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Abstract

Server energy proportionality has been improving over the past sev-

eral years. Many components in a system, such as CPU, memory

and disk, have been achieving good energy proportionality behav-

ior. Using a wide range of server power data from the published

SPECpower data we show that the overall system energy proportion-

ality has reached 80%. We present two novel metrics, linear deviation

and proportionality gap, that provide insights into accurately quan-

tifying energy proportionality. Using these metrics we show that

energy proportionality improvements are not uniform across various

server utilization levels. In particular, the energy proportionality of

even a highly proportional server suffers significantly at non-zero

but low utilizations. We propose to tackle the lack of energy pro-

portionality at low utilization using server-level heterogeneity. We

present KnightShift, a server-level heterogeneous server architec-

ture that introduces an active low power mode, through the addition

of a tightly-coupled compute node called the Knight, enabling two

energy-efficient operating regions. We evaluated KnightShift against

a variety of real-world datacenter workloads using a combination

of prototyping and simulation, showing up to 75% energy savings

with tail latency bounded by the latency of the Knight and up to 14%

improvement to Performance per TCO dollar spent.

1. Introduction

Energy consumption of datacenter servers are a critical concern.

Server operating energy costs comprise a significant fraction of the

total operating cost of datacenters. However, many servers operate at

low utilization and still consume significant energy due to the lack of

ideal energy proportionality [6].

Server consolidation [7, 8] can boost utilization on some servers

while allowing idle servers to be turned off, improving energy pro-

portionality at the datacenter level. Unfortunately, server shutdown

is not always possible due to data availability concerns and workload

migration overheads. When server shutdown is impractical, as is

the case in many industrial data centers [3, 26], system-level energy

proportionality approaches must be explored.

Energy proportionality improvements of various server compo-

nents [10, 30], such as CPUs and memory, has fueled the improve-

ments of overall system efficiency. Energy proportionality of current

systems has reached around 80%. While 80% seems reasonable, the

primary concern today is that energy proportionality improvements

have not been uniform across different utilizations. The problem of

disproportionality is particularly acute at non-zero but low server

utilization. Since no single component dominates server energy

usage [31], holistic system-level approaches must be developed to

improve energy proportionality particularly at low utilization regions.

Several system-level power saving approaches have focused on re-

ducing the power consumption during idle periods [24]. Researchers

then focused on increasing the length of idle periods by queueing

requests [26] or by shifting I/O burden directly to disk and mem-

ory [2, 3]. However, as multicore servers becomes dominant, idle

periods are virtually nonexistent [26, 34]. Even as idle periods be-

come rare, servers still spend a significant fraction of their execution

time operating at low utilization levels. Thus there is a critical need to

develop active low-power modes that exploits low-utilization periods

to continue improving server-level energy proportionality across the

entire utilization range.

This paper addresses this critical need by proposing KnightShift, a

server-level energy proportionality technique. This work makes the

following contributions:

Metrics to Identify Disproportionality(§2): We propose metrics

to evaluate energy proportionality and to identify sources of dispro-

portionality. Using data from historical SPECpower [35] results of

291 servers, we show that commonly used metrics such as dynamic

range are inappropriate due to the lack of linearity in energy consump-

tion across different utilizations. We present a metric for measuring

linearity of energy consumption across different utilizations. Using

the linearity metric we show that the proportionality gap is much

wider at lower utilization than at idle or higher utilization.

Energy Proportionality Trend Analysis(§3): From historical

SPECpower data we show the existence of an energy proportionality

wall due to the lack of improvements to the dynamic range and poor

energy efficiency at low server utilization periods. Previous work

(§4) only targeted improvements to the dynamic range by improving

idle power. In order to continue improving energy proportionality,

we must improve the linearity of the server’s energy proportional-

ity curve, especially at lower utilization where the majority of the

proportionality gap exists.

KnightShift(§5): We present KnightShift, a server-level heteroge-

neous server architecture that introduces an active low power mode

to exploit low-utilization periods. By fronting a high-power primary

server with a low-power compute node, called the Knight, we enable

two energy-efficient operating regions. We show that KnightShift

effectively improves energy proportionality and linear deviation of

servers in §6. We present evaluation results of KnightShift in §7 and

explore TCO impact in §8.

2. Measuring Energy Proportionality

In order to understand energy proportionality trends, we must first

quantify energy proportionality. Figure 1 illustrate the power us-

age of two servers over their operating utilization, called the energy

proportionality curve. The dotted line shows the ideal energy pro-

portionality curve of a server. The dashed line shows the linear

energy proportionality curve by interpolating idle and peak power.

The solid line shows the actual server energy proportionality curve.

The data presented in this figure are obtained from measurements

on real servers reported to SPECpower (more detailed analysis of

SPECpower data is provided later).
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Figure 1: Energy Proportionality (EP) curve. The dotted, dashed, and solid lines shows the ideal, linear, and actual server EP curve, respec-
tively.

Dynamic Range: The dynamic range (DR) metric is commonly

used as a first order approximation for energy proportionality. The

dynamic range of a server is given by:

DR =
Powerpeak −Poweridle

Powerpeak

(1)

where Powerpeak is the peak power at 100% utilization and Poweridle

is the idle power at 0% utilization. In Figures 1a and 1b, the DR

for both servers are the same at 60% . An ideal energy proportional

system would have DR of 100%. DR only accounts for peak and

idle power usage and does not account for power usage variations

across different utilizations. Since most servers are rarely fully uti-

lized or fully idle, DR is a poor measurement of the server’s actual

proportionality. For example, assume that both servers in Figure 1

consume 100W at peak power. If each server experiences utilization

distribution similar to Google servers reported in [6], then Server A

(on the left) would consume on average 28% more power (68.6W vs

52.6W) compared to Server B (on the right), even though they both

have the same dynamic range.

Energy Proportionality: To accurately quantify energy propor-

tionality, we must account for intermediate utilization power usage.

The energy proportionality (EP) of a server (proposed in [29] and

adapted for this paper) is given by:

EP = 1−
Areaactual −Areaideal

Areaideal

(2)

where Areaactual and Areaideal is the area under the server’s actual

and ideal energy proportionality curve, respectively. Note that if

Areaactual = Arealinear, then EP would equal DR. Therefore, DR is

a good measurement of energy proportionality only if a server is

linearly energy proportional, however, this is not the case in most

servers. For example, the EP of Server A and B is 53% and 74%,

respectively. Although the DR of both servers is 60%, their EP values

differ by over 20%. Compared to DR, EP provides a more accurate

metric in determining how energy efficient a server is. Energy pro-

portionality is a function of the dynamic range and the linearity of the

energy proportionality curve. Thus to accurately account for energy

proportionality, one has to account for the amount of deviation from

linearity within the server’s energy proportionality curve.

