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KNIME workflow for retrieving causal drug 
and protein interactions, building networks, 
and performing topological enrichment analysis 
demonstrated by a DILI case study
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Abstract 

As an alternative to one drug‑one target approaches, systems biology methods can provide a deeper insight into 
the holistic effects of drugs. Network‑based approaches are tools of systems biology, that can represent valuable 
methods for visualizing and analysing drug‑protein and protein–protein interactions. In this study, a KNIME workflow 
is presented which connects drugs to causal target proteins and target proteins to their causal protein interactors. 
With the collected data, networks can be constructed for visualizing and interpreting the connections. The last part 
of the workflow provides a topological enrichment test for identifying relevant pathways and processes connected 
to the submitted data. The workflow is based on openly available databases and their web services. As a case study, 
compounds of DILIRank were analysed. DILIRank is the benchmark dataset for Drug‑Induced Liver Injury by the FDA, 
where compounds are categorized by their likeliness of causing DILI. The study includes the drugs that are most likely 
to cause DILI (“mostDILI”) and the ones that are not likely to cause DILI (“noDILI”). After selecting the compounds 
of interest, down‑ and upregulated proteins connected to the mostDILI group were identified; furthermore, a liver‑
specific subset of those was created. The downregulated sub‑list had considerably more entries, therefore, network 
and causal interactome were constructed and topological pathway enrichment analysis was performed with this list. 
The workflow identified proteins such as Prostaglandin G7H synthase 1 and UDP‑glucuronosyltransferase 1A9 as key 
participants in the potential toxic events disclosing the possible mode of action. The topological network analysis 
resulted in pathways such as recycling of bile acids and salts and glucuronidation, indicating their involvement in DILI. 
The KNIME pipeline was built to support target and network‑based approaches to analyse any sets of drug data and 
identify their target proteins, mode of actions and processes they are involved in. The fragments of the pipeline can 
be used separately or can be combined as required.
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Introduction
The one-drug one-target paradigm has shifted in recent 
years due to increasing evidence of drugs usually inter-
acting with more than one protein [1]. Approved and 
highly successful drugs, such as metformin or imatinib, 
address multiple targets simultaneously [2]. Systems 
biology studies could reveal novel desired and unde-
sired target profiles for drugs [3]. Systems toxicology 
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as a sub-field of systems biology aims to shed light on 
the mechanism of toxic drugs and the perturbed path-
ways to gather more information on the unwanted 
events [4]. Most proteins also do not act alone, which 
increases the need for systems biology approaches [5]. 
As appropriate representation and understanding of 
drug-protein and protein–protein interactions can be 
challenging, network-based methods can provide reli-
able tools for understanding interaction data. In these 
approaches, the interactions are represented as graphs 
where the nodes symbolize the interacting participants 
and edges represent the interactions. These methods 
are used to understand drug targets` properties, iden-
tify disease-target connections [6] and provide insights 
into drug toxicity by identifying the main contributors 
of unwanted events [7].

A more in-depth understanding of compound-pro-
tein and protein–protein interactions can be achieved 
by integrating information on the exact type of interac-
tion between compound-protein and protein–protein. 
Techniques utilizing this information can help decode 
the mode of action of the drug, and the mechanism of 
a disease or an unwanted event. These methods offer 
a holistic approach considering the system as a whole 
and can provide valuable information on promising tar-
get combinations or preferable and problematic path-
ways. In a recently published study, causal network 
models were used for identifying promising candidates 
for drug repurposing in relation to SARS-CoV-2 [8].

One method in the toolkit of network-based 
approaches is topological enrichment analysis (TEA), 
which leverages information on the topology of the ana-
lysed network and pathways [9]. In this method, pathways 
are represented as graphs; nodes are the corresponding 
pathway components (e.g. proteins), and the edges pro-
vide information about the interaction among the nodes 
(e.g. up-regulation). TEA uses topological information to 
calculate pathway enrichment. TEA based on interaction 
networks can be used as a base for identifying pathways 
connected to a particular group of drugs, toxicity, or dis-
ease [10].

