
KNIME - The Konstanz Information Miner

Version 2.0 and Beyond

Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kotter,
Thorsten Meinl, Peter Ohl, Kilian Thiel and Bernd Wiswedel

University of Konstanz
Nycomed Chair for Bioinformatics and Information Mining

Box 712, 78457 Konstanz, Germany

Michael.Berthold@Uni-Konstanz.DE

ABSTRACT

The Konstanz Information Miner is a modular environment,

which enables easy visual assembly and interactive execution

of a data pipeline. It is designed as a teaching, research and

collaboration platform, which enables simple integration of

new algorithms and tools as well as data manipulation or

visualization methods in the form of new modules or nodes.

In this paper we describe some of the design aspects of t he

underlying archi tecture, briefly sketch how new nodes can

be incorporated , and highlight some of the new features of
version 2.0.

1. INTRODUCTION
The need for modular da ta analysis environments has in

creased dramatically over the past years . In order to make

use of the vast variety of data analysis methods a round , it is

essential t hat such an environment is easy and intuitive to

use, allows for quick and interactive changes to the analysis

process and enables the user to visually explore t he resul ts .

To meet these challenges da ta pipelining environments have

gathered incredible momentum over the past years. Some

of today's well-established (but unfortunately also commer

cia l) data pipelining tools are InforSense KDE [6], Insightful

Miner [7], Pipeline Pilot [8], to name just three examples.

These environments a llow the user to visually assemble and

adapt the analysis fl ow from ::; talldardized building blocks,

which are t hen connected through pipes carrying data or

models. An addi t ional advantage of t hese systems is the

intui t ive, graphical way to document what has been done.

KNIME, t he Konstanz Information Miner provides such a

pipelining environment. Figure 1 shows a screenshot of

the standard KNIME workbench wi th a small example data

analysis workflow. In the center , a flow is reading in data

from two sources and processes it in several, parallel anal

ysis fl ows, consistin g of preprocessing, modelin g, and visu

alization nodes. On the left a repository of nodes is shown.

FI.·om this large variety of nodes, one can select dat a sources,

data preprocessing steps , model building algorithms, as well

as visua lization tools and d rag them onto the workbench,

where they can be connected to other nodes. The abili ty to

have all views interac t graphically (visual brushing) creates
a powerful environment to visua lly explore the data sets at

hand . KNIME is wri tten in J ava and its graphical workflow

edi tor is implemented as an ·Eclipse [9] plug-in. I t is easy to

extend through an open API and a data abstraction frame

work, which allows for new nodes to be quickly added in a

well-defined way.

In this paper - which is based on an earlier publication [1]

concentrating on KNIME 1.3 - we describe the internals

of KNIME in more de tail with emphasis on the new fea

t ures in KNIME 2.0. More information as well as down

loads can be found at http : //www .knime . org. Experimen

tal extensions are made ava ilable at the KNIME Labs pages

(http : //labs . knime . org) .

2. OVERVIEW
In KNIME, t he user can model workflows, which consist of

nodes that process da ta, transported via connections be

tween those nodes . A flow usually starts with a node that

reads in da ta from some data source , which are u sually text

fil es, but dat abases can also be queried by special nodes .

Imported data is stored in an internal table-based format

consisting of columns with a certain (extendable) data type

(integer , string, image, molecule, etc.) and an a rbitra ry

number of rows conforming to the column specifications.

These da ta tables are sent a long the connections to other

nodes tha t modify, t ransform , model , or visualize the data.

IVlodifications can include handling of missing values, fil

tering of column or rows, oversampling, par t itioning of the

table into tra ining and test da ta and many other operators.

Following t hese preparatory steps, predictive m odels with

machine learning or data mining algorithms such as decision

t rees, Naive Bayes classifiers or support vector machines are

buill . I:<o r inspecLing the results of an analysis workflow nu

merous view nodes are available, which display the data or

the trained models in diverse ways.

In contrast to many other workflow or pipelining tools , nodes

in KNIME first process the entire input table before t he

resul ts are forwarded to successor nodes. The advantages

are that each node stores its results permanent ly and thus

workflow execut ion can easily be stopped at any node and

resumed later on . Intermediate results can be inspected at

any time and new nodes can be inser ted and may use al

ready created da ta wi thout preceding nodes having to be

re-executed . The data tables are stored together wi th the

workflow structure and tile node::; ' ::;ettings.

