
KNIME: The Konstanz Information Miner

Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel,
Tobias Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and
Bernd Wiswedel

ALTANA Chair for Bioinformatics and Information Mining,
Department of Computer and Information Science, University of Konstanz,
Box M712, 78457 Konstanz, Germany, contact@knime.org

Abstract. The Konstanz Information Miner is a modular environment, which en-
ables easy visual assembly and interactive execution of a data pipeline. It is designed
as a teaching, research and collaboration platform, which enables simple integration
of new algorithms and tools as well as data manipulation or visualization methods
in the form of new modules or nodes. In this paper we describe some of the de-
sign aspects of the underlying architecture and briefly sketch how new nodes can be
incorporated.

1 Overview

The need for modular data analysis environments has increased dramatically
over the past years. In order to make use of the vast variety of data analysis
methods around, it is essential that such an environment is easy and intuitive
to use, allows for quick and interactive changes to the analysis process and
enables the user to visually explore the results. To meet these challenges data
pipelining environments have gathered incredible momentum over the past
years. Some of today’s well-established (but unfortunately also commercial)
data pipelining tools are InforSense KDE (InforSense Ltd.), Insightful Miner
(Insightful Corporation), and Pipeline Pilot (SciTegic). These environments
allow the user to visually assemble and adapt the analysis flow from standard-
ized building blocks, which are then connected through pipes carrying data or
models. An additional advantage of these systems is the intuitive, graphical
way to document what has been done.

KNIME, the Konstanz Information Miner provides such a pipelining en-
vironment. Figure 1 shows a screenshot of an example analysis flow. In the
center, a flow is reading in data from two sources and processes it in several,
parallel analysis flows, consisting of preprocessing, modeling, and visualization
nodes. On the left a repository of nodes is shown. From this large variety of
nodes, one can select data sources, data preprocessing steps, model building
algorithms, as well as visualization tools and drag them onto the workbench,



2 Berthold et al.

Fig. 1. An example analysis flow inside KNIME.

where they can be connected to other nodes. The ability to have all views
interact graphically (visual brushing) creates a powerful environment to visu-
ally explore the data sets at hand. KNIME is written in Java and its graphical
workflow editor is implemented as an Eclipse (Eclipse Foundation (2007))
plug-in. It is easy to extend through an open API and a data abstraction
framework, which allows for new nodes to be quickly added in a well-defined
way.

In this paper we describe some of the internals of KNIME in more detail.
More information as well as downloads can be found at http://www.knime.org.

2 Architecture

The architecture of KNIME was designed with three main principles in mind.

• Visual, interactive framework: Data flows should be combined by simple
drag&drop from a variety of processing units. Customized applications can
be modeled through individual data pipelines.

• Modularity: Processing units and data containers should not depend on
each other in order to enable easy distribution of computation and allow
for independent development of different algorithms. Data types are en-
capsulated, that is, no types are predefined, new types can easily be added
bringing along type specific renderers and comparators. New types can be
declared compatible to existing types.



KNIME: The Konstanz Information Miner 3

• Easy expandability: It should be easy to add new processing nodes or views
and distribute them through a simple plugin mechanism without the need
for complicated install/deinstall procedures.

In order to achieve this, a data analysis process consists of a pipeline of nodes,
connected by edges that transport either data or models. Each node processes
the arriving data and/or model(s) and produces results on its outputs when
requested. Figure 2 schematically illustrates this process. The type of process-
ing ranges from basic data operations such as filtering or merging to simple
statistical functions, such as computations of mean, standard deviation or lin-
ear regression coefficients to computation intensive data modeling operators
(clustering, decision trees, neural networks, to name just a few). In addition,
most of the modeling nodes allow for an interactive exploration of their re-
sults through accompanying views. In the following we will briefly describe
the underlying schemata of data, node, workflow management and how the
interactive views communicate.

