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Purpose: To develop a deep learning‐based method for knee menisci segmentation 

in 3D ultrashort echo time (UTE) cones MR imaging, and to automatically determine 

MR relaxation times, namely the T1, T1ρ, and T∗

2
 parameters, which can be used to 

assess knee osteoarthritis (OA).

Methods: Whole knee joint imaging was performed using 3D UTE cones sequences 

to collect data from 61 human subjects. Regions of interest (ROIs) were outlined by 

2 experienced radiologists based on subtracted T1ρ‐weighted MR images. Transfer 

learning was applied to develop 2D attention U‐Net convolutional neural net-

works for the menisci segmentation based on each radiologist’s ROIs separately.  

Dice scores were calculated to assess segmentation performance. Next, the T1, T1ρ,  

T
∗

2
 relaxations, and ROI areas were determined for the manual and automatic seg-

mentations, then compared.

Results: The models developed using ROIs provided by 2 radiologists achieved 

high Dice scores of 0.860 and 0.833, while the radiologists’ manual segmentations 

achieved a Dice score of 0.820. Linear correlation coefficients for the T1, T1ρ, and 

T
∗

2
 relaxations calculated using the automatic and manual segmentations ranged be-

tween 0.90 and 0.97, and there were no associated differences between the estimated 

average meniscal relaxation parameters. The deep learning models achieved seg-

mentation performance equivalent to the inter‐observer variability of 2 radiologists.

Conclusion: The proposed deep learning‐based approach can be used to effi-

ciently generate automatic segmentations and determine meniscal relaxations times.  

The method has the potential to help radiologists with the assessment of meniscal 

diseases, such as OA.
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1 |  INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis 

in the knee, and the menisci play an important role in the 

initiation and progress of OA.1 Various menisci pathologies, 

such as proteoglycan loss or deterioration of the collagen 

network, have been directly associated with the symptomatic 

knee OA.2-4 There is growing interest in developing imaging 

biomarkers that could help clinicians assess and monitor the 

progress of OA in vivo. MR imaging can provide quantitative 

data related to the relaxometry and morphology of the whole 

joint knee anatomy. For example, the meniscal T2 and T
∗

2
 

relaxation times were reported to be sensitive to OA‐related 

pathophysiological processes.5,6 Menisci, however, have a 

short T2 and demonstrate low signal on conventional MR se-

quences, making quantitative assessment with the standard 

clinical MR sequences infeasible. In comparison, ultrashort 

echo time (UTE) sequences with TEs approximately 100 

times shorter than those of conventional sequences can be 

used to image tissues with short T2.7 The 3D UTE cones se-

quences have been proposed to measure the T1 and T1ρ re-

laxations for different knee tissues, including the menisci.8,9 

Given the possibility of using MR relaxations as promising 

OA biomarkers, assessment of the menisci still requires 3D 

segmentation, which is often performed manually and is, 

therefore, time‐consuming and affected by inter‐observer 

variability.10,11 Development of robust automatic menisci 

segmentation methods could provide clinicians with quanti-

tative MR parameters, such as T1, T1ρ, and T∗

2
 relaxations, 

and would present an important step for efficient assessment 

and monitoring of OA.

Nowadays, deep learning methods are gaining momentum 

in medical image analysis.12 These data‐driven algorithms 

automatically process input images to learn high‐level data 

representations and provide the desired output, such as a de-

cision whether the investigated image contains a pathology. 

Deep convolutional neural networks (CNNs) have proved to 

be extremely useful in solving various medical image anal-

ysis problems, including image classification and segmen-

tation.12 The U‐Net CNN and its variations are perhaps the 

most popular deep learning methods used for image segmen-

tation.13 These CNNs for segmentation consist of contracting 

and expanding paths with skip connections. The contracting 

path (encoder) processes the input image using convolutional 

operators to extract a compact high‐level image representa-

tion. In the next step, the expanding path (decoder) uses this 

representation to generate a binary mask indicating the loca-

tion in the image of the object to be segmented.

The skip connections are used to include information 

from the contracting path in the expanding path to improve 

object localization. CNN‐based methods were proposed for 

cartilage segmentation14-16 and whole joint anatomy segmen-

tation, including menisci.17 The 2D U‐Net CNNs for menisci 

segmentation were developed based on double‐echo steady‐

state knee joint MRI images collected from healthy subjects 

and from patients with OA.18,19 The authors demonstrated 

that automatic segmentations could be used to assess menisci 

morphology and to extract efficient biomarkers for OA di-

agnosis.18,19 Additionally, automatic menisci segmentation 

methods based, for example, on fuzzy logic and extreme 

learning machines were developed before deep learning 

techniques gained their momentum.20-22 Moreover, semi‐

automatic menisci segmentation methods based on region 

growing were developed; those methods proved to perform 

well in the case of OA biomarker extraction.23-25 Based on 

the obtained segmentations, the authors calculated menis-

cal T1ρ and T2 parameters, and related those to the levels 

of OA progression.24 However, the quantitative evaluation of 

menisci (e.g., T1, T1ρ, T2, and T∗

2
 relaxation times) is chal-

lenging due to the lack of signal with conventional gradient 

echo sequences with echo times around 4 to 7 ms, which are 

too long to accurately quantify meniscus with a short T∗

2
 of 

around 5 ms.26

Due to small medical datasets, it is a common practice to 

use transfer learning with a pretrained deep learning model. 