Linear Deviation: We define Linear Deviation (LD) as a measure

of the energy proportionality curve’s linearity. Linear Deviation is

given by:

LD =
Areaactual

Arealinear

−1 (3)

A server is considered linearly energy proportional if LD = 0, su-

perlinearly energy proportional if LD > 0, and sublinearly energy

proportional if LD < 0. Figure 1a and 1b shows a proportionality

curve with superlinear and sublinear energy proportional system, re-

spectively. Superlinear energy proportional servers have EP < DR ,

while sublinear energy proportional servers have EP > DR. This can

be proven by equation 2 where Area+LD > Arealinear > Area−LD,

therefore EP+LD < EPlinear < EP−LD, where EPlinear = DR.

Proportionality Gap: The Proportionality Gap (PG) is a mea-

sure of deviation between the server’s actual energy proportionality

and the ideal energy proportionality at individual utilization levels.

PG allows us to quantify the disproportionality of servers at a finer

granularity compared to EP to better pinpoint the causes of dispro-

portionality. PG at utilization level x% is given by:

PGx% =
Poweractual@x% −Powerideal@x%

Powerpeak

(4)

For an ideal energy proportional server, the PG for all utilization

levels is 0. For superlinearly proportional systems, like Server A,

PG is very large at zero utilization and it continues to grow for some

time before it starts to shrink. For sublinearly proportional systems,

like Server B, PG is very large at zero utilization but it continues to

decrease with utilization.

3. Energy Proportionality Trends

To understand trends in energy proportionality, we analyze the sub-

mitted results of SPECpower [35] for 291 servers from November

2007 to December 2011. These servers are a representative mix of

server configurations in current use. They feature servers with various

vendors, form factors, and processors. The SPECpower benchmark

evaluates the power and performance characteristics of servers by

measuring the performance and power consumption of servers at

each 10% utilization interval. These trends are shown in Figure 2 and

are discussed below.

Dynamic Range: Figure 2a plots the dynamic range of servers

along with the median trend line. Each data point corresponds to

one server whose SPECpower results were posted on a given date.

Overall, DR improved from about 50% to 80% from 2007 to 2009.

From 2009 onward, DR stagnated at 80%. Although the best DR is

80%, half of new servers today still have DR less than 70%. Even

in 2011, there are still new servers with DR less than 40%. We

can surmise that achieving 100% dynamic range is very difficult

due to energy disproportional and energy inefficient components

such as power supplies, voltage converters, fans, chipsets, network

components, memory, and disks.

Energy Proportionality: Figure 2b shows that EP trends are

similar, but not identical, to DR trends. Clearly, EP has also stalled

at around 80%. This energy proportionality wall is mainly due to the

lack of DR improvement. Each server’s EP data point is classified
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Figure 2: Energy Proportionality Trends

as either superlinear (+LD) or sublinear (-LD) proportional based on

their SPECpower data. It is important to draw attention to a few data

points where EP > 80%, although no servers have a DR above 80%.

Recall that the only way a server can have EP > DR is for that server

to have sublinear energy proportionality (-LD). A sublinearly energy

proportional server consumes less power than a linearly proportional

server. Hence, it can have higher EP than DR. Thus, those few servers

with EP > 80% in Figure 2b have sublinear energy proportionality.

Note that -LD does not always imply high EP. In particular, energy

proportionality is affected by two components: dynamic range and

the linear deviation. If DR can be improved, then LD improvements

have a secondary impact on overall EP. But as DR improvements hit

a wall, the only way to improve EP moving forward is to improve

LD.

Linear Deviation: Figure 2c shows the relationship between lin-

ear deviation and energy proportionality. Unfortunately, the data

shows that the majority of servers (at least 80%) are superlinearly

proportional (+LD). Hence, there lies potential to improve energy

proportionality in current servers by improving their linear deviation.

Proportionality Gap: Figure 2d shows the average proportion-

ality gap of servers at various utilization levels. The curves, from

top to bottom, represent servers with low EP (<50%), medium EP

(50-75%), and high EP (>75%). Irrespective of the EP level the

striking feature is that all servers suffer large proportionality gap at

low utilizations. Furthermore, as EP increases, it becomes clear that

the majority of the proportionality gap occurs at lower utilizations.

As EP improves, energy disproportionality at lower utilization will be

the main obstacle to achieving perfectly energy proportional systems.

Unfortunately, due to limited information reported in SPECpower

results, we cannot gain a clear insight as to the fundamental causes of

proportionality gap at lower utilization and thus this question remains

an open research problem.

Energy Efficiency: We defined energy efficiency as ssj_ops/Watt

from the SPECpower data. Figure 2e shows that energy efficiency is

strongly correlated with the proportionality gap. The curves, from

top to bottom, represents servers with high, medium, and low EP,

respectively. Due to the large proportionality gap at low utilization,

server energy efficiency is about 30% of the peak efficiency even for

servers with relatively high EP. Hence, even if the overall EP of a

server improves over time, the energy efficiency will still suffer at

low utilizations unless the proportionality gap at low utilizations is

reduced. Otherwise, even the highest EP servers can run efficiently

only at high utilizations. In order to improve energy efficiency, we

should improve efficiency at lower utilization. Unfortunately, as

Figure 2f shows, improvements to efficiency at higher utilization has

outpaced improvements at lower utilization.

Overcoming the EP wall: In order to improve the energy effi-

ciency of servers, we cannot solely rely on improvements to dynamic

range, as has been the case in the past. Therefore, we cannot con-

centrate on energy efficiency improvements at peak and idle only.

As dynamic range is now static, we must focus on improving the

linear deviation. As shown previously, servers operate in two distinct

energy proportional regions. Servers tend to be perfectly proportional

at high utilization (>50%), while disproportional at low utilization

(<50%). Therefore, in order to gain the most benefits, we must focus

our efforts in the low utilization region. Furthermore, processors are

no longer the major consumer of power in servers [31]. In order to

reduce energy consumption, new server-level solutions that tackle

proportionality gap at low utilizations are needed.

4. Related Work

Power and energy related issues in the context of large scale datacen-

ters have become a growing concern for both commercial industries

and the government. Barroso [6] showed that energy-proportionality

is a chief concern since most enterprise servers operate at low average

utilizations. These concerns have become the source of much active

research in the energy proportional computing space. Numerous

studies have examined energy efficiency approaches to servers in

datacenter settings. These approaches can be classified along three

dimensions: spatial granularity (Granularity), the period in which the

low power mode is active (Period), and the ability for the low power

mode to perform work (Active/Inactive). The granularity refers to

whether the low power mode work at the cluster, server, or compo-

nent level. The period in which the low power mode is active refers

to the region of operation that the low power mode exploits. Low

power modes can exploit either idle periods (0% utilization), or low



Granularity Cluster-level Server-level Component-level

Period Idle Low Utilization Idle Low Utilization Idle Low Utilization

Active Consolidation & Somniloquy [1] KnightShift DVFS
Low Dynamic Cluster Barely-alive MemScale [10]
power Resizing [7, 8] Servers [3] Heter. Cores [21,

14, 13, 5]
Inactive

Low power

Shutdown
PowerNap [24]

DRAM Self-refresh
Core Parking
Disk Spin down

Table 1: Classification of Server Low-power modes

utilization periods. The ability to perform work refers to whether the

low power mode allows the system to continue processing requests.

