax.

If we adopt a threshold of detectability of, e.g., DA 0.1, then

we can rewrite Equation (1) as
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where we have normalized to the angular source size of a

typical clump giant and to the relative parallax of a typical disk

lens. Hence, this approach is potentially sensitive to very low-

mass planets, particularly because large stars are also bright

(unless they are heavily extincted), meaning that the photo-

metric precision is generally good.
The virtue of this approach was first illustrated by OGLE-

2005-BLG-390, which was intensively monitored by the
PLANET collaboration, leading to the detection of a ~ ´q 8
-10 5 planet, with estimated mass ~ Åm M5p (Beaulieu et al.

2006). This was only the third published planet, and still to this
date, one of only seven microlensing planets with well-
measured mass ratios in the range q<10−4 (Udalski et al.
2018).
Nevertheless, this channel has been the subject of remark-

ably little systematic study. The first fundamentally new
development was the discovery of a potential degeneracy
between “Cannae” and “von Schlieffen” Hollywood events, in
which the source, respectively, fully and partially envelops the
caustic (Hwang et al. 2018).
Here we analyze the Hollywood microlensing event KMT-

2016-BLG-1107 and report the discovery a second potential
(“close/wide”) degeneracy. Although this degeneracy has a
similar s↔s−1 symmetry to the well-established “close/wide”
degeneracy that affects central caustics (Griest & Safizadeh 1998;

The Astronomical Journal, 157:23 (10pp), 2019 January https://doi.org/10.3847/1538-3881/aaf16e

© 2018. The American Astronomical Society. All rights reserved.

11
NASA Postdoctoral Program Fellow.

1

https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0003-3316-4012
https://orcid.org/0000-0003-3316-4012
https://orcid.org/0000-0003-3316-4012
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-0314-6000
https://orcid.org/0000-0002-0314-6000
https://orcid.org/0000-0002-0314-6000
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://doi.org/10.3847/1538-3881/aaf16e
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/aaf16e&domain=pdf&date_stamp=2018-12-27
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/aaf16e&domain=pdf&date_stamp=2018-12-27


Dominik 1999), the two degeneracies are not fundamentally
related. We study the general conditions under which this close/
wide planetary-caustic degeneracy can arise and show that (in
strong contrast to the close/wide central-caustic degeneracy), the
mass ratios q of the two degenerate solutions generically differ
by a relatively large factor, with the s<1 solution having a
more massive planet. In the present case, q=4.0×10−3 and
q=3.6×10−2 for the s>1 and s<1 solutions, respectively.
Finally, we show that imaging with adaptive optics (AO)

cameras will be able to resolve the degeneracy at first light on
next-generation (“30m”) telescopes.

2. Observations

KMT-2016-BLG-1107 is at (R.A., decl.)=(17:45:40.26,
−26:01:54.48) corresponding to =( ) ( )l b, 2.5, 1.5 . It was
discovered by applying the Korea Microlensing Telescope
Network (KMTNet; Kim et al. 2016) post-season event finder
(Kim et al. 2018a) to 2016 KMTNet data (Kim et al. 2018b).
These data were taken on KMTNet’s three identical 1.6 m
telescopes at CTIO (Chile, KMTC), SAAO (South Africa,
KMTS), and SSO (Australia, KMTA), each equipped with
identical 4 deg2 cameras. The event lies in KMTNet field

BLG18 with a nominal cadence of G = -1 hr 1. In fact, the
cadence was altered from April 23 to June 16 ( < ¢ º7501 HJD

- <HJD 2450000 7555) to support the Kepler K2 C9
microlensing campaign (Gould & Horne 2013; Henderson
et al. 2016; Kim et al. 2018b). During this period, the cadence
was reduced to G = -0.75 hr 1 for KMTS and KMTA, but
remained at G = -1 hr 1 for KMTC. We note that KMTC data
are affected by a bad column on the CCD and so often have
significantly larger error bars than KMTS and KMTA data.