In this study, a KNIME workflow was developed that 
provides the opportunity to (i) collect causal drug and 
protein data, (ii) filter for tissue-specific proteins, (iii) 
build networks, (iv) gather causal protein–protein data 
and (v) perform topological enrichment analysis, using 
openly available data and web services. KNIME is an 
open-source workflow management system with a graph-
ical interface allowing users to build complex data sci-
ence pipelines [11].

As a case study, compounds linked to Drug-Induced 
Liver Injury (DILI) and no DILI compounds from the 
FDA were analysed. Tissue-specific target profiles were 
generated for both groups, which allowed significant 
proteins for the DILI group to be identified. A network 
of these proteins was created, and causal protein–pro-
tein connections were obtained. Finally, TEA of the 
significant proteins was conducted. This study dem-
onstrates the usability of the workflow by identifying 
important proteins and processes in connection to DILI.

Methods
Case study
As a case study, the analysis of DILIRank data was cho-
sen. DILIRank is the updated benchmark dataset of Drug-
Induced Liver Injury (DILI) compounds of the FDA [12]. 
The drugs are grouped into four categories according 
to their potential to cause DILI. Our analysis was car-
ried out with 180 drugs that are most likely to cause DILI 
(category “mostDILI”) and with 272 drugs which are not 
linked to DILI (“noDILI”). In order to demonstrate the 
general applicability of the workflow, we also performed 
two short case studies for cardiotoxicity and for nephro-
toxicity. In the cardiotoxicity case study, approved small 
molecules from ChEMBL with ATC Classification Level 
2 “Cardiac therapy” were downloaded, toxic compounds 
were filtered out. As the toxic group, withdrawn cardio-
toxic compounds were collected, also from ChEMBL. The 
final dataset consists of 30 non-toxic cardiac therapy, and 
26 cardiotoxic drugs. For the nephrotoxicity case study, a 
dataset was created by combining withdrawn nephrotoxic 
compounds from ChEMBL with a recently published data-
set of nephrotoxic compounds based-on the SIDER data-
base [13]. The combined dataset contains 19 compounds.

With these 19 compounds, a first evaluation of the 
causal target part was performed to estimate the data 
availability for the drugs. After that, a single compound 
(CHEMBL421) was selected for further analysis. The 
downregulated target list of the compound was for-
warded to component ii, iii iv and v, as indicated in 
Fig.  1. Detailed results for these two case studies are 
presented in the Supplement (Additional file 1).

Workflow
The workflow has five separate components, which can 
be used and combined individually according to the 
needs of the user. In our case study, we started with (i) 
causal target profile and conducted (ii) for obtaining a 
liver-specific dataset. Parts (iii) (iv) and (v) were carried 
out with subsets of our data.
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Causal target data
In the first section of the workflow, causal target protein 
profiles can be built using three different databases. In 
a previous publication, a detailed description of retriev-
ing target profiles for compounds was described [14]. 
However, as the previous workflow does not distinguish 
between positive and negative effects of the compounds, 
in this workflow this type of information is emphasized:

(a) Targets were defined as human-type single proteins, 
which are annotated as target proteins of the com-
pound of interest in one of the utilized databases or

(b) the compound was annotated as active on the protein 
in biological assays or

(c) the compound has an activity value to the target in a pre-
defined active range.

The cut-off for the active range was set to 10  μM. 
Our analysis was intended to be performed across 
diverse protein families. The activity cut-off can be 
adjusted to be more stringent or can be modified for 
particular protein families where another value might 
be more appropriate. Since the intention was to con-
sider the whole systemic effect of the drug, no dif-
ferentiation between therapeutic targets and putative 
targets were made.

Mode of action annotations
The ChEMBL (version 27) [15], DrugBank (version 5.1.6) 
[16], and IUPHAR (version 2020.4) [17] databases provide 
mode of action annotations on compound and target pairs. 
These were retrieved via programmatic access or download. 
Since the vocabulary of the annotations differs among the 

Fig. 1 The five components of the workflow. The arrows indicate possible sequences of the building blocks; however, the combinations can be 
adjusted individually according to the scientific purpose.
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databases, an individual translation of the terms into catego-
ries was added to the workflow. The categories are summa-
rised in Table 1.