For inactive low power modes, the system cannot processes requests.

For active low power modes, the system can still process requests,

possibly with lower capability and performance. For example, if

a low power mode is an active low power mode and exploits low

utilization periods, it means that the low power mode is activated

during low utilization periods and can still perform work. Using the

three dimensional classification Table 1 bins the most relevant prior

work which we will briefly describe next .

Cluster-level techniques: Common techniques such as consoli-

dation and dynamic cluster resizing [7, 8] concentrate workload to

a group of servers to increase average server utilization and power

off idle machines, improving efficiency and lowering total power

usage. Although beneficial, these techniques are not suitable for

many emerging workloads in today’s datacenter settings. For direct-

attached storage architectures or workloads with large distributed

data sets, servers must remain powered on to keep data accessible.

Furthermore, due to the large temporal granularity of these tech-

niques, they cannot respond rapidly to unanticipated load as it could

take minutes to migrate tasks with very large working sets. Under

these circumstances, server consolidation is not a viable solution. Our

proposed solution will allow significant energy savings even when

servers are required to actively operate at low utilization.

Component-level techniques: Component-level energy saving

techniques for CPU, memory, and disk covers both active and in-

active low-power modes. Active low-power techniques improves

the energy-proportionality of components by providing multiple op-

erating efficiencies at different utilization levels. Heterogeneous

cores [5, 13, 14, 21], such as Tegra 3 and ARM big.LITTLE, can

switch to low-power efficient cores during low-utilization periods,

while DVFS and MemScale [10] scales the frequency and power of

components depending on utilization levels. Furthermore, inactive

low-power techniques, such as DRAM self-refresh, core parking and

disk spin down can improve idle power consumption of these com-

ponents. Most dynamic range improvements seen to date are driven

primarily by processor energy efficiency gains. But going forward,

no single component dominates overall power usage [31], which may

limit the potential of component-level techniques in the future.

Server-level techniques: Server-level techniques aim to put the

entire server into a low-power mode. Previous techniques aimed to

improve energy efficiency by increasing the dynamic range through

lowering the idle power usage and extending the time a system stays

in idle. PowerNap [24] exploits millisecond idle periods by rapidly

transitioning to an inactive low-power state. DreamWeaver [26] ex-

tends PowerNap to queue requests, artificially creating and extending

idle periods. Barely-alive servers [3] place the server in a low-power

state, but extends idle periods by keeping memory active to process

remote I/O requests. Similarly, Somniloquy [1] allows idle comput-

ers to supports certain application protocols, such as download and

instant messaging. As the number of processors in servers increase,

idle periods will become increasingly rare [26, 34]. Thus active

low-power modes that can efficiently operate at low-utilization levels

will be the only practical server-level energy saving technique in

the future. Current literature lacks work that exploit low-utilization

opportunities. As the data in Section 3 showed, it is critical to tackle

the lack of energy efficiency during low-utilization periods. Our

work, KnightShift, fills this important gap.

Low-power design: Wimpy nodes [4] aims to save power by run-

ning low-power energy-efficiency nodes. Wimpy clusters are limited

to workloads that can tolerate higher latency, but may degrade QoS

during traffic spikes, requiring over-provisioning [28, 15]. Heteroge-

neous clusters [9] of brawny and wimpy cores also suffers the same

issues as consolidation and task migration. In KnightShift, we can

dynamically switch modes to handle latency demands, without the

overhead of consolidation due to a tightly-coupled disk subsystem.

5. KnightShift

In this section we introduce KnightShift, a heterogeneous server-level

architecture to reduce the proportionality gap of servers at low uti-

lization. KnightShift fronts a high-power primary server with a low-

power compute node, called the Knight, enabling two energy-efficient

operating regions. We define Knight capability as the fraction of

throughput that Knight can provide compared to the primary server.

To the best of our knowledge, KnightShift is the first server-level ac-

tive low-power mode solution to exploit low-utilization periods. The

fundamental issues limiting energy proportionality have been lack

of improvement to dynamic range and linear deviation. While pre-

vious techniques only targeted dynamic range, KnightShift extends

previous techniques by also targeting linear deviation.

A KnightShift system consists of three components:

I KnightShift hardware: The KnightShift hardware consists of

a low-power low-performance compute node, called the Knight,

paired with a high-power high-performance server. Both the

Knight and primary server can be independently powered on

and off. Both the Knight and primary server share a common

data disk and are able to communicate with one another through

traditional network interface. In section 5.1, we will introduce

three possible implementations of KnightShift.

Due to low-power demands we assume the Knight has less

memory than the primary server. However, certain workloads

require large memory-resident datasets, such as scale-out work-

loads [12], and cannot tolerate smaller memory. These work-

loads can still benefit from KnightShift by alternatively using

low-power mobile memory [23], therefore still benefiting from

overall reduced energy savings. Current server motherboards

are typically not built to accommodate low-power mobile mem-

ory while a Knight can use such a memory type.
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Figure 3: Three proposed implementations of KnightShift. In a board-level implementation the primary server and Knight are integrated into
the same motherboard. In a server-level implementation the Knight is a separate add-on board that attaches to SATA port, converting
commodity servers into KnightShift systems. In an ensemble-level implementation, only commodity parts are used.

II System software: The system software enables several key

functionalities required for KnightShift, such as disk sharing,

network configuration and remote wakeup of compute nodes.

Most operating systems already support the required system

software functionality. In section 5.1 we will describe the

specifics of system software required to support KnightShift.

III KnightShift runtime: The KnightShift runtime is the new

software layer that is built specifically for the purpose of operat-

ing KnightShift. This runtime layer monitors utilization, makes

mode switching decisions, redirect requests between the Knight

and the primary server, and coordinates disk access rights to

ensure data consistency. We will discuss this runtime in de-

tail in section 5.2 and present our prototype implementation in

section 7.1.1.

5.1. KnightShift Implementation Options

We propose three implementations of KnightShift as shown in Fig-

ure 3. The preferred choice for implementing KnightShift depends

on the usage scenario and level of integration supported by system

designers.

