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Abstract. We give a global operator approach to the WZWN theory for
compact Riemann surfaces of arbitrary genus with marked points. Globality
means here that we use Krichever-Novikov algebras of gauge and conformal
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1. Introduction

In this article, we consider the following problem of two-dimensional con-
formal field theory: induced by gauge and conformal symmetry construct a
vector bundle equipped with a protectively flat connection on the moduli space
of punctured Riemann surfaces1so that the fiber of the bundle is equal to the
space of coinvariants of gauge symmetries.

This problem originates in the well-known article of V.Knizhnik and A.Za-
molodchikov [9], where the case of genus zero is considered. There the following
remarkable system of differential equations is obtained:

(1.1)

(
k
∂

∂zp

−
∑
r 6=p

tapt
a
r

zp − zr

)
Ψ = 0 , p = 1, . . . , N .

Here z1, . . . , zN are arbitrary (generic) marked points on the Riemann sphere.
For i = 1, . . . , N , representations ti of a certain reductive Lie algebra g are
given (tai being a representation matrix for the ath generator of g) and k is a
constant. A summation over a is assumed in (1.1).

Nowadays, the equations are known as the Knizhnik-Zamolodchikov (KZ)
equations. They can be interpreted as horizontality conditions with respect to

1See Section 4 for the precise definition of what me mean by “moduli space of punctured
Riemann surfaces”.
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the Knizhnik-Zamolodchikov connection. From the point of view of physics,
(1.1) are equations for the N -point correlation functions in Wess-Zumino-
Witten-Novikov models.

Further developments of the Knizhnik-Zamolodchikov ideas are briefly out-
lined in [26]. There more references can be found. Until 1987 these devel-
opments were inseparably linked with the conception of gauge and conformal
symmetries based on Kac-Moody and Virasoro algebras. The higher genus
generalizations in the frame of this conception are initiated by D. Bernard
[1], the complete theory (conformal field theory on families of stable algebraic
curves) is given by A. Tsuchiya, K. Ueno, Y. Yamada [34]. The construction
of these authors locally reproduces the Knizhnik-Zamolodchikov construction.

N. Hitchin [6] proposed another (outside the frame of gauge theory) approach
to the problem. By means of the geometric quantization technique, using
Hamiltonian reduction, he proved the existence of a projectively flat connection
in the case of closed curves (i.e. compact curves without marked points). In
the preface to his article, he points out that a generalization of his technique
to curves with marked points would require significant modifications, thus he
did not consider this question. Later on, the required modifications were done
by Y. Laszlo for one marked point. Observe that from the physical point of
view, considering marked points is crucial, since the desired horizontal sections
with respect to the connection are correlation functions of fields located at
those points. Also for topological reasons taking in account marked points is
of fundamental importance, since only in the presence of marked points the
relation to the theory of knots and links in ”handle-bodies” appears. Thus,
around 1989-90 two directions in conformal field theory took shape: the Wess-
Zumino-Witten-Novikov theory and the Hitchin theory. Later on, also other
branches appeared: the infinite-dimensional analogue of the Borel-Weyl-Bott
theory, and the noncommutative theory of theta-functions. The present work
is devoted to the first of the pointed-out directions, the Wess-Zumino–Witten-
Novikov theory.

The principal question which we pose in this article is the following: what
is the generalization of the Knizhnik-Zamolodchikov equations for Riemann
surfaces of positive genus with several marked points? This question remains
in the center of current interest and is discussed in a number of articles ([3], [4]
and others). The fundamental article of A. Tsuchiya, K. Ueno, Y. Yamada does
not close the discussion. Attempts to clarify their approach are going on, e.g.
see [3]. Our work develops the method of Tsuchiya, Ueno and Yamada. The
use of Krichever-Novikov type algebras is the new ingredient we contribute.

In [10, 11, 12], I.M. Krichever and S.P. Novikov defined the basic objects of
two-dimensional conformal field theory (like the energy-momentum tensor) as
global meromorphic objects on a Riemann surface. They pointed out another
choice for the basic gauge and conformal symmetries which are of a global na-
ture and satisfy the Krichever-Novikov algebras. Krichever-Novikov algebras
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are higher genus algebraic-geometrical analogues of the affine Kac-Moody alge-
bras and the Virasoro algebra, and contain them as subclasses. Their definition
is based on the algebraic-geometrical data of the same type which is widely
used in soliton theory. The data includes a Riemann surface with marked
points and fixed jets of local coordinates there. These algebras and their local
central extensions admit an almost graded structure which allows to develop a
theory of representations generated by a vacuum, or, physically speaking, to
incorporate the formalism of second quantization.

It is far from evidence that the construction due to Tsuchya, Ueno and
Yamada can be generalized to Krichever-Novikov algebras. In the present
article we resolve this problem. Actually, what we are doing is not just proving
the (abstract) existence of the connection; we give an explicit construction of
it and resolve the attendant geometric and deformation problems.

Krichever and Novikov dealt with the two-point case and mainly with the
case of an abelian finite-dimensional Lie algebra. The corresponding multi-
point algebras were introduced in [19], [22]. In [25, 26] we generalized the
Krichever-Novikov results to the non-abelian multi-point case and developed
our global operator approach to the Wess-Zumino-Witten-Novikov model. In
[26], we basically formulated our approach including the general form of the
Knizhnik-Zamolodchikov connection for arbitrary finite genus g and the par-
ticular forms for lower genera (g = 0 or g = 1). However, we were not able to
show that our connection is well-defined on conformal blocks in that article,
hence, we also omitted the proof of its projective flatness. Filling up these
gaps is one of the goals of the present article. In particular, based on the
explicit formulas (obtained in this article) for the infinitesimal deformations
of Krichever-Novikov functions and vector-fields under the deformation of the
complex structure, we show that the connection is well-defined. We would like
to stress the fact that there still exists the problem of identifying our approach
with the known ones, as well as the known ones between themselves.

We believe that the global operator approach simplifies the theory and makes
more transparent its geometry and relations. It enables us to describe explic-
itly the Kuranishi tangent space of the moduli space in terms of Krichever-
Novikov basis elements, hence to give explicitly the equations of the generalized
Knizhnik-Zamolodchikov system. It is well-known that the higher genus the-
ories are related to the representations of the fundamental group of the punc-
tured Riemann surface (”twists” in the early terminology of conformal field
theory [4]). In our approach, representations of the fundamental group nat-
urally arise as parameters giving representations of gauge Krichever-Novikov
algebras. Thus, the global geometric Langlands correspondence appears in
the very beginning of the theory. One more intriguing relation can be eas-
ily formulated in the framework of our approach, namely, the relation between
Knizhnik-Zamolodchikov systems and quadratic Hitchin integrals [6]. Both the
Knizhnik-Zamolodchikov operator and the corresponding quantized Hitchin
integral correspond to a Kuranishi tangent vector. On one hand, consider a
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certain pull-back e of such vector to the Krichever-Novikov vector field alge-
bra. On the other hand, consider the corresponding derivation on the moduli
space. In both cases subtract the Sugawara operator corresponding to e. In
the first case this yields the quantized Hitchin integral [33], and in the second
case the Knizhnik-Zamolodchikov operator. It remains beyond the intended
scope of this article to give further details on this relation and to discuss the
associated questions.

Two important problems remain untouched in the present article, these are
the problem of unitarity of the constructed connection and the problem of
its extension to the compactification of the moduli space. The problem of
unitarity is posed by Hitchin in the above cited article and was resistant to
the attempts of resolving it within the framework of the approaches he pro-
posed. In the axiomatics of Hermitian tensor categories the problem was later
considered by A. Kirillov (Jr.). To the best of our knowledge, the statement
about the uniqueness of the unitary projectively flat connection is still missing
in the literature (though many people think that it is true). As for resolving
the problem of extension to the compactification, it requires investigations of
the behavior of Krichever-Novikov algebras and their representations under
degenerations of curves. Certain steps in this direction were done in [21], see
also recent joint works of A. Fialowski and M. Schlichenmaier [36].

The present paper is organized as follows. In Section 2 and Section 3 the
necessary setup is revisited from the point of view of the recent progress in
the theory of multi-point Krichever-Novikov algebras [23, 24], and their rep-
resentations [30, 31, 32]. Certain results are extended to be applicable to the
situations considered here.

Section 4 contains the main results, namely the construction of the general-
ized Knizhnik-Zamolodchikov connection on the conformal block bundle on an
open dense part of the moduli space, and the proof of the projective flatness
of this connection.

One of the authors (O.K.S.) was supported by the RFBR projects 02-01-
00803, 02-01-22004 and by the program ”Nonlinear Dynamics and Solitons” of
the Russian Academy of Science. The authors thank also the DFG for support
in the framework of the DFG-Forschergruppe “Arithmetik”, located at the
Universities of Heidelberg and Mannheim. The authors thank the referee for
suggestions which helped to improve the introductory part of the article.

2. The algebras of Krichever-Novikov type

For the general set-up developed in [10] for Riemann surfaces with two
marked points, and in [20], [17, 18, 19] for many points we refer to [26]. Let
us introduce here some notation.

Let Σ be a compact Riemann surface of genus g, or in terms of algebraic
geometry, a smooth projective curve over C respectively. Let

I = (P1, . . . , PN), N ≥ 1
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be a tuple of ordered, distinct points (“marked points” “punctures”) on Σ and
P∞ a distinguished marked point on Σ different from Pi for every i. The points
in I are called the in-points, and the point P∞ the out-point. Let A = I∪{P∞}
as a set. In [19], [20], the general case where there exists also a finite set of
out-points is considered. The results presented in this section are also valid in
the more general context.

2.1. The Lie algebras A, g, L, D1 and D1
g.

First let A := A(Σ, I, P∞) be the associative algebra of meromorphic func-
tions on Σ which are regular except at the points P ∈ A. Let g be a complex
finite-dimensional Lie algebra. Then

(2.1) g = g⊗C A
is called the Krichever-Novikov current algebra [10, 27, 28, 29]. The Lie bracket
on g is given by the relations

(2.2) [x⊗ A, y ⊗B] = [x, y]⊗ AB.

We will often omit the symbol ⊗ in our notation.
Let L denote the Lie algebra of meromorphic vector fields on Σ which are

allowed to have poles only at the points P ∈ A [10, 11, 12].
For the Riemann sphere (g = 0) with quasi-global coordinate z, I = {0}

and P∞ = ∞, the algebra A is the algebra of Laurent polynomials, the current
algebra g is the loop algebra, and the vector field algebra L is the Witt algebra.
Sometimes, we refer to this case as the classical situation for short.

The algebra L operates on the elements of A by taking the (Lie) derivative.
This enables us to define the Lie algebra D1 of first order differential operators
as the semi-direct sum of A and L. As vector space D1 = A ⊕ L. The Lie
structure is defined by

(2.3) [(g, e), (h, f)] := (e.h− f .g, [e, f ]), g, h ∈ A, e, f ∈ L.
Here e.f denotes taking the Lie derivative. In local coordinates e| = ẽ d

dz
and

e.f| = ẽ · df
dz

.
Consider at last the Lie algebra D1

g of differential operators associated to g,
(i.e. the algebra of Krichever-Novikov differential operators). As a linear space
D1

g = g⊕ L. The Lie structure is given by the Lie structures on g, on L, and
the additional definition

(2.4) [e, x⊗ A] := −[x⊗ A, e] := x⊗ (e.A).