The great majority of observations were carried out in the I
band with occasional V-band observations made solely to
determine source colors. All reductions for the light-curve
analysis were conducted using the pySIS implementation
(Albrow et al. 2009) of difference image analysis (DIA; Alard
& Lupton 1998). While the V-band data are sufficient to
measure the color (Section 4), because the source is very red
and there are many fewer V-band points than I-band, the V-
band data do not place significant constraints on the modeling.
Thus, we do not use them in the modeling.

2.1. Removal of Long-term Trend

The raw light curve shows a long-term trend in the combined
2016–2018 data. See Figure 1. The origin of this trend is
unknown. It could, for example, be due to blended light from a
relatively high-proper-motion nearby star. Whatever the cause,
it is almost certainly unrelated to the primary microlensing
event or the additional “bump” in the light curve. We therefore
fit the baseline of the light curve to a constant plus a slope and
remove the slope (see Figure 1) before undertaking the
microlensing analysis.

3. Light Curve Analysis

The resulting light curve of KMT-2016-BLG-1107 in the
neighborhood of the event is shown in Figure 2. It primarily
takes the form of a standard Paczyński (1986) single-lens/
single-source (1L1S) curve, which is characterized by three
geometric parameters ( )t u t, ,0 0 E . These are, respectively, the
time of maximum, the impact parameter (normalized to θE),

and the Einstein timescale,

q
m

º ( )t , 4E
E

rel

where mrel is the lens-source relative proper motion.
However, in addition there is a small, short-lived “bump” on

the falling wing of the light curve at ¢ HJD 7557. This
appearance is qualitatively similar to the classic Hollywood
event, OGLE-2005-BLG-390 (Beaulieu et al. 2006), and so
plausibly could be generated by a similar major-image (s> 1)
caustic that is fully enveloped by the source. To test this
conjecture, we conduct a systematic grid search over the seven
standard parameters of binary-lens/single-source (2L1S)

events. There are the three Paczyński (1986) parameters just
mentioned ( )t u t, ,0 0 E , the three parameters mentioned in
Section 1, r( )s q, , , and the angle α between the binary axis
and the direction of lens-source relative motion mrel. In
addition to these geometric parameters, there are two flux
parameters ( )f f,s b for each observatory, i, so that the observed
fluxes Fi(t) are modeled by

r a= +( ) ( ) ( )F t f A t t u t s q f; , , , , , , . 5i s i b i, 0 0 E ,

3.1. Two Solutions: Wide and Close Planetary Companions

We employ Monte Carlo Markov Chain (MCMC) c2
minimization to carry out a grid search, in which (t u t, , ,0 0 E

r a), are allowed to vary, while (s, q) are held fixed. The chains
are seeded with ( )t u t, ,0 0 E derived from an initial Paczyński
(1986) fit and r = 0.04 based on the relative duration of the two
bumps. For each (s, q), α is seeded at six values that are spaced
uniformly around the unit circle.

Figure 1. KMTC light curve of KMT-2016-BLG-1107 before (upper panel)
and after (lower panel) removal of a linear trend in the baseline flux, which

corresponds to = + -dI dt 0.018 mag yrbase
1. The fit was done to 2017 data,

while the extension to 2018 serves as a check. The slopes found for KMTA and
KMTS are nearly identical.

2
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The grid search yields only two minima whose geometries
are shown in Figures 3 and 4. In both cases, the source passes
over a small planetary caustic that lies far from the lens. For the
solution with s<1, there are two such caustics, so we also
check for a solution that crosses over the caustic at ~( )x y,s s

-( )2.4, 1.0 . This solution is disfavored by cD ~ 1402 of

which cD ~ 502 comes from the rising side of the light curve,
when the source is forced to cross the “de-magnified zone”
even though no such demagnification is seen in the light curve.
Furthermore, this solution has severe negative blending that
makes it unphysical.