Board-level integrated KnightShift: Board-level integrated

KnightShift integrates the primary server and Knight onto the same

motherboard. Both Knight and primary server have independent

memory, CPU, and chipsets. To allow each node to power on/off

independently, the motherboard is separated into two power domains

(designated by the dotted box). The Knight’s power domain com-

prises of it’s memory, CPU, chipset, ethernet, and disks. The Knight’s

power domain is always on but the primary server’s power status is

controlled by the Knight. The Knight is capable of remotely waking

up the primary server. Existing technology such as wake-on-lan can

be used to support remote wakeup. Using wake-on-lan, when the

primary server is off, the Knight can send a "magic" packet to the

primary server’s network interface which in turn will wake up the

primary server. All three proposed implementations use wake-on-lan

for remote wakeup.

Networking is provided through sideband ethernet, allowing two

devices to be exposed through a single physical port to external

servers. Both the Knight and primary server would have their own

IP address, but only the Knight’s IP address would be publicly avail-

able. This allows the KnightShift server to appear as a single server

on the network, eliminating additional network overheads to adopt

KnightShift servers.

Disks are shared between the primary server and Knight through

a shared SATA connection. Since SATA currently supports hot-

plugging, the system designer can add switching logic to route SATA

requests between the primary server and Knight.

Server-level integrated KnightShift: In a server-level integrated

KnightShift configuration, the Knight resides on a separate indepen-

dently powered motherboard. The only shared components between

the Knight and primary server is the network and disk. We envision

that this approach can be implemented by intercepting the SATA

interface and building a Knight which can fit as a hard drive module

within the primary server. Hard drive mounts are designed to fit

various hard drive sizes. For example, 3.5inch drives comes in 19mm

or 25.4mm heights. By using 19mm height drives or 2.5inch drives,

we can integrate the Knight into the unused space on the 3.5inch

mount. This approach is feasible even today as some potential Knight

candidates are as small as credit cards [19].

Since the Knight remains on at all times, it is exposed to the outside

world as the only server. Thus, the primary ethernet connection will

be on the Knight board. The existing primary server’s ethernet is then

connected into the Knight board. Thus this approach requires one

extra internal ethernet connection compared to board-level integration.

This implementation allows us to convert any commodity server to a

KnightShift-enabled server without using additional space.

Ensemble-level KnightShift: The ensemble-level implementa-

tion uses only commodity parts with no changes to hardware. By

using a primary server and a Knight based on commodity computers

(such as nettops), a KnightShift system can be implemented. This is

the prototype that we will use to evaluate KnightShift in section 7.1.

Disk sharing is fulfilled through NFS, with the Knight acting as the

NFS server and the primary server mounting the NFS drive. This

allows data to persist when the primary server is off. Since the Knight

acts as the NFS server this approach requires the Knight to always be

on. A router is used to network the Knight and primary server. To the

outside world only the Knight’s IP address is exposed. The primary
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Figure 4: Performance trends of commercial systems.

server communicates to the outside world through the Knight.

Board-level implementation requires the least amount of space,

but requires several modifications to the system design. The server-

level implementation allows commodity servers to be KnightShift-

enhanced, with minimal space requirements. The ensemble-level is

the simplest to implement with commodity parts. But this solution

can be expensive and may need additional rack space in a data center.

5.2. KnightShift Runtime

In the above section we presented three choices for implementing

KnightShift and the basic system software needed for remote wakeup,

disk and network sharing. The KnightShift functionality is imple-

mented in a special purpose runtime layer called the KnightShift

runtime. The runtime serves the following purposes: 1) Monitor

server utilization, 2) Decide on when to switch between Knight and

primary server using mode switching policies, 3) Ensure data consis-

tency on shared disk data, 4) Coordinate mode switching, 5) Redirect

requests to active node.

Monitoring server utilization and mode switching policies:

An essential part of KnightShift is the ability to monitor the uti-

lization of the primary server and Knight to make mode switching

decisions. Server utilization monitoring can be carried out simply

through the Linux kernel or through third-party libraries.

Whenever the primary server’s utilization is low, the Knight will

put the primary server to sleep and handle service requests. Whenever

the Knight’s utilization is too high, it does a remote wakeup of the

primary server which then handles service requests. In this paper, our

primary goal is to introduce the benefits of KnightShift and thus we

use a simple switching policy to determine when to switch modes. In

order to maximize power savings, we have to maximize the amount

of time that we spend in the Knight. To do so, our simple switching

policy aggressively switches into the Knight, and conservatively

switches to the primary server. For example, if the Knight is 20%

capable, the KnightShift runtime will switch to the Knight whenever

the primary server utilization falls below 20%. KnightShift switches

back to the primary server only when the Knight’s utilization exceeds

100% for at least the amount of time it takes to switch between Knight

and primary server, called the transition time.

By maximizing energy savings, we may negatively impact perfor-

mance as we may stay in the Knight mode during periods where the

Knight cannot handle the requests, causing increased response time.

Although it is outside the scope of this work, by using a more bal-

anced switching policy, through predicting high utilization periods or

carefully chosen timeouts, KnightShift may provide a better balance

between energy savings and performance [34].

Data consistency and coordinating mode switching: Recall

that in all three implementation the Knight and primary server share

the disk data needed for processing service requests. Hence, when-

ever mode switching is activated, the compute node that is shutting

down must flush any buffered disk writes that are cached in memory

back to disk and unmount the disk. This allows the complementary

node to mount the disk and operate on consistent data. The Knight-

Shift runtime enforces this consistency by coordinating disk access

sequence between the two nodes. In section 7.1 we detail our proto-

type KnightShift system where coordination is carried out through a

set of scripts communicating using message passing.

Redirecting requests: There are many ways to forward incom-

ing requests to the active compute node. One approach is to run a

simple load balancer software on the Knight, which would require the

Knight to remain always on. We take this approach in our prototype

KnightShift implementation in section 7.1. It would also be possible

to use a hardware component which redirects requests.

5.3. Choice of Knights

We originally considered three options for the Knight: ARM, Atom,

and Core i3-based systems. It is currently not feasible to use ARM

based systems as a Knight because its capability level (<10%) is

simply too low and does not provide ample opportunities to switch to

Knight mode. With the emergence of server-class ARM processors,

ARM may become a viable Knight option in the near future.

Figure 4 shows the performance growth of Atom and Core i3 as

potential Knights compared to a Xeon based server as the primary

server. The performance data was obtained from Passmark CPU

Mark [18]. Most Atom based systems have one order of magnitude

lower capability than a Xeon based server and in the best case they

have 20% capability. The performance of Core i3 on the other hand, is

within 50% of Xeon based server. Thus Atom and Core i3 can provide

Knight capability of up to 20% and 50%, respectively. Although Core

i3 based Knights use ~4x more power than Atom based Knights, Core

i3 offers more opportunity for the Knight to handle requests from the

primary server. In our prototype implementation we used only an

Atom based Knight due to limited hardware budget.