Examples of the annotations and the translations of 
ChEMBL and IUPHAR data are shown in Tables 2 and 3, 
the whole annotation is provided as supplement (Addi-
tional files 2, 3).

CHEMBL

Table 1 Mode of action categories defined in the workflow

Category Description

1 Active—positive modulator

2 Active—negative modulator

3 Active—no further information

4 Inactive

Table 2 Examples of mode of action annotations based on 
ChEMBL data

$action_type$ = "ACTIVATOR" =  > 1

$action_type$ = "AGONIST" =  > 1

$action_type$ = "ANTAGONIST" =  > 2

$action_type$ = "BINDING AGENT" =  > 3

$action_type$ = "BLOCKER" =  > 2

$action_type$ = "MODULATOR" =  > 3

$action_type$ = "NEGATIVE ALLOSTERIC MODULATOR" =  > 2

$action_type$ = "NEGATIVE MODULATOR" =  > 2

$action_type$ = "POSITIVE MODULATOR" =  > 1

$action_type$ = "RELEASING AGENT" =  > 3

$action_type$ = "STABILISER" =  > 3

Table 3 Mode of action annotations based on IUPHAR data

$actions$ = "Activation" =  > 1

$actions$ = "Biased agonist" =  > 1

$actions$ = "Binding" =  > 3

$actions$ = "Competitive" =  > 3

$actions$ = "Feedback inhibition" =  > 2

$actions$ = "Full agonist" =  > 1

$actions$ = "Inhibition" =  > 2

$actions$ = "Irreversible inhibition" =  > 2

$actions$ = "Mixed" =  > 3

$actions$ = "Neutral" =  > 3

IUPHAR

Assay annotations
The ChEMBL assay API provides further possibilities 
to find causal targets. With this call, one can retrieve 
assay description data, which was used as a base for 
text mining. The text mining was carried out using 
keywords, which can imply the type of relationship 
between protein and compound. A list of potential 
keywords was trialled in KNIME, wildcards were then 
added to each end and the pipeline was run with the 
wildcard-adjusted keywords. An option to refine with 
exclusions could be applied to remove cases where 
terms from the different groups were present in the 
same assay but were not included at the test stage. A 
pChEMBL value of 5 was used as a cut-off for actives 
(pChEMBL >  = 5), pChEMBL 5 is equivalent to 10 μM 
[18]. If the annotation implied “inconclusive” or “not 
active”, the datapoint was removed from the list. A 
non-active category was added to our list for the com-
pound-target pairs that were tested together and did 
not show activity. Again, the cut-off of pChEMBL 5 was 
used (pChEMBL < 5), and data points with the annota-
tion of being “active” or “inconclusive” were discarded. 
Consequently, if the pChEMBL cut-off and the activity 
comment were contradictory, the assay was excluded 
from the analysis.

Examples of the text mining can be found in Table 4. The 
full annotation is available as a supplement, with the used 
keywords and as applied in KNIME (Additional file 4).

Consistency
After executing the workflow with both sets of compounds, 
a verification step was built in to establish the consistency of 
the annotations of the databases and our text mining efforts. 
Datapoints with contradictory annotations were removed, 
aiming for a comprehensive and reliable analysis. For that 
purpose, an additional panel was added to the KNIME work-
flow. In this panel, the unique drug-target pairs were grouped 
by the annotations and every contradiction was removed 
from the results. For instance, if one compound-protein pair 
was annotated as mode of action group 1 and also 3 (Table1), 
the data was not removed since group 1 is a sub-group of 
group 3; hence there is no contradiction. However, if the com-
pound-target pair was annotated as 1 and 2, the interaction 
was excluded from the analysis.

Tissue‑specificity
The workflow provides an option for tissue-specific fil-
tering of proteins using the programmatic access of the 
Proteomics database ProteomicsDB (version3.0). The 
database aims to contribute to the identification of the 
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human proteome, providing a large coverage [19]. Using 
the API call, one can retrieve the list of tissues where the 
protein is expressed and select the tissue of interest and 
create a tissue-specific sub-set. For the DILI case study, 
the liver was chosen as the tissue of interest.