We further refine the two good solutions with additional
MCMC runs, in which all seven parameters are allowed to
vary. These two solutions are shown in Table 1. The flux
values are quoted for the KMTC data set. We note first that the
Paczyński (1986) parameters ( )t u t, ,0 0 E are essentially iden-
tical between the two solutions. This is consistent with the fact
that the light-curve morphology is dominated by a broad bump
that is generated by the host. Similarly, the flux parameters
( fs, fb) are also essentially identical.12

Next, we note that the two values of s, (0.345 and 2.96), almost
perfectly obey s↔s−1. The Paczyński (1986) curve is generated

by two images, which lie at =  + ( )u u u 4 22 , where u is
the projected lens-source separation normalized to θE. If the planet
lies near either image, ~ ∣ ∣s u , then it will perturb the image,

giving rise to a short-lived deviation. Because = -- +
-u u 1, it

follows immediately that planetary deviations for close and wide

solutions should be related by s↔s−1.
The values of α differ substantially, but this mainly reflects

that the major and minor images (and so any planet perturbing

these images) lie on opposite sides of the host lens. In the limit

q=1, one expects a p a« - from this effect alone.
However, this symmetry is broken at finite q because the

major-image caustic always lies directly on the binary axis

whereas the two minor-image caustics are displaced from the

axis by an angle that increases with q (Han 2006). These effects

are apparent from examination of the caustic geometries,

Figures 3 and 4.
The two most important differences between these solutions

are in q and ρ. The mass ratio q is almost 10 times larger in the

close solution while the normalized source size is more than

three times smaller. Some insight into these differences is

provided by Figures 3 and 4, which show the geometries of the

two solutions.
In the close solution, the short-lived bump is caused by the

complete (“Cannae”) envelopment of one of the two triangular

caustics associated with minor-image perturbations, while in

the wide solution it is caused by the partial (“von Schlieffen”)

envelopment of the quadrilateral planetary caustic associated

with major-image perturbations. In the latter geometry, the

duration of the bump (which is an observed feature of the light
curve) is substantially shorter than the diameter crossing time

Figure 2. KMT-2016-BLG-1107 light curve, together with three models: “close binary lens” (s < 1, solid black line), “wide binary lens” (s > 1, dashed line), and
“binary source” (1L2S, solid gray line). The upper panels show a zoom around the anomaly, while the lower panels show the full event. The residuals are calculated
relative to the s<1 model. The 1L2S model is excluded by its failure to match the data on the rising wing of the anomaly at HJD¢ = xx7556. as well as its overall

high c2. The close <( )s 1 model is preferred by χ2 but this is an artifact of low-level variability, which depresses the data below either the s<1 or s>1 models by
several sigma during the interval < ¢ <7565 HJD 7586 during which the former model predicts very slightly lower magnification.

12
The flux system is defined so that = -I f18 2.5 log x10 .
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of the source, which immediately implies that the normalized
source size must be substantially bigger than for the s<1 von
Schlieffen solution.

3.2. Apparent Preference for Close Solution Is Not Real

We note that the close solution is nominally preferred by
cD  402 . Under most circumstances, we would regard this as

strong evidence in its favor. However, one can see from
Figure 2 that the two models hardly differ, particularly
compared to the error bars, which are relatively large
(∼0.006 mag for KMTS). We have investigated the origin of
this apparently strong χ2 difference by constructing the
cumulative distribution function of c c cD = -2

wide
2

close
2 as a

function of time, and we find that most of the “signal” comes
from  ¢7565 HJD 7585, i.e., when t º -( )t t t0 E is 3–4
Einstein timescales past peak. During this interval, the light
curve is, on average, several σ below either model. Under such
conditions, c d s sD D ( )(( )22 where δ is the difference
between the models, Δ is the difference between the data and
the mean of the two models, and σ is the error bar. That is, for
sD ~ 2.5, we have c d sD = ( )52 . In this way, many tens of

points each contribute cD ~ 0.52 even though the precision of
the data does not permit them to distinguish between models.
Inspecting the residuals in Figure 2, we see that they show
irregular variability with an amplitude ∼0.02 mag and a
timescale of ∼20 days. Hence, we conclude that the apparent
preference of the data for the close solution is an artifact of this
low-level variability, i.e., that a degeneracy persists between

the close and wide solutions (both are acceptable solutions)
despite a difference in chi2.

