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ABSTRACT 

The Konstanz Information Miner is a modular environment, 

which enables easy visual assembly and interactive execution 

of a data pipeline. It is designed as a teaching, research and 

collaboration platform, which enables simple integration of 

new algorithms and tools as well as data manipulation or 

visualization methods in the form of new modules or nodes. 

In this paper we describe some of the design aspects of t he 

underlying archi tecture, briefly sketch how new nodes can 

be incorporated , and highlight some of the new features of 
version 2.0. 

1. INTRODUCTION 
The need for modular da ta analysis environments has in

creased dramatically over the past years . In order to make 

use of the vast variety of data analysis methods a round , it is 

essential t hat such an environment is easy and intuitive to 

use, allows for quick and interactive changes to the analysis 

process and enables the user to visually explore t he resul ts . 

To meet these challenges da ta pipelining environments have 

gathered incredible momentum over the past years. Some 

of today's well-established (but unfortunately also commer

cia l) data pipelining tools are InforSense KDE [6], Insightful 

Miner [7], Pipeline Pilot [8], to name just three examples. 

These environments a llow the user to visually assemble and 

adapt the analysis fl ow from ::; talldardized building blocks, 

which are t hen connected through pipes carrying data or 

models. An addi t ional advantage of t hese systems is the 

intui t ive, graphical way to document what has been done. 

KNIME, t he Konstanz Information Miner provides such a 

pipelining environment. Figure 1 shows a screenshot of 

the standard KNIME workbench wi th a small example data 

analysis workflow. In the center , a flow is reading in data 

from two sources and processes it in several, parallel anal

ysis fl ows, consistin g of preprocessing, modelin g, and visu

alization nodes. On the left a repository of nodes is shown. 

FI.·om this large variety of nodes, one can select dat a sources, 

data preprocessing steps , model building algorithms, as well 

as visua lization tools and d rag them onto the workbench, 

where they can be connected to other nodes. The abili ty to 

have all views interac t graphically (visual brushing) creates 
a powerful environment to visua lly explore the data sets at 

hand . KNIME is wri tten in J ava and its graphical workflow 

edi tor is implemented as an ·Eclipse [9] plug-in. I t is easy to 

extend through an open API and a data abstraction frame

work, which allows for new nodes to be quickly added in a 

well-defined way. 

In this paper - which is based on an earlier publication [1] 

concentrating on KNIME 1.3 - we describe the internals 

of KNIME in more de tail with emphasis on the new fea

t ures in KNIME 2.0. More information as well as down

loads can be found at http : //www .knime . org. Experimen

tal extensions are made ava ilable at the KNIME Labs pages 

(http : //labs . knime . org) . 

2. OVERVIEW 
In KNIME, t he user can model workflows, which consist of 

nodes that process da ta, transported via connections be

tween those nodes . A flow usually starts with a node that 

reads in da ta from some data source , which are u sually text 

fil es, but dat abases can also be queried by special nodes . 

Imported data is stored in an internal table-based format 

consisting of columns with a certain (extendable) data type 

(integer , string, image, molecule, etc.) and an a rbitra ry 

number of rows conforming to the column specifications. 

These da ta tables are sent a long the connections to other 

nodes tha t modify, t ransform , model , or visualize the data. 

IVlodifications can include handling of missing values, fil

tering of column or rows, oversampling, par t itioning of the 

table into tra ining and test da ta and many other operators. 

Following t hese preparatory steps, predictive m odels with 

machine learning or data mining algorithms such as decision 

t rees, Naive Bayes classifiers or support vector machines are 

buill . I:<o r inspecLing the results of an analysis workflow nu

merous view nodes are available, which display the data or 

the trained models in diverse ways. 

In contrast to many other workflow or pipelining tools , nodes 

in KNIME first process the entire input table before t he 

resul ts are forwarded to successor nodes. The advantages 

are that each node stores its results permanent ly and thus 

workflow execut ion can easily be stopped at any node and 

resumed later on . Intermediate results can be inspected at 

any time and new nodes can be inser ted and may use al

ready created da ta wi thout preceding nodes having to be 

re-executed . The data tables are stored together wi th the 

workflow structure and tile node::; ' ::;ettings. 
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Figure 1: The KNIME workbench with a small example workflow , 

One of KNIME's key features is hiliting, In its simplest form, 

it allows the user to select and highlight several rows in a 

data table and the same rows are also highlighted in all other 

views that show the same data table (or at least the high

lited rows), This type of hiliting is simply accomplished by 

using the 1:1 correspondence between the tables' unique row 

keys, However, there are several nodes that change the input 

table 's structure and yet there is sti ll some relation between 

input and output rows, A good example for such a 1-to-n re

lation are clustering a lgorithms, One of the node 's input are 

t he t raining (or test) patterns, the output are cluster pro

totypes, Each of the clusters covers severa l input patterns. 