Mixed ISA: In our current prototype, all the Knight choices run

x86 ISA. Additionally, we ran a fully functional KnightShift proto-

type using x86+ARM and we didn’t encounter any functional diffi-

culties. Many popular applications, such as java, apache and mysql

already have ARM binaries. As ARM becomes more powerful and

prevalent, mixed ISA KnightShift systems may even become the

norm. While the ARM based Knight ran perfectly well in terms of

functionality, the latency overhead was too high. Hence we do not

consider mixed ISA implementation in the rest of the paper.

6. A Case for Server-level Heterogeneity

In this section we show the potential benefits of KnightShift on top

of current production systems. We selected all 291 servers from the

SPECpower results and studied how various energy proportionality

metrics are affected if that server was enhanced with a Knight. Recall

that we define Knight capability as the fraction of throughput that the

Knight can provide compared to the primary server. By assuming

the Knight was created with the same technology as the primary

server, the peak and idle power of the Knight, with capability C, can

be obtained by theoretically scaling the power using the equation

PowerKnight =C1.7
∗PowerPrimary [5]. For example, if the primary

server operates between 100W (idle power)-200W (peak power at

100% utilization), then a 50% capable Knight will operate from 31-

62W. We assume the Knight is linearly proportional (LD=0) between

its idle and peak power.

Figure 5 shows the effect of KnightShift on the energy proportion-

ality curve, from Figure 1, with a 20% and 50% capable Knight. To
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Figure 5: KnightShift enhanced energy proportionality curve

KS
Level

Proportionality Gap Energy Efficiency Linear Deviation

20%

-0.2 

0 

0.2 

0.4 

0.6 

0% 20% 40% 60% 80% 100% 

P
ro

p
o

rt
io

n
a

tl
iy

 G
a

p
 

Utilization 

LOW(<50) 

MID(50-75) 

HIGH(75+) 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0% 20% 40% 60% 80% 100% 

N
o

rm
a

liz
e

d
 s

s
j_

o
p

s
/W

a
tt
 

Utilization 

HIGH(75+) 

MID(50-75) 

LOW(<50) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 

E
n

e
rg

y
 P

ro
p

o
rt

io
n

a
lit

y
 

Linear Deviation 

50%

-0.2 

0 

0.2 

0.4 

0.6 

0% 20% 40% 60% 80% 100% 

P
ro

p
o

rt
io

n
a

tl
iy

 G
a

p
 

Utilization 

LOW(<50) 

MID(50-75) 

HIGH(75+) 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0% 20% 40% 60% 80% 100% 

N
o

rm
a

liz
e

d
 s

s
j_

o
p

s
/W

a
tt
 

Utilization 

HIGH(75+) 

MID(50-75) 

LOW(<50) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 
E

n
e

rg
y
 P

ro
p

o
rt

io
n

a
lit

y
 

Linear Deviation 

Figure 6: Effect of KnightShift on SPECpower commercial servers
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Figure 7: Server Energy, EP, LD improvement with KnightShift

generate this data, we assume that anytime the utilization is within

the Knight’s capability levels, the Knight will handle that requests.

Otherwise, the primary server will handle the request. Note that in

KnightShift, the Knight must remain on, which increases the peak

power consumption of the server. The reason for this requirement

was explained in the previous section. Even with the increase in peak

power consumption, we still experience significant power savings be-

cause the servers spend the majority of the time in the low utilization

regions. (more details will be presented in section 7). The primary

server is shut down at low utilizations, allowing the Knight to handle

all low utilization requests, significantly decreasing power consump-

tion. Depending on the capability, energy savings vary. But in all

cases, we shift the server to -LD domain, but with differing levels

of -LD. It is interesting to note that at specific utilization levels, a

KnightShift-enabled system can consume less power than an ideal en-

ergy proportional system, opening the possibility of servers operating

with better efficiency than ideal energy proportionality. For instance,

in Figure 5b when the server utilization is approximately between

20% and 50%, the overall power consumption is better than an ideal

energy proportional server because the Knight uses less power than

an ideal energy proportional server at that utilization.

Figure 6 shows the effect of KnightShift with a 20% and 50%

capable Knight on proportionality gap, energy efficiency, and linear

deviation (compare to Figure 2).

Proportionality Gap: At 20% capability, the proportionality gap

of the KnightShift server is essentially eliminated at utilization below

20%. While in Knight mode, the proportionality gap is negative,

meaning that the power used by the Knight at a specific utilization

is lower than that of an ideal energy proportional server, as shown

in Figure 5. At 50% capability, the proportionality gap is greatly

reduced in the 0%-25% utilization range as compared to Figure 2d,

while the proportionality gap is eliminated from 25%-50% utilization

range. The reason for non-zero proportionality gap at the lower range

is because of the power consumed by the Knight itself. As long as

the proportionality gap exists at low utilization, KnightShift should

benefit that server.

Energy Efficiency: The energy efficiency curves for the 20%

and 50% Knight capabilities are shown in Figure 6. KnightShift

enhances server’s energy efficiency and allows them to run at or

better than peak efficiency (great than 1 in the figure) even at lower

utilization. The improvement is directly correlated with the reduction

in proportionality gap. 20% capable Knights operate above peak

efficiency between 0-25% utilization range. 50% capable Knights

operate at above peak efficiency from 25%-50% utilization range, and
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Figure 8: KnightShift Prototype setup

just below peak efficiency below 25% utilization. This data shows

that KnightShift energy efficiency is substantially higher than the

baseline shown in Figure 2e.

Linear Deviation: KnightShift effectively shifts all servers from

+LD to -LD range. Improving LD is the only option to improve

energy proportionality when dynamic range improvements are not

feasible. With a 20% capable Knight, the lowest EP server amongst

the 291 servers jumped from 20% to 60%. Thus KnightShift is able to

improve the EP of servers by allowing commodity servers to exhibit

-LD. For 50% capable Knights, we even see servers with EP > 1,

indicating that KnightShift effectively closed the proportionality gap.

EP and Energy Savings: To evaluate energy savings, we assume

server utilization distribution similar to Google datacenter servers

in [6]. Figure 7 shows the average improvements to LD, EP and

potential energy savings. For 20% Knights, we experience average EP

improvements of 25%, average energy savings of 18% and average

LD decreased by .175. As Knight capability increases, energy savings

grows due to more opportunity to be in the Knight. For 50% capable

Knights, we experience average energy savings of 51% and average

EP improvement of 41%. By having KnightShift being configurable,

vendors may pick a KnightShift implementation that is best suited

for their performance and energy budget goals.

7. Evaluation

In this work we evaluate KnightShift using two approaches. First, we

present a KnightShift prototype and run a real-world workload, Wik-

iBench [20], to demonstrate feasibility and performance of Knight-

Shift under realistic conditions. A prototype implementation, how-

ever, provides limited flexibility to change the hardware configuration

parameters. Hence, we developed a queueing model based simulator

that is validated against the prototype implementation. We then use

the simulator to conduct a broad design space exploration using traces

collected from USC’s production datacenter.