3.3. Binary-source Solution Excluded

Short-lived smooth bumps can be generated by single-lens/
binary-source (1L2S) events (Gaudi 1998). In particular, if the
secondary source is substantially fainter than the primary and
passes much closer to the lens, the resulting light curve can
mimic a 2L1S planetary event quite well. We search for binary
source solutions, but find that they are disfavored by
cD > 1002 . See Table 1 in which q I,F indicates the flux

ratio of the two sources. While some of this signal may come
from long-term variability (see Section 3.2), the 1L2S model
clearly fails to match the data (particular KMTS) on the rising
side of the bump (see Figure 2). This short-term failure cannot
be explained by long-term variability. Hence, we consider that
the 1L2S model is excluded.

4. Angular Source Radius: θ*

The evaluation of the angular source radius θ* is generally
important in microlensing events because it leads to the
measurement of the angular Einstein radius and the lens-source
relative proper motion

*q
q
r

m
q

= = ( )
t

; , 6E rel
E

E

Figure 3. Caustic geometry of KMT-2016-BLG-1107, close (s < 1) solution. The upper panel shows the source trajectory, which grazes the Einstein ring (dashed
line) and then fully envelops the tiny triangular caustic, roughly 2.5 Einstein timescales tE later. This Cannae-type Hollywood envelopment is shown in greater detail
in the lower-panel zoom, where the source position is shown by circles at the epochs of observations from the three color-coded observatories. During the time that the
caustic passes close to the limb, it spends more than half a source-diameter-crossing time inside the source. This should be compared to Figure 4.
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which can help physically characterize the lens, usually by

evaluating the prior probabilities of these values within the

context of a Galactic model (e.g., Han & Gould 1995).
However, in the present case, the evaluation of θ* is of even

more fundamental importance. This is because the two
degenerate solutions identified in Section 3.1, which have

radically different mass ratios q, also predict radically different
proper motions μrel. This means that by evaluating θ* (and so,
via Equation (6), μrel), we can lay the basis for distinguishing
between the two solutions by future high-resolution imaging. In
particular, we note from Table 1 that the two solutions have
similar source fluxes fs and similar Einstein timescales tE. As we
will see below, similar source fluxes imply similar θ*. Then,
from Equation (6), the two solutions will be in the relations

m

m
q
q

r
r

<

>

<

>

>

<

   ( )3.09 0.54. 7
s

s

s

s

s

s

rel, 1

rel, 1

E, 1

E, 1

1

1

Hence, the two solutions are very well separated in their

relative predictions for the proper motion. The question then is

how well the absolute proper motion can be predicted. This in

turn basically depends on how well θ* can be measured.
We follow the usual approach of measuring the offset of the

source color and magnitude from those of the clump centroid
(Yoo et al. 2004). The main additional subtlety is that, as
discussed in Section 2.1, the light curve shows a long-
term trend in the baseline magnitude ~ dI dt 0.018

-0.003 mag yr 1.
In order to measure the offset of the source from the clump,

we must carry out the light-curve photometry in a common
system with the field stars. For this purpose we use pyDIA, i.e.,
a different package from pySIS, which is used for the main
light-curve analysis. In our initial treatment, we apply the

Figure 4. Caustic geometry of KMT-2016-BLG-1107, wide (s > 1) solution. The upper panel shows the source trajectory, which grazes the Einstein ring (dashed line)
and then partially envelops the small quadrilateral planetary caustic, roughly 2.5 Einstein timescales tE later. This von Schlieffen-type Hollywood envelopment is
shown in greater detail in the lower-panel zoom, where the source position is shown by circles at the epochs of observations from the three color-coded observatories.
This grazing geometry implies that the normalized source size ρ must be substantially larger than for the close geometry (compare to Figure 3) in order to generate a
“bump” of similar duration. This implies a substantially lower proper motion μrel, which will eventually permit future adaptive optics (AO) observations to distinguish
between the two solutions. See Section 4 and, in particular, Equations (13) and (14).

