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HIGH-RESOLUTION PALEOCLIMATOLOGY
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ABSTRACT

Climate Explorer (www.climexp.knmi.nl) is a web-based application for climatic research that is

managed by the Royal Netherlands Meteorological Institute (KNMI) and contains a comprehensive

collection of climatic data sets and analysis tools. One of its fields of application is high-resolution

paleoclimatology. We show how Climate Explorer can be used to explore and download available

instrumental climate data and derived time series, to examine the climatic signal in uploaded high-

resolution paleoclimate time series, and to investigate the temporal and spatial characteristics of

climate reconstructions. We further demonstrate the value of Climate Explorer for high-resolution

paleoclimate research using a dendroclimatic data set from the High Atlas Mountains in Morocco.

Keywords: KNMI Climate Explorer, paleoclimatology, dendroclimatology, time-series analysis,

climate data, composite analysis, correlation map, spectral analysis.

INTRODUCTION

Since 1999, the Royal Netherlands Meteoro-

logical Institute KNMI has been managing and

updating the Climate Explorer (climexp.knmi.nl),

a web-based application for climatic research that

contains a comprehensive collection of climatic

data sets and analysis tools. After free registration,

researchers can explore and download an array of

climatic data sets, generate derived data, upload

their own time series, and run statistical analyses

to investigate and compare data sets. The KNMI

Climate Explorer (hereafter referred to as CE) was

originally intended for ENSO teleconnection

analysis (van Oldenborgh and Burgers 2005). It

has rapidly grown to become a useful tool for

other climate research fields such as climate

change research (van Oldenborgh et al. 2009)

and the paleoclimate research community current-

ly forms one of its largest user communities (e.g.

Abram et al. 2008; Camuffo et al. 2010; Poljansek

et al. 2012). Its primary uses for high-resolution

paleoclimatology include (1) exploring and down-

loading available instrumental climate data and

derived time series, (2) examining the climatic

signal in uploaded high-resolution paleoclimate

time series, and (3) investigating the temporal and

spatial characteristics of climate reconstructions.

In this note, we demonstrate the above-

mentioned uses of CE for dendroclimatic analysis,

but the techniques can easily be extrapolated to

other high-resolution paleoclimatic data sets (e.g.

coral data and varved sediments). A PDF docu-

ment that includes a step-by-step instruction

manual organized according to the same structure

as the main text is available from the journal

website as Supplementary Material. We restrict

our demonstration to a dendroclimatic data set,

but it will become clear that several applications

are also useful for other dendrochronological

fields, particularly event-based dendro-ecology

(e.g. Trouet et al. 2010). It is worth mentioning

that CE supports a comprehensive help overview

(http://climexp.knmi.nl/help.cgi) that can be con-

sulted for additional information. Throughout this

paper, we use an Atlas cedar (Cedrus atlantica)*Corresponding author: oldenborgh@knmi.nl
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tree-ring width (TRW) chronology from Jaffa

(JAF) in the High Atlas Mountains in Morocco

(Esper et al. 2007) as an example of a dendrocli-

matic data set. The chronology is based on 52 tree-

ring series from 32 trees that cross-correlate

significantly (average cross-correlation r-value 5

0.83) and cover the period A.D. 1021–2001. For

the purpose of this exercise, the individual

contributing series were detrended using a nega-

tive exponential curve of any slope to remove

growth trends (Fritts 1976).

EXPLORATION OF INSTRUMENTAL

DATA SETS

CE provides a plethora of instrumental

climate data sets in the form of either time series

(station data and climate indices) or gridded fields

(observations and reanalysis fields). All data sets

can be accessed and investigated by selecting the

appropriate time series or fields format on the CE

web page. For dendroclimatic analysis, monthly

time series and fields are most useful, and we will

therefore focus on the monthly data sets. Note,

however, that specific daily climate data can easily

be transformed to monthly and lower resolution in

CE. The search for available instrumental data for

a certain location (e.g. a tree-ring site) can be

approached in two ways by selecting (1) station

data or (2) gridpoint data. When a time series or

derived time series (see below) of either kind is

selected, it is important to make it available for

further analysis by adding it to the list of user-

defined time series.