26

Ersch. in: ACM SIGKDD Explorations Newsletter ; 11 (2009), 1. - S. 26-31

http://dx.doi.org/10.1145/1656274.1656280

Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-237652

http://nbn-resolving.de/urn:nbn:de:bsz:352-237652

Dd:oVleWs

S I m!II!I!III
[iI~ A ege . Jion !.,.. Li'learCofleiation

I I "...."v_
i i It VtLe Coultef
~ COl'folalionF"lOl

• M
LfJ e. AhOcia6on AlAs.
, 'B Bbye.

s 12:;J CkJrltfr.g

i t ~C1.nterA'~ r W Fuuy c-Means

I r i H ~IIIChicaln'''Ie!ing
! r SOTAle8ne1

I
, ~ SOlA Pre6ctOl'

1 . k-Means

rtJ t.i3 RUe IrdJclion

~
read test date

CondDonaI
80a PIo4:

~
Node 'S

CI 1:1 tU. Node Descriltion tl

~
Nodel7

Scattet' Wat,c.

~

PWNl WritOiIBETA) Node 18

In Statistics:

In Regre~lon:

linear Regression
(Leo) :

Performs"
multMsnate lirlear
regreSSion.

Polynoollal Regression
leamer:

ltillmer that builds ill
polynomial re.gresslon
model from the Input
data

Regression (Predittor):

Predicts the response
using a r e9r ~ n

model.

Linear CorTetation:

... Welcome to Kf'l I HE v 2 . 0.2 .00 2 0620 - the K o n~ t Clonr: Intormation lI i ner

Copyright , 2003 - 20D!), Un i Kona t emr: ancS KNI HE Gmb H, Germany

x

.... ". •••• I
Log ti l e 1::1 l ocated at : 0: \ kn1 me_ Z.O .2 w T lme B et"le~\ lIork3pao e \ .metMotel\ k nime, kn..!l

. , ! .!.l -- ,

I

Figure 1: The KNIME workbench with a small example workflow ,

One of KNIME's key features is hiliting, In its simplest form,

it allows the user to select and highlight several rows in a

data table and the same rows are also highlighted in all other

views that show the same data table (or at least the high

lited rows), This type of hiliting is simply accomplished by

using the 1:1 correspondence between the tables' unique row

keys, However, there are several nodes that change the input

table 's structure and yet there is sti ll some relation between

input and output rows, A good example for such a 1-to-n re

lation are clustering a lgorithms, One of the node 's input are

t he t raining (or test) patterns, the output are cluster pro

totypes, Each of the clusters covers severa l input patterns.

By hiliting one or more clusters in t he output table all input

patterns which are part of those cluster(s) are hilited in the

input table. Similar translations are , of course, also possible

for other summarizing models: branches/leaves of a decision

tree, frequent patterns, discrimina tive molecular fragments,

to name just three examples.

One of the important design decisions was to ensure easy ex

tensibili ty, so that other users can add functionality, usually

in the form of new nodes (and sometimes also data types),

This has already been done by several commercia l vendors

but also by other university groups or open source program

mers, The usage of Eclipse as the core platform means ~hat

contribu ting nodes iri the form of plugins is a very simple

procedure. The official KNIME website offers several ex

tension plugins for business intelligence and reporting via

BIRT [2], statistical analysis with R[4] or extended machine

learning capabilities from Weka [5], among many others,

3. ARCHITECTURE
The a rchitecture of KNIME was designed with three main

principles in mind,

• Visual , interactive framework: Data flows should be

combined by simple drag&drop from a variety of pro

cessing units , Customized applications can be modeled

through individual da ta pipelines.

• Modularity: Processing units and da ta containers should
not depend on each other in order to enable easy distri

bution of computation and allow for independent de

velopment of differellt algorithms, Data types are eTl

capsulated, that is , no types are predefined, new types

can easily be added bringing along type specific ren

derers and comparators, New types can be declared

compatible to existing types.

• Easy extensibility: It should be easy to add new pro
cessing nodes or views and distribute them through a

simple plugin mechanism without the need for compli

cated insta ll/ deinstall procedures.