Identifying DILI related up‑ and downregulated targets
The first step in analysing the retrieved tissue-specific 
data for the case study was to search for proteins in both 
the positively and negatively modulated groups that are 
highly connected to the mostDILI and less or not con-
nected to the noDILI group. For this purpose, a DILI 
significance score was assigned to each target protein as 
described below. Absolute values were used; however, the 
analysis can also be carried out with normalized values.

Steps of the scoring process:

(1) Established to how many mostDILI and noDILI 
compounds the protein can be connected to, 
respectively.

(2) If the protein can be connected to both groups, the 
quotient of the involvement of the two groups was 
calculated as follows:

a. (x)mostDILI/(x)noDILI = significance
b. (x) = number of compounds

(3) The cut-off for significance was set to 5, which 
means the involvement of the mostDILI group is at 
least five times that of the noDILI group.

(4) If the target was only connected to the mostDILI 
group, the cut-off was also set to 5, which means it 
is connected to at least 5 compounds.

Network creation and visualization
The STRING database (version 11.5) aspires to collect 
and annotate all publicly available interactions between 
proteins to create a wide-ranging and unbiased global 
network [20]. By using the web services of STRING, 
the workflow was expanded with the possibility of 

network construction and visualization. For instance, 
the protein network of the proteins that are downreg-
ulated by a group of compounds can be visualized by 
submitting the required list of proteins. The workflow 
provides visualization based on the connectivity anno-
tated in the STRING database. This allows the user to 
have an overview of the network and helps to identify 
the topological properties of the nodes. Since STRING 
contains different types of connections, the API call is 
modifiable by setting parameters such as network_fla-
vor or network_type. In our analysis, the settings were: 
network_flavor = confidence, to represent the confi-
dence score of the interaction between two nodes via 
the thickness of the edge, and network_type = func-
tional, which indicates both functional and physical 
interactions.

Causal protein–protein interactions
The Signaling Network Open Resource 2.0 (SIGNOR 2.0) 
is a public repository of causal relationship information 
among biological entities [21]. The database was added to 
the workflow as an additional layer for introducing causal 
protein–protein interactions. With this information, the 
user can have a comprehensive causal network of proteins 
connected to the compound(s) of interest. Here the down-
load function provided by SIGNOR was utilized, containing 
information on different molecules and their connectivity. 
Only protein–protein type interactions were considered, 
and the annotated effect was extracted from the data (e.g.: 
upregulates.) The annotations were grouped in the same 
categories as discussed for the targets (Table 1).

Table 4 Annotation of assay data based on assay description and keywords

Keyword Keyword as applied in KNIME

channel blocking activity $assay_description$ LIKE "*hannel blocking activit*" =  > 2

inhibit 50% $assay_description$ LIKE "*nhibit 50%*" =  > 2

inhibiting $assay_description$ LIKE "*nhibitin*" =  > 2

inhibitor $assay_description$ LIKE "*nhibito*" =  > 2

Activation $assay_description$ LIKE "*ctivatio*" =  > 1

Channel opening activity $assay_description$ LIKE "*hannel opening activit*" =  > 1

Table 5 Most significant proteins, which are more often 
upregulated by the mostDILI compared to the noDILI group

Uniprot_ID Gene_name Significance_
score

P04798 CYP1A1 5.0

P05177 CYP1A2 5.0

P08684 CYP3A4 5.0

P10275 AR 5.0
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Topological enrichment analysis
The last part of the workflow performs TEA using the 
EnrichNet web application (version 1.1) [22]. Enrich-
Net performs graph-based statistical evaluation based on 
interaction networks allowing a direct interpretation of 
the results via their website. With this part of the workflow 
the possibility of different topology-based analyses is given 
to investigate which pathways or biological processes are 
enriched in the submitted data. EnrichNet offers different 
databases as a base for the analysis. This parameter can 
also be changed in the workflow. The analysis represented 
here was performed based on the Reactome database (ver-
sion 77). Reactome is one of the major databases capturing 
biological pathways [23]. EnrichNet provides program-
matic access, where the API call results in a link to the 
website of EnrichNet. This call was included in the KNIME 
workflow where one can carry out the enrichment analysis 
and open the results within the workflow via an interactive 
link. The results can be viewed and downloaded directly 
without leaving the KNIME platform.