By hiliting one or more clusters in t he output table all input 

patterns which are part of those cluster(s) are hilited in the 

input table. Similar translations are , of course, also possible 

for other summarizing models: branches/leaves of a decision 

tree, frequent patterns, discrimina tive molecular fragments, 

to name just three examples. 

One of the important design decisions was to ensure easy ex

tensibili ty, so that other users can add functionality, usually 

in the form of new nodes (and sometimes also data types), 

This has already been done by several commercia l vendors 

but also by other university groups or open source program

mers, The usage of Eclipse as the core platform means ~hat 

contribu ting nodes iri the form of plugins is a very simple 

procedure. The official KNIME website offers several ex

tension plugins for business intelligence and reporting via 

BIRT [2], statistical analysis with R[4] or extended machine 

learning capabilities from Weka [5], among many others, 

3. ARCHITECTURE 
The a rchitecture of KNIME was designed with three main 

principles in mind, 

• Visual , interactive framework: Data flows should be 

combined by simple drag&drop from a variety of pro

cessing units , Customized applications can be modeled 

through individual da ta pipelines. 

• Modularity: Processing units and da ta containers should 
not depend on each other in order to enable easy distri

bution of computation and allow for independent de

velopment of differellt algorithms, Data types are eTl

capsulated, that is , no types are predefined, new types 

can easily be added bringing along type specific ren

derers and comparators, New types can be declared 

compatible to existing types. 

• Easy extensibility: It should be easy to add new pro
cessing nodes or views and distribute them through a 

simple plugin mechanism without the need for compli

cated insta ll/ deinstall procedures. 

In order to achieve this, a da ta analysis process consists of 

a pipeline of nodes, connected by edges that transport ei

ther data or models, Each node processes the arriving data 

and/or model(s) and produces results on its outputs when 

requested , Figure 2 schematically illustrates this process , 

The type of processing ranges from basic data operations 

such as filtering or merging to simple statistical functions, 

sllch as computations of mean , standard devia tion or linear 
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Figure 2: A schematic [or the flow o[ data and models in a 
KNIME workflow. 

regression coefficients to computation intensive data mod

eling operators (clustering, decision trees , neural networks, 

to name just a few). In addition, most of the modeling 

nodes allow for an interactive exploration of their results 

through accompanying views. In the following we will briefly 

describe the underlyillg schemata of data, node, workflow 

management and how the interactive views communicate. 

3.1 Data Structures 
All data flowing between nodes is wrapped within a class 

called DataTable , which holds meta-information concerning 

the type of its columns in addition to the actual da ta. The 

data can be accessed by iterating over instances of DataRow. 

Each row contains a unique identifier (or primary key) and a 

specific number of DataCell objects, which hold the actual 

data. The reason to avoid access by Row ID or index is 

scalability, that is , the desire to be able to process large 

amounts of data and therefore not be forced to keep all of the 

rows in memory for fast random access. KNIME employs a 

powerful caching strategy which moves parts of a data table 

to the hard drive if it becomes too large. Figure 3 shows a 

diagram of the main underlying data structure. 

3.2 Nodes 
Nodes in KNIME are the most general processing units and 

usually resemble one node in the visual workflow represen

tation. The class Node wraps all functionality and makes 

use of user defined implemelltations of a NodeModel , possi

bly a NodeDialog, and one or more NodeView instances if 

appropriate. Neither dialog nor view must be implemented 

if no user settings or views arc needed. This schema follows 

the well-known Model-View-Controller design pattern. In 

addition, for the input and output connections, each node 

has a number of Inport and Outport instances, which can 

either transport data or models . Figure 4 shows a diagram 

of this structure. 