2.1 Data Structures

All data flowing between nodes is wrapped within a class called DataTable,
which holds meta-information concerning the type of its columns in addition
to the actual data. The data can be accessed by iterating over instances of
DataRow. Each row contains a unique identifier (or primary key) and a specific
number of DataCell objects, which hold the actual data. The reason to avoid
access by Row ID or index is scalability, that is, the desire to be able to process
large amounts of data and therefore not be forced to keep all of the rows in
memory for fast random access. KNIME employs a powerful caching strategy
which moves parts of a data table to the hard drive if it becomes too large.
Figure 3 shows a UML diagram of the main underlying data structure.

2.2 Nodes

Nodes in KNIME are the most general processing units and usually resemble
one node in the visual workflow representation. The class Node wraps all

Fig. 2. A schematic for the flow of data and models in a KNIME workflow.



4 Berthold et al.

functionality and makes use of user defined implementations of a NodeModel,
possibly a NodeDialog, and one or more NodeView instances if appropriate.
Neither dialog nor view must be implemented if no user settings or views are
needed. This schema follows the well-known Model-View-Controller design
pattern. In addition, for the input and output connections, each node has a
number of Inport and Outport instances, which can either transport data or
models. Figure 4 shows a UML diagram of this structure.

2.3 Workflow Management

Workflows in KNIME are essentially graphs connecting nodes, or more for-
mally, a direct acyclic graph (DAG). The WorkflowManager allows to insert
new nodes and to add directed edges (connections) between two nodes. It also
keeps track of the status of nodes (configured, executed, ...) and returns, on
demand, a pool of executable nodes. This way the surrounding framework can
freely distribute the workload among a couple of parallel threads or – in the
future – even a distributed cluster of servers. Thanks to the underlying graph
structure, the workflow manager is able to determine all nodes required to
be executed along the paths leading to the node the user actually wants to
execute.

Fig. 3. A UML diagram of the data structure and the main classes it relies on.



KNIME: The Konstanz Information Miner 5

Fig. 4. A UML diagram of the Node and the main classes it relies on.

2.4 Views and Interactive Brushing

Each Node can have an arbitrary number of views associated with it. Through
receiving events from a HiLiteHandler (and sending events to it) it is possible
to mark selected points in such a view to enable visual brushing. Views can
range from simple table views to more complex views on the underlying data
(e. g. scatterplots, parallel coordinates) or the generated model (e. g. decision
trees, rules).

2.5 Meta Nodes

So-called Meta Nodes wrap a sub workflow into an encapsulating special node.
This provides a series of advantages such as enabling the user to design much
larger, more complex workflows and the encapsulation of specific actions. To
this end some customized meta nodes are available, which allow for a repeated
execution of the enclosed sub workflow, offering the ability to model more
complex scenarios such as cross-validation, bagging and boosting, ensemble
learning etc. Due to the modularity of KNIME, these techniques can then be
applied virtually to any (learning) algorithm available in the repository.

Additionally, the concept of Meta Nodes helps to assign dedicated servers
to this subflow or export the wrapped flow to other users as a predefined
module.

2.6 Distributed Processing

Due to the modular architecture it is easy to designate specific nodes to be
run on separate machines. But to accommodate the increasing availability of
multi-core machines, the support for shared memory parallelism also becomes



6 Berthold et al.

increasingly important. KNIME offers a unified framework to parallelize data-
parallel operations. Sieb et al. (2007) describe further extensions, which enable
the distribution of complex tasks such as cross validation on a cluster or a
GRID.

3 Repository

KNIME already offers a large variety of nodes, among them are nodes for
various types of data I/O, manipulation, and transformation, as well as data
mining and machine learning and a number of visualization components. Most
of these nodes have been specifically developed for KNIME to enable tight
integration with the framework; other nodes are wrappers, which integrate
functionality from third party libraries. Some of these are summarized in the
next section.

3.1 Standard Nodes

• Data I/O: generic file reader, and reader for the attribute-relation file for-
mat (ARFF), database connector, CSV and ARFF writer, Excel spread-
sheet writer

• Data manipulation: row and column filtering, data partitioning and sam-
pling, sorting or random shuffling, data joiner and merger

• Data transformation: missing value replacer, matrix transposer, binners,
nominal value generators

• Mining algorithms: clustering (k-means, sota, fuzzy c-means), decision
tree, (fuzzy) rule induction, regression, subgroup and association rule
mining, neural networks (probabilistic neural networks and multi-layer-
perceptrons)

• Visualization: scatter plot, histogram, parallel coordinates, multidimen-
sional scaling, rule plotters

• Misc: scripting nodes

3.2 External Tools

KNIME integrates functionality of different open source projects that essen-
tially cover all major areas of data analysis such as WEKA (Witten and
Frank (2005)) for machine learning and data mining, the R environment (R
Development core team (2007)) for statistical computations and graphics, and
JFreeChart (Gilbert (2005)) for visualization.