In order to achieve this, a da ta analysis process consists of

a pipeline of nodes, connected by edges that transport ei

ther data or models, Each node processes the arriving data

and/or model(s) and produces results on its outputs when

requested , Figure 2 schematically illustrates this process ,

The type of processing ranges from basic data operations

such as filtering or merging to simple statistical functions,

sllch as computations of mean , standard devia tion or linear

27

Figure 2: A schematic [or the flow o[data and models in a
KNIME workflow.

regression coefficients to computation intensive data mod

eling operators (clustering, decision trees , neural networks,

to name just a few). In addition, most of the modeling

nodes allow for an interactive exploration of their results

through accompanying views. In the following we will briefly

describe the underlyillg schemata of data, node, workflow

management and how the interactive views communicate.

3.1 Data Structures
All data flowing between nodes is wrapped within a class

called DataTable , which holds meta-information concerning

the type of its columns in addition to the actual da ta. The

data can be accessed by iterating over instances of DataRow.

Each row contains a unique identifier (or primary key) and a

specific number of DataCell objects, which hold the actual

data. The reason to avoid access by Row ID or index is

scalability, that is , the desire to be able to process large

amounts of data and therefore not be forced to keep all of the

rows in memory for fast random access. KNIME employs a

powerful caching strategy which moves parts of a data table

to the hard drive if it becomes too large. Figure 3 shows a

diagram of the main underlying data structure.

3.2 Nodes
Nodes in KNIME are the most general processing units and

usually resemble one node in the visual workflow represen

tation. The class Node wraps all functionality and makes

use of user defined implemelltations of a NodeModel , possi

bly a NodeDialog, and one or more NodeView instances if

appropriate. Neither dialog nor view must be implemented

if no user settings or views arc needed. This schema follows

the well-known Model-View-Controller design pattern. In

addition, for the input and output connections, each node

has a number of Inport and Outport instances, which can

either transport data or models . Figure 4 shows a diagram

of this structure.

3.3 Workflows
Workflows in KN I M E are essentially graphs connecting nodes,

or more formally, a direct acyclic graph (DAG). The work

flow manager allows the insertion of new nodes and addition

of directed edges (connections) between two nodes. It also

keeps Lrack of the sLa(,us of nodes (configured , executed ,

...) and returns, on demand, a pool of executable nodes.

This way the surrounding framework can frecly distribute

the workload among a couple of para llel threads or - as part

of the KNIME Grid Support and Server (currently under de

velopment) - even a d istributed cluster of compute servers.

Thanks to t he underlyillg graph structure, t llc workfl ow

Figure 3: A diagram of the data structure and the main

classes it relies on.

manager is able to determine all nodes required to be ex

ecuted along the paths leading to t he node the u ser actually

wants to execute.

3.4 Developing Own Nodes
KNIME already includes plug-ins to incorporatc existing data

analysis tools. It is usually straightforward to create wrap

pers for external tools without having to modify these exe

cutables themselves. Adding new nodes to KNIME, also for

native new operations, is easy. For this, one needs to extend

three abstract classes:

• NodeModel: this class is responsible for the main com

putations. It requires to overwrite three main meth

ods: configure 0, execute 0 , and reset O. The first

takes the meta information of the input tables and

creates the definition of the output specificaLion. The

execute function performs the actual creation of the

output data or models, and reset discards a ll inter
media te results.

Figure 4: A diagram depicting t he main classes of a KNIME

node.

28

• NodeDialog: this class is used to specify the dialog

that enables the user to adjust individual settings that
alIce(, the node's execu Lion. A standard bled seL of

DefaultDialogComponent objects allows the node de

veloper to quickly create dialogs when only a few stan

dard settings arc needed.

• NodeView: this class can be extended multiple times

Lo allow for dilIerent. views onLo the underlying model.

Each view is registered with a HiLit eHandler which

sends events when other views have hilited points and

a llows launching events in case points have been hilit

inside this view.

In addition to the three model, dialog, and view classes the
programmer also needs to provide a NodeFactory, which

serves to create new instances of the above classes. The

factory also provides names and other details such as the

number of available views or a fl ag indicating absence or

presence of a dialog.

A wizard integrated in the Eclipse-based development envi

ronment enables convenient generation of all required class

bodies for a new node.