7.1. Prototype Evaluation

7.1.1. Prototype Setup The KnightShift prototype is similar to Fig-

ure 3c. The exact experimental setup is shown in Figure 8 . In this

setup the Knight is a Shuttle XS35 slim PC with a 1.8GHz Intel

Atom D525, 1GB of ram, 500GB hard drive and operates from 15W-

16.7W. At idle, the CPU and memory consumes 9W, with the disk

and motherboard consuming 6W. The primary server is a Supermi-

cro server with dual 2.13GHz 4-core Intel Xeon L5630, 36GB of

ram, 500GB hard drive and consumes from 156W to 205W while

active. Recall that we assume that it is reasonable for the Knight to

have less memory than the primary server as the performance impact

due to less memory is accounted for in the capacity measurement
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Figure 9: Coordination of KnightShift servers

of the Knight. For our particular setup, our Knight is not capable of

supporting memory size larger than 1GB.

Using SPECpower results we determined that our primary server

has an EP of 24%. By enhancing the primary server with a Knight,

we improved the EP to 48%! Note that although our primary server

has a relatively low EP, if we use a significantly higher 70% EP server,

our prototype Knight can still provide EP improvements. KnightShift

is not meant to compete directly with servers that are already highly

proportional across all utilization levels. KnightShift improves EP of

servers that have large proportionality gap at low utilizations.

The primary server can turn on/off in 20/10 seconds, respectively.

During Knight mode, the primary server is placed in hibernate mode,

where the system is shutdown except for the network interface. It is

also possible to place the primary server in suspend mode quicker

than shutting down, but at the cost of higher idle power. Both nodes

run Ubuntu Linux with all power-saving features enabled (DVFS,

drive spin-down, etc). We determined that our Knight is 15% capable

compared to the primary server using throughput measurements from

apachebench [16]. In other words, the Knight’s throughput is 15% of

the peak throughput of the primary server. Request generation and

power measurement data collection are handled by a separate client

node which is not part of the prototype. The power consumption of

the primary server and Knight are measured using two Watts Up?

Pro power meters with data logged to the client node.

KnightShift Runtime: In our prototype setup, both nodes shares

data through NFS, with the Knight acting as the NFS server. In

order to force data consistency, we require coordination between

both nodes. Thus, we require runtime software for KnightShift

support. This software will handle both utilization monitoring and

coordination. While there are many options for implementation, here

we only present one particular implementation used in our prototype.

To support and enforce the KnightShift functionality, both nodes

run a daemon, called KnightShiftd, to support utilization monitoring

and coordination messages. KnightShiftd is implemented as a set

of scripts and acts as the control center for the KnightShift system.

KnightShiftd monitors the utilization of the node it’s running on and

makes mode switching decisions. To support redirection of requests,

the Knight runs a scheduler, which acts as a simple load balancer to

forward the requests to the active node.

Communication between both nodes takes place through messages.

Figure 9 highlights the processes of switching between nodes, which

also enforces data consistency. Upon entering a low utilization period,

the KnightShiftd daemon will detect the low utilization of the primary

server and initiates a mode switch. The primary server will flush

its memory state to ensure that the latest data is up to date in the



Response Time Energy
Average 95th Consumption(KWH)

Prototype

Baseline 144ms 249ms 23.27
KnightShift 150ms 296ms 15.35
Improvement -4% -19% 34%

Simulation

Baseline 1.00 1.66 23.27
KnightShift 1.12 2.00 15.11
Improvement -12% -21% 35%

Error 8% 2% 1%

Table 2: Energy consumption and response time of Wikibench using
our KnightShift prototype and simulator.

disk. When this completes, KnightShiftd will send a sleep message

to the Knight and begin to power down. The KnightShiftd daemon

on the Knight system receives the sleep message from the primary

server, which is an indication that the Knight should begin processing

requests. The Knight will process low utilization requests until it

reaches a high utilization region. At this point, the daemon on the

Knight will send a Wakeup message (through wake-on-lan) to wake

up the primary server. When the primary server has booted up, the

daemon on the primary server gets ready to process requests. It will

send an awake message to the Knight. At this point, the Knight will

flush its data and send a sync message, indicating to the primary

server that it can resume processing requests.

7.1.2. Prototype Results To verify the correctness of KnightShift

and to evaluate KnightShift under realistic workloads, we cloned

Wikipedia and benchmarked it using real-world Wikipedia request

traces. Wikipedia consists of two main components, Mediawiki,

the software wiki package written in PHP, and a backend mySQL

database. For our clone, we used a publicly available database dump

from January 2008, containing over 7 million articles. We replayed

a single-day Wikipedia access trace [32], which follows a diurnal

sinusoidal pattern, using WikiBench [20], a Wikipedia based web

application benchmark. Detailed WikiBench workload utilization

profile for this case study is presented in [33].

The first three rows of data of Table 2 show the energy consumption

and the 95th percentile response time of our KnightShift prototype

compared to the baseline primary server. Service Level Agreements

(SLA), which sets per-request latency targets, are typically based on

95th percentile latency [25].

We define the baseline as a system where all requests are always

handled by the primary server. KnightShift is able to achieve 34% en-

ergy savings with only 19% impact on 95th percentile response time.

This latency impact is mainly due to the single-threaded performance

of the Knight rather than penalties due to switching between the

Knight and primary server (Note that the average response time only

increased by 4%). When running Wikibench only on the Atom-based

Knight, we experience 95th percentile response time of 323ms for

successfully completed requests. Thus, KnightShift’s 95th percentile

response time is bounded by that of the Knight. By using higher

single-threaded performing processors, such as Intel Core i3, we

should expect to experience response time bounded by the response

time of the Core i3.

7.2. Trace-based Evaluation

7.2.1. Trace-based Setup While a prototype implementation pro-

vides great confidence regarding the functional viability and realistic

improvement results, it also limits our ability to alter some of the crit-

ical design space parameters, such as Knight capability level, Knight

Utilization ∆ Utililization
Server Type x̄ σ x̄ σ

aludra stu. timeshare 3.87 3.12 0.59 0.84
email email store 3.26 1.74 0.78 1.20
girtab stu. timeshare 0.83 2.42 0.73 1.94
msg-mmp email services 32.62 13.60 2.64 2.76
msg-mx email services 19.23 7.41 1.69 2.30
msg-store email store 11.05 5.88 2.39 2.72
nunki stu. timeshare 4.86 10.85 1.98 4.50
scf file server 5.47 4.19 1.15 1.65

Table 3: Datacenter trace workload characteristics

performance, and Knight transition time. In order to fully explore

these variables, we present KnightSim, a trace-driven KnightShift

system simulator validated against our prototype system. During

simulation runs, KnightSim replays the utilization traces collected

from our production datacenter on a modeled KnightShift system.