• WEKA: essentially all algorithm implementations, for instance support
vector machines, Bayes networks and Bayes classifier, decision tree learners

• R-project: console node to interactively execute R commands, basic R
plotting node

• JFreeChart: various line, pie and histogram charts



KNIME: The Konstanz Information Miner 7

The integration of these tools not only enriches the functionality avail-
able in KNIME but has also proven to be helpful to overcome compatibility
limitations when the aim is on using these different libraries in a shared setup.

4 Extending KNIME

KNIME already includes plug-ins to incorporate existing data analysis tools. It
is usually straightforward to create wrappers for external tools without having
to modify these executables themselves. Adding new nodes to KNIME, also
for native new operations, is easy. For this, one needs to extend three abstract
classes:

• NodeModel: this class is responsible for the main computations. It requires
to overwrite three main methods: configure(), execute(), and reset().
The first takes the meta information of the input tables and creates the
definition of the output specification. The execute function performs the
actual creation of the output data or models, and reset discards all in-
termediate results.

• NodeDialog: this class is used to specify the dialog that enables the user
to adjust individual settings that affect the node’s execution. A standard-
ized set of DefaultDialogComponent objects allows the node developer to
quickly create dialogs when only a few standard settings are needed.

• NodeView: this class can be extended multiple times to allow for different
views onto the underlying model. Each view is automatically registered
with a HiLiteHandler which sends events when other views have hilited
points and allows to launch events in case points have been hilit inside this
view.

In addition to the three model, dialog, and view classes the programmer also
needs to provide a NodeFactory, which serves to create new instances of the
above classes. The factory also provides names and other details such as the
number of available views or a flag indicating absence or presence of a dialog.

A wizard integrated in the Eclipse-based development environment enables
convenient generation of all required class bodies for a new node.

5 Conclusion

KNIME, the Konstanz Information Miner offers a modular framework, which
provides a graphical workbench for visual assembly and interactive execution
of data pipelines. It features a powerful and intuitive user interface, enables
easy integration of new modules or nodes, and allows for interactive explo-
ration of analysis results or trained models. In conjunction with the integra-
tion of powerful libraries such as the WEKA data mining toolkit and the



8 Berthold et al.

R-statistics software, it constitutes a feature rich platform for various data
analysis tasks.

KNIME is an open source project available at http://www.knime.org. The
current release version 1.2.1 (as of 14 May 2007) has numerous improvements
over the first public version released in July 2006. KNIME is actively main-
tained by a group of about 10 people and has more than 6 000 downloads so
far. It is free for non-profit and academic use.

References

INFORSENSE LTD.: InforSense KDE. http://www.inforsense.com/kde.html.
INSIGHTFUL CORPORATION: Insightful Miner. http://www.insightful.com/

products/iminer/default.asp.
SCITEGIC: Pipeline Pilot. http://www.scitegic.com/products/overview/.
ECLIPSE FOUNDATION (2007): Eclipse 3.2 Documentation.

http://www.eclipse.org.
GILBERT, D (2005): JFreeChart Developer Guide. Object Refinery Limited, Berke-

ley, California. http://www.jfree.org/jfreechart.
R DEVELOPMENT CORE TEAM (2007): R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. http://www.R-project.org.

SIEB C., MEINL T., and BERTHOLD, M. R. (2007): Parallel and distributed
data pipelining with KNIME. Mediterranean Journal of Computers and Net-
works, Special Issue on Data Mining Applications on Supercomputing and Grid
Environments. To appear.

WITTEN, I. H. and FRANK, E (2005): Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann, San Francisco.
http://www.cs.waikato.ac.nz/˜ml/weka/index.html.