3.5 Views and Interactive Brushing
Each Node can have an arbitrary number of views asso

ciated with it . Through receiving events from a so-called

HiLiteHandler (and sending events to it) it is possible to

mark selected points in such a view to enable visual brush

ing. Views can range from simple table views to more com

plex views on the underlying data (c. g. scatterplots, paral

lel coordinates) or the generated model (e.g. decision trees,
rules).

3.6 Meta Nodes
So-called Meta Nodes wrap a sub workflow into an encap

sulating special node. This provides a series of advantages

such as enabling the user to design much larger, more com

plex work flows and the encapsulation of specific actions .

Whereas previous KNIME vel'siolls had ollly a fixed set of

meta nodes (1 or 2 data input/output ports), it is now pos

sible to create meta nodes with an arbitrary number and

even type of ports (sec section 5.2) by using a simple wiz

ard. These meta nodes can even be nested and copied. In

earlier versions of KNIME also customized meta nodes were

available, which allowed for a repeated execution of the en

closed sub workflow, olIering t.he abilit.y Lo model more com

plex scenarios such as cross-validation, bagging and boost

ing, ensemble learning etc . This concept has been replaced

by the more powerful loop concept described below (sec sec
t ion 5.1).

3.7 Distributed Processing
Due to the modular architecture it is easy to designate spe

cific nodes to be run on separat.e machines. But. to accommo

date the increasing avai labili ty of multi-core machines, the

support for shared memory parallelism also becomes increas
ingly important . KNIM E offers a unified framework to par

a llelize data-parallel operations. Sieb et al. (2007) described

earlier experiments along those lines, which investigated t he

distribution of complex tasks such as cross validation on a

cluster or a GRID.

In the ncar future, high performance usage of KN IME will

be be supported through a KNIME Grid Engine, which a l-

lows distribution of nodes, metanodes, but alsQ chunks of

individual node executions on a grid.

4. EXTENSIONS
KNIME already olIers a large varieLy of nodes, among them

arc nodes for various types of data I/O, manipulation, and

transformation, as well as the most commonly used data

mining and machine learning algorithms and a number of vi

sualization components. These nodes have been specifically

developed for KNIME to enable tight integration with the

framework concerning memory policies, progress report and

interactive views. A number of other nodes are wrappers,

which integrate functionali ty from third party libraries. In

particula r, KNIME integrates functionali ty of several open

source projects that essentially cover all major areas of data

analysis such as Weka [51 for machine learning and data

mining, the R environment [11] for statistical computations

and graphics, and JFreeChart [10] for visualization. More

applicat ion specific integrations allow to make use of the

Chemistry Development Kit (CDK [13]) and add molecular

data types as well as functionality to compute properties

of molecular structures. In the chemoinfqrmatics domain

a number of commercial vendors have also integrated their

tools into KNIME.

The R integration in KNIME probably offers the most pow

erful extension, allowing for the execution of R commands

in a local R installat ion or on an R server to build mod

els which can be later used by a R Predictor node. The R

view node enables the usage of R views and the R To PMML

node allows conversion of a given R object into a correspond

ing PMML object . In effect, through KNIME it is possible

to use essentially all R functionali ty within an easy to use,

intuitive environment for data loading, preprocessing and

transformation (ETL).

KNIME 2.0 supports the new Weka version 3.5.6 [5]. Apart

from the roughly 50 classifiers that were already part of

the Weka-Integration in version 1.3, meta-classifiers, cluster

and association rule algorithms have also been integrated

adding up to a total of approximately 100 Weka nodes in

KNIME. The new Weka port objects (see Section 5.2) a re

another important new feature in KNIME 2.0. They enable

a t.rained classifier or clust.er model Lo be stored along wit.h

the used attributes and the target column. A view on this

port lets the user explore the model or clustering that has

been built with the training data. This model can be used

to predict unseen data with the new Weka predictor node

'01' to assign new data instances to clusters with the Weka

cluster assigner node.

The integration of these and other tools not only enriches

the functionality available in KNIME but has a lso proven to

be helpful to overcome compatibility limitations when the

aim is on using these different libraries in a shared setup.

5. NEW FEATURES IN VERSION 2.0
Besides a number of new nodes and a lot of work under the

hood (see the KN I M E website at http://www.knime . org/

for more detai ls) , we will discuss the fo llowing new features

in more detail: support for loops in t he workflow, a new

concepL of user-defined port. objee(,s in addi(;ion to dat.a t.a

bles, improved database connectivity by using the new port

objects, and the support of PMML in common data mining

algorithms.