Selection of Available Station Data for a Site

Amongst other databases, CE provides access

to two NOAA/NCDC Global Historical Clima-

tology Network monthly (GHCN-M) v2 databas-

es of adjusted and unadjusted monthly station

data (Diamond and Lief 2009). Both data sets

contain monthly precipitation and mean temper-

ature data that are valuable for dendroclimatic

analysis. The adjusted set is corrected for urban

effects and other biases and is generally preferable,

but its availability is limited in time, space, and

variable. Comparing the outcome of both data set

selections is therefore recommended. It is worth

noting that monthly or daily time series of other

climatic variables are also available, which can be

useful for dendroclimatic and dendrohydrological

research, including river discharge (Woodhouse

et al. 2006), cloud cover (Young et al. 2010), and

snow depth (Pederson et al. 2011).

When selecting a time series of monthly

station data, the researcher is given the opportu-

nity to make a selection based on station name (if

the station of interest is known) or on vicinity to a

location. The second option includes searching for

a defined number of stations nearest to a given site

or all stations within a defined region. Further-

more, a minimum number of years of data

availability can be defined as well as a range of

years for which data should be available and an

elevation range. As an example, we searched for

the five stations nearest to JAF (32u329N 4u559W;

2200 m a.s.l.) and applied a filter of a minimum of

30 years of monthly data availability. No adjusted

GHCN precipitation data are available for Mo-

rocco or its neighboring countries (the nearest

station is in Chimay, Belgium, 49.98uN 4.35uE).

For further analysis, we thus selected the non-

adjusted station with the longest available time

series (Meknes; 33.90uN 5.50uW, 549 m a.s.l.;

1931–2011). In general, researchers will take

length of time series, proximity to site, and

elevation into account when selecting (a) station(s)

for dendroclimatic analyses, as well as availability

of various climatic variables. Selection is likely to

be more complex for precipitation data than for

temperature data because of the strong localized

effects on interannual precipitation variability that

arise from orography and other physical process-

es, versus more broad patterns in interannual

temperature variability (Büntgen et al. 2010).

Upon selecting a station, the researcher is

offered three plots of the absolute value time series,

the annual cycle of the climatic variable at this site,

and the time series of anomalies with respect to this

annual cycle. Furthermore, the selected time series

can be high- and low-pass filtered: high-pass

filtering eliminates the influence of low-frequency

variability and trends when calculating cross-

correlations, whereas low-pass filtering can be of

use when working with non-annually resolved
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paleoclimate data. Also lower resolution (monthly,

seasonal, and annual) time series of average,

maximum, or minimum values can be derived from

the selected data series. Using this function,

threshold-delimited time series can be created that

represent the sum above or below or the number of

values that reach a defined threshold. If daily data

are available for a site, this function can be used to

calculate monthly number of growing degree days

by creating a monthly time series of the number of

days with a mean temperature greater than 10uC.

Selection of Gridpoint Data

For regions where publicly available station

data are few or far between, gridpoint data can

provide a valuable alternative. An added advan-

tage of gridpoint data is that long time series are

available for many climate variables. These

datasets come in three flavors: analyses, recon-

structions, and reanalyses. An analysis (e.g. the

HADCRU observational surface temperature

data sets; Jones 1994; Jones and Moberg 2003;

Brohan et al. 2006; Morice et al. 2012) is simply an

interpolation of all available data, which often

includes non-public time series that are not

available for download. Areas and times without

data are left blank. A reconstruction (e.g. the

GISS surface temperature data sets, Hansen et al.

1981; Hansen and Lebedeff 1987; Hansen et al.

2010) functions in the same way, except that data

gaps are filled to the maximum extent possible.

These gridpoints/time steps often do not contain

useful information and should be avoided. A

reanalysis (e.g. the NCAR/NCEP reanalysis data

set, Kalnay et al. 1996) uses a weather model to

interpolate between the observations, which is the

optimal way to propagate information to data-

sparse areas. However, this power comes at the

expense of model biases and inhomogeneities at

the time when new data sources become available

(e.g. satellite data in the late 1970s).