This way, a model developed using a large dataset can be ad-

justed to address the medical imaging problem of interest. 

The better performing CNNs for classification, such as the 

VGG19 or InceptionV3,27,28 have been developed using the 

ImageNet dataset, which includes over 1,000,000 RGB im-

ages.29 The first convolutional layers of these deep CNNs 

identify low level concepts in the images, such as color blobs, 

illustrating the importance of these basic features for efficient 

object recognition.30 In practice, it is usually reasonable to 

use these already developed convolutional operators for the 

new deep learning model. In MR imaging, transfer learn-

ing has been proven to provide good results in, for instance, 

image classification.31 In the study on whole joint anatomy 

segmentation, the authors pretrained their CNN using a dif-

ferent set of MR images.17 In the case of computer vision, it 

was demonstrated that transfer learning methods could im-

prove the CNN‐based road scene semantic segmentation.32

The aim of this work is to show the feasibility of auto-

matic quantitative characterization of the menisci in 3D UTE 

cones MR imaging. We present an “end to end” method for 

the automated segmentation of the menisci and the extraction 

of quantitative MR parameters, namely the T1, T1ρ, and T∗

2
 

relaxation times. First, we use transfer learning to develop 

an attention 2D U‐Net CNN based on a relatively small set 

of MR volumes acquired using 3D UTE cones sequences. 

For this task, we use a model pretrained on a large set of 

nonmedical images. Additionally, we use the attention mech-

anism to improve the segmentation performance. Second, 

we compare the average T1, T1ρ, and T∗

2
 values calculated 

using manual and automatic segmentations. The usefulness 

of our approach is evaluated using regions of interest (ROIs) 
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provided by 2 experienced radiologists. We study the inter‐

observer variability between the radiologists and evaluate the 

CNNs developed using ROIs provided by each radiologist. 

To our knowledge, this study presents the first examples of 

knee menisci segmentation using transfer learning with deep 

CNNs in 3D Cones MR imaging for accurate assessment of 

meniscal relaxometry.

2 |  METHODS

2.1 | UTE imaging and data collection

A total of 61 human subjects (aged 20‐88 years; mean age, 

55 ± 16 years; 30 males, 31 females) was recruited for this 

retrospective study. Initial clinical screening included a clini-

cal exam and lower extremity radiograph to select patients 

with no knee OA symptoms as well as patients with suspicion 

of OA. Informed consent was obtained from all subjects in 

accordance with guidelines of the University of California 

San Diego Institutional Review Board. The study included 

27 healthy participants, 25 patients with mild OA, and 13 

patients with moderate OA.

Whole knee joint imaging was performed using 3D UTE‐

Cones sequences on a 3T MR750 scanner (GE Healthcare 

Technologies, Milwaukee, WI). An 8‐channel knee coil was 

used for signal excitation and reception. The protocol included 

3D UTE Cones imaging and measurement of T1, T1ρ, and T∗

2
 

relaxations. The basic 3D UTE‐Cones sequence used a short 

rectangular pulse for signal excitation, followed by k‐space 

data acquisition along twisted spiral trajectories ordered in 

the form of multiple cones. T1 was quantified using 3D UTE‐

Cones with actual flip angle imaging (AFI) and variable 

flip angle (VFA) approach, where B1 inhomogeneity was 

mapped using the 3D UTE‐Cones‐AFI technique, followed 

by accurate T1 mapping using the 3D UTE‐Cones‐VFA  

technique. T1ρ was quantified using 3D UTE‐Cones‐

AdiabT1ρ imaging, where identical nonselective adiabatic 

full‐passage (AFP) pulses with a duration of 6.048 ms, band-

width of 1.643 kHz, and maximum B1 amplitude of 17 µT 

were used to generate T1ρ contrast.8 Multispoke acquisition 

after AdiabT1ρ preparation was incorporated for improved 

time‐efficiency (e.g., Nsp spokes were acquired per adiabatic 

T1T1ρ preparation). T∗

2
 was quantified by acquiring fat‐satu-

rated multi‐echo UTE‐Cones data. All 3D UTE Cones data 

were acquired with a field of view of 15 × 15 × 10.8 cm3 and 

receiver bandwidth of 166 kHz.

Other sequence parameters were: (1) 3D UTE‐Cones‐T∗

2
:  

repetition time (TR) = 45 ms; flip angle (FA) = 10°; 

matrix=256 × 256 × 36; fat saturation; multi‐echo of 0.032, 

4.4, 8.8, 13.2, 17.6, and 22 ms; and scan time of 3 min 40 s; 

(2) 3D UTE‐Cones‐AFI: TR1/TR2 = 20/100 ms; FA = 45°; 

matrix = 128 × 128 × 18; and scan time of 4 min 57 s; (3) 3D 

UTE‐Cones‐VFA: TR = 20 ms; FA = 5°, 10°, 20°, and 30°; 

matrix = 256 × 256 × 36; and scan time of 9 min 28 s; (4) 3D  

UTE‐Cones‐AdiabT1ρ: TR = 500 ms; FA = 10°; matrix = 256 ×  

256 × 36; Nsp = 25; number of AFP pulses NAFP = 0, 2, 4, 

6, 8, 12, and 16; each with scan time of 2 min 34 s. The total 

acquisition time for the 4 UTE‐Cones sequences was approx-

imately 35 min. The Levenberg‐Marquardt algorithm was 

used for nonlinear fitting of UTE‐Cones data based on prior 

reported equations to calculate T1, T1ρ, and T∗

2
.33 All calcu-

lations were performed in Matlab (Mathworks, Natick, MA).