3.3 Workflows 
Workflows in KN I M E are essentially graphs connecting nodes, 

or more formally, a direct acyclic graph (DAG). The work

flow manager allows the insertion of new nodes and addition 

of directed edges (connections) between two nodes. It also 

keeps Lrack of the sLa(,us of nodes (configured , executed , 

... ) and returns, on demand, a pool of executable nodes. 

This way the surrounding framework can frecly distribute 

the workload among a couple of para llel threads or - as part 

of the KNIME Grid Support and Server (currently under de

velopment) - even a d istributed cluster of compute servers. 

Thanks to t he underlyillg graph structure, t llc workfl ow 

Figure 3: A diagram of the data structure and the main 

classes it relies on. 

manager is able to determine all nodes required to be ex

ecuted along the paths leading to t he node the u ser actually 

wants to execute. 

3.4 Developing Own Nodes 
KNIME already includes plug-ins to incorporatc existing data 

analysis tools. It is usually straightforward to create wrap

pers for external tools without having to modify these exe

cutables themselves. Adding new nodes to KNIME, also for 

native new operations, is easy. For this, one needs to extend 

three abstract classes: 

• NodeModel: this class is responsible for the main com

putations. It requires to overwrite three main meth

ods: configure 0, execute 0 , and reset O. The first 

takes the meta information of the input tables and 

creates the definition of the output specificaLion. The 

execute function performs the actual creation of the 

output data or models, and reset discards a ll inter
media te results. 

Figure 4: A diagram depicting t he main classes of a KNIME 

node. 
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• NodeDialog: this class is used to specify the dialog 

that enables the user to adjust individual settings that 
alIce(, the node's execu Lion. A standard bled seL of 

DefaultDialogComponent objects allows the node de

veloper to quickly create dialogs when only a few stan

dard settings arc needed. 

• NodeView: this class can be extended multiple times 

Lo allow for dilIerent. views onLo the underlying model. 

Each view is registered with a HiLit eHandler which 

sends events when other views have hilited points and 

a llows launching events in case points have been hilit 

inside this view. 

In addition to the three model, dialog, and view classes the 
programmer also needs to provide a NodeFactory, which 

serves to create new instances of the above classes. The 

factory also provides names and other details such as the 

number of available views or a fl ag indicating absence or 

presence of a dialog. 

A wizard integrated in the Eclipse-based development envi

ronment enables convenient generation of all required class 

bodies for a new node. 

3.5 Views and Interactive Brushing 
Each Node can have an arbitrary number of views asso

ciated with it . Through receiving events from a so-called 

HiLiteHandler (and sending events to it) it is possible to 

mark selected points in such a view to enable visual brush

ing. Views can range from simple table views to more com

plex views on the underlying data (c. g. scatterplots, paral

lel coordinates) or the generated model (e.g. decision trees, 
rules). 

3.6 Meta Nodes 
So-called Meta Nodes wrap a sub workflow into an encap

sulating special node. This provides a series of advantages 

such as enabling the user to design much larger, more com

plex work flows and the encapsulation of specific actions . 

Whereas previous KNIME vel'siolls had ollly a fixed set of 

meta nodes (1 or 2 data input/output ports), it is now pos

sible to create meta nodes with an arbitrary number and 

even type of ports (sec section 5.2) by using a simple wiz

ard. These meta nodes can even be nested and copied. In 

earlier versions of KNIME also customized meta nodes were 

available, which allowed for a repeated execution of the en

closed sub workflow, olIering t.he abilit.y Lo model more com

plex scenarios such as cross-validation, bagging and boost

ing, ensemble learning etc . This concept has been replaced 

by the more powerful loop concept described below (sec sec
t ion 5.1). 

3.7 Distributed Processing 
Due to the modular architecture it is easy to designate spe

cific nodes to be run on separat.e machines. But. to accommo

date the increasing avai labili ty of multi-core machines, the 

support for shared memory parallelism also becomes increas
ingly important . KNIM E offers a unified framework to par

a llelize data-parallel operations. Sieb et al. (2007) described 

earlier experiments along those lines, which investigated t he 

distribution of complex tasks such as cross validation on a 

cluster or a GRID. 

In the ncar future, high performance usage of KN IME will 

be be supported through a KNIME Grid Engine, which a l-

lows distribution of nodes, metanodes, but alsQ chunks of 

individual node executions on a grid. 