KnightShift is modeled as a G/G/k queue, where the arrival rate is

time-varying based on the utilization trace, the service rate is expo-

nential with a mean of 1 second, and varying k servers modeling the

capability of the Knight and primary server. Because we do not have

measured response time from out datacenter traces, we arbitrarily set

the service rate to 1 second and report relative performance impact.

Datacenter Utilization Traces: In order to rigorously evaluate

KnightShift under various workload patterns, we collected minute-

granularity CPU and I/O utilization traces from our production dat-

acenter over 9 days. The datacenter serves multiple tasks, such as

e-mail store(email, msg-store1), e-mail services (msg-mmp, msg-

mx), file server (scf), and student timeshare servers (aludra, nunki,

girtab). Each task is assigned to a dedicated cluster, with the data

spread across multiple servers. Selected servers within a cluster

exhibit a behavior representative of each server within that cluster.

Table 3 shows the properties of each server workload along with its

corresponding utilization and burstiness characteristics. Some of our

servers (aludra, email, girtab, nunki, scf) run at less than 20% CPU

utilization for nearly 90% of their total operational time [33]. These

traces reaffirms prior studies that CPU utilization reaches neither

100% nor 0% for extended periods of time [6, 11, 27]. We also

collected a second-granularity traces for a subset of these servers and

found that there is a high correlation to minute-granularity. Thus,

we use the minute-granularity data for the rest of the paper. The

burstiness of the workload is characterized by σutilization, the standard

deviation of the workload’s utilization, and ∆utilization, the change

in utilization from sample to sample. σutilization tells us how varied

the utilization of the server is, while the ∆utilization tells us how

drastic the utilization changes from sample to sample. For example,

nunki has a wide operating utilization range with large variation in

utilization from sample to sample. More details of our datacenter

traces are presented in [33].

Modeling Knight capability: Knight capability is modeled by

varying the system capacity, k. For example, if we have a 10% Knight,

then k = 10 in our G/G/k queueing model when operating in Knight

mode. When the primary server becomes active then k = 100.

Scaling Power Consumption: To faithfully scale the power of

the Knight as its capability changes, we assume simply that the power

consumption of the CPU scales quadratically with performance. The

quadratic assumption is based on historical data [5] which showed

that power consumption increased in proportions to per f ormance1.7.

We assume this is a reasonable assumption due to the fact that even

if the Knight and primary server require similar infrastructure (such

as same size memory), the Knight can tradeoff performance by us-



ing low-power components (such as low-power mobile memory),

therefore, most components can scale.

Modeling Power: Our power model is based on our prototype

system to allow us to compare and validate KnightSim. Through on-

line instrumentation, we collect the utilization vs power data for both

the Knight and primary server. We use this utilization-power data in

our simulations; whenever a Knight is active at a given utilization

we use the power consumption data collected from our prototype

Knight. Similarly whenever the primary server is operating at a given

utilization, we use the power consumption collected from the primary

server in our prototype. It is also possible to generalize the power

model and use a linear power model validated in [11].

In order to capture the energy penalty of transitioning to/from

Knight, we conservatively model the transition power as a constant

power during the entire wakeup period equal to the peak transition

power. We determined empirically that the peak transition power for

the primary server is 167W.

Arrival Rate and Latency Estimation: Our datacenter traces

only have CPU and I/O utilization per second without individual

request information. By assuming a mean service time of 1 second

for each request, we can estimate a time-varying arrival rate through

our utilization trace. For example, 50% utilization would correspond

to an arrival rate of 50 requests per second. Through the simulated

queueing model, we can obtain a relative average and 95th percentile

latency of a KnightShift system compared to a baseline system.

Modeling Single-threaded Performance: We vary the queue-

ing model’s service time to model the performance difference of the

Knight and primary server. We cannot infer single-threaded perfor-

mance directly from processor frequency because single-threaded

performance is based on frequency and the underlying architecture.

Instead, we compare the 95th percentile latency of the Knight and

primary server and scale the service time accordingly. For example,

our primary server has tail latency of 249ms while our Knight has tail

latency of 323ms as shown in section 7.1.2. As we do not have direct

access to the datacenter servers, nor can we replicate the proprietary

applications on our Knight, we cannot collect response times for the

primary server and Knight for each individual workload. Therefore,

in our model, we assume that all workloads experience similar per-

formance slowdown due to the Knight similar to WikiBench, where

the service time is increased by a factor of 1.3 compared to baseline.

Simulator Validation: We validated our trace-based emulation

by collecting utilization traces from our WikiBench run and replayed

the utilization traces through the trace emulator. In addition,

we validated our power results against our prototype system by

running a CPU and I/O load generator to match the utilization of

the traces. Table 2 shows the results of our validation run. 95th

percentile latency and energy consumption improvement results from

KnightSim are all within 2% of our prototype system.

7.2.2. Sensitivity Analysis In this section we explore KnightShift’s

sensitivity to various parameters such as workload utilization patterns,

Knight capability, and transition times.

Sensitivity to Workload patterns: We used KnightSim to simu-

late KnightShift running a variety of workload patterns by driving

the queueing model with traffic patterns from Table 3. The energy

and latency impact are shown in Table 4. Recall that our Atom-based

Knight has a 95% response time that is 30% greater than the primary

server, thus we consider any latency above 30% to be attributable to

the KnightShift mechanism overhead. For workloads with low bursti-

Trace Energy Savings 95% Latency Impact
aludra 87.9% 40%
email 85.5% 37%
girtab 87.2% 49%
msg-mmp -6.7% 7%
msg-mx 7.2% 254%
msg-store 34.5% 53%
nunki 67.7% 5989%
scf 77.5% 46%
wikibench 35.1% 21%

Table 4: Energy savings and latency impact wrt Baseline of a 15%
Capable KnightShift system

ness (aludra, email, msg-mmp, wikibench), we experience relatively

low response time impact (<10%).

For moderately bursty workloads (girtab, msg-store, scf), we ex-

perience latency impact within 25% of the Atom-based Knight. For

these workloads, the majority of the latency impact occurs during

the transition from the Knight to primary server when the Knight

is handling requests that it cannot handle until the primary server

is ready. These bursty behaviors tend to be periodic, thus it would

be possible for KnightShift to learn day-to-day utilization patterns

and proactively switch to the primary server to handle these high-

utilization bursty periods, negating the high latency impact. This

topic is outside the scope of the paper and will be explored in future

work.

For very bursty workloads with high utilization (msg-mx, nunki),

we experience the most latency impact, as expected. KnightShift does

not handle scenarios where the workload switches quickly between

very low and high utilization. In these scenarios, the workload may

benefit from a higher capacity Knight.

Almost all workloads experience energy saving benefits from

KnightShift with the exception of workloads with mostly high uti-

lization periods. There are no benefits from using KnightShift for

workloads that operate mostly at utilization above the capability of

the Knight, hence such workloads don’t need KnighShift support to

begin with. For these cases, this may even lead to an energy penalty

(msg-mmp) due to running the Knight alongside a heavily utilized

primary server.