To account for potential motion during the relatively 

long acquisitions, the elastix motion registration based on 

the Insight Segmentation and Registration Toolkit was ap-

plied to the 3D UTE‐Cones data before quantification.34,35 

The first set of UTE data (UTE‐Cones‐T∗

2
 data) was treated 

as fixed images, and the remaining sets of data (AFI, VFA, 

and AdiabT1ρ) were treated as moving images. 3D non-

rigid registration was applied to register the moving im-

ages to fixed images. In the 3D nonrigid registration, both 

rigid (affine) and nonrigid (B‐spline) were applied as a 

2‐staged approach to register the images. All registrations 

were driven by Advanced Mattes mutual information.34  

The transformations were obtained by registration of the 

grayscale images (source UTE images), which were then 

applied to the labeled images. Adaptive stochastic gradient 

descent optimizer was used to optimize both the affine and 

B‐spline registration.

Two experienced radiologists with 22 (Rad 1) and 14 

(Rad 2) years of experience participated in our study. First, 

we investigated which images would be best for outlining the 

ROIs. Menisci show as high signal in the UTE images, but 

as lower signal with later echoes. Subtraction of a later echo 

image from the first echo may provide high contrast imaging 

of menisci. Different subtracted images were reconstructed 

and presented to the radiologists to select those providing the 

best visibility of the menisci in respect to the surrounding tis-

sues. Based on subjective assessment, subtracted AdiabT1ρ‐

weighted MR images corresponding to NAFP of 0 and 2 were 

used to outline the ROIs independently by both radiologists 

(Figure 1). Additionally, the lateral meniscus (LM) and me-

dial meniscus (MM) were indicated.

2.2 | Model development and 
performance evaluation

The deep learning approach used in our study was based 

on the U‐Net architecture, see Figure 2. Similar models, all 

inspired by this architecture, achieved good results in the 

case of the menisci segmentation in the previous papers.17-19 

Additionally, we used attention layers to process the feature 

maps propagated through the skip connections.36,37 Self‐ 

attention mechanisms proved to improve segmenta-

tion performance in the case of small objects in computed 

tomography.37 Clearly, the menisci constitute a small part of 
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the knee and, consequently, the whole MR image. Attention 

layers help the network focus more on small regions, instead 

of analyzing the entire field of view.

In the case of the standard U‐net architecture, feature maps 

from the encoder path are directly concatenated with the out-

put of the decoder convolution layers. This output is related 

to menisci localization in the image. In our case, the atten-

tion layers filter the encoder feature maps based on the output 

of the decoder convolution layers (Figure 2) to incorporate 

the information about initial menisci localization. Therefore, 

areas of feature maps that are far from the initial menisci lo-

calization are compressed. This way, less noisy feature maps 

are propagated through the skip connections. Moreover, we 

used the following transfer learning‐based approach to the 

model development: the weights of the first 2 convolutional 

blocks of our U‐Net were initiated with the weights of the 

corresponding first 2 convolutional blocks of the VGG19 

model pretrained on the ImageNet dataset.27,29 The first lay-

ers of pretrained CNNs like the VGG19 commonly include 

blob and edge detectors; therefore, these layers can provide 

generic image features useful for the analysis of, for instance, 

MR images, which are similar to natural images. Moreover, 

deep layers extract high‐level features more related to the par-

ticular recognition problem.

Transfer learning methods using the VGG19 CNN per-

formed well for various medical image analysis problems 

F I G U R E  2  The proposed 2D attention U‐Net CNN for the menisci segmentation. Gray colors indicate the convolutional blocks initiated 

with the weights extracted from the VGG19 network. For each block the number of filters is indicated below the block type. AL, attention layer; 

Conv, 2D convolutional block; Max pool, max pooling operator; Up, up sampling with a 2D transposed convolutional block (kernel size of 2 × 2, 

stride of 2 × 2). Each convolutional block, except for the first and the last block, used the rectifier linear unit (ReLu) as the activation function and 

3 × 3 convolutional filters. The first used 1D 1 × 1 convolutional filters and no activation function was used for this layer. The last block used the 

sigmoid activation function suitable for the binary classification. AL layers were applied to process the feature maps propagated through the skip 

connections, to let the network focus more on particular regions in feature maps, instead of analyzing the entire image representations

F I G U R E  1  The MR images obtained using the UTE 3D cones for the NIR value of 0 (A) and 2 (B), and the resulting subtracted image (C). 