In particular, for g = gl(1) one obtains, as a special case, D1
g = D1.

2.2. Meromorphic forms of weight λ and Krichever-Novikov duality.

Let K be the canonical line bundle. Its associated sheaf of local sections is
the sheaf of holomorphic differentials. Following the common practice we will
usually not distinguish between a line bundle and its associated invertible sheaf
of local sections. For every λ ∈ Z we consider the bundle Kλ := K⊗λ. Here we
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follow the usual convention: K0 = O is the trivial bundle, and K−1 = K∗ is the
holomorphic tangent line bundle. Indeed, after fixing a theta characteristics,
i.e. a bundle S with S⊗2 = K, it is possible to consider λ ∈ 1

2
Z. Denote by Fλ

the (infinite-dimensional) vector space of global meromorphic sections of Kλ

which are holomorphic on Σ\A. The elements of Fλ are called (meromorphic)
forms or tensors of weight λ.

Special cases, which are of particular interest, are the functions (λ = 0), the
vector fields (λ = −1), the 1-forms (λ = 1), and the quadratic differentials
(λ = 2). The space of functions is already denoted by A, and the space of
vector fields by L.

By multiplying sections with functions we again obtain sections. In this
way the Fλ become A-modules. By taking the Lie derivative of the forms
with respect to the vector fields the vector spaces Fλ become L-modules. In
local coordinates the Lie derivative is given as

(2.5) (e.g)| := (ẽ(z)
d

dz
) .(g̃(z) dzλ) :=

(
ẽ(z)

dg̃

dz
(z) + λ g̃(z)

dẽ

dz
(z)

)
dzλ .

The vector spaces Fλ become D1-modules by the canonical definition (g +
e) .v = g · v + e.v. Here g ∈ A, e ∈ L and v ∈ Fλ. By universal constructions
algebras of differential operators of arbitrary degree can be considered [20, 22].

Let ρ be a meromorphic differential which is holomorphic on Σ \ A with
exact pole order 1 at the points in A and given positive residues at I and given
negative residues at P∞ (of course obeying the restriction

∑
P∈I resP (ρ) +

resP∞(ρ) = 0) and purely imaginary periods. There exists exactly one such ρ

(see [16, p.116]). For R ∈ Σ \ A a fixed point, the function u(P ) = Re
∫ P

R
ρ

is a well-defined harmonic function. The family of level lines Cτ := {p ∈ M |
u(P ) = τ}, τ ∈ R defines a fibration of Σ \ A. Each Cτ separates the points
in I from the point P∞. For τ � 0 (τ � 0) each level line Cτ is a disjoint
union of deformed circles Ci around the points Pi, i = 1, . . . , N (a deformed
circle C∞ around the point P∞). We will call any such level line or any cycle
homologous to such a level line a separating cycle CS.

Definition 2.1. The Krichever-Novikov pairing (KN pairing) is the pairing
between Fλ and F1−λ given by

(2.6)

Fλ ×F1−λ → C,

〈f, g〉 :=
1

2πi

∫
CS

f ⊗ g =
∑
P∈I

resP (f ⊗ g) = − resP∞(f ⊗ g),

where CS is any separating cycle.

The last equality follows from the residue theorem. Note that in (2.6) the
integral does not depend on the separating cycle chosen. From the construction
of special dual basis elements in the next subsection it follows that the KN
pairing is non-degenerate.
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2.3. Krichever-Novikov bases.
Krichever and Novikov introduced special bases (Krichever-Novikov bases)

for the vector spaces of meromorphic tensors on Riemann surfaces with two
marked points. For g = 0 the Krichever-Novikov bases coincide with the
Laurent bases. The multi-point generalization of these bases is given by one of
the authors in [19, 20] (see also Sadov [15] for some results in similar direction).
We define here the Krichever-Novikov type bases for tensors of arbitrary weight
λ on Riemann surfaces with N marked points as introduced in [19, 20].

For fixed λ and for every n ∈ Z, and p = 1, . . . , N a certain element fλ
n,p ∈ Fλ

is exhibited. The basis elements are chosen in such a way that they fulfill the
duality relation

(2.7) 〈fλ
n,p, f

1−λ
m,r 〉 = δm

−n · δr
p

with respect to the pairing (2.6). In particular, this implies that the pairing is
non-degenerate. Additionally, the elements fulfill

(2.8) ordPi
(fλ

n,p) = (n+ 1− λ)− δp
i , i = 1, . . . , N.

The recipe for choosing the order at the point P∞ is such that up to a scalar
multiplication there is a unique such element which fulfills (2.7). To this end,
for g ≥ 2, λ 6= 0, 1 and A consisting of generic points (and without any
additional requirement for g = 0), we require

(2.9) ordP∞(fλ
n,p) = −N · (n+ 1− λ) + (2λ− 1)(g − 1) .

After choosing local coordinates zp at the points Pp the scalar can be fixed by
requiring

(2.10) fλ
n,p|(zp) = zn−λ

p (1 +O(zp)) (dzp)
λ , p = 1, . . . , N.

By Riemann-Roch type arguments, it is shown in [17] that there exists only one
such element. For the necessary modification for other cases see [26], [19, 20].

For the basis elements fλ
n,p, explicit descriptions in terms of rational functions

(for g = 0), the Weierstraß σ-function (for g = 1), and prime forms and
theta functions (for g ≥ 1) are given in [18]. For g = 0 and g = 1, such a
description can be found also in [26, §§2,7]. For a description using Weierstraß
℘-function, see [14], [21]. The existence of such a description is necessary in
our context because we want to consider the above algebras and modules over
the configuration space, respectively, the moduli space of curves with marked
points. In particular, one observes from the explicit representation that the
basis elements vary “analytically” when the complex structure of the Riemann
surface is deformed.

For the following special cases we introduce the notation:

(2.11) An,p := f 0
n,p, en,p := f−1

n,p, ωn,p := f 1
−n,p, Ωn,p := f 2

−n,p .

For g = 0 and N = 1 the basis elements constructed coincide with the
standard generators of the Witt and loop algebras, respectively. For g ≥ 1
and N = 1 these elements coincide up to an index shift with those given by
Krichever and Novikov [10, 11, 12].
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2.4. Almost graded structure, triangular decompositions.
For g = 0 and N = 1 the Lie algebras introduced in Section 2.1 are graded.

A grading is a necessary tool for developing their structure theory and the
theory of their highest weight representations. For the higher genus case (and
for the multi-point situation for g = 0) there is no grading. It is a fundamental
observation due to Krichever and Novikov [10, 11, 12] that a weaker concept, an
almost grading, is sufficient to develop a suitable structure and representation
theory in this more general context.

An (associative or Lie) algebra is called almost-graded if it admits a direct
decomposition as a vector space V =

⊕
n∈Z Vn , with (1) dimVn < ∞ and

(2) there are constants R and S such that

(2.12) Vn · Vm ⊆
n+m+S⊕

h=n+m−R

Vh, ∀n,m ∈ Z .

The elements of Vn are called homogeneous elements of degree n. Let V =
⊕n∈ZVn be an almost-graded algebra and M an V-module. The module M
is called an almost-graded V-module if it admits a direct decomposition as a
vector space M =

⊕
m∈ZMm , with (1) dimMm < ∞ and (2) there are

constants T and U such that

(2.13) Vn .Mm ⊆
n+m+U⊕

h=n+m−T

Mh, ∀n,m ∈ Z .

The elements of Mn are called homogeneous elements of degree n.
In case of Fλ the homogeneous subspaces Fλ

n are defined as the subspace of
Fλ generated by the elements fλ

n,p for p = 1, . . . , N . Then Fλ =
⊕

n∈ZFλ
n .

Proposition 2.2. [19, 20] With respect to the introduced degree, the vector
field algebra L, the function algebra A, and the differential operator algebra
D1 are almost-graded and the Fλ are almost-graded modules over them.

The algebra A can be decomposed (as vector space) as follows:
(2.14)

A = A+ ⊕A(0) ⊕A−,

A+ := 〈An,p | n ≥ 1, p = 1, . . . , N〉, A− := 〈An,p | n ≤ −K − 1, p = 1, . . . , N〉 ,
A(0) := 〈An,p | −K ≤ n ≤ 0, p = 1, . . . , N〉 ,

and the Lie algebra L as follows:
(2.15)

L = L+ ⊕ L(0) ⊕ L−,
L+ := 〈en,p | n ≥ 1, p = 1, . . . , N〉, L− := 〈en,p | n ≤ −L− 1, p = 1, . . . , N〉 ,

L(0) := 〈en,p | −L ≤ n ≤ 0, p = 1, . . . , N〉 .

We call (2.14), (2.15) the triangular decompositions. In a similar way we obtain
a triangular decomposition of D1.
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Due to the almost-grading the subspaces A± and L± are subalgebras but
the subspaces A(0), and L(0) in general are not. We use the term critical strip
for them.

Note that A+, resp. L+ can be described as the algebra of functions (vector
fields) having a zero of at least order one (two) at the points Pi, i = 1, . . . , N .
These algebras can be extended by adding all elements which are regular at
all Pi’s. This can be achieved by moving the set of basis elements {A0,p, p =
1, . . . , N} , (resp. {e0,p, e−1,p, i = 1, . . . , N} from the critical strip to these
algebras. We denote the enlarged algebras by A∗

+, resp. by L∗+.
On the other hand A− and L− could also be extended so that they contain

all elements which are regular at P∞. This is explained in detail in [26]. We

obtain A∗
− and L∗− respectively. In the same way for every p ∈ N0 let L(p)

−
be the subalgebra of vector fields vanishing of order ≥ p+ 1 at the point P∞,

and A(p)
− the subalgebra of functions respectively vanishing of order ≥ p at the

point P∞. We obtain a decomposition
(2.16)

L = L+ ⊕ L(p)
(0) ⊕ L

(p)
− , for p ≥ 0, and A = A+ ⊕A(p)

(0) ⊕A
(p)
− , for p ≥ 1,

with “critical strips” L(p)
(0) and A(p)

(0), which are only subspaces. Of particular

interest to us is L(1)
(0) which we call reduced critical strip. For g ≥ 2 its dimension

is

(2.17) dimL(1)
(0) = N +N + (3g − 3) + 1 + 1 = 2N + 3g − 1 .

The first two terms here correspond to the dimensions of L0 and L−1. The
intermediate term comes from the vector fields in the basis which have poles
both at the Pi, i = 1, . . . , N and at P∞. The 1 + 1 corresponds to the vector
fields in the basis with exact order zero (one) at P∞.