For most other workloads (aludra, email, girtab, scf, wikibench),

we can experience an average of 75% energy savings with tail latency

within 9% of the Atom-based server.

Sensitivity to Knight Capability: Figure 10 shows the effect

of Knight capability levels on energy savings and 95th percentile

response time. As Knight capability increases up to 50%, so does

energy savings due to more opportunity for the system to stay in

the Knight mode. Although the Knight uses more power at higher

capability levels, increased energy savings from time spent in the

Knight offset the Knight’s higher power.

As Knight capability increases, up to a limit of around 50%, the

primary server spends more time sleeping, resulting in latency con-

verging to the 95th percentile latency of the Knight. At low Knight ca-

pability, especially for capability less than 20%, KnightShift thrashes;

Knight cannot handle the tasks when switched to the Knight mode

and these tasks endure long latency while waiting for the primary

server to wakeup. Some workloads (msg-mx and nunki) experience

latency penalties beginning at higher capability. These workloads do

not experience latency impact at lower capabilities since KnightShift

rarely switches to the Knight mode and hence the primary server

handles nearly all the requests due to the high utilization demands.

But when the Knight capability increases the system occasionally
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Figure 10: Effect of Capability on Latency and Energy
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Figure 11: Effect of Wakeup transition time

switches to the Knight mode and the Knight is quickly saturated.

Hence, the workload switches back to the primary server leading

to latency penalties. KnightShift is in fact unnecessary for these

workloads. Thus, for certain workloads with stringent QoS bounds

KnightShift may not be an ideal solution.

Sensitivity to Transition Time: For brevity, we only present

wakeup transition time. The effect of sleep transition time is similar.

Figure 11 shows the effect of wakeup transition time on energy

savings and 95th percentile response time. In general, as transition

time increases, we experience less energy savings due to the primary

server using power but not doing work, while the Knight is still

handling requests it potentially cannot handle. This is reflected in an

increase in 95th percentile latency as transition time increases.

Sensitivity to single-threaded performance: The tail latency of

KnightShift is determined by the Knight. If the SLAs demand very

tight latency slack (less than 20%), then it is best to use low-power

processors, such as Core i3, as Knights instead of extremely low

power Atom boards.

8. TCO

To study the effect of KnightShift on TCO of an entire datacenter,

we use a publicly available cost model [17]. The model assumes an

8MW power budget where facility and IT capital costs are amortized

over 15 and 3 years, respectively. The model breaks down TCO

into server, networking, power distribution and cooling, power, and

other infrastructure costs. We assume that KnightShift has no impact

on rack density, with power budget as the sole limiting factor. In

Table 5, we present our cost breakdown for our primary server and

our Knight. We broke down cost into memory, storage, processor,

and other system components. Other system components includes

motherboard, chipset, network interface, fans, and other on-board

components. A significant portion of the energy savings derive from

other system components. This is due to the fact that many of these

components are energy-disproportional, such as chipset, network

interface, fans, and sensors. For example, the power consumption

of motherboard components, such as chipset and network interface,

are mostly constant with utilization. But with KnightShift, when we

switch to the Knight, we could use a low-power mobile chipset (such

as for Atom) rather than a higher power chipset (such as for Xeon) to

save power. Performance is based on the SPECpower benchmark. An

integrated version of KnightShift is expected to consume less power

and have lower cost but we assume our prototype implementation of

KnightShift to present worst-case TCO.

Primary Server Knight
Cost Power(W) Cost Power(W)

Memory $248 40 $20 3
Storage $130 20 $70 18
Processor $1102 70
Other $350 75 $69 12
System Components

Total $1830 205 $159 33
No. Servers 37361 34483

Table 5: Cost breakdown of primary server and Knight based on pro-
totype KnightShift system. Other system components in-
clude motherboard, chipset, network interface, fans, and
other on-board components.
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Figure 12: TCO breakdown across PUE and Energy Cost

We present TCO on a monthly basis as Performance per TCO

Dollar spent (Perf/$), an important metric in TCO-conscious data-

centers [22]. These results make the worst case assumption that both

the Knight and primary server are always ON. Figure 12 shows the

effect of PUE and electricity cost per kWh on Perf/$. There are two

distinct regions, one where Perf/$ is improved, and one where Perf/$

is impacted. Due to the increased peak power usage of Knightshift

and the fixed power budget of the datacenter, we suffer a decrease

in total datacenter performance. Although there is a reduction in the

number of servers due to peak power constraint, we do not always

suffer any loss in Perf/$. In regions of higher electricity prices and

higher PUE, it is easier to recoup the cost of KnightShift hardware

due to more monetary savings per watt. For cases with high PUE

and electricity cost, we experience up to 14% improvement to Perf/$.

Only at very low electricity prices do we see a negative impact in

Perf/$, due to the hardware cost outweighing the potential in energy

savings. Note that even with PUE of 1, KnightShift can still provide

Perf/$ advantages with electricity prices above $0.07 per kWh.

Figure 13 shows the TCO breakdown across server and infrastruc-

ture for PUE of 1.45 and electricity cost of $0.07. Although the total

cost of servers is higher with KnightShift (68% total cost vs 60% in

the baseline), the power budget improvements (from 14% to 4%),

more than makes up for the difference, resulting in TCO savings of

11% monthly. Even by accounting for the lower number of servers,

Perf/$/month improved by 4% compared to baseline.

9. Conclusion

Energy proportionality of computer systems has been increasing over

the past few years. We introduce several metrics to analyze energy

proportionality which shed light into why proportionality has not im-

proved uniformly across all utilization levels. We show that servers

exhibit significant proportionality gap at low utilizations. With the

pervasiveness of multicores, servers in future will be rarely idle and

hence energy saving techniques must now tackle the proportionality

gap at low server utilization levels. We introduce KnightShift, a
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Figure 13: TCO breakdown across servers and infrastructure

server-level heterogeneous architecture that fronts a primary server

with a low-power compute node. By operating KnightShift at two

levels of efficiency, we convert any server to exhibit sublinear energy

proportionality, drastically improving energy proportionality. In our

prototype KnightShift implementation with a 15% capable Atom-

based Knight, we achieve a 2x improvement in energy proportionality

(from 24% to 48%) due to improvements to both dynamic range and

proportionality linearity. We demonstrated energy savings of 35%

with latency bounded by the latency of the Knight using a real-world

Wikipedia workload. In addition, we rigorously evaluated our proto-

type using various production datacenter traces and experience up to

75% energy savings with tail latency increase of about 9%. Through

publicly available cost models, we also showed that KnightShift can

improve performance per TCO dollar spent up to 14%. Our work

hopes to motive future work in system-level active low-power modes

that exploits low-utilization periods.
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