The subtracted images were selected by the radiologists to outline the menisci
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across different medical imaging modalities.12,31,38 Thanks 

to this replacement, our U‐Net CNN demonstrated its ca-

pability to extract low level image features from the be-

ginning. These capabilities did not have to be redeveloped 

using the training set. Another issue was related to the fact 

that the VGG19 CNN was trained using red/green/blue 

(RGB) images as input. MR images, on the other hand, 

are grayscale, which raises a question about how to effi-

ciently use the pretrained model. The most common ap-

proach is to duplicate the grayscale intensities across all 

color channels.31,39 Moreover, the grayscale images should 

be normalized accordingly to use the pretrained network 

more efficiently. This issue is important because we use 

the subtracted images, which have a unique pixel intensity 

distribution. Generally, the optimal normalization could be 

determined using the validation set. However, this would 

be time consuming. To address the mentioned issues au-

tomatically, we decided to add an additional 1D convolu-

tional block (with a bias term) consisting of 3 convolutional 

filters to the front of our U‐Net. This way, the images are 

first processed before they are passed to the convolutional 

blocks originating from the VGG19 CNN. The aim of this 

block is to adjust the subtracted images, rescale the pixel 

intensities, and perform grayscale‐to‐RGB conversion to 

more efficiently use the power of the pretrained convo-

lutional blocks. The parameters of this layer can be de-

termined during the training with the backpropagation 

algorithm.40

In this work, in comparison to the previous studies,17-19 

we decided to train our network using the Dice score‐based 

loss function. The Dice score (or coefficient) is defined in the 

following way:

where M is the manual segmentation ROI, A is the automatic 

segmentation ROI predicted by the CNN, and |·| refers to set 

cardinality. Use of the Dice score for training has several ad-

vantages. First, this metric is commonly used to assess the 

segmentation performance; therefore, the maximization of 

this parameter is desirable. Second, many studies show that 

the Dice score‐based training is a good choice for heavily im-

balanced data,41,42 such as objects, like menisci, that occupy 

a small part of the whole image.

The dataset was divided into training, validation, and 

test sets with a 36/10/15 split. The validation set included 

data from 5 healthy participants and from 5 patients with 

mild or moderate OA. The test set included data from 7 

healthy participants and from 8 patients with mild or mod-

erate OA. Next, the 3D MR volumes were broken down into 

2D images. In our case, working with 2D data had several 

advantages. First, it enabled the usage of transfer learning 

with deep models pretrained on natural 2D images. Second, 

we avoided training a deep model for 3D MRI images, 

which would have required large amounts of data. Third, 

models trained on 2D MR images are usually more general; 

for example, changing the number or distance between MR 

image slices does not influence the model. Only the 2D MR 

images containing the meniscus were used for the develop-

ment and evaluation of the models. Contrast of each image 

was improved using Matlab implementation of the edge‐

aware contrast manipulation algorithm with the parameters 

selected experimentally.43

Next, the images and the corresponding binary masks 

were automatically cropped to 192 × 192 to narrow the field 

of view, then resized to the default VGG19 input size of 224 ×  

224. The MR images were resized using the bilinear trans-

formation, whereas for the binary masks, the nearest neigh-

borhood algorithm was applied. The training set consisting 

of 458 2D images was augmented by image rotation and hor-

izontal flipping to produce 2748 images. During the train-

ing, we monitored the Dice score on the validation set. The  

U‐Net was trained using the backpropagation with the Adam 

optimizer.44 Weights of the layers were initialized using the 

Xavier uniform initializer.45 The batch size was set to 32. The 

learning rate and the momentum were set to 0.001 and 0.9, 

respectively. However, the learning rate was exponentially 

decreased every 5 epochs by using a drop factor of 0.5 if no 

improvement was observed on the validation set. The training 

was stopped if no improvement in respect to the Dice Score 

was observed on the validation set after 15 epochs. After the 

training, the better performing model with respect to the vali-

dation set was selected. The networks were trained in Python 

using Tensorflow.46 The experiments were performed on a 

computer equipped with 4 GeForce GTX 1080 Ti graphics 

cards. By CNN 1 and CNN 2, we refer to the models trained 

separately using the ROIs provided by the first and the sec-

ond radiologist, respectively.

After the training, the better performing CNN models were 

used to calculate the ROIs using the test set, which contained 

191 2D images from 15 menisci. In the next step, the man-

ual and automatic segmentations were used to calculate the 

average T1, T1ρ, and T∗

2
 relaxations for each 2D ROI. Average 

percentage relative absolute distance errors between the rat-

ers and the CNNs were calculated. Due to small number of 

patients with different levels of OA, we calculated the errors 

using the entire dataset. Two‐sided t‐test at the significance 

level of 0.01 with the Bonferroni correction was applied to 

examine whether the mean estimates were significantly dif-

ferent in the case of the manual and automatic segmentations. 

Dice scores, Pearson’s linear correlation coefficient, and 

Bland‐Altman plot were used to assess the level of agreement 

between the CNNs and radiologists. We separately compared 

the results obtained for the entire menisci, LM, and MM.  