The almost-grading can easily be extended to the higher genus current al-
gebra g by setting deg(x ⊗ An,p) := n. We obtain a triangular decomposition
as above

(2.18) g = g+ ⊕ g(0) ⊕ g−, with gβ = g⊗Aβ, β ∈ {−, (0),+} ,

In particular, g± are subalgebras. The corresponding is true for the enlarged

subalgebras. Among them, gr := g
(1)
− = g⊗A(1)

− is of special importance. It is
called the regular subalgebra.

The finite-dimensional Lie algebra g can naturally be considered as subal-
gebra of g. It lies in the subspace g0. To see this we use 1 =

∑N
p=1A0,p, see

[26, Lemma 2.6].

2.5. Central extensions and 2-cohomologies.
Let V be a Lie algebra and γ a Lie algebra 2-cocycle on V , i.e. γ is an

antisymmetric bilinear form obeying

(2.19) γ([f, g], h) + γ([g, h], f) + γ([h, f ], g) = 0, ∀f, g, h ∈ V .
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On V̂ = C ⊕ V a Lie algebra structure can be defined by (with the notation

f̂ := (0, f) and t := (1, 0))

(2.20) [f̂ , ĝ] := [̂f, g] + γ(f, g) · t, [t, V̂ ] = 0.

The element t is a central element. Up to equivalence central extensions are
classified by the elements of H2(V ,C), the second Lie algebra cohomology space
with values in the trivial module C. In particular, two cocycles γ1, γ2 define
equivalent central extensions if and only if there exist a linear form φ on V
such that

(2.21) γ1(f, g) = γ2(f, g) + φ([f, g]).

Definition 2.3. Let V =
⊕

n∈Z Vn be an almost-graded Lie algebra. A cocy-
cle γ for V is called local (with respect to the almost-grading) if there exist
M1,M2 ∈ Z with

(2.22) ∀n,m ∈ Z : γ(Vn,Vm) 6= 0 =⇒ M2 ≤ n+m ≤M1.

The constants M1 and M2 are called upper and lower bounds respectively for
the local cocycle γ.

By defining deg(t) := 0 the central extension V̂ is almost-graded if and only

if it is given by a local cocycle γ. In this case we call V̂ an almost-graded central
extension or a local central extension.

In the following we consider cocycles of geometric origin. First we deal with
A, L and D1. A thorough treatment for them is given in [23]. The proofs of
the following statements and more details can be found there.

For the abelian Lie algebra A any antisymmetric bilinear form will be a 2-
cocycle. Let C be any (not necessarily connected) differentiable cycle in Σ \A
then

(2.23) γ
(f)
C : A×A → C, γ

(f)
C (g, h) :=

1

2πi

∫
C

gdh

is antisymmetric, hence a cocycle. Note that replacing C by any homologous
(differentiable) cycle one obtains the same cocycle. The above cocycle is L-
invariant, i.e.

(2.24) γ
(f)
C (e.g, h) = γ

(f)
C (e.h, g), ∀e ∈ L, ∀g, h ∈ A.

For the vector field algebra L we generalize the standard Virasoro-Gelfand-
Fuks cocycle to higher genus. To this end, we have first to choose a projective
connection. It will allow us to add a counter term to the integrand to obtain a
well-defined 1-differential. Let R be a global holomorphic projective connection
(see e.g. [26] for the definition), C be an arbitrary cycle. Assign with them a
cycle defined by

(2.25) γ
(v)
C,R(e, f) :=

1

24π i

∫
C

(
1

2
(ẽ′′′f̃ − ẽf̃ ′′′)−R · (ẽ′f̃ − ẽf̃ ′)

)
dz .
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Here e| = ẽ d
dz

and f| = f̃ d
dz

with local meromorphic functions ẽ and f̃ . A
different choice of the projective connection (even if we allow meromorphic
projective connections with poles only at the points in A) yields a cohomolo-
gous cocycle, hence an equivalent central extension.

These two types of cocycles can be extended to cocycles on the whole D1 by
setting them to be zero if one of the entries is from the complementary space.
For the vector field cocycles this is true without any additional assumption, for
the function algebra cocycles the L-invariance (2.24) is necessary and sufficient.
But there are other independent types of cocycles which mix functions with
vector fields. To define them we first have to fix an affine connection T which
is holomorphic outside A and has at most a pole of order one at P∞. For the
definition and existence of an affine connection, see [20], [31], [23]. Now

(2.26) γ
(m)
C,T (e, g) := −γ(m)

C,T (g, e) :=
1

2πi

∫
C

(ẽ · g′′ + T · (ẽ · g′)) dz

is a 2-cocycle. Again, the cohomology class does not depend on the chosen
affine connection.

Next we consider cocycles obtained by integrating over a separating cycle
CS. Instead of γCS

we will use γS. Clearly, these cocycles can be expressed via
residues at the points in I or equivalently at the point P∞.

Proposition 2.4. [10, 20] The above cocycles if integrated over a separating
cycle CS are local. In each case their upper bounds are equal to zero.

If we replace R or T by other meromorphic connections which have poles
only at A, the cocycles still will be local. The upper and lower bounds might
change. If the poles are of at most order two for the projective connection, or
order one for the affine connection at the points in I, then the upper bounds
will remain zero. Note that such a change of the connection can always be
given by adding elements from F2 or F1 to R and T respectively.

By locality, geometric cocycles give almost-graded central extensions Â, L̂
and D̂1. By the vanishing of the cocycles (at least if R is holomorphic) on
the subalgebras A± and L± the subalgebras can be identified in a natural way

with the subalgebras Â± and L̂± of Â, resp. L̂.
One of the main results of [23] is

Theorem 2.5. (a) Every local cocycle of A which is L-invariant is a multiple

(over C) of the cocycle γ
(f)
S . The cocycle γ

(f)
S is cohomologically non-trivial.

(b) Every local cocycle of L is cohomologous to a scalar multiple of γ
(v)
S,R. More-

over, the cocycle γ
(v)
S,R defines a non-trivial cohomology class, and for every co-

homologically non-trivial local cocycle a meromorphic projective connection R′

which is holomorphic outside of A can be chosen such that the cocycle is equal

to a scalar multiple of γ
(v)
S,R′.

(c) Every local cocycle for D1 is a linear combination of the above introduced
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cocycles γ
(f)
S , γ

(v)
S,R and γ

(m)
S,T up to coboundary, i.e.

(2.27) γ = r1γ
(f)
S + r2γ

(m)
S,T + r3γ

(v)
S,R + coboundary, r1, r2, r3 ∈ C.

The three basic cocycles are linearly independent in the cohomology space. If the
coefficients r2 and r3 in the linear combination are non-zero, then a meromor-
phic projective connection R′ and an affine connections T ′, both holomorphic

outside A, can be found such that γ = r1γ
(f)
S + r2γ

(m)
S,T ′ + r3γ

(v)
S,R′.

2.6. Affine algebras.
Let g be a reductive finite-dimensional Lie algebra. Above, we introduced

the current algebra g together with its almost-grading. In this subsection we
study central extensions of g. Given an invariant, symmetric bilinear form
α(., .), i.e. a form obeying α([x, y], z) = α(x, [y, z]) we define as generalization
of the Kac-Moody algebras of affine type the higher genus (multi-point) affine
Lie algebra. We call it also a Krichever-Novikov algebra of affine type. It is the
Lie algebra based on the vector space ĝ = g⊕C t equipped with Lie structure

(2.28) [x̂⊗ f, ŷ ⊗ g] = ̂[x, y]⊗ (fg) + α(x, y) · γCS
(f, g) · t, [ t, ĝ] = 0 ,

where

(2.29) γCS
(f, g) =

1

2πi

∫
CS

fdg

is the geometric cocycle for the function algebra obtained by integration along
a separating cycle CS. We denote this central extension by ĝα,S. It depends on

the bilinear form α. As usual we set x̂⊗ f := (0, x⊗ f). The cocycle defining
the central extension ĝα,S is local. Hence we can extend our almost-grading to

the central extension by setting deg t := 0 and deg( ̂x⊗ An,p) := n. Again we
obtain a triangular decomposition

(2.30) ĝα,S = ĝ+ ⊕ ĝ(0) ⊕ ĝ− with ĝ± ∼= g± and ĝ(0) = g(0) ⊕ C · t .
The corresponding is true for the enlarged subalgebras. Among them,

ĝr := ĝ
(1)
− = g

(1)
− = g⊗A(1)

− , ĝ∗,ext
+ = g∗+ ⊕ C t = (g⊗A∗

+)⊕ C t .

are of special interest.
Instead integrating over a separating cycle in (2.29) we could integrate over

any other cycle C and obtain in this way another (in general, non-equivalent
and even non-isomorphic) central extension ĝα,C . In addition, there is no a
priori reason why every cocycle defining a central extension of g should be of
this type, i.e. should be obtained by choosing an invariant symmetric bilinear
form α and integrating the differential fdg over a cycle.

Before we can formulate the results needed in our context we have to extend
the definition of L-invariance of cocycles to g.

Definition 2.6. A cocycle γ of g is called L-invariant if

(2.31) γ(x(e.g), y(h)) + γ(x(g), y(e.h)) = 0, ∀x, y ∈ g, e ∈ L, g, h ∈ A.
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The cocycles introduced above are obviously L-invariant.

Theorem 2.7. [24, Thm. 3.13, Cor. 3.14] (a) Let g be a finite-dimensional
simple Lie algebra, then every local cocycle of the current algebra g = g⊗A is
cohomologous to a cocycle given by

(2.32) γ(x⊗ f, y ⊗ g) = r · β(x, y)

2π i

∫
CS

fdg, with r ∈ C,

and with β the Cartan-Killing form of g. In particular, every local cocycle is
cohomologous to a local and L-invariant cocycle.
(b) If the cocycle is already local and L-invariant, then it coincides with the
cocycle (2.32) with r ∈ C suitable chosen.
(c) For g simple, up to equivalence and rescaling of the central element there
is a unique non-trivial almost-graded central extension ĝ of its higher genus
multi-point current algebra g. It is given by the cocycle (2.32).

Next, let g be an arbitrary complex reductive finite-dimensional Lie algebra,
and

(2.33) g = g0 ⊕ g1 ⊕ · · · ⊕ gM

be its decomposition into its abelian ideal g0 and simple ideals g1, · · · , gM . For
the corresponding current algebra we obtain g = g0 ⊕ g1 ⊕ · · · ⊕ gM .

Theorem 2.8. [24, Thm. 3.20] (a) Let g be a finite-dimensional reductive Lie
algebra. Given a cocycle γ for g which is local, and whose restriction to g0 is
L-invariant, there exists a symmetric invariant bilinear form α for g such that
γ is cohomologous to

(2.34) γ′α,S(x⊗ f, y ⊗ g) =
α(x, y)

2π i

∫
CS

fdg.

Vice versa, every such α determines a local cocycle.
(b) If the cocycle γ is already local and L-invariant for the whole g, then it
coincides with the cocycle γ′a,S.
(c)

(2.35) dim H2
loc,L(g,C) =

n(n+ 1)

2
+M.

Here H2
loc,L(g,C) denotes the subspace of those cohomology classes which

have a local and L-invariant cocycle as representative.