Table 1

Best-fit Solutions

Parameters s<1 s>1 1L2S

c dof2 3894.913/3895 3936.813/3895 4045.87/3895

t0 ¢( )HJD 7508.681±0.068 7509.227±0.057 7509.034±0.054

u0 0.927±0.061 0.932±0.057 0.913±0.068
tE (days) 20.403±0.875 20.380±0.805 20.818±0.974

s 0.345±0.013 2.965±0.104 L

q (10−2) 3.614±0.544 0.398±0.059 L

α ( )rad 3.132±0.025 0.441±0.012 L

ρ -( )10 2 5.955±0.683 18.411±2.423 L

t0,2 (HJD′
) L L 7557.049±0.064

u0,2 L L 0.027±0.013

ρ2 (10−2) L L 6.417±0.877

qF I, (10−3) L L 2.760±0.306

fs 4.065±0.536 4.201±0.522 3.977±0.622

fb −0.439±0.536 −0.575±0.522 −0.351±0.622

t* (days) 1.215±0.124 3.752±0.394 L

teff (days) 18.919±0.445 18.987±0.415 L

5
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slope-removal correction derived from the pySIS analysis to
both the I-band and V-band photometry files derived from
pyDIA.

In 2016, KMTNet took V-band data from both KMTC and
KMTS, with relative V/I cadences of 1/10 and 1/20,
respectively. In addition, as mentioned in Section 2, the KMTS
overall cadence was reduced by 25% during most of the event.
Therefore, there are roughly 2.5 times more V-band images
from KMTC compared to KMTS over the relevant portions of
the light curve. However, as also mentioned in Section 2, the
KMTC data were adversely affected by a bad column, leading
to the loss of many points and the degradation of some of those
remaining. Hence, we can expect that both data sets will
contribute roughly equally to the measurement of

*
q and so

analyze both.
We report first the details of the KMTC measurements and

then summarize those from KMTS. We find the instrumental
-[( ) ]V I I, pyDIA positions of the red clump (see Figure 5),

- = [( ) ] ( ) ( )

( )

V I I, 2.42, 13.97 0.02, 0.04 ,

8

cl, pyDIA,KMTC

and of the source star (by aligning the pyDIA light curves to the

best-fitting model,

- = [( ) ] ( ) ( ) ( )V I I, 2.76, 13.72 0.05, 0.01 . 9s,pyDIA,KMTC

The offset is therefore D - = - [( ) ] ( )V I I, 0.34, 0.25KMTC

( )0.06, 0.04 . Following the same procedure for KMTS, we

obtain - = [( ) ] ( ) ( )V I I, 1.60, 14.84 0.02, 0.04cl,pyDIA,KMTS ,

- = [( ) ] ( ) ( )V I I, 1.89, 14.66 0.07, 0.01s,pyDIA,KMTS , and

D - = - [( ) ] ( ) ( )V I I, 0.29, 0.18 0.07, 0.04KMTS . The dif-

ference between these two determination has c = 1.82 for 2

dof, i.e., perfectly consistent. We therefore combine the two

measurements to obtain,

D - = - [( ) ] ( ) ( ) ( )V I I, 0.32, 0.22 0.05, 0.03 . 10

We adopt - =[( ) ] ( )V I I, 1.06, 14.360,cl from Bensby et al.
(2013) and Nataf et al. (2013) (for l=2.5), and so

- = [( ) ] ( ) ( ) ( )V I I, 1.38, 14.14 0.07, 0.15 . 11s0,

We note that both of the error bars in Equation (11) are larger

than those in Equation (10). For the color, we have added in

quadrature 0.05 mag as an estimate of the error in the method,

which we derive from the scatter in the difference between

spectroscopic and photometric color estimates in Bensby et al.

(2013). For the magnitude, we add in quadrature a 0.14 error

due to the fractional uncertainty in fs in Table 1.
Using the VIK relation of Bessell & Brett (1988) to convert

from V/I to V/K and the color/surface-brightness relation of
Kervella et al. (2004), we finally derive,

*
q m=  ( )8.83 0.73 as. 12

The main concern regarding systematic errors in this
evaluation is that the V-band data are too noisy to allow us
to independently measure their baseline slope. More precisely,
we find that the slope is consistent with the I-band slope, but
with an error that is twice as large as the value of the I-band