We examined 4 cases, Rad 1 versus Rad 2, Rad 1 versus CNN 

1, Rad 2 versus CNN 2, and CNN 1 versus CNN2, respec-

Dice score=
2 |M ∩A|

|M|+ |A|
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tively. Moreover, for each CNN, we determined the receiver‐

operating characteristic (ROC) curve, then calculated the 

areas under the ROC curve (AUC) to assess how effective 

the networks were at detecting menisci pixels.47 To assess 

the robustness of the proposed method, we applied the CNNs 

to the MR images from the test set with no menisci present.  

This was done to assess whether the CNNs might generate 

false positives. In this case, an image was classified to have 

menisci if the CNN detected at least 2 adjacent menisci pixels.

3 |  RESULTS

The average Dice score for the ROIs outlined by 2 radiologists 

was equal to 0.820, indicating good inter‐observer agreement, 

see Table 1. Both CNNs produced good Dice coefficients of 

0.860 and 0.833 for the Rad 1 versus CNN 1 and the Rad 2 

versus CNN 2, respectively. Both CNNs were excellent at de-

tecting menisci pixels, with the AUC values equal to 0.96 and 

0.95 for the CNN 1 and CNN 2, respectively. The CNNs did 

not generate false positives when applied to the test slices with 

no menisci present. The Dice score between the Rad 1 and 

CNN 2 (developed using the second radiologist’s ROIs) was 

equal to 0.835. Similarly, in the case of the Rad 2 and CNN 

1, the Dice score was equal to 0.818. These results show that 

the agreement between the radiologists is similar to agreement 

between 1 radiologist and the deep learning model developed 

using ROIs provided by another radiologist. Moreover, the 

Dice score for the ROIs produced by the CNNs was equal to 

0.882, being significantly higher than the score obtained for 2 

radiologists (P‐value < 0.001). In the case of the MM and LM 

assessed separately, we obtained similar results. However, as 

is presented in Table 1, the Dice scores obtained for the MM 

segmentations were slightly higher in each case.

Table 2 lists the average values of the T1, T1ρ, T
∗

2
, and ROI 

areas calculated based on the manual and automatic segmen-

tations. There were no associated differences between the re-

laxation parameters estimated using the manual and automatic 

segmentations; for the T1, the P‐values were equal to 0.96 and 

0.65 for the CNN 1 and CNN 2, respectively. The correspond-

ing P‐values for the T1ρ estimation were equal to 0.71 and 0.49. 

Similar results were obtained for the T∗

2
 estimation, with P‐val-

ues of 0.55 and 0.91, respectively. In the case of the ROI area 

estimation, the second radiologist outlined significantly larger 

ROIs on average than the first (P‐value < 0.001), as depicted 

in Table 2. However, the ROIs calculated using the CNN 1 did 

not differ significantly from the ROIs produced by the CNN 2  

(P‐value = 0.07). Moreover, there was no difference between 

the manual and automatic segmentations with respect to the 

ROI area calculations, with P‐values of 0.50 and 0.68, respec-

tively. The average percentage relative absolute distance errors 

for the CNN 1 and CNN 2 were equal to 1.95% and 2.26% for 

T1, 2.56% and 3.03% for T1ρ, 4.59% and 6.15% for T∗

2
, and 

14.27% and 15.21% for the ROI area estimation, respectively.

T A B L E  1  Average Dice scores (plus median and 95% confidence interval) calculated using the manual and automatic segmentationsa

Rad 1 Rad 2 CNN 1 CNN 2

Rad 1 MM+LM 1 – – –

MM

LM

Rad 2 MM+LM 0.820 (0.839, 

0.807‐0.831)

1 – –

MM 0.826 (0.842, 

0.809‐0.843)

LM 0.814 (0.832, 

0.797‐0.830)

CNN 1 MM+LM 0.860 (0.871, 

0.850‐0.868)

0.818 (0.845, 

0.805‐0.831)

1 –

MM 0.872 (0.882, 

0.862‐0.883)

0.831 (0.857, 

0.812‐0.850)

LM 0.847 (0.884, 

0.833‐0.862)

0.805 (0.832, 

0.787‐ 0.823)

CNN 2 MM+LM 0.835 (0.850, 

0.825‐0.844)

0.833 (0.863, 

0.819‐0.846)

0.882 (0.900, 0.873‐0.890) 1

MM 0.841 (0.855, 

0.829‐0.853)

0.841 (0.864, 

0.822‐0.861)

0.894 (0.903, 0.885 0.904)

LM 0.829 (0.847, 

0.815‐0.843)

0.825 (0.855, 

0.806‐0.843)

0.871 (0.896, 0.857‐0.885)

aRad 1 and Rad 2 refers to ROIs outlined by 2 radiologists. CNN 1 and CNN 2 indicate the ROIs generated by the CNNs developed using the ROIs provided by the 

first and second radiologist, respectively. 
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Strong Dice scores indicated good agreement between the 

quantitative parameters estimated using the manual and auto-

matic segmentations, as depicted in Figures 3- 5. In Figure 3, the 

Pearson’s linear correlation coefficients for the T1 values for the 

Rad 1 versus Rad 2, Rad 1 versus CNN 1, Rad 2 versus CNN 2,  

and CNN 1 versus CNN 2 were equal to 0.91, 0.94, 0.90, and 

0.95, respectively. For the T1ρ values depicted in Figure 4,  

the coefficients were equal to 0.92, 0.96, 0.93, and 0.95, re-

spectively. Finally, for the T∗

2
 relaxations shown in Figure 5, the 

linear correlation coefficients were equal to 0.92, 0.97, 0.94, 

and 0.97, respectively. All obtained correlation coefficients 

were high (P‐values < 0.001), indicating a good level of agree-

ment between the radiologist and the deep learning models, see 

Bland‐Altman plots in Figures 3- 5. Figure 6 shows the manual 

and automatic segmentations obtained for 4 cases from the test 

set. Figure 6A,B illustrates cases in which a high level of agree-

ment was achieved, while Figure 6C,D presents examples in 

which a lower level of agreement between the radiologists and 

radiologists/models was obtained.