For dendroclimatology, the CRU TS3.10

data set of monthly gridded (0.5u, 1u, and 2.5u)

fields, developed by the Climate Research Unit of

the University of East Anglia (Mitchell and Jones

2005) is of particular interest because of its global

coverage, its long temporal extent (1901–2009),

and its abundance of climatic variables. These

variables include the self-calibrating Palmer Drought

Severity Index (scPDSI, Wells et al. 2004), a variant

on the original PDSI drought index (Palmer 1965)

that incorporates lagged time series of precipitation

and temperature, as well as soil characteristics, is

comparable for different climate regimes, and is a

useful drought metric in regions where drought

rather than temperature is the limiting factor for

tree growth (e.g. Cook et al. 2004). A data set

comparable in spatial and temporal resolution and

extent to the CRU TS3.10 data set, but including

precipitation data only, is produced by the Global

Precipitation Climatology Centre (GPCC; http://

gpcc.dwd.de) and provides gridded monthly pre-

cipitation sets based on data from ca. 64,400

stations.

Additional climate variables, including sea

level pressure (SLP), geopotential height fields

at various elevations, and a variety of derived

variables (e.g. wind speed and relative humidity),

are available in the NCAR/NCEP Reanalysis data

set (Kalnay et al. 1996), which offers a 2u global

grid of modeled monthly variables. Because of its

relatively long time series (1948-present), this data

set is valuable for dendroclimatology and partic-

ularly for the analysis of atmospheric circulation

patterns (e.g. a reconstruction of the Pacific North

American (PNA) pattern in Trouet and Taylor

2010; see also sections 2 and 3). However, it should

be kept in mind that the weather model used to

produce this reanalysis is of mid-1990s vintage and

has some large biases, particularly in surface air

temperature and precipitation (Kistler et al. 2001;

Harnik and Chang 2003; Sturaro 2003; Bromwich

and Fogt 2004). Recently, the Twentieth Century

Reanalysis data set (Compo et al. 2011) has been

uploaded to CE, which covers the same variables

over even longer time-scales (1878–2010).

Note that a large range of gridded data sets is

available in CE, which are not explicitly men-

tioned here. The aim of a study and the role of

gridded data sets in this study will determine

which data set should best be used. It is therefore

recommended to read the information links

available for all data sets before making a

decision. These links also provide the necessary

citations for all data sets.

KNMI Climate Explorer 5



Upon selection of a field, the researcher is

given the choice to retrieve data for a single

gridpoint or for an area. Similar options to derive

high- and low-pass filtered and lower resolution

time series are provided for gridpoint data as

previously described for station data. Differences in

the intra- and inter-annual precipitation variability

for three potential instrumental precipitation data

sets for the JAF chronology are shown in Figure 1.

The three data sets include precipitation data from

the Meknes station data and the nearest gridpoint

data from the CRU TS3.0 (0.5u) and GPCC (0.5u)

databases. The intra- and interannual comparisons

demonstrate that the GPCC data for this location

generally have lower values than the two other data

sets, which reflect comparable absolute amounts of

precipitation. TheMeknes station data on the other

hand has a shorter time-series length than the other

two data sets and includes a substantial amount of

missing data from 1984 onwards. Taking these

factors into account, the CRU TS3.0 data set

appears to be the most reliable record for calibra-

tion of the JAF chronology.

EXAMINATION OF THE CLIMATE

SIGNAL IN DENDROCLIMATIC

TIME SERIES

Uploading a Tree-Ring Series

CE is a powerful tool for initial and exploratory

examination of dendroclimatic time series. It allows

uploading of a user-defined time series and running

a variety of statistical analyses. Uploaded time series

will remain accessible in CE for three days after last

use. After uploading, a plot of the data can be

viewed, as well as a plot of the anomalies with

respect to the average over a defined range of years.

When uploading a dendroclimatic time series,

it is important to be aware that CE only correlates

data sets with the same temporal resolution (i.e.

monthly with monthly, annual with annual).

Therefore, uploaded and existing data sets should

be converted to the same resolution. To correlate

an annually-resolved tree-ring series with annual

instrumental climate data, an annually-resolved

climate time series can be derived frommonthly (or

daily) data as described above. When a comparison

of tree-ring data with monthly climate data (e.g. for

response function analysis) is desired, the tree-ring

series should be converted to monthly resolution.

An annual or seasonal time series can be uploaded

and reduced to monthly resolution in CE, which

also allows for a choice of which months the signal

is most representative. An alternative (and likely

more straightforward) method for calculating

seasonal comparisons is described in the next

subsection. It is worth noting that ‘‘downscaling’’

an annual tree-ring time series to monthly or

seasonal resolution, as described above, can redden

the spectrum of the time series and can thus

introduce artifacts in the spectral properties (see

next section) of the downscaled time series (Schulz

and Stattegger 1997; Schulz and Mudelsee 2002).