Results
Since different databases and a text-mining exercise were 
applied for creating the causal target profiles, it was con-
sidered necessary to define how consistent the annota-
tions among the repositories were and how consistently our 

workflow was able to capture the information needed. The 
workflow initially identified 8637 unique compound-target-
annotation connections, out of which 8186 were consistent 
and 451 have been removed. Consequently, the workflow was 
able to categorize 95% of the data consistently. This measure 
can also be seen as a reassurance of the quality of the data 
used since the annotations among the different databases can 
be considered as consistent.

Causal target profile
The result of the causal target part of the workflow con-
sists of three columns: ChEMBL identifier of the com-
pound, UniProt identifier for the target proteins, and the 
mode of action group.

After executing the workflow with the mostDILI and 
noDILI compounds and applying the consistency panel, 
the workflow found 2987 connections for 164 (out of 180) 
drugs of the mostDILI group and 5199 connections for 
233 (out of 272) drugs of the noDILI group.

Tissue‑specific causal targets
After applying the liver-specific protein filter, 5086 
unique connections remained, 1770 for 151 mostDILI 
compounds and 3316 for 205 noDILI compounds. The 
collected, annotated, and filtered data can serve as a 
starting point for different types of analyses to enhance 
understanding of existing information. In the follow-
ing section one approach is demonstrated by analysing 

Table 6 Most significant proteins, which are more often 
downregulated by the mostDILI than the noDILI group

Uniprot_ID Gene_name Significance_
score

P23219 PTGS1 16.0

O60656 UGT1A9 14.0

O94956 SLCO2B1 11.0

Q92887 ABCC2 9.0

P11509 CYP2A6 9.0

P22309 UGT1A1 7.5

Q9Y694 SLC22A7 7.0

P05177 CYP1A2 6.0

Q9NPD5 SLCO1B3 6.0

Q9Y6L6 SLCO1B1 6.0

P11712 CYP2C9 5.8

P02763 ORM1 5.0

P35503 UGT1A3 5.0

Table 7 Example of a causal network output row

target_
uniprot_id

typeA Interactor_
uniprot_id

typeB Effect moi

O60656 protein P20823 protein up‑regulates 
quantity by 
expression

1

Table 8 Upregulated proteins by the downregulated proteins 
significantly connected to the mostDILI group

target_uniprot_id Interactor_
uniprot_id

O60656 P20823

P22309 P35869

P22309 P20823

P22309 O75469

P22309 Q14994

P22309 P04150

Q92887 Q14653

Table 9 Result of the topological pathway analysis with the 
proteins summarized in Table6

Annotation (pathway/process) XD‑score Fisher q‑value

RECYCLING OF BILE ACIDS AND SALTS 1.622 0.018

GLUCURONIDATION 1.407 0.001

PHASE 1 FUNCTIONALIZATION 1.185 0.022

XENOBIOTICS 1.185 0.022
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sub-sets of the data to identify key participants and pro-
cesses in connection to Drug-Induced Liver Injury.

Identifying DILI related up‑ and downregulated targets
The identified tissue-specific list of proteins was analysed 
regarding their connectivity to the mostDILI and noDILI 
group to find significant proteins connected to the most-
DILI compounds. The significance score was assigned as 
discussed in the Methods section.

Please note that the type of the analysis and the cut-offs 
can be selected individually depending on the correspond-
ing analysis and considering imbalances in the dataset. The 
most significant proteins obtained after this exercise are 
summarized in Tables 5 and 6. Table 5 consists of the pro-
teins that are significantly more often upregulated by DILI 
compounds. Table 6 contains the proteins that are signifi-
cantly more often downregulated by the mostDILI group in 
comparison to the noDILI group.