4. EXTENSIONS 
KNIME already olIers a large varieLy of nodes, among them 

arc nodes for various types of data I/O, manipulation, and 

transformation, as well as the most commonly used data 

mining and machine learning algorithms and a number of vi

sualization components. These nodes have been specifically 

developed for KNIME to enable tight integration with the 

framework concerning memory policies, progress report and 

interactive views. A number of other nodes are wrappers, 

which integrate functionali ty from third party libraries. In 

particula r, KNIME integrates functionali ty of several open 

source projects that essentially cover all major areas of data 

analysis such as Weka [51 for machine learning and data 

mining, the R environment [11] for statistical computations 

and graphics, and JFreeChart [10] for visualization. More 

applicat ion specific integrations allow to make use of the 

Chemistry Development Kit (CDK [13]) and add molecular 

data types as well as functionality to compute properties 

of molecular structures. In the chemoinfqrmatics domain 

a number of commercial vendors have also integrated their 

tools into KNIME. 

The R integration in KNIME probably offers the most pow

erful extension, allowing for the execution of R commands 

in a local R installat ion or on an R server to build mod

els which can be later used by a R Predictor node. The R 

view node enables the usage of R views and the R To PMML 

node allows conversion of a given R object into a correspond

ing PMML object . In effect, through KNIME it is possible 

to use essentially all R functionali ty within an easy to use, 

intuitive environment for data loading, preprocessing and 

transformation (ETL). 

KNIME 2.0 supports the new Weka version 3.5.6 [5]. Apart 

from the roughly 50 classifiers that were already part of 

the Weka-Integration in version 1.3, meta-classifiers, cluster 

and association rule algorithms have also been integrated 

adding up to a total of approximately 100 Weka nodes in 

KNIME. The new Weka port objects (see Section 5.2) a re 

another important new feature in KNIME 2.0. They enable 

a t.rained classifier or clust.er model Lo be stored along wit.h 

the used attributes and the target column. A view on this 

port lets the user explore the model or clustering that has 

been built with the training data. This model can be used 

to predict unseen data with the new Weka predictor node 

'01' to assign new data instances to clusters with the Weka 

cluster assigner node. 

The integration of these and other tools not only enriches 

the functionality available in KNIME but has a lso proven to 

be helpful to overcome compatibility limitations when the 

aim is on using these different libraries in a shared setup. 

5. NEW FEATURES IN VERSION 2.0 
Besides a number of new nodes and a lot of work under the 

hood (see the KN I M E website at http://www.knime . org/ 

for more detai ls) , we will discuss the fo llowing new features 

in more detail: support for loops in t he workflow, a new 

concepL of user-defined port. objee(,s in addi(;ion to dat.a t.a

bles, improved database connectivity by using the new port 

objects, and the support of PMML in common data mining 

algorithms. 
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Figure 5: A feature eliminat ion loop inside a meta node 

that iteratively removes one a ttribute after another, starting 

with the worst (i .e. whose removal degrade model qua lity the 
least). 

5.1 Loop support 
The workRows' conceptual structure is a directed acyclic 

graph, i.e. there are no loops from the output of one node 

to the input of one of its predecessors. Data fiows strictly 

in one direction. However, there are cases in which the re

peated execution of par ts of the workfiow with changed pa

rameters is desirable. This can range from simple iterations 

over several input files, to cross validation where a model 
is repeatedly trained and evalua ted with different; distinct 

parts of data, to even more complex tasks such as feature 

elimination. In order to be able to model such scenarios in 

KNIME, two special node types have been introduced : loop 

start- and loop end-nodes. In contrast to normal nodes (in

side the loop) they are not reset while the loop executes, 

each of both nodes has access to its counterpart, and they 

can directly exchange information. For example, the loop 

end node can tell the start node which column it should 

remove at the next iteration or the start node can tell the 

end node if the current itera tion is the last or not . Figure 5 

shows a feature elimination loop in which the start and end 

nodes are visually distinguishable from normal nodes . The 

feature eliminat ion model can then be used by the feature 

elimination filter to remove attributes from the data table. 