29

a.kw.w'dr..atuN Badt.rdr~

~ • .-t (l:l) Pwtltlooq l(,......,tNligtbor ddtatiorl[nd

Figure 5: A feature eliminat ion loop inside a meta node

that iteratively removes one a ttribute after another, starting

with the worst (i .e. whose removal degrade model qua lity the
least).

5.1 Loop support
The workRows' conceptual structure is a directed acyclic

graph, i.e. there are no loops from the output of one node

to the input of one of its predecessors. Data fiows strictly

in one direction. However, there are cases in which the re

peated execution of par ts of the workfiow with changed pa

rameters is desirable. This can range from simple iterations

over several input files, to cross validation where a model
is repeatedly trained and evalua ted with different; distinct

parts of data, to even more complex tasks such as feature

elimination. In order to be able to model such scenarios in

KNIME, two special node types have been introduced : loop

start- and loop end-nodes. In contrast to normal nodes (in

side the loop) they are not reset while the loop executes,

each of both nodes has access to its counterpart, and they

can directly exchange information. For example, the loop

end node can tell the start node which column it should

remove at the next iteration or the start node can tell the

end node if the current itera tion is the last or not . Figure 5

shows a feature elimination loop in which the start and end

nodes are visually distinguishable from normal nodes . The

feature eliminat ion model can then be used by the feature

elimination filter to remove attributes from the data table.

KNIME 2. 0 contains several pre-defined loops encapsulated

in meta nodes in addition to the individual loop nodes them

selves:

- Simple "for" loop, executing a given number of times

- Cross validation

- Iterative feature elimination

- Looping over a list of files

- Looping over a list of parameter settings

Programmers can easily write their own loop nodes by sim

ply implementing an additional interface . Of course, in or

der to fully make use of the loop-concept it is a lso necessary

to pass variable information to nodes. This a llows for e.g.

writing out intermediate results to a series of fi les with a

parametrized fi le name or running a series of experiments

with different parameter settings. Flow VaTiables where

added in KNIME 2.0 to allow for t hese types of control pa

rameters . The current implementation is still experimental

and will likely be adapted in future versions so we refer to

the online documentation for further details concerning this
concept .

5.2 Port objects
In previous KNIME versions there were two types of ports,

data ports and model ports. The latter did not distinguish

... -DatabHe connector Column flbr DMab.ate __ ott filter DatabMe Qufty

~ (Ejj e!l e!l
connect to 00 Remove CoUms Remove Rows Refha SQL ~

~
Read LoopVorlables

~
Fetdl Ooto (Ho KMJo£)

Y~loop

<Dot ,

Figure 6: Workflow with nodes that use the new database

connections.

between the actual type of models be it a decision tree,

a neural net or even color information for data rows used

in views. Therefore it was possible to connect a decision

tree learner with a neural network predictor and an error

was only reported upon execution of the flow . From the

programmer's point of view, in certa in cases it was quite

complicated to translate a model into the used data struc

ture (nested key-value pairs) and back. KN IME 2.0 adds

arbitrary port types that can easily be defined by the pro

grammer. This has two main advantages: for the user it

is now impossible to connect incompatible ports and the

programmer is responsible for (de)serializing the transferred

"port object" herself. This is usually much easier than using

the old-style method and requires considerably less memory

(and space on disk) for big models because the nested hash
maps are omitted.

5.3 Improved database support
The new database ports are a prime example of the new

port object implementation, Figure 6 shows a small exam

ple. These da tabase ports (dark red squares) pass on a con

nection that encapsulates the parameters used to establish

a database connection via a JDI3C-compliant bridge.

In the example above, the database nodes work directly in

the database by modifying and wrapping SQL statements.

The SQL staternent itself is only executed when the data is

imported into KNIME with the Database Connection Reader

node (t ransition from database to da ta port). All other

nodes, such as Database Connector, Database Column Fil

ter Database Row Filter and Database Query node perform

well-defined operations on the SQL sLat.emenL . In this ex

ample t he database connection settings are adjusted within

the Connector node and passed to the Database Column

Filter and the R.ow Filter node. The filt.er nodes offer a

user-friendly way to filter out columns and rows without

modifying any SQL statement by hand. For advanced users,

the SQL query node can be used to manually edit the SQL

statement. The outport view for each of those nodes sup

ports a quick look into the database settings, the database

meta data and - upon user request - the preview of the

current data inside the database.