Correlation of Tree-Ring Time Series with Other

Time Series

CE allows the user to correlate an uploaded

time series with other user-defined time series as

well as with system-defined time series (including

various climate indices) of the same temporal

Figure 1. Precipitation climatology (A) and interannual annual

(Jan–Dec) precipitation variability (B) for three instrumental

data sets in the vicinity of Jaffa, Morocco (32.53uN, 4.9uW).

The data sets include the Meknes meteorological station

(33.90N, 5.50W) and gridpoint data from the CRUTS3.0 and

GPCC (0.5u; 33uN, 5uW) databases.
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resolution. We comment on the investigation of

monthly-resolved dendroclimatic time series, but

analyses of seasonally and annually resolved series

are comparable.

Analysis options include (rank) correlation or

(least-square) regression analysis (Press et al. 1992,

Ch. 14, 15) for individual or all months of the

calendar year (January-December). The user is

also given the option to calculate correlation

coefficients using the average of multiple months

of climate data. Furthermore, there is the option

of calculating lagged correlations, which allows

for the investigation of the influence of climatic

conditions during the previous year on current

year growth. Positive lags represent the tree-ring

series lagging the climate data by a defined number

of months. Given the difference in growth year

for the tree-ring data (roughly April-September for

the NH) and calendar year for the climate data

(January-December), caution is warranted when

interpreting the generated results. It is often best to

investigate one lag and season separately to verify

that the months (shown on the axes of the scatter

plot) are correct.

All results are accompanied by estimates of

the significance in the form of a p-value for a two-

sided t-test assuming the underlying data are

normally distributed (Press et al. 1992, Ch. 14).

A 95% confidence interval on the correlation or

regression coefficient is computed using a non-

parametric bootstrap (Efron and Tibshirani 1998).

If the data have been low-pass filtered prior to the

correlation step, the user has to specify the

decorrelation length (i.e. the cut-off length of

the applied filter) explicitly for the computation of

the significance and error bounds.

Other selection options include a range of

years over which the correlation is run and upper

and lower thresholds for both tree-ring and

climate data. Selecting one or several threshold

values restricts the range of values considered for

correlation. Furthermore, running correlation and

regression analyses can be performed with a user-

defined time-window and the significance of

running correlations can be tested with a Monte

Carlo test (Gershunov 2001). CE also offers the

opportunity to detrend the tree-ring and climatic

series, but the detrending filters offered are

generally too coarse for dendroclimatic analysis

and we recommend detrending the tree-ring series

using dendro-specific software (e.g. ARSTAN,

Cook 1985) before uploading in CE.

Correlation analysis and regression analysis

require a normal variable distribution. When

variables are not normally distributed (e.g. snow-

pack, fire occurrence, insect outbreaks), applying

a logarithmic or square root transformation to the

variable can bring the distribution closer to

normal and improve the results. Another option

is to compute rank correlation coefficients (Press

et al. 1992) that do not make assumptions about

the underlying distribution. Finally, CE provides

the option to fit non-linear (parabolic, cubic)

functions to the tree-ring time series.

Field Correlations

Time series uploaded in CE can be not only

compared to other time series, but also to gridded

fields of observational and reanalysis climate data.

These field analyses typically result in correlation,

regression, or composite maps (Von Storch and

Zwiers 2002; Mudelsee 2010) that can be used for

data exploration, but also to examine the spatial

extent of the climatic signal present in a tree-ring

series (Treydte et al. 2007; Fan et al. 2009;

Büntgen et al. 2010) and to investigate teleconnec-

tion patterns (Buckley et al. 2007; D’Arrigo et al.

2008; Trouet et al. 2012). Correlation maps for

SLP and geopotential height fields are particularly

useful in the analysis of atmospheric circulation

patterns (Trouet et al. 2009; Trouet and Taylor

2010; Baker et al. 2011; D’Arrigo et al. 2011).

Once the appropriate field is selected, the

options for field correlation analysis are compa-

rable to those for the time-series correlation

analysis as described in the previous subsection.