4 |  DISCUSSION

In this work, we proposed an efficient deep learning‐based 

approach to knee menisci segmentation and extraction of 

quantitative MR parameters in 3D UTE Cones MR imag-

ing. ROIs provided by 2 radiologists were used as the ground 

truth for the performance evaluation. Our results show that 

the proposed approach can successfully segment the me-

nisci and can provide quantitative MR measures (TRs and 

morphology) with similar accuracy to those obtained by 2 

radiologists. The level of agreement, measured by the Dice 

score, between the radiologists was similar as between the 

radiologists and the deep learning models developed using 

ROIs provided by another radiologist. The Dice score be-

tween the ROIs generated by the 2 radiologists was equal 

to 0.820, while the Dice score between the first radiologist 

and CNN 2 (developed using the second radiologist’s ROIs) 

was equal to 0.839. In the case of the second radiologist and 

CNN 1, the Dice score was equal to 0.818. Additionally, both 

CNNs produced strong Dice coefficients equal to 0.860 and 

0.835 for the CNN 1 and CNN 2, respectively.

These results illustrate an important issue related to the 

assessment of the segmentation algorithms: the Dice score of 

1.0 in the case of the CNN 1 would result in the Dice score 

of 0.820 for the Rad 2 versus CNN 1 comparison because, 

in this case, the ROIs generated by the network would be 

the same as those provided by the first radiologist. Ideally, 

the inter‐observer agreement should be taken into account to 

evaluate the performance of the automatic segmentation in a 

fairer way. The Dice score between the ROIs generated using 

the CNN 1 and CNN 2, equal to 0.882, was significantly 

higher than the Dice score for the radiologists, which was 

0.820. This promising result suggests that the performance 

of the automatic segmentation was driven more by the un-

derlying image data and that the deep learning may provide 

results less affected by the inter‐observer variability of the 

ROI annotators.

The Dice scores achieved by the proposed method 

are comparable or better than the results reported in the 

T A B L E  2  Average quantitative MR parameters (plus median and 95% confidence interval) calculated using the manual and automatic 

segmentationsa

Rad 1 Rad 2 CNN 1 CNN 2

T1 [ms] MM+LM 959.4 (961.8, 

947.9‐970.9)

967.0 (979.9, 

954.8‐979.3)

958.9 (960.3, 

947.5‐970.4)

963.1 (962.6, 

951.6‐974.6)

MM 969.9 (961.6, 

955.3‐984.6)

973.5 (975.9, 

957.1‐989.9)

964.4 (957.3, 

950.3‐978.5)

967.6 (957.9, 

953.2‐981.9)

LM 947.5 (961.8, 

929.5‐965.4)

959.7 (980.9, 

941.2‐978.3)

952.7 (966.3, 

934.2‐971.3)

958.1 (975.9, 

939.5‐976.7)

T1ρ [ms] MM+LM 27.5 (27.4, 26.9‐28.0) 28.0 (28.0, 27.5‐28.6) 27.3 (27.4, 26.8‐27.9) 27.8 (27.8, 27.2‐28.3)

MM 27.9 (28.0, 27.1‐28.8) 28.5 (28.5, 27.7‐29.2) 27.7 (27.8, 27.0‐28.5) 28.0 (28.0, 27.3‐28.7)

LM 26.9 (26.6, 26.1‐27.7) 27.5 (27.3, 26.7‐28.4) 26.9 (26.6‐26.1‐27.6) 27.5 (27.4, 26.7‐28.3)

T
∗

2
 [ms] MM+LM 9.8 (9.0, 9.3‐10.3) 9.9 (9.0, 9.4‐10.4) 9.6 (9.0, 9.1‐10.0) 9.9 (9.1, 9.4‐10.4)

MM 9.6 (9.0, 9.0‐10.1) 9.7 (9.1, 9.2‐10.3) 9.4 (9.1, 8.9‐9.9) 9.6 (9.2, 9.1‐10.1)

LM 10.1 (8.9, 9.2‐10.9) 10.1 (8.8, 9.3‐10.9) 9.7 (8.7, 8.9‐10.5) 10.2 (9.0, 9.3‐11.0)

Area [mm2] MM+LM 60.6 (57.5, 57.4‐63.9) 71.8 (66.1, 67.5‐76.1) 64.0 (59.5, 60.6‐67.3) 68.8 (63.5, 64.7‐72.8)