Network
Similarly to the causal target part, the network part of the 
workflow also provides the possibility for different types 
of analyses. Here we present a subsequential analysis to 
the causal part, by visualizing the downregulated pro-
teins connected significantly more often to the mostDILI 
group (Fig. 2).

The downregulated proteins are represented as nodes 
of the network, and the connections between them as 
edges. The thickness of the edge indicates the confidence 
of the protein–protein interactions.

Causal network
The downregulated list of proteins was further analysed 
with the causal protein–protein interaction fragment of 
the workflow. The coverage of this data is sparse; however, 
it still can provide a base for completing the network with 
a causal protein–protein interactome layer. The causal 

connection (effect) is obtained from the SIGNOR data 
and the mode of interaction (moi) is assigned by the work-
flow, using the identical annotations as indicated in Table1. 
Accordingly, 1 indicatespositive modulation and 2 negative 
modulation. Table 7 is an example of an output row of the 
causal network part, with the Uniprot IDs of the target and 
interacting proteins, the effect, and the mode of interac-
tion group. Table 8 summarizes the protein/interactor pairs 
which are significantly connected to the mostDILI group.

Enrichment analysis
With the last part of the workflow, different network-based 
enrichment analyses can be performed. In this section the 
subset of proteins, which contains the significant down-
regulated proteins by the mostDILI compounds (Table 6), 
were submitted for the TEA. In this analysis, biological 
pathways are also represented as graphs [24]. The results 
are shown in an interactive output within the KNIME 
workflow, where the website of EnrichNet is retrieved. 
The results can be viewed and downloaded directly in 
the workflow. The obtained results contain the pathways 
with a score of significance calculated by EnrichNet (XD-
score) and a Fisher q-value. An XD-score higher than one 
is considered significant. The most significant pathways 
obtained with the mostDILI downregulated targets are 
summarized in Table 9.

Discussion
In the first part of the workflow (i) causal target profiles for 
both DILI and non-DILI groups were built. In the second 
(ii) part, proteins that are not expressed in the liver were fil-
tered out. With a statistical evaluation, the most significant 
up- and downregulated target proteins of the mostDILI 
compounds were identified. Here, the most notable differ-
ences were seen at the Prostaglandin G7H synthase 1, UDP-
glucuronosyltransferase 1A9, and solute carrier organic 
anion transporter family member 2B1. The protective effect 
of Prostaglandin  E2 against harmful effects of xenobiotics 

Table 10 Categories of drugs connected to Prostaglandin G7H synthase 1

Description_of_drug_indication Compound_
count

No indication provided 3

ALIMENTARY TRACT AND METABOLISM: ANTIDIARRHEALS, INTESTINAL ANTIINFLAMMATORY/ANTIINFECTIVE AGENTS: INTESTINAL ANTI‑
INFLAMMATORY AGENTS: Aminosalicylic acid and similar agents

1

ANTIINFECTIVES FOR SYSTEMIC USE: ANTIMYCOTICS FOR SYSTEMIC USE: ANTIMYCOTICS FOR SYSTEMIC USE: Triazole derivatives 1

DERMATOLOGICALS: ANTIFUNGALS FOR DERMATOLOGICAL USE: ANTIFUNGALS FOR SYSTEMIC USE: Antifungals for systemic use 1

MUSCULO‑SKELETAL SYSTEM: ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS: ANTIINFLAMMATORY AND ANTIRHEUMATIC 
PRODUCTS, NON‑STEROIDS

8

NERVOUS SYSTEM: ANALGESICS: OTHER ANALGESICS AND ANTIPYRETICS: Other analgesics and antipyretics 1

RESPIRATORY SYSTEM: DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES: OTHER SYSTEMIC DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES: 
Leukotriene receptor antagonists

1
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in the liver is well studied [25]. However, Prostaglandin 
G7H synthase 1 as a key player in the unwanted event is 
not well documented. This finding can provide a basis for 
a hypothesis of how drugs can shut down the organism´s 
defence mechanism against toxic events. As expected, the 
majority of the 16 mostDILI drugs affecting Prostaglandin 
G7H synthase 1 are Non-steroidal anti-inflammatory drugs 
(NSAIDs), but not all of them (Table 10). This implies that 
drugs from diverse categories interfering with Prostaglandin 
synthesis can also have an unwanted target profile.