Figure 5. Color-magnitude diagram (CMD) based on KMTC data from a 100′′ square centered on KMT-2016-BLG-1107. The source (blue) is more than 0.3 mag
redder than the centroid of the red clump (red), and is also more than 0.2 mag brighter. This offset (confirmed also by KMTS data—not shown), leads to a source-
radius estimate

*
q = 8.8 0.7 mas.
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slope. Because we do not know the origin of this slope, it could
in principle be substantially different in the two bands. As a
relatively conservative estimate of the impact of this systematic
error, we consider two fairly extreme cases: first that the
V-band baseline is flat, i.e., =dV dt 0, and second that it is
twice the I-band slope, i.e., = -dV dt 0.036 mag yr 1. How-
ever, we find that even these changes in assumed slope result in
a change in source color of only 0.01 mag, which would result
in a change of

*
q that is more than an order of magnitude

smaller than the error bar in Equation (12). Hence, this
potential source of systematic error has no practical impact.
The underlying reason for this is that we evaluate the source
flux only using data from a symmetric interval around the peak
during which the source is significantly magnified. Because the
light curve is basically symmetric, while the slope function is
anti-symmetric, we expect very little effect. Indeed, it is only
because the data sampling is higher on the falling wing of the
light curve (because of longer visibility during each night) that
there is any effect at all.

Finally, we estimate θE and μrel for the two solutions.

q
m

= 
=  <- ( ) ( )s

0.148 0.021 mas;

2.65 0.38 mas yr ; 1 , 13

E

rel
1

q
m

= 
=  >- ( ) ( )s

0.048 0.007 mas;

0.85 0.13 mas yr ; 1 . 14

E

rel
1

Because of the low values of μrel for both solutions,
resolution of this degeneracy will require the advent of adaptive
optics on next-generation (“30 m”) telescopes. To evaluate
these prospects, we begin by recalling the experience of Batista
et al. (2015), who separately resolved the roughly equally
bright source and lens for OGLE-2005-BLG-169 in H-band
(1.65 μm) using the 10 m Keck telescope, at a time when these
were separated by 60 mas, i.e., about 1.5 FWHM. Considering
that the source is a red giant in the present case, and therefore
likely to be 100–1000 times brighter than the lens, we expect
that the minimum separation is likely 1/3 larger, i.e., 2.0
FWHM. For the European Extremely Large Telescope 39 m
telescope in J band (the most optimistic case), this would imply
a minimum separation of 14 mas. For an estimated E-ELT AO
first light of 2028, this requirement would be satisfied by more
than a factor 2 for the (s< 1) solution, although it would be
only marginally satisfied for the (s> 1) solution. Therefore,
there are reasonable prospects for resolving this degeneracy at
AO first light.

5. Bayesian Analysis

Because the planet-host mass ratio q differs by almost a
decade between two solutions that are not distinguishable based
on current data, we cannot give even a relatively precise
estimate of the planet mass based on a Bayesian analysis.
Moreover, if future AO observations (Section 4) do distinguish
between the two solutions, there would be no need for a
Bayesian analysis because the host mass and distance will be
much better constrained by the measurements of θE and of the
host flux that derive from those observations. Nevertheless, for
completeness, we carry out a Bayesian analysis to estimate the
host mass and distance for each of the two degenerate
solutions. We employ the same procedures and Galactic model
as did Jung et al. (2018).

The results are illustrated in Figure 6 and summarized in
Table 2. For both solutions, the small values of the Einstein
radius (Equations (13) and (14)) strongly favor low-mass
lenses, while the low proper motions favor Galactic-bulge
lenses. In both cases, the effect is substantially stronger for the
s>1 solution. Also note that even for the close solution, the
planet’s projected separation from its host is relatively large for
its mass, ~^ a M M3.9 au . This would be outside the
snowline for a conventional scaling, = ( )a M M2.7 ausnow .
According to Figure 6, there is a roughly 40% probability

that the lens will be below the hydrogen burning limit (and
hence, likely invisible) even if the <s 1 solution is correct.
This means that if future AO observations fail to detect the
host, then we will not be able to determine whether the close or
wide solution is correct: all we will know is that the host is a
brown dwarf.