2.7. Central extensions of D1
g.

Recall that D1
g = g ⊕ L with [e, xA] = x(e.A), see (2.4). There is a short

exact sequence of Lie algebras

(2.36) 0 −−−→ g
i1−−−→ D1

g

p2−−−→ L −−−→ 0.

First note again that by the almost-grading of L and g and by the fact that
A is an almost-graded L-module the algebra D1

g is an almost-graded algebra.
Local cocycles and central extensions of this algebra, as well as of the above



KNIZHNIK-ZAMOLODCHIKOV EQUATIONS 15

mentioned algebras, are described in [24] (the absence of any mixing type
cocycle in the semi-simple case is observed in [31]) By restricting a local cocycle
for D1

g to the subalgebra g one obtains a local cocycle for g. In the semi-simple
case we obtain

Theorem 2.9. (a) Let g be a semi-simple Lie algebra and γ a local cocycle
of D1

g. Then there exists a symmetric invariant bilinear form α for g such
that γ is cohomologous to a linear combination of the local cocycle γα,S given

by (2.34) and of the local cocycle γ
(v)
S,R (2.25) for C = CS of the vector field

algebra L.
(b) If g is a simple Lie algebra, then γα,S is a multiple of the standard cocycle
(2.32) for g.
(c) dim H2

loc(D1
g,C) = M + 1, where M is the number of simple ideals of g.

In the reductive case it turns out that a cocycle ofD1
g restricted to the abelian

summand g0 is L-invariant. In generalization of the mixing cocycle for D1 we
obtain for every linear form φ ∈ g∗ which vanishes on g′ := [g, g] = g1⊕· · ·⊕gM

a local cocycle given by

(2.37) γφ,S(e, x(g)) :=
φ(x)

2π i

∫
CS

(ẽ · g′′ + T · (ẽ · g′)) dz,

Here again T is a meromorphic affine connection with poles only at the points
in A.

Theorem 2.10. [24, Thm. 4.11] (a) Let g be a finite-dimensional reductive
Lie algebra. For every local cocycle γ for D1

g there exists a symmetric invariant
bilinear form α on g, and a linear form φ of g which vanishes on g′, such that
γ is cohomologous to

(2.38) γ′ = γα,S + γφ,S + rγ
(v)
S,R,

with r ∈ C and a current algebra cocycle γα,S given by (2.34), a mixing cocycle

γφ,S given by (2.37) and the vector field cocycle γ
(v)
S,R given by (2.25). Vice

versa, any such α, φ, r ∈ C determine a local cocycle.

(b) The space of local cocycle classes H2
loc(D1

g,C) is
n(n+ 1)

2
+ n + M + 1

dimensional.

2.8. Local cocycles for sl(n) and gl(n).
Consider sl(n), the Lie algebra of trace-less complex n × n matrices. Up

to multiplication with a scalar the Cartan-Killing form β(x, y) = tr(xy) is the
unique symmetric invariant bilinear form on it. From the Theorems 2.7 and
2.9 follows

Proposition 2.11. (a) Every local cocycle for the current algebra sl(n) is
cohomologous to

(2.39) γ(x(g), y(h)) = r · tr(xy)

2π i

∫
CS

gdh, r ∈ C.
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(b) Every L-invariant local cocycle equals the cocycle (2.39) with a suitable r.
(c) Every local cocycle for the differential operator algebra D1

sl(n) is cohomolo-

gous to a linear combination of (2.39) and the standard local cocycle γ
(v)
S,R for

the vector field algebra. In particular, there exist no cocycles of mixing type.

Next, we deal with gl(n), the Lie algebra of all complex n× n-matrices. It
can be decomposed (cf. (2.33)) into the direct sum of its 1-dimensional center
s(n) and a simple ideal sl(n): gl(n) = s(n) ⊕ sl(n) ∼= C ⊕ sl(n) where s(n)
consists of scalar n× n matrices.

The space of symmetric invariant bilinear forms for gl(n) is two-dimensional.
A basis is given by the forms

(2.40) α1(x, y) = tr(xy), and α2(x, y) = tr(x)tr(y).

The form α1 is the “standard” extension for the Cartan-Killing form for sl(n)
to gl(n) and is also gl(n) invariant. From the Theorems 2.8 and 2.10 follows

Proposition 2.12. (a) A cocycle γ for gl(n) is local and restricted to s(n)
is L-invariant if and only if it is cohomologous to a linear combination of the
following two cocycles
(2.41)

γ1(x(g), y(h)) =
tr(xy)

2π i

∫
CS

gdh, γ2(x(g), y(h)) =
tr(x)tr(y)

2π i

∫
CS

gdh.

(b) If the local cocycle γ on gl(n) is L-invariant then γ is equal to a linear
combination of the cocycles (2.41).

Proposition 2.13. (a) Every local cocycle γ for D1
gl(n) is cohomologous to a

linear combination of the cocycles γ1 and γ2 of (2.41), of the mixing cocycle

(2.42) γ3,T (e, x(g)) =
tr(x)

2π i

∫
CS

(
ẽg′′ + T ẽg′

)
dz,

and of the standard local cocycle γ
(v)
S,R for the vector field algebra, i.e.

(2.43) γ = r1γ1 + r2γ2 + r3γ3,T + r4γ
(v)
S,R + coboundary,

with suitable r1, r2, r3, r4 ∈ C.
(b) If the cocycle γ is local and restricted to gl(n) is L-invariant, and r3, r4 6= 0
then there exist an affine connection T and a projective connection R holomor-
phic outside A such that in the combination (2.43) there will be no additional
coboundary.
(c) dim H2

loc(D1
gl(n),C) = 4.

It turns out that for a cocycle of the differential operator algebra, its re-
striction to gl(n) is cohomologous to an L-invariant cocycle. Moreover, its
restriction to s(n) is L-invariant [24, Prop. 4.10].
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3. Representations of the multi-point Krichever-Novikov
algebras

3.1. Projective D1
g-modules.

Let V be an arbitrary Lie algebra, V a vector space and π : V → End(V ) a
linear map. The space V is called a projective V-module if for all pairs f, g ∈ V
there exists γ(f, g) ∈ C such that

(3.1) π([f, g]) = [π(f), π(g)] + γ(f, g) · id.

In this case π is also called a projective action. Often we write simply fv
instead π(f)(v).

If V is a projective V-module then γ is necessarily a Lie algebra 2-cocycle.
Via Equation (2.20) the cocycle, hence the projective action π, defines a central

extension V̂γ = V̂π of V . Obviously, by defining π(t) = id, the projective

action can be extended to a honest Lie action of V̂γ on V . Usually, we omit
the indices π, γ if they are clear from the context. One should keep in mind

that the cocycle defining V̂ and also the equivalence and even isomorphy class
of the central extension will depend on the projective action given. In certain
cases considered below we will be able to identify the cocycle.

Let V be an almost-graded Lie algebra. A projective V-module V is called
admissible if for each v ∈ V there exists a k(v) ∈ N such that for all f ∈ V with
deg f ≥ k(v) we have fv = 0. By a projective almost-graded module V over
an almost-graded algebra V we understand an almost-graded module structure
on V with respect to the projective action of V such that the corresponding
cocycle is local (see Definition 2.3). We call an almost-graded module V a
highest weight (vacuum) module if an element |0〉 ∈ V exists such that f |0〉 = 0
for every f with deg f > 0 and V = U(V)|0〉 where U(·) denotes the universal
enveloping algebra. The element |0〉 is called a vacuum vector. Obviously,
vacuum modules are admissible.

Below, we will assume V to be an admissible projective almost-graded g-
module (we will write projective representation as well). In our main example
(the fermion representations which will be discussed in the next subsection) we
even have a structure of a D1

g-module. Moreover, these modules are generated
by vacuum vectors over D1

g and over g as well.
In fact, we will be mainly interested in the case g = gl(n). In particular, the

fermion modules (of fixed charge) are irreducible in this case. Observe that
for the constructions of the following Section 4 we need only a (projective)
g-module structure on V , and we will assume the irreducibility of this module.

3.2. Fermion representations.
In this paragraph, we briefly outline the construction of a projective fermion

D1
g-module [30, 31, 33]. It uses the Krichever-Novikov bases in the spaces of

sections of holomorphic vector bundles as an important ingredient. These bases
are introduced in [13] for the two-point case, and, combining the approaches
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of [13] and Section 2.3 (going back to [17, 18]) generalized in [33] to the multi-
point case. We refer to the cited works for the details. Here we only mention
that these bases are given by asymptotic behavior of their elements at the
marked points and their properties are similar to those described in Section 2.3.
In particular, these bases are almost graded with respect to the action of
Krichever-Novikov algebras.

Consider a holomorphic bundle F on Σ of rank r and degree g · r (g is the
genus of the Riemann surface Σ). Let Γ(F ) denote the space of meromor-
phic sections of F holomorphic except at P1, . . . , PN , P∞. Let τ be a finite-
dimensional representation of g with representation space Vτ . Set ΓF,τ :=
Γ(F )⊗ Vτ .

We define a g-action on ΓF,τ as follows:

(3.2) (x⊗A)(s⊗v) = (A·s)⊗τ(x)v for all x ∈ g, A ∈ A, s ∈ Γ(F ), v ∈ Vτ .

In order to define an L-action on Γ(F ) we choose a meromorphic (therefore
flat) connection ∇ on F which has logarithmic singularities at P1, . . . , PN and
P∞ (see [31] for more details). By flatness, ∇[e,f ] = [∇e,∇f ] for all e, f ∈ L.
Hence, ∇ defines a representation of L in Γ(F ).

From the definition of a connection, for any s ∈ Γ(F ), e ∈ L and A ∈ A
we have ∇e(As) = (e.A)s + A∇es where e.A is the Lie derivative. Hence,
[∇e, A] = e.A, i.e. the mapping e+A→ ∇e +A gives rise to a representation
of D1 in Γ(F ).

Define the corresponding L-action on ΓF,τ by

(3.3) e(s⊗ v) = ∇es⊗ v for all e ∈ L, s ∈ Γ(F ), v ∈ Vτ .

It can be verified directly that (3.2) and (3.3) give a representation of D1
g in

ΓF,τ .

Choose a Krichever-Novikov basis in Γ(F ) [33] and a weight basis {vi|1 ≤
i ≤ dimVτ} in Vτ . Each basis element in Γ(F ) is determined by its degree
n ∈ Z, the number p of a marked point: 1 ≤ p ≤ N , and an integer j:
0 ≤ j ≤ r − 1. Denote the element corresponding to a triple (n, p, j) by
ψn,p,j. Introduce ψi

n,p,j = ψn,p,j ⊗ vi. Enumerate the elements ψi
n,p,j linearly in

ascending lexicographical order of the quadruples n, p, j, i. In this way we set
ψM = ψi

n,p,j where M = M(n, p, j, i) ∈ Z.

Lemma 3.1. [33] With respect to the index M, the module ΓF,τ is an almost-
graded D1

g-module.

The proof of the almost-gradedness is similar to that in the two-point case
[30, 31].

The final step of the construction of the fermion representation correspond-
ing to the pair (F, τ) is passing to the space of the semi-infinite monomials on
ΓF,τ .