KNIME 2. 0 contains several pre-defined loops encapsulated 

in meta nodes in addition to the individual loop nodes them

selves: 

- Simple "for" loop, executing a given number of times 

- Cross validation 

- Iterative feature elimination 

- Looping over a list of files 

- Looping over a list of parameter settings 

Programmers can easily write their own loop nodes by sim

ply implementing an additional interface . Of course, in or

der to fully make use of the loop-concept it is a lso necessary 

to pass variable information to nodes. This a llows for e.g. 

writing out intermediate results to a series of fi les with a 

parametrized fi le name or running a series of experiments 

with different parameter settings. Flow VaTiables where 

added in KNIME 2.0 to allow for t hese types of control pa

rameters . The current implementation is still experimental 

and will likely be adapted in future versions so we refer to 

the online documentation for further details concerning this 
concept . 

5.2 Port objects 
In previous KNIME versions there were two types of ports, 

data ports and model ports. The latter did not distinguish 

... -DatabHe connector Column flbr DMab.ate __ ott filter DatabMe Qufty 
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Figure 6: Workflow with nodes that use the new database 

connections. 

between the actual type of models be it a decision tree, 

a neural net or even color information for data rows used 

in views. Therefore it was possible to connect a decision 

tree learner with a neural network predictor and an error 

was only reported upon execution of the flow . From the 

programmer's point of view, in certa in cases it was quite 

complicated to translate a model into the used data struc

ture (nested key-value pairs) and back. KN IME 2.0 adds 

arbitrary port types that can easily be defined by the pro

grammer. This has two main advantages: for the user it 

is now impossible to connect incompatible ports and the 

programmer is responsible for (de)serializing the transferred 

"port object" herself. This is usually much easier than using 

the old-style method and requires considerably less memory 

(and space on disk) for big models because the nested hash 
maps are omitted. 

5.3 Improved database support 
The new database ports are a prime example of the new 

port object implementation, Figure 6 shows a small exam

ple. These da tabase ports (dark red squares) pass on a con

nection that encapsulates the parameters used to establish 

a database connection via a JDI3C-compliant bridge. 

In the example above, the database nodes work directly in 

the database by modifying and wrapping SQL statements. 

The SQL staternent itself is only executed when the data is 

imported into KNIME with the Database Connection Reader 

node (t ransition from database to da ta port). All other 

nodes, such as Database Connector, Database Column Fil

ter Database Row Filter and Database Query node perform 

well-defined operations on the SQL sLat.emenL . In this ex

ample t he database connection settings are adjusted within 

the Connector node and passed to the Database Column 

Filter and the R.ow Filter node. The filt.er nodes offer a 

user-friendly way to filter out columns and rows without 

modifying any SQL statement by hand. For advanced users, 

the SQL query node can be used to manually edit the SQL 

statement. The outport view for each of those nodes sup

ports a quick look into the database settings, the database 

meta data and - upon user request - the preview of the 

current data inside the database. 

5.4 PMML 
The Predictive Model Markup Language (PMML [3]) is an 

open standard for storing and exchanging predictive models 

such as cluster models, regression models, trees or support 

vector machines in XML format . Ideally, a model tra ined by 

KNIME (or any other tool supporting PMML) and stored as 

PMML can be used in R, SAS Enterprise Miner or, since ver-
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sion 2.0, also in KNIME. Almost all basic KNIME nodes that 

create a model represent it in PMML (if the standard sup

ports it). The corresponding predictor nodes take PMML as 

input. For PMML exchange between tools, PMML reader 

and writer nodes have been added as well. However, one 

should keep in mind that the underlying PMML standard 

often offers a number of optional attributes in the model , 

which are usually only understood by the same application 

that created the model, meaning that in some cases inter

operability is limited. One big drawback is currently that 

the preprocessing is not exported as part of the PMM~ file, 

which is a feature that will be addressed in a future version 
of KNIME. 

6. CONCLUSIONS 
KNIME, the Konstanz Information Miner offers a modular 

framework, which provides a graphical workbench for visual 

assembly and interactive execution of data pipelines. It fea

tures a powerful and intuitive user interface, enables easy 

integration of new modules or nodes, and allows for inter

active exploration of analysis results or trained models . In 

conjunction with the integration of powerfu1 1ibraries such as 

the Weka machine learning and the R statistics software, it 

constitutes a feature rich platform for various data analysis 
tasks. 

New features in KNIME 2.0, especially support for loops, 

database connection manipulations and PMML further en

hance KNIME's capabilities to make it a powerful data ex

ploration and analysis environment with a strong integra tion 

backbone that allows for easy access to a number of other 

data processing and analysis packages. 
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