6. Discussion: Major/Minor Image Hollywood Degeneracy

6.1. Allowed Range of s for Minor-image Hollywood Events

When Gould & Gaucherel (1997) derived Equation (1) for
the excess magnification rD A q2 2 generated by a
completely enveloped major-image planetary caustic, they also
derived D A 0 for a completely enveloped minor-image
planetary caustic. Clearly, this formula fails in the present case,
for which the s<1 solution has a “bump” that looks
qualitatively similar to classical major-image Hollywood
Cannae “bumps.” This is because the Gould & Gaucherel
(1997) analytic result implicitly assumed that the source
envelops the entire minor-image caustic structure, including
both triangular caustics and the trough that lies between them.
In the present case, by contrast, the bump is generated by
passing over one of the two triangular caustics, with the source
well separated from the other triangular caustic and also from
the trough that lies between them.
Hence, the first question to address is: under what conditions

can the source completely envelop one triangular caustic and
still be well separated from the trough. To address this
question, we make use of the analytic results from Han (2006),
which are derived in the limit q=1. Han (2006) finds that the
length of the planetary caustic (along the direction of the binary
axis) is

xD
 ⎜ ⎟

⎛

⎝

⎞

⎠
( )q s

2

27

16
, 15c

1 2
3

while the separation of the center of the caustic from the binary

axis is

h + + -  -- [( ) ( ) ] ( )

( )

q

s
s s

q

s
s1 1 2

16

c,0
2 1 2 2 1 2 2

Hence, the ratio of the distance of the caustic from the binary

axis to its “size” is independent of q,

h

x
º
D

=
-

⎜ ⎟
⎛

⎝

⎞

⎠
( )R

s

s2

16

27

2
17

c

c

,0
1 2 2

4

Thus, for s=(0.4, 0.5, 0.6, 0.7, 0.8), we have R=(55, 22, 10,
4.8, 2.6). Based on this analysis, we conclude that there can be

minor-image “Hollywood” type bumps without obvious

deviations due to the trough only if s0.7.
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Another way of stating this result is that a symmetric bump at
normalized Einstein-radius position uperturb0.7 can potentially
be explained by either a major-image (s> 1) or minor-image
(s< 1) Hollywood solution. On the other hand, for

u 0.7perturb , only major-image Hollywood solutions are viable.
In the present case, s=0.345 or s=2.96, i.e., uperturb;

2.6, we are well into the regime of possible degeneracy
between major-image and minor-image Hollywood events.

We note, however, that while uperturb0.7 is a necessary
condition, it is not sufficient. It is also necessary that the
perturbation occurs on the wing (rising or falling) of the light
curve rather than near the peak. That is, if the source crosses

one triangular caustic near peak, then it will also come close to
the other one and will cross the pronounced “dip” in between.
These features will be easily recognized in the light curve. In
the present case, the anomaly is far into the wing of the light
curve, and (in the s< 1 model) the source trajectory runs nearly
parallel (α= π+ 0.11) to the binary axis and so essentially
never transits the “dip” (see Figure 3). Given less than perfect
data, such an extreme geometry is not absolutely required to
avoid detection of the dip, but this consideration does generally
favor larger uperturb to enable an “effective degeneracy.”

6.2.Da: Ratio of q for Major-image to Minor-image Solutions

Gould & Gaucherel (1997) gave an analytic formula
(Equation (1)) for the excess magnification ΔA of Cannae
Hollywood events as a function of q and ρ. For minor-image
Hollywood events there is no such analytic formula, but we can
use Equation (1) as a convenient way to normalize ΔA to make
a numerical study of this effect. That is, we define Δa as a
normalized ΔA,

r
D º D ( )a

q
A

2
. 18

2

Figure 6. Bayesian posteriors for KMT-2016-BLG-1107 for the “close” (s < 1, left) and “wide” (s > 1, right) solutions. For both solutions, the small Einstein radius

(q = 0.15 masE and q = 0.05 masE ) favors a low-mass lens, particularly for the “wide” solution. Similarly, the low proper motion (m = -2.7 mas yrrel
1 and

m = -0.9 mas yrrel
1) generally favors a bulge lens, and very strongly so for the “wide” solution.