Consider the vector space HF,τ generated over C by the formal expressions
(semi-infinite monomials) of the form Φ = ψN0 ∧ ψN1 ∧ . . ., where the ψNi

are
the above introduced basis elements of ΓF,τ , the indices are strictly increasing,
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i.e. N0 < N1 < . . ., and for all k sufficiently large Nk = k + m for a suitable
m (depending on the monomial). Following [8] we call m the charge of the
monomial. For a monomial Φ of charge m the degree of Φ is defined as follows:

(3.4) deg Φ =
∞∑

k=0

(Nk − k −m).

Observe that there is an arbitrariness in the enumeration of the ψi
n,p,j’s for

a fixed n; the just defined degree of a monomial does not depend on this
arbitrariness.

We want to extend the action of D1
g on ΓF,τ to HF,τ . Here, we briefly

outline the construction; see [30, 31] for details. Assuming the D1
g-action on

ψNi
’s to be known, apply a basis element of D1

g to Φ by the Leibniz rule.
If, in the process, a monomial containing the same ψN in different positions
occurs, it is set to zero. If a pair ψN ∧ ψN ′ in a wrong order (N > N ′) occurs
then it should be transposed and the sign before the corresponding monomial
changes. This is done until all entries are in the strictly increasing order.
Due to the almost-gradedness of D1

g-action on ΓF,τ and the above mentioned
stabilization (Nk = k+m, k ∼ ∞), the result of the above steps is well defined
for all except for the finite number basis elements of the algebra. For those,
apply the standard process of regularization [8, 11, 12, 20] (see in the proof
of Lemma 4.5). In this way the action on ΓF,τ can be extended to HF,τ as a
projective Lie algebra action.

Let H(m)
F,τ be the subspace of HF,τ generated by the semi-infinite monomials

of charge m. These subspaces are invariant under the projective action of D1
g.

This follows, as in the classical situation, from the fact that after the action
of D1

g the resulting monomials will have the same “tail” as the monomial one

has started with. Hence, for every m the space H(m)
F,τ is itself a projective

D1
g-module, and HF,τ =

⊕
m∈ZH

(m)
F,τ as projective D1

g-module. We call the

modules HF,τ ,H(m)
F,τ (projective) fermion representations.

Proposition 3.2. Let H(m)
F,τ be the submodule of HF,τ of charge m.

(a) With respect to the degree (3.4) the homogeneous subspaces (H(m)
F,τ )d of

degree are finite-dimensional and dim(H(m)
F,τ )d = p(−d) for d ≤ 0 where p is

the partition function. If d > 0 then (H(m)
F,τ )d = 0.

(b) The cocycle γ for D1
g defined by the projective representation is local. It is

bounded from above by zero.

(c) The module H(m)
F,τ is an almost-graded projective D1

g-module.

Proof. (a) Observe that all summands in (3.4) are non-positive, hence d ≤ 0.
The number of monomials of a given degree d is equal, therefore, to the number
of partitions of d into negative summands, which implies both statements.
(b) and (c) follow as in the two-point case, [30, 31]. �
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From this proposition and the classification results of Theorem 2.10 we ob-
tain

Proposition 3.3. H(m)
F,τ is a module over a certain central extension of the Lie

algebra D̂1
g defined via a local cocycle of the form (2.38).

Consider the central extension of Lie algebra g induced by its embedding (as

a linear space) into D̂1
g. The cocycle of this extension is cohomologous to an

L-invariant cocycle, i.e. it is cohomologous to a geometric cocycle of the type
(2.28) with a suitable invariant symmetric bilinear form α (see Theorem 2.8).
In particular, for g = gl(n) the cohomology class of the cocycle is given by
Proposition 2.12.

Under an admissible representation V of ĝ we understand a representation
admissible with respect to the almost-grading (in the sense introduced above)
as projective representation of g in which the central element t operates as a
scalar c · id, c ∈ C. The number c is called the level of the ĝ-module V . It
follows immediately

Proposition 3.4. The representation of the Lie algebra ĝ in H(m)
F,τ is admis-

sible.

3.3. Sugawara representation.
Let g be a finite dimensional reductive Lie algebra. We fix an invariant

symmetric bilinear form α on g. Starting from this section we assume that α
is non-degenerate. By ĝ we denote the standard central extension (depending
on the bilinear form α) as introduced in Section 2.6 (see Equations (2.28) and
(2.29)) together with its almost-grading. Let V be an admissible representation
of level c.

If g is abelian or simple then each admissible representation of ĝ of non-
critical level i.e. for a level which is not the negative of the dual Coxeter number
in the simple case, or a level 6= 0 in the abelian case, the (affine) Sugawara
construction yields a projective representation of the Krichever-Novikov vector
field algebra L. This representation is called the Sugawara representation. For
the two-point case, the abelian version of this construction was introduced in
[11]. The nonabelian case was later considered in [2], [25]. In [25] also the
multi-point version was given. Observe that every positive level is non-critical.
For an arbitrary complex reductive Lie algebra g the Sugawara representation
is defined as a certain linear combination of Sugawara representations of its
simple ideals (V.Kac [7], [8, Lecture 10]).

Due to its importance in our context, we have to describe the construction
in more detail. For any u ∈ g, A ∈ A we denote by u(A) the operator in
V corresponding to u⊗ A. We also denote an element of the form u(An,p) by
u(n, p) . We choose a basis ui, i = 1, . . . , dim g of g and the corresponding
dual basis ui, i = 1, . . . , dim g with respect to the form α. The Casimir ele-
ment Ω0 =

∑dim g
i=1 uiu

i of the universal enveloping algebra U(g) is independent
of the choice of the basis. To simplify notation, we denote

∑
i ui(n, p)u

i(m, q)
by u(n, p)u(m, q).
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We define the higher genus Sugawara operator (also called Segal operator or
energy-momentum tensor) as

(3.5) T (P ) :=
1

2

∑
n,m

∑
p,s

:u(n, p)u(m, s): ωn,p(P )ωm,s(P ) .

By : .... : we denote some normal ordering. In this section the summation
indices n,m run over Z, and p, s over {1, . . . , N}. The precise form of the
normal ordering is of no importance here. As an example we may take the
following “standard normal ordering” (x, y ∈ g)

(3.6) :x(n, p)y(m, r): :=

{
x(n, p)y(m, r), n ≤ m

y(m, r)x(n, p), n > m .

The expression T (P ) can be considered as a formal series of quadratic differ-
entials in the variable P with operator-valued coefficients. Expanding it over
the basis Ωk,r of the quadratic differentials we obtain

(3.7) T (P ) =
∑

k

∑
r

Lk,r · Ωk,r(P ) ,

with

(3.8)

Lk,r =
1

2πi

∫
CS

T (P )ek,r(P ) =
1

2

∑
n,m

∑
p,s

:u(n, p)u(m, s): l
(n,p)(m,s)
(k,r) ,

where l
(n,p)(m,s)
(k,r) :=

1

2πi

∫
CS

ωn,p(P )ωm,s(P )ek,r(P ) .

Formally, the operators Lk,r are infinite double sums. But for given k and

m, the coefficient l
(n,p)(m,s)
(k,r) will be non-zero only for finitely many n. This

can be seen by checking the residues of the integrands. After applying the
remaining infinite sum to a fixed element v ∈ V , by the normal ordering and
admissibility of the representation only finitely many of the operators will
operate non-trivially on this element.

The following theorem is proved in [25].

Theorem 3.5. Let g be a finite dimensional either abelian or simple Lie alge-
bra and 2k be the eigenvalue of its Casimir operator in the adjoint representa-
tion. Let α be the Cartan-Killing form in the simple case or any non-degenerate
bilinear form in the abelian case, and ĝ be the corresponding central extension.
Let V be an admissible almost-graded ĝ-module of level c. If c + k 6= 0 then
the rescaled “modes”

(3.9) L∗k,r =
−1

2(c+ k)

∑
n,m

∑
p,s

:u(n, p)u(m, s): l
(n,p)(m,s)
(k,r) ,

of the Sugawara operator are well-defined operators on V and define an admis-
sible projective representation of L. The corresponding cocycle for the vector
field algebra L is a local cocycle.
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Remark. By the locality of the cocycle and in view of Theorem 2.5 the cocycle
is a scalar multiple of (2.25) with C = CS. In particular, the central extension

L̂ for which the Sugawara representation is a honest representation, is fixed
up to an isomorphism.

Proposition 3.6. The Sugawara representation endows V with the structure

of an almost-graded L̂-module.

Proof. We have to show that there exist constants M1,M2 such that for every
given homogeneous element ψs ∈ V of degree s, and every k we have

(3.10) k + s+M1 ≤ deg(L∗k,rψs) ≤ k + s+M2.

Consider the coefficients l
(n,p)(m,s)
(k,r) in (3.9) which are given as integrals (3.8).

The integral could only be non-vanishing if the integrand has poles at the
points in I and at the point P∞. Using the explicit formulas (2.8) and (2.9)
for the orders at these points we obtain

(3.11) k ≤ n+m ≤ k + C(g,N),

with a rational constant C(g,N) ≥ 0 only depending on the genus g and the
number of points N . By the almost-gradedness of V as ĝ-module, there exist
constants c1 and c2 such that for all m, r, s

(3.12) m+ s+ c1 ≤ deg(u(m, r)ψs) ≤ m+ s+ c2,

if u(m, r)ψs 6= 0. Hence,

(3.13) n+m+ s+ 2c1 ≤ deg(:u(n, p)u(m, r): ψs) ≤ n+m+ s+ 2c2,

if :u(n, p)u(m, r) : ψs 6= 0. Using (3.11) we obtain Equation (3.10) if we set
M1 = 2c1 and M2 = 2c2 + C(g,N). �

We call the L∗k,r, resp. the Lk,r the Sugawara operators too. For e =∑
n,p an,pen,p ∈ L (an,p ∈ C) we set T [e] =

∑
n,p an,pL

∗
n,p and obtain the pro-

jective representation T of L. It is called Sugawara representation of the Lie
algebra L corresponding to the given admissible representation V of ĝ.

By the Krichever-Novikov duality the Sugawara operator T [e] assigned to
the vector field e ∈ L can equivalently be given as

(3.14) T [e] =
−1

c+ k
· 1

2πi

∫
CS

T (P )e(P ).

Let g be a reductive Lie algebra with decomposition (2.33). The elements
x ∈ g can be decomposed as x =

∑n
i=0 xi, with xi ∈ gi. Let α be a symmetric

invariant bilinear form on g. Due to the invariance, we have α(xi, xj) = 0 for
i 6= j, thus the decomposition is orthogonal with respect to α. By restricting
α to gi we obtain a symmetric invariant bilinear form on gi, hence a multiple
of the Cartan-Killing form (resp. an arbitrary symmetric bilinear form on g0).
The form α is called normalized if all its restrictions on the simple ideals of g
are equal to the corresponding Cartan-Killing forms.
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Let γ be a local cocycle on g for g reductive, A,B ∈ A, and x, y ∈ g. It
follows from the cocycle condition (see [24, Lemma 3.11]) that γ(xiA, yjB) = 0
for i 6= j (with the same decomposition for y as for x above). This implies

(3.15) γ(xA, yB) =
M∑
i=0

γ(xiA, yiB).