MM 65.7 (63.3, 60.6‐70.9) 79.2 (76.6, 72.4‐85.9) 68.6 (65.2, 63.1‐74.0) 73.4 (68.6, 66.8‐79.8)

LM 55.0 (52.5, 51.4‐58.7) 63.7 (61.2, 59.2‐68.3) 58.9 (56.2, 55.4‐62.3) 63.8 (60.0, 59.3‐68.3)

aRad 1 and Rad 2 refer to ROIs outlined by 2 radiologists. CNN 1 and CNN 2 indicate the ROIs generated by the CNNs developed using the ROIs provided by the first 

and second radiologist, respectively. 
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F I G U R E  3  The relationships and Bland‐Altman plots for the average T1 values calculated using the manual and automatic segmentations 

provided by the radiologists and the CNNs, relationship for the radiologists’ ROIs (linear correlation coefficient of 0.91; P‐value < 0.001) (A), 

relationship between the CNN1 and CNN2 (0.95; P‐value < 0.001) (B). C,D, Show the corresponding relationships for the CNN 1 (0.94; P‐value < 

0.001) and CNN 2 (0.90; P‐value < 0.001) in respect to the radiologists’ ROIs, which were used to develop the models
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F I G U R E  4  The relationships and Bland‐Altman plots for the average T1ρ values calculated using the manual and automatic segmentations 

provided by the radiologists and the CNNs, relationship for the radiologists’ ROIs (linear correlation coefficient of 0.92; P‐value < 0.001) (A), 

relationship between the CNN1 and CNN2 (0.95; P‐value < 0.001) (B). C,D, Show the corresponding relationships for the CNN 1 (0.96; P‐value < 

0.001) and CNN 2 (0.93; P‐value < 0.001) in respect to the radiologists’ ROIs, which were used to develop the models
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F I G U R E  5  The relationships and Bland‐Altman plots for the average T∗

2
 values calculated using the manual and automatic segmentations 

provided by the radiologists and the CNNs, relationship for the radiologists’ ROIs (linear correlation coefficient of 0.92, P‐value < 0.001) (A),  

(B) relationship between the CNN1 and CNN2 (0.95; P‐value < 0.001) (B). C,D, Show the corresponding relationships for the CNN 1 (0.97; 

P‐value < 0.001) and CNN 2 (0.95; P‐value < 0.001) in respect to the radiologists’ ROIs, which were used to develop the model
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previous papers.17-19 In Norman et al,18 the authors used a 2D 

U‐Net developed from scratch on a set of 2 different datasets.  

The first set included 464 T1ρ‐weighted volumes and, in 

this case, a Dice score of approximately 0.685 was obtained 

(we averaged the Dice scores reported in the paper for the 

LM and MM to simplify the comparison). The second set 

included 174 3D double‐echo steady state volumes; for this 

dataset, the Dice score of approximately 0.771 was achieved. 

In Tack et al,19 the authors used a 2D U‐Net trained using 88 

3D double‐echo steady state volumes from the Osteoarthritis 

Initiative and achieved a Dice score of around 0.828. In this 

case, however, the ROIs calculated by the 2D U‐Net were 

additionally processed using a 3D U‐Net to further improve 

the results. Using this method, the Dice score of 0.888 was 

obtained.

In Zhou et al,17 the authors used a U‐Net‐inspired CNN 

to segment whole joint knee anatomy, including menisci.  

The model was trained with 20 3D data volumes acquired 

using sagittal frequency fat‐suppressed 3D fast spin‐echo 

sequence. In this case, the CNN model was first pretrained 

using a 60 sagittal 3D T1‐weighted spoiled gradient recalled 

echo knee image dataset which included ROIs of cartilage 

and bone outlined by imaging experts.48 The authors achieved 

a Dice score of around 0.72 for the menisci segmentation, 

which, similar to Tack et al,19 was subsequently improved 

using additional postprocessing algorithms, producing the 

final Dice score of 0.831. Although the Dice scores obtained 

in our study were high, direct comparison of our results 

with the Dice scores obtained by other authors is difficult 

for several reasons. First, in the mentioned studies, different 

MR data were used to develop the networks. As presented 

in Norman et al,18 there was a significant difference in per-

formance between the models developed using T1ρ‐weighted 

images and the models developed using 3D double‐echo 

steady state volumes. For the menisci segmentation, we used 

MR images obtained through UTE MR imaging. Images gen-

erated in this way, however, have lower quality in comparison 

to regular clinical images.