Table 2

Physical Properties

Quantity s<1 s>1

Mhost [M☉] -
+0.087 0.049
0.092

-
+0.022 0.009
0.023

Mplanet [ ]MJ -
+3.283 1.835
3.468

-
+0.090 0.037
0.096

DL [kpc] -
+6.651 1.348
0.948

-
+7.481 0.708
0.748

â [au] -
+0.342 0.085
0.070

-
+1.065 0.189
0.192
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In Figure 7, we evaluate Δa for source stars centered on a
minor-image caustic of geometries (s, q), where we fix
q=1×10−3 and consider values of s=(0.4, 0.5, 0.6, 0.7,
0.8). In each case, we evaluate Δa for values of ρ
parameterized by r̂, i.e., ρ normalized to the caustic size:

r
r

x
º
D

ˆ
( )

( )
s q, 2

, 19
c

where xD ( )s q,c is given by Equation (15). In each case, we

mark for reference the value of r̂ for which r = q . This value

of ρ is relevant for the comparison to major-image Hollywood

geometries because for the major-image case, r > ⟹q

D a 1.
Figure 7 shows that, particularly for s0.5 (i.e., the regime

in which degeneracies are likely to be an issue according to the
analysis of Section 6.1), Δa never rises much above 0.1, i.e., at
least an order of magnitude smaller than for the generic major-
image case. Hence, according to Equation (18), and assuming
similar values of ρ, much larger values of q are required to
generate a given amplitude of “bump” for minor-image Cannae
envelopment compared to major-image Cannae envelopment.

As we have seen for the case of KMT-2016-BLG-1107, the
inferred values of ρ are not in fact necessarily the same for the
major-image and minor-image solutions. The two solutions
must produce the same duration “bump”, but they might
achieve this by the caustic traversing different chords through
the source, or (as in the present case) by one solution being
Cannae and the other von Schlieffen. Nevertheless, Figure 7
indicates an overall tendency toward higher q for the close
(s< 1) solution, a tendency that is in fact realized in the
present case.

6.3. Future Prospects for the Major/Minor Image
Hollywood Degeneracy

The short, smooth bump experienced by KMT-2016-BLG-
1107 2.5 Einstein crossing times after peak makes it similar in
some respects to OGLE-2008-BLG-092 (Poleski et al. 2014),
MOA-2012-BLG-006 (Poleski et al. 2017), and MOA-2013-
BLG-605 (Sumi et al. 2016). These had =u 4.87perturb ,

=u 4.18perturb , and =u 1.91perturb , respectively. That is the
first two were even further into the wing of the light curve than
KMT-2016-BLG-1107, while the last had a comparable value.
However, in contrast to KMT-2016-BLG-1107, all three of
these earlier events were unambiguously interpreted as having
major-image perturbations and, therefore, very wide compa-
nions. For MOA-2012-BLG-006 and MOA-2013-BLG-605,
this was facilitated by the relatively small source size
(r =q 0.09 and 0.2, respectively), of the same order as
the caustic, which induced some structure on the planetary
bump. As noted by Poleski et al. (2014, 2017), events of this
type provide a unique probe of very wide separation planets
(“Uranus” and “Neptune” analogs), provided of course that
they can be unambiguously interpreted as due to very wide
(rather than very close) separation companions.
The KMTNet survey is well-suited to detect more events of

this type. The radius crossing time of typical giant sources with

*
q m~ 6 as, is

*
m= -( [ ])t 13 hr 4 mas yrrel

1 . Thus, in the

41 deg2 that are observed at cadences G -1 hr 1 (like
BLG18), Hollywood perturbations should be covered very
well (weather permitting). Even the additional 44 deg2 that are
observed at G -0.4 hr 1 should yield adequate coverage in
many cases. However, more practical experience will be
required to determine how often such detections are impacted
by degeneracies, and under what conditions these can be
resolved.

Work by A.G. was supported by AST-1516842 from the US
NSF. I.G.S. and A.G. were supported by JPL grant 1500811.
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were obtained at three host sites of CTIO in Chile, SAAO in
South Africa, and SSO in Australia.
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