Given an admissible representation V of ĝ we obtain representations of ĝi’s in
the same space V . We can define the individual (rescaled) Sugawara operators
Ti[e], i = 0, 1, . . . ,M . We set

(3.16) T [e] :=
M∑
i=0

Ti[e].

The following lemma expresses a fundamental property of the Sugawara rep-
resentation. It was shown in [25] for the abelian and simple case. Here we will
show how to extend the result to the general reductive case.

Lemma 3.7. Let g be a reductive Lie algebra with a chosen normalized form
α, and T [e] for every e ∈ L the operator as defined above. Then T defines

a representation of the centrally extended vector field algebra L̂ and for any
x ∈ g, A ∈ A, e ∈ L, we have

(3.17) [T [e], x(A)] = x(e.A).

Proof. Given x, y ∈ g denote by xi and yj its components as above. Then
[xi(A), yj(B)] = [xi, yj](AB) + γ(xiA, yjB) c · id. In particular, if i 6= j we
obtain that xi and xj commute and that the cocycle vanishes. Hence xi(A),
yj(B) also commute. Let Tk, be the Sugawara representation corresponding
to the representation V of ĝk. Since the operators of the representation Ti are
expressed via xi(A)’s and operators of Tj via xj(A)’s, Ti and Tj commute for

i 6= j. Hence, T is a representation of L̂. Moreover, for xi ∈ gi, xj ∈ gj,
A ∈ A, e ∈ L we have [Tj[e], xi(A)] = 0. For g simple or abelian, (3.17) is
shown in [25] (see also [26]). Hence,

[Tk[e], xk(A)] = xk(e.A), k = 0, 1, . . . ,M.

This implies

[T [e], x(A)] = [
M∑

k=0

Tk[e],
M∑
i=0

xi(A] =
M∑
i=0

xi(e.A) = x(e.A).

�

Having only one simple summand for g = gl(n) the condition that the form
α is normalized on its simple summands can always be achieved by rescaling
the level. Hence for the admissible (in particular, fermionic) representations

of ĝl(n), the relation (3.17) is true.
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4. Moduli of curves with marked points, conformal blocks and
projectively flat connection

4.1. Moduli space M(k,p)
g,N+1 and the sheaf of conformal blocks.

In [26] we described the moduli spaces of curves which typically occur in 2d
conformal field theories. Here we will slightly extend the definitions introduced

there. We denote by M(k,p)
g,N+1 the moduli space of smooth projective curves of

genus g (over C) with N +1 ordered distinct marked points and fixed k-jets of
local coordinates at the first N points and a fixed p-jet of a local coordinate

at the last point. The elements of M(k,p)
g,N+1 are given as

(4.1) b̃(k,p) = [Σ, P1, . . . , PN , P∞, z
(k)
1 . . . , z

(k)
N , z(p)

∞ ] ,

where Σ is a smooth projective genus g curve, Pi (i = 1, . . . , N,∞) are distinct

points on Σ, zi is a coordinate at Pi with zi(Pi) = 0, and z
(l)
i is a l-jet of zi

(l ∈ N0). Here [..] denotes an equivalence class of such tuples in the following

sense. Two tuples representing b̃(k,p) and b̃(k,p)′ are equivalent if there exists an
algebraic isomorphism φ : Σ → Σ′ with φ(Pi) = P ′

i for i = 1, . . . , N,∞ such
that after the identification via φ we have

(4.2) z′i = zi +O(zk+1
i ), i = 1, . . . , N and z′∞ = z∞ +O(zp+1

i ).

For the following two special cases we introduce the same notation as in [26]:

Mg,N+1 = M(0,0)
g,N+1, and M(1)

g,N+1 = M(1,1)
g,N+1 . By forgetting either coordinates

or higher order jets we obtain natural projections

(4.3) M(1,p)
g,N+1 →Mg,N+1, M(k,p)

g,N+1 →M(k′,p′)
g,N+1

for any k′ ≤ k and p′ ≤ p. In this article (as well as in the previous one
[26]) we are only dealing with the local situation in the neighborhood of
a moduli point corresponding to a generic curve Σ with a generic marking

(P1, P2, . . . , PN , P∞). Let W̃ ⊆ Mg,N+1 be an open subset around such a

generic point b̃ = [Σ, P1, P2, . . . , PN , P∞]. A generic curve of g ≥ 2 admits no
nontrivial infinitesimal automorphism, and we may assume that there exists a

universal family of curves with marked points over W̃ . In particular, this says

that there is a proper, flat family of smooth curves over W̃

(4.4) π : U → W̃ ,

such that for the points b̃ = [Σ, P1, P2, . . . , PN , P∞] ∈ W̃ we have π−1(b̃) = Σ
and that the sections defined as

(4.5) σi : W̃ → U , σi(b̃) = Pi, i = 1, . . . , N,∞

are holomorphic. For more background information, see [35, Sect. 1.2, Sect.
1.3], in particular Thm. 1.2.9 of [35].

If we “forget” the point P∞ we obtain maps

(4.6) Mg,N+1 →Mg,N , M(0,p)
g,N+1 →Mg,N , M(k,p)

g,N+1 →M(k)
g,N .
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Let us fix a holomorphic section σ̂∞ of the universal family of curves (without
marking). In particular, for every curve there is a point chosen in a manner
depending analytically on the moduli. (Recall, we are only dealing with the
local and generic situation.) The analytic subset

(4.7) W ′ := {b̃ = [Σ, P1, P2, . . . , PN , P∞] | P∞ = σ̂∞([Σ])} ⊆ W̃

can be identified with an open subset W of Mg,N via

(4.8) b̃ = [(Σ, P1, P2, . . . , PN , σ̂∞([Σ]))] → b = [(Σ, P1, P2, . . . , PN)] .

By genericity, the map is one-to-one. By choosing not only a section σ̂∞ but
also a p-th order infinitesimal neighborhood of this section we even get an
identification of the open subset W of Mg,N with an analytic subset W ′,(p) of

W̃ (0,p) of M(0,p)
g,N+1. It is defined in a similar way as W ′.

All these considerations can be extended to the case where we allow infinite
jets of local coordinates at P∞. We obtain then the moduli space M(k,∞)

g,N+1.

At generic points, the moduli spaces M(k,p)
g,N+1 are smooth. Denote by S the

divisor S =
∑N

i=1 Pi on Σ. The tangent space Tb̃(1,p)M(1,p)
g,N+1 can be identified

with the cohomology space H1(M,TM(−2S − (p + 1)P∞)). As in Prop. 4.4
and Thm. 4.5 of [26] we obtain that there exists a surjective linear map from
the Krichever-Novikov vector field algebra L to the cohomology space

(4.9) θ = θp : L → H1(M,TM(−2S − (p+ 1)P∞)

such that θ restricted to the following subspaces gives isomorphisms

(4.10)

L0 ⊕ L−1 ⊕ L(p)
(0)
∼= H1(M,TM(−2S − (p+ 1)P∞) ∼= Tb̃(1,p)M(1,p)

g,N+1,

L−1 ⊕ L(p)
(0)
∼= H1(M,TM(−S − (p+ 1)P∞)) ∼= Tb̃(0,p)Mg,N+1,

L(p)
(0)
∼= H1(M,TM(−(p+ 1)P∞) ∼= T[Σ,P∞]M(p)

g,1.

Again, for the infinite jets we obtain

(4.11) Tb̃(1,∞)M(1,∞)
g,N+1 = lim

p→∞
H1(M,TM(−2S − pP∞)) ∼= L(0) ⊕ L−.

Let us note the dimension formula

(4.12) dimb(1,p)(M(1,p)
g,N+1) =

{
3g − 2 + 2N + p, g ≥ 1

max (0, N − 2) +N + p, g = 0 .

For N ≥ 2 the first expression is valid for any genus.

Let b̃(1,p) ∈M(1,p)
g,N+1 be a moduli point. Let ν(p) : M(1,p)

g,N+1 →Mg,N+1 be the

map forgetting the coordinates and let b̃ = ν(p)(b̃(1,p)) be a generic point with

open neighborhood W̃ . For b̃ = [Σ, P1, P2, . . . , PN , P∞] we can construct the
Krichever-Novikov objects

(4.13) Ab̃, Lb̃, L̂b̃, gb̃, ĝb̃, F
λ
b̃
, etc.
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Recall from [26] that there are sheaf versions of these objects

(4.14) AfW , LfW , L̂fW , gfW , ĝfW , FλfW .
Similarly, we can consider the sheaf versions of the objects introduced in

Section 2, and Section 3 of the present paper: e.g. D1
g,fW – the sheaf of algebras

of Krichever-Novikov differential operators of order ≤ 1, and VfW – the sheaf
of fermion modules.

Introduce the regular subalgebras of g and L as follows. Let Ar ⊂ A, and
Lr ⊂ L consist of all elements vanishing at P∞. Introduce g r = g ⊗ Ar.
Observe that g r is a Lie subalgebra of g as well as of ĝ, and Lr is also a Lie

subalgebra of L̂. Denote by g rfW , LrfW etc. the corresponding sheaves.

Definition 4.1. Let VfW be a sheaf of (fibrewise) representations of ĝfW . The
sheaf of conformal blocks (associated to the representation sheaf VfW ) is defined
as the sheaf of coinvariants

(4.15) CfW = VfW/g rfWVfW .
For p ∈ N or p = ∞ let W̃ (p) =

(
ν(p)

)−1
(W̃ ). By pulling-back the above

sheaves over W̃ via ν(p) we obtain sheaves on the open subset W̃ (p) of M(p)
g,N+1.

Starting from a fibrewise representation VfW (p) , the sheaf of conformal blocks
can be defined in the same way as (4.15) by

(4.16) CfW (p) = VfW (p)/g
rfW (p)VfW (p) .

Clearly, ν(p)∗(CfW ) = Cν(p)∗fW .

Of special importance is the pull-back to W̃ (1). Recall that this means that
we fix a set of first order jets of coordinates. As shown in [26, Lemma 4.3]
this fixes the Krichever-Novikov basis elements uniquely. In particular we can
choose in every of the above vector spaces the basis given by these elements.
By their explicit form given in [18] it is obvious that they depend analytically

on moduli. In this way we see that over W̃ (1) the sheaves

(4.17) AfW (1) , LfW (1) , L̂fW (1) , gfW (1) , ĝfW (1) , FλfW (1) .

are free sheaves (of sections) of trivial infinite-dimensional vector bundles with
trivializations given by the Krichever-Novikov bases. Of course, everything

remains true for W̃ (p) instead W̃ (1).
Below, we take the sheaf of fermion modules VfW (1) as a representation sheaf.