UDP-glucuronosyltransferase 1A9 is essential for the 
elimination and detoxification of drugs, xenobiotics, and 
endogenous compounds  [26]. Its inhibition can lead to 
perturbation in the elimination of xenobiotics resulting 
in accumulation and toxicity [27]. SLCO2B1 (OATP-B) 
is an organic anion-transporting polypeptide in the liver, 
which acts as an uptake transporter [28]. SLCO2B1 also 
mediates the  Na+-independent transport of prostaglan-
dins PGD2, PGE1, PGE2. Therefore, its involvement in 
unwanted events can be manifold.

After creating the network of the significantly down-
regulated group in part (iii) of the workflow, we could 
perceive that the subset is highly interconnected. From a 
network perspective, this observation can be explained by 

a characteristic of biological networks: highly connected 
nodes (so-called hubs) can also have connections in their 
biological roles. This hypothesis suggests that the hubs 
can be associated with the same disease or unwanted 
event [29], which would strengthen the likelihood of the 
proteins` potential involvement in toxicity.

The TEA of the downregulated sub-set identified four 
Reactome pathways that can be significantly connected 
to the submitted network: Recycling of bile acid and salt, 
Glucuronidation, Phase1 functionalisation, and Xeno-
biotics. Liver toxicity induced by bile-acid accumula-
tion is well-known [30].  Glucuronidation and Phase 1 of 
the metabolism are involved in drug metabolism, which 
makes the perturbance of these pathways a plausible con-
tributor to liver toxicity. These results indicate that the 
subset of network proteins can be involved in multiple 
processes disturbing the normal functions of metabolism 
and excretion of xenobiotics and potentially initiating 
toxic processes in the liver.

In connection to cardiotoxicity, a case study of a smaller 
dataset was shortly reported. Especially ion channels and 
serotonin receptors were significantly downregulated by the 
cardiotoxic group. Several of these targets are discussed in 
the literature in connection to cardiac diseases [31]. After 

Fig. 2 Network of significant downregulated proteins by the mostDILI group. Targets are symbolized with gene names, the thickness of the lines 
indicates the confidence of the interaction.
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filtering for the heart tissue, we discovered that the hERG 
potassium channel (KCH2) was also filtered out, since the 
Proteomics DB has no protein expression data of hERG in 
the heart. This highlights the main limitation of the work-
flow: data coverage. The workflow can only report data 
available in the utilized databases. Even though these data-
bases are of high quality, their coverage also has its own lim-
its. For instance, Proteomics DB states a coverage of 83%. 
Therefore, careful curation of the results cannot be avoided.

With the nephrotoxicity case study, the intention was 
to show the usability of the workflow with a single com-
pound. If the data coverage is sufficient, the workflow can 
deliver meaningful results for one compound. Sulfasalazine 
(CHEMBL421) had enough causal targets to perform an 
analysis with the workflow and, via the enrichment analy-
sis, significant pathways were found that can be connected 
to nephrotoxicity. For instance, Prostanoid hormones were 
already discussed in their roles in the pathogenesis of vari-
ous kidney diseases [3]. For this case study, exclusion term 
pairs were added to the workflow, since one assay descrip-
tion included both terms “Inhibitors” and “Activators”. 
These exclusions are based on Additional file 5.

Please note that these case studies were simplified rep-
resentations of the usability of the workflow, one could go 
more in-depth with the analysis even with the DILIRank 
dataset. The different components of the workflow can be 
individually combined or used separately.

Conclusion and summary
Network-based approaches are valuable for understand-
ing systemic effects of drugs. A comprehensible KNIME 
workflow was presented which utilizes openly available 
data for target and network-focused analyses. The usabil-
ity of the workflow was presented by one extensive and 
two short case studies in connection to drug induced tox-
icities. The workflow was able to identify important pro-
teins and processes that can be involved in toxic events. 
The pipeline is openly available and adjustable depending 
on the intended analysis.
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