5.4 PMML
The Predictive Model Markup Language (PMML [3]) is an

open standard for storing and exchanging predictive models

such as cluster models, regression models, trees or support

vector machines in XML format . Ideally, a model tra ined by

KNIME (or any other tool supporting PMML) and stored as

PMML can be used in R, SAS Enterprise Miner or, since ver-

30

sion 2.0, also in KNIME. Almost all basic KNIME nodes that

create a model represent it in PMML (if the standard sup

ports it). The corresponding predictor nodes take PMML as

input. For PMML exchange between tools, PMML reader

and writer nodes have been added as well. However, one

should keep in mind that the underlying PMML standard

often offers a number of optional attributes in the model ,

which are usually only understood by the same application

that created the model, meaning that in some cases inter

operability is limited. One big drawback is currently that

the preprocessing is not exported as part of the PMM~ file,

which is a feature that will be addressed in a future version
of KNIME.

6. CONCLUSIONS
KNIME, the Konstanz Information Miner offers a modular

framework, which provides a graphical workbench for visual

assembly and interactive execution of data pipelines. It fea

tures a powerful and intuitive user interface, enables easy

integration of new modules or nodes, and allows for inter

active exploration of analysis results or trained models . In

conjunction with the integration of powerfu1 1ibraries such as

the Weka machine learning and the R statistics software, it

constitutes a feature rich platform for various data analysis
tasks.

New features in KNIME 2.0, especially support for loops,

database connection manipulations and PMML further en

hance KNIME's capabilities to make it a powerful data ex

ploration and analysis environment with a strong integra tion

backbone that allows for easy access to a number of other

data processing and analysis packages.

7. REFERENCES

[1] Michael R. Berthold, Nicolas Cebron, Fabian Dill,

Thomas R. Gabriel, Tobias Kotter, Thorsten Meinl ,

Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd

Wiswedel (2007). KN I M E: The Konstanz Information

Miner. In Data Analysis, Machine Learning and Appli

cations - Pr'oceedings of the 31st Annual Confer'ence of

the Geselischajt fur' Klassifikation e. v., Studies in Clas

sification, Data Analysis, and Knowledge Organization,

pp. 319- 326. Springer, Berlin , Germany.

[2] BIRT. Business Intelligence and Reporting Tools.

http://www.eclipse.org/birtj. ,

[3] Data Mining Group. Predictive Model Markup Language

(PMML). http://www.dmg.org/.

[4] R Project. The R Project for Statistical Computing.

http://www.r-project.org/.

[5] Ian H. Witten and Eibe Frank (2005). Data Mining:

Practical machine learning tools and techniques. Morgan

Kaufmann, San Francisco, 2nd edition.

[6] Inforsense Ltd.: InforSense KDE.

http://www.inforsense .com/kde.html.

[7] Insightful Corporation: Insightful Miner.

http://www.insightful.com/products/iminer/default.asp.

[8] SciTegic: Pipeline Pi lot.

http://www.scitegic.com/products/overview /.

[9] Eclipse Foundation (2008): Eclipse 3.3 DoC'Umentation.

http://www.eclipse.org.

[10] Gi lbert, D. (2005): JPreeChaTt DevelopeT Guide.

Objed Refinery Limited, Berkeley, California.

http://www.jfree.orgjjfreechart.

[11] R Development Core Team (2007): R : A la.nguage and

enviTonment JOT statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. ISB N 3-900051-

07-0. http://www.R-project.org.

[12] Sieb C., Meinl T., and Berthold, M. R. (2007): Parallel

and distributed data pipelining with KNIM E. MediteT

ranean Journal of ComputeTs and NetwoTks , Special Is

sue on Data Mining Applications on SupeTcomputing and

GTid Environments. vol. 3, no. 2, pp. 43-5l.

[13] Steinbeck, C., Han, Y. Q., Kuhn, S., Horlacher, 0.,

Luttmann , E., and Willighagen , E.L. (2005): The Chem

istry Development Kit (CDK): An open-source Java li

brary for chemo- and bioinformatics. JouT'Ttal of Chemi

cal InfoTmation and ComputeT Sciences. vol. 43, pp. 493-

500.

3 1