This will be our model situation. In our description, the basis fermions do not
depend on moduli at all, only the Lie algebra action does via the structure
constants. We trivialize the sheaf VfW (1) using these bases and obtain the

corresponding trivial vector bundle V × W̃ (1), where V is a standard fermion

spaceH(m)
F,τ (Section 3). Over a generic point of the moduli space, the space g rV

also does not depend on moduli (the dependence due to the structure constants
disappears after taking the linear span of images of the basis fermions under
the action of g r). Hence, locally, the sheaf of conformal blocks is free and
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defines a vector bundle. Moreover, we will take g = gl(n), and τ the standard
representation of g in the n-dimensional vector space, see Section 3. This
guarantees the finite-dimensionality of coinvariants2. In particular, we obtain
in this case that the vector bundle of conformal blocks is of finite rank. Note
also that in this case the representation H(m)

F,τ is irreducible 3.
Observe, that all statements and arguments of the next section remain

true under sufficiently extended assumptions about the representation sheaf
V which are not only true for the fermionic modules. In particular, they are
fulfilled for the class of representations considered in [26]. For the sheaf of
algebras ĝ we could assume that g is an arbitrary reductive Lie algebra.

4.2. Projectively flat connection and generalized Knizhnik-Zamolodchikov
equations.

For short, denote by V a sheaf VfW (1) fulfilling the conditions given at the
end of the last subsection, e.g. a sheaf of fermion representations, and let it
be fixed through-out this subsection.

Let τ = (τ1, . . . , τm) denote the local coordinates (moduli parameters, mod-

uli) on M(1)
g,N+1. Denote by Σ(τ) the Riemann surface with corresponding

conformal structure.
Choose a generic point with moduli parameters τ0 in M(1)

g,N+1. Let τ0 be

represented by the geometric data (Σ(τ0), P1, . . . , PN , P∞, z
(1)
1 . . . , z

(1)
N , z

(1)
∞ ). In

particular, Σ(τ0) has a fixed conformal structure representing the algebraic
curve corresponding to the moduli parameters τ0. For τ lying in a small enough
neighbourhood of τ0, the conformal structure on Σ(τ) can be obtained by
deforming the conformal structure Σ(τ0) in the following way.

On the Riemann surface Σ(τ0), we choose a local coordinate w at P∞. Rig-
orously speaking, this amounts to passing (temporary) to the moduli space

W̃ (∞). Assume that w runs over the disc of radius 2 centered at w = 0. Let
U∞ ⊂ C be a unit disc with natural coordinate z. After identification of z with
w we can think of U∞ as a subset of the coordinate chart at P∞. Let v ∈ L
be a Krichever-Novikov vector field. By restriction, it defines a meromorphic
vector field on U∞. In turn, this vector field defines a family of local diffeo-
morphisms φt – the corresponding local flow. For t small enough they map
an annulus Uv ⊂ U∞ which is bounded by the unit circle from outside to a
deformed annulus in the disc with radius 2. We take the set on the coordinate
chart at P∞ which (after the identification of z with w) is the interior comple-
ment to φt(Uv), cut it out of the curve and use φt to define a gluing of U∞ to
the rest of the curve along the subset Uv. In this way, for every t we obtain an-
other conformal structure. Depending on the vector field (and corresponding
diffeomorphisms) the equivalence class of the conformal structure will change
or not. But, in any case we obtain via this process any conformal structure

2We are grateful to B. Feigin for this remark
3The irreducibility is well-studied in the graded case [8, Lecture 9]. The proof for the

almost graded case is similar. We will give it somewhere else.
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which is close to the given one in moduli space (see [5] for further information).

Moreover, the deformation in any tangent direction on the moduli spaces W̃ (1)

and W̃ (∞) can be realized.
We assign to τ a diffeomorphism dτ of the above described type, such that

it is defined on the annulus Uτ ⊂ U∞, and the gluing function w = dτ (z) is
giving the corresponding conformal structure; keeping in mind that τ uniquely
defines neither dτ nor Uτ .

In this section, letA denote the sheaf of Krichever-Novikov function algebras

on W̃ (1), as well as the corresponding infinite-dimensional vector bundle. In

this bundle, denote the fibre over τ ∈ W̃ (1) by Aτ . If A is a section of the

bundle we write it as A(τ) = Aτ , where Aτ ∈ Aτ . Similarly, let Ar, L̂, L,
Lr, ĝ, g r denote the sheaves (respectively the bundles) of the corresponding
algebras.

Let Aann
τ be the algebra of regular functions on the annulus Uτ . Embed

Aτ into Aann
τ by restricting every function Aτ onto the image of Uτ in Σ(τ)

and consider the restriction as a function of the variable w. Denote the re-
sult Aτ (w). On the other hand, restrict Aτ onto the coordinate chart at the
point P∞ ∈ Σ(τ), and denote the result Ãτ (z). Thus, we assign to every pair
(Aτ ,Σ(τ)), in a non-unique way, a pair (Ãτ , dτ ), where Ãτ (z) = Aτ (dτ (z)) on
Uτ . For 0 < s < 1 let Ãs be the algebra of regular functions in the annu-
lus Us ⊂ U∞ with boundary circles of radius 1 and s respectively. We set
Ã = inj lims→1 Ãs with respect to the natural inclusion. Clearly, Ãτ ⊆ Ã in
the neighborhood of τ0 (moreover, Ãτ gives an element of the sheaf of germs
of meromorphic functions in z at the point z = 0). Thus, the correspondence
Aτ → Ãτ gives an embedding of A into Ã. Denote the subsheaf of sections of
Ã corresponding to germs of analytic functions vanishing at P∞ by Ãr. Let
L̃r have the similar meaning with respect to L.

Given a vector field X on W̃ (1) by ∂XAτ we mean a full derivative in τ of
Ãτ (d

−1
τ (w)) along the vector field X. We interpret this as a differentiation (in

τ) of a Krichever-Novikov function as function in the variable z taking account
of its direct dependence on τ and of the dependence of the local coordinate z
on τ . After the substitution w = dτ (z) we consider ∂XAτ as an element of the
sheaf Ã.

Consider a family of local diffeomorphisms dτ where τ runs over a disc in
the space of moduli parameters. Recall that for every τ the corresponding dτ

is nothing but the gluing function w = dτ (z) for Σ(τ). From this point of
view, the family dτ is nothing but a family of (local) functions depending on
parameters. To stress this interpretation, define the function d(z, τ) = dτ (z).
Define ∂Xdτ as follows:

(4.18) (∂Xdτ )(z) =
∑

i

Xi(τ)
∂d(z, τ)

∂τi
.



KNIZHNIK-ZAMOLODCHIKOV EQUATIONS 29

Given a vector field X on W̃ (1) we can assign to it a local vector field ρ(X) :=
d−1

τ · ∂Xdτ on Σ(τ) which represents the Kodaira-Spencer cohomology class
of the corresponding 1-parameter deformation family. By adding suitable
coboundary terms (which amounts to composing the diffeomorphism dτ with
a diffeomorphism of the disc) we obtain

(4.19) ρ(X) = d−1
τ · ∂Xdτ ∈ L.

Given the vector field X we can also assign to it via the isomorphism (4.11)
a Krichever-Novikov vector field eX . Note that we consider X as vector field
on W̃ (1). Hence eX is only fixed up to the addition of elements of L(1)

− . See

Section 2.4 for the definition of L(1)
− ; its elements correspond to the infinitesimal

changes of the coordinate at P∞. We call every such element eX a pull-back
of X. Independently of the pull-back eX and of the choice of ρ(X) (satisfying
(4.19)) we have eX − ρ(X) ∈ Lr, hence

(4.20) eX = ρ(X) + er,

with er ∈ Lr (er depends on both eX and ρ(X)).

Proposition 4.2. For every section A of the sheaf A, and every local vector
field X define AX by the relation

(4.21) ∂XA = −(eX).A+ AX .

Then AX ∈ Ã, and, moreover, AX ∈ Ãr for A ∈ Ar.

Proof. According to the above given definition, ∂XAτ is the full derivative of
Aτ = Ãτ · d−1

τ along X where · denotes a composition of maps. By the chain
rule,

(4.22) ∂XAτ = ∂̃XÃτ + ∂zÃτ · ∂Xd
−1
τ = ∂̃XÃτ +

(
−ρ̃(X)

∂

∂z
Ãτ

)
· d−1

τ ,

where ∂̃XÃτ is a derivative along X with the assumption of independence of
the local coordinate z of τ , ∂zÃτ is a differential of Ãτ (in the variable z), and

ρ̃(X) ∂
∂z

is the first order differential operator corresponding to the vector field

ρ(X) = d−1
τ · ∂Xdτ . In more detail, ∂Xd

−1
τ = −d−1

τ · ∂Xdτ · d−1
τ , hence ∂zÃτ ·

∂Xd
−1
τ = ∂zÃτ ·(−d−1

τ ·∂Xdτ )·d−1
τ . By (4.19), for every τ , the ρ(X) = d−1

τ ·∂Xdτ

is an element of Lτ . Denote the corresponding first order differential operator

(in the variable z) by ρ̃(X) ∂
∂z

. Observe that ∂zÃτ · (d−1
τ · ∂Xdτ ) = ρ̃(X) ∂

∂z
Ã.

Making use of (4.20), we replace ρ̃(X) ∂
∂z

in (4.22) with the differential oper-

ator corresponding to eX − er and obtain (4.21) with AX
τ = ∂̃XÃτ + erAτ ∈ Ã.

Assume, Aτ ∈ Ar for every τ , i.e. Aτ (P∞) = 0 for P∞ ∈ Σ(τ). We have
er ∈ Lr by definition of the pull-back, hence also er(P∞) = 0. Since z(P∞) = 0,

Aτ (P∞) = 0 implies Ãτ (0) = 0, for every τ , and, further on, ∂̃XÃτ (0) = 0.
Therefore, AX

τ (P∞) = 0, hence AX
τ ∈ (Ãr)τ for every τ , which completes the

proof. �
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Let L be the sheaf of Krichever-Novikov vector field algebras, and e be a
meromorphic section of it. Turning to the definition of ∂Xe, we observe that
there is also no conventional one. In analogy with the case of functions, we
could define it using local vector fields on Uτ . Another possibility, which we
prefer here, is to define it via Leibniz rule: i.e. for every A ∈ A, by definition,

(∂Xe).A = ∂X(e.A)− e.∂XA.

Proposition 4.3. For every section e of the sheaf L, and every local vector
field X define eX by the relation

(4.23) ∂Xe = −[eX , e] + eX .

Then eX ∈ L̃, and, moreover, eX ∈ L̃r for e ∈ Lr.

Proof. By Proposition 4.2 we have ∂X(e.A) = −eX .(e.A) + (e.A)X where,

(eA)X = ∂̃X(ẽ.A) + er.(e.A). The latter follows from the proof of Proposi-

tion 4.2. Similarly, e.(∂XA) = e.(−eX .A+ ∂̃XÃ+ er.A). All together

(4.24) (∂Xe).A = −[eX , e].A+ ∂̃X(ẽ.A)− e.∂̃XÃ+ [er, e].A.