It remains to be investigated which MR imaging method 

should be used to obtain the best segmentation results. The 

approach proposed in our study may serve as a first step in 

answering this question. In our case, several different im-

ages of the menisci were presented to radiologists and they 

were asked to select the one that would be best for preparing 

the ROIs. Comparison of the results is also difficult due to 

the fact that the methods described in previous papers were 

developed based on reference ROIs provided by radiolo-

gists and technicians with different levels of experience. In 

Maier‐Hein et al,49 results from a large number of biomed-

ical image analysis challenges, including segmentation, 

were analyzed, demonstrating that making a change to the 

reference annotations may change the challenge winner’s 

F I G U R E  6  Examples illustrating the results of the manual and automatic segmentations. A,B, Results for which a large level of agreement 

was obtained for each method. C, The second radiologist, in comparison to the first one, outlined the right part of meniscus differently, but both 

deep models generated similar segmentations. D, The first radiologist outlined the meniscus in a conservative manner; in comparison, the second 

radiologists and both CNNs generated larger ROIs



12 |   BYRA ET AL.

ranking; therefore, segmentation performance is related to 

the quality of annotations. In our study, the CNNs trained 

using ROIs provided by 2 radiologists achieved different 

Dice scores. Moreover, except for the results reported in 

Norman et al,18 the authors developed the algorithms with-

out a real validation set, which could result in overfitting 

and overly optimistic Dice scores. In the case of our study, 

the dataset was divided into training, validation, and test 

sets, and the model selection was performed using the val-

idation set.

Our study shows the feasibility of providing quantita-

tive MR measures for the menisci in an automatic manner. 

There were no statistical differences between the average 

T1, T1ρ, and T∗

2
 parameters calculated for each ROI using 

the manual and automatic segmentations. Additionally, we 

obtained good linear correlation coefficients of at least 0.90 

for the manual and automatic segmentations. It is worth 

noting that, as in the case of the Dice score, the agreement 

between the CNNs was higher than that of the radiologists. 

The correlation coefficient for the T∗

2
 estimation was equal 

to 0.97, while the correlation coefficient for the radiologists 

was equal to 0.92. As far as we know, this is the first study 

reporting T1, T1ρ, and T2 relaxation values of the menisci 

based on fully automatic segmentation of 3D UTE images. 

Nevertheless, we can compare our results with those re-

ported in one of the previous studies on cartridge compart-

ments segmentation.18 The authors compared T1ρ and T2 

values determined using ROIs generated by a radiologist 

and 2D U‐Net, and obtained good linear correlation coeffi-

cients of around 0.92.

The proposed approach to model development has sev-

eral advantages. First, thanks to the transfer learning and 

attention mechanism, we were able to develop a well‐per-

forming 2D U‐Net CNN for menisci segmentation. The first 

2 convolutional blocks of our U‐Net were replaced with the 

blocks extracted from the VGG19 CNN. In comparison to 

the transfer learning method used in one of the previous 

studies,17 where the CNN was pretrained on a set of 60 MR 

knee data volumes, our approach used convolutional blocks 

of a deep network trained using over 1,000,000 images. 

The first convolutional blocks of the deep CNNs commonly 

contain blob and edge detectors, which are crucial for suc-

cessful object recognition. Due to the transfer learning, 

our U‐Net did not have to redevelop operations responsi-

ble for edge extraction during the training. Additionally, 

we introduced a small convolutional block in front of the 

first pretrained block to better match the grayscale MR im-

ages, because the VGG19 CNN was originally developed 

for RGB images.

Nevertheless, there are several issues related to our ap-

proach. First, we developed the CNNs using a relatively 

small dataset of MR images. Generally, the performance 

of deep learning algorithms is expected to increase with 

the data volume; thus, it would be better to have a large an-

notated dataset to train the model from scratch. However, 

annotating (or, in our case, outlining the ROIs) large data-

sets is usually time consuming and sometimes impractical; 

therefore, for applications, it is rather desirable to develop 

as efficient a model as possible using the smallest, yet most 

optimal dataset. A second issue is related to the applied 

transfer learning technique, which was developed for 2D 

images. Because of this, it is not straightforward to apply 

the proposed technique in this paper’s transfer learning 

method to 3D cases. Another issue is that the radiologists 

were asked to select the best possible images for annota-

tions. This selection was done in a strictly subjective way. 

The subtracted images selected for the menisci segmenta-

tion might not be optimal for other knee joints segmenta-

tion, but this requires further study.

In the future, following the study presented in Zhou  

et al,17 we would like to develop a deep learning model 

for the segmentation of the whole knee anatomy. Based 

on this segmentation, it would be possible to calculate 

the quantitative MR parameters for each knee joint tissue. 

In several papers, the segmentation provided by the 2D  

U‐Net was consequently processed using, for example, a 3D  

U‐Net14,19 to further improve the results. While in our study 

we obtained an accuracy equivalent to the inter‐observer 

variability of 2 radiologists, it would be interesting to ex-

plore the postprocessing possibilities to further improve 

the results and make the segmentation more robust. Aside 

from developing the segmentation networks, we would also 

like to continue collecting data from human subjects, espe-

cially from those with mild and moderate OA, and assess 

the usefulness of automatically extracted MR quantitative 

parameters for classification of patients with different lev-

els of OA.

5 |  CONCLUSIONS

In this study, we presented an efficient deep learning‐

based approach to menisci segmentation and extraction 

of quantitative parameters in 3D UTE cones magnetic 

resonance imaging. The method, evaluated using regions 

of interest provided by 2 radiologists, demonstrated effi-

cacy with respect to segmentation performance and mag-

netic resonance parameters determination. The proposed 

transfer learning‐based segmentation algorithm achieved 

performance similar to that obtained by the radiolo-

gists. The results and techniques presented in our study 

may serve as an important step to providing magnetic 

resonance biomarkers for osteoarthritis diagnosis and 

monitoring.
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