Since the objects e and A are global, we have ẽ.A = ẽ.Ã. Applying the Leibniz

rule again, we obtain ∂̃X(ẽ.A)− e.∂̃XÃ = (∂̃X ẽ)Ã. Since (4.24) is a relation in
the sheaf Ã, we do not distinguish between A and Ã. Hence, (4.24) implies

(4.23) where eX = ∂̃X ẽ+ [er, e] ∈ L̃.
If e ∈ Lr then [er, e] ∈ Lr since er ∈ Lr and Lr is a subalgebra. Further on,

∂̃X ẽ(0) = 0 for the same reason as ∂̃XÃ(0) = 0 in the proof of Proposition 4.2.
Thus, eX ∈ L̃r which completes the proof. �

Consider a sheaf of operators on the local sections of the sheaf V . Assume
B to be a local section of it. By definition, ∂XB = [∂X , B], where, on the right
hand side, ∂X is a differentiation of sections of the sheaf V . Here the following
cases occur: B = u(A), where u ∈ g and A ∈ A and B = T (e), the Sugawara
operator introduced by (3.14)which was denoted T [e] earlier4 .

For every pull-back eX of X we introduce the following first order differential
operator on sections of the trivial sheaf V :

(4.25) ∇X = ∂X + T (eX),

where ∂X =
∑

iXi(τ)
∂

∂τi
.

Proposition 4.4. ∇X is well-defined on conformal blocks and is independent
of a pull-back of X there.

Before we prove this proposition we have to extend the operators u(A) and
T (e) to the case when A or e are local objects. Local vector fields (func-
tions, currents etc.) form completions of the corresponding Krichever-Novikov
objects since they have infinite expansions over the corresponding Krichever-
Novikov bases [10]. By (4.10) and Proposition 4.3 we can restrict ourselves

4In this section there will be no danger of confusion of T (e) with (3.5), hence, we choose
the notation T (e) to avoid confusion with the Lie bracket.
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with expansions with only a finite pole order at P∞, i.e. with finitely many

components of positive degree. Define Ṽ as the space of formal linear combi-
nations of basis fermions which are infinite in negative direction (with respect
to the fermion degree (3.4)). Due to the almost-gradedness, the action of the

above operators can be extended on Ṽ with the advantage, that these exten-
sions do exist also for A and e local. Indeed, only finitely many terms of the

expansions (of the operator and of the corresponding element in Ṽ ) contribute
in the result to the component of a given degree. Let g̃r be the regular subalge-

bra completed in this way. Obviously, V/grV = Ṽ /g̃rṼ , hence the conformal
blocks ( Definition 4.1) can be defined via completed objects.

First, we prove the following Lemma.

Lemma 4.5. For the fermion representations we have

(4.26) ∂Xu(A) = u(∂XA)

Proof. For every u ∈ g, A ∈ A and every basis fermion Ψ = ψi1∧ψi2 . . . we have
u(A)Ψ = (uA)ψi1 ∧ψi2 . . .+ψi1 ∧ (uA)ψi2 . . .+λ1 ·Ψ, where in the expressions
(uA)ψik the term with ψik (if there is any) has to be ignored by regularization
and the last term is the counter term coming from regularization. Since basis
fermions do not depend on moduli, we have

(∂Xu(A))Ψ = ∂X(u(A)Ψ)

= (u∂XA)ψi1 ∧ ψi2 . . .+ ψi1 ∧ (u∂XA)ψi2 . . .+ (∂Xλ1) ·Ψ
= u(∂XA)Ψ + (∂Xλ1) ·Ψ− λ2 ·Ψ

(4.27)

where λ2 ·Ψ appears due to regularization of u(∂XA). As long as no regulariza-
tion is necessary, the relation (4.26) follows immediately. The regularization
can be easily calculated via the matrix of the operator uA in the space of

sections of the holomorphic bundle involved. Let uA =
∞∑

i,j=−∞
aijEij where

{Eij|i, j ∈ Z} is the natural basis in the matrix space. By the regularization
procedure [8]

λ1 =
∑
i∈N−

aii −
∑
i∈N+

aii,

where N+ is the set of non-occupied positions, or holes of positive degree in
Ψ, i.e. N+ = N \ {i1, i2, · · · }, and N− is the set of occupied positions of degree
≤ 0.5 Similarly, λ2 =

∑
i∈N−

∂Xaii −
∑

i∈N+
∂Xaii. Therefore, ∂Xλ1 − λ2 = 0

and the claim is true also in this case. �

For more general representations, we take relation (4.26) as an additional
requirement.

Proof of Proposition 4.4. Using Lemma 4.5 and Lemma 3.7 we find

[∇X , u(A)] = [∂X + T (eX), u(A)] = [∂X , u(A)] + [T (eX), u(A)]

= u(∂XA) + u(eX .A).

5Other descriptions are possible, but they are equivalent.
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Assume, A ∈ Ar. Then, by Proposition 4.2, we have

u(∂XA) = −u(eX .A) + u(AX),

where AX ∈ Ãr. Hence, [∇X , u(A)] = u(AX) which implies [∇X , u(Ar)] ⊆
u(Ãr), and, further on

[∇X , u(Ãr)] ⊆ u(Ãr).

Hence g̃rṼ is a ∇X-invariant subspace and ∇X is well-defined on Ṽ /g̃rṼ . �

Lemma 4.6. For every X ∈ TM(1)
g,N+1 we have

∂XT (e) = T (∂Xe) + λ · id,
where λ = λ(X, e) ∈ C.

Proof. By the fundamental relation (Lemma 3.7) for every e ∈ L, u ∈ g, A ∈ A
(4.28) [T (e), u(A)] = u(e.A).

Take the derivative on both sides of the relation (4.28) along a local vector

field X ∈ TW̃ (1). By Lemma 4.5 we obtain

(4.29) [∂XT (e), u(A)] + [T (e), ∂Xu(A)] = u((∂Xe).A) + u(e.(∂XA)).

Again, by (4.28) and Lemma 4.5 the second terms on both sides of (4.29) are
equal. Therefore,

[∂XT (e), u(A)] = u((∂Xe).A).

Applying (4.28) once more, we replace the right hand side of the latter relation
by [T (∂Xe), u(A)] (see the remark below). Therefore,

(4.30) [∂XT (e)− T (∂Xe), u(A)] = 0

for every X ∈ TW̃ (1), u ∈ g, A ∈ A.
By standard arguments of the theory of highest weight representations (ei-

ther by the irreducibility of the representation or by uniqueness of the vacuum
vector), the commutation relations (4.30) immediately imply the lemma. �

Remark. The ∂Xe is a local vector field on a deformed annulus (an element of
the sheaf L̃ to be more precise). Hence, we need the relation (4.28) for local
vector fields to prove (4.30). Due to the definition given after the formulation of
Proposition 4.4, the representations T (e) and u(A) are well defined also on local
vector fields and functions, respectively, with preserving the relation (4.28).
Indeed, for an A ∈ A, a homogeneous v ∈ V and an arbitrary n there exists a
partial sum ẽ of the expansion for ∂Xe such that (u((∂Xe).A)v)n = (u(ẽ.A)v)n

and ([T (∂Xe), u(A)]v)n = ([T (ẽ), u(A)]v)n where (·)n denotes the projection
onto the component of degree n in V . By (4.28) the right hand sides of the
last two relations are equal, hence their left hand sides also are equal. This
implies the relation (4.28) with ∂Xe instead e.

For the remainder of this section, our goal is to prove the projective flat-
ness of (4.25) and to introduce the corresponding analog of the Knizhnik-
Zamolodchikov equations.
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Lemma 4.7. For every pull-backs eX , eY of local vector fields X, Y to L,
there exist a pull-back e[X,Y ] of [X, Y ] such that

e[X,Y ] = [eX , eY ] + ∂XeY − ∂Y eX .

Proof. By [34, Lemma 1.3.8]

(4.31) ρ([X, Y ]) = [ρ(X), ρ(Y )] + ∂Xρ(Y )− ∂Y ρ(X).

Observe that for every pull-backs eX , eY we have eX = ρ(X) + er
1, eY =

ρ(Y ) + er
2, where e,

1re
r
2 ∈ Lr, see (4.20). In terms of eX , eY (4.31) reads as

(4.32) ρ([X, Y ]) = [eX , eY ] + ∂XeY − ∂Y eX + er
3

where er
3 = [er

1, e
r
2]− (∂Xe

r
2 + [eX , e

r
2]) + (∂Y e

r
1 + [eY , e

r
1]).

Since Lr is a Lie subalgebra, we have [er
1, e

r
2] ∈ Lr. By Proposition 4.3,

the elements ∂Xe
r
2 + [eX , e

r
2] and ∂Y e

r
1 + [eY , e

r
1] are also regular, hence er

3 ∈
Lr. Thus, e[X,Y ] = ρ([X, Y ]) − er

3 is a pull-back of [X,Y ], and the lemma is
proved. �

Theorem 4.8. ∇X is a projectively flat connection on the vector bundle of
conformal blocks.

Proof.

[∇X ,∇Y ] = [∂X + T (eX), ∂Y + T (eY )]

= [∂X , ∂Y ] + [∂X , T (eY )]− [∂Y , T (eX)] + [T (eX), T (eY )].
(4.33)

Since T is a projective representation of L and due to the relations [∂X , T (eY )] =
∂XT (eY ), [∂Y , T (eX)] = ∂Y T (eX), we can rewrite (4.33) in the following form:

(4.34) [∇X ,∇Y ] = ∂[X,Y ] + T (∂XeY − ∂Y eX + [eX , eY ]) + λ · id.

Here we used also Lemma 4.6. By Lemma 4.7, this reads as

[∇X ,∇Y ] = ∂[X,Y ] + T (e[X,Y ]) + λ · id
= ∇[X,Y ] + λ · id.(4.35)

�

We consider the following equations for horizontal sections of the connection
∇X as a generalization of Knizhnik-Zamolodchikov equations:

(4.36) ∇XΨ = 0, X ∈ H0(U ,TM(1)
g,N+1)

where Ψ is a section of the sheaf of conformal blocks. These equations are
proposed in [26], and for g = 0 and g = 1, but for different choices of represen-
tations of the affine algebra, the operator ∇X was explicitly calculated there.
Nevertheless, the calculation there is valid in the cases under consideration
here.
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and ŝlg,2. Russian Math. Surv., 56, No.5 (2001), 189-190.
[33] Sheinman, O.K., Krichever-Novikov algebras, their representations and applications.

MathRT/0304020.
[34] Tsuchiya, A., Ueno, K., Yamada, Y., Conformal field theory on universal family of

stable curves with gauge symmetries. Adv. Stud. Pure Math. 19 (1989), 459–566.
[35] Ueno, K., Introduction to conformal field theory with gauge symmetries. Geometry and

Physics, Proceed. Aarhus conference 1995 (Andersen J.E. et. al., ed.), Marcel Dekker,
1997, pp. 603–745.

[36] Fialowski, A., Schlichenmaier, M., Global Deformations of the Witt algebra of
Krichever-Novikov type. Commun. Contemp. Math. 5 (2003), 921–945.

(Martin Schlichenmaier) Laboratoire de Mathématique, Université du Luxem-
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