Additional options refer to the map output: the

CE user can select map projection, boundaries,

and color scale and can define contours and

significance levels to be shown/masked out. The

resulting maps can be saved as pdf or eps files or

can be output as kml files for use in Google Earth

or as GeoTIFF files for GIS software. For

computational efficiency, the levels of significance

are computed using a two-sided t-test, taking serial

KNMI Climate Explorer 7



correlations into account wherever these are

statistically significant at p , 0.05. Again, if the

data are not normally distributed and cannot be

mapped into a normal distribution using a

logarithm or square root, a rank correlation can

be computed instead. Finally, it should be kept in

mind that even in the absence of a real physical

mechanism, generated maps will on average show

10% of the area colored with correlations with p,

0.1 because of random fluctuations. CE estimates

roughly whether the area on the map is signifi-

cantly larger than expected by pure chance and

gives an indication of this ‘field significance’.

Interpretation of correlation maps also depends

strongly on the physics: a small area at the

expected position is more likely a true signal than

a large area at the other side of the globe.

Another important additional option is the

ability to create composite maps (e.g. Hastenrath

1976, 1978; Ropelewski and Halpert 1987; Galar-

neau et al. 2010). In composite map analysis,

climatic field variables are averaged over selected

years and the significance of the difference

between this average and the average of the

variable over the full time series is estimated and

indicated on the resulting map (non-significant

fields are masked out by default). A comparison of

correlation and composite maps for the JAF tree-

ring chronology with gridded precipitation fields

(Figure 2) demonstrates that composite maps for

continuous, normally distributed time series (most

dendroclimatic series) will largely resemble corre-

lation maps, albeit with more noise (less statistical

power). The composite map approach is more

appropriate for non-continuous, event-based time

series (e.g. wildfire activity reconstruction in

Trouet et al. 2010), for continuous time series

that are not normally distributed, or when a non-

linear relationship is suspected.

DENDROCLIMATIC

TIME-SERIES ANALYSIS

CE includes a number of gridded climate

fields reconstructed from proxy and historical

climate data that include seasonal temperature

(A.D. 1500–2002; Luterbacher et al. 2004; Xo-

plaki et al. 2005), precipitation (A.D. 1500–2000;

Figure 2. Correlation (A) and composite (B) maps for the JAF tree-ring chronology with February–June CRUTS3.0 gridded (0.5u)

precipitation fields (1901–2001). Composite maps are calculated for the 90th percentile of the JAF chronology over the period 1901–

2001 (i.e. 10 years with highest TRW value). Colored contours represent significant correlation coefficients in A and significant

anomalies from the 1901–2001 average in B.
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Pauling et al. 2006), sea level pressure (SLP; A.D.

1750–2008; Luterbacher et al. 2002; Kuttel et al.

2010), and 500 hPa geopotential height (A.D.

1658–1999; Luterbacher et al. 2002) for Europe,

summer temperature and SLP (A.D. 1600–1877;

Briffa et al. 2002) for the circum-Arctic, and

summer PDSI for the contiguous U.S.A. (A.D.

1000–2003; Cook et al. 2004) and for Monsoon

Asia (A.D. 1300–2005; Cook et al. 2010).

Comparing uploaded tree-ring series to these

reconstructed climate fields allows for the devel-

opment of correlation, regression, and composite

maps with similar options as described above

(Figure 3).

To complete the spatiotemporal analysis of

climate reconstructions, CE provides the opportu-

nity to perform simple spectral, autocorrelation,

and wavelet analysis. CE can be used to compute

Figure 3. Correlation maps for the JAF tree-ring chronology with reconstructed (March–May) fields of (A) temperature (A.D.

1500–2001; Luterbacher et al. 2004); (B) precipitation (1500–2000; Pauling et al. 2006), (C) SLP (1659–1999; Luterbacher et al.

2002), and (D) 500 hPa geopotential height (1658–1999; Luterbacher et al. 2002). Only weak correlations are found with eastern

European temperature fields, but the precipitation field shows a consistent pattern of positive correlation with precipitation over the

Western Mediterranean and negative correlations over northwestern Europe. Circulation reconstructions (SLP and 500 hPa

geopotential height) show weak but significant signals over northwest Africa. The precipitation correlation map (B) furthermore

shows a strong resemblance with the correlation map for instrumental precipitation fields (Figure 2A). Statistically significant (p ,

0.1) correlations with absolute values lower than 0.1 are indicated by grey shading.

KNMI Climate Explorer 9



the autocorrelation function an~SXiXiznT=SXiXiT

and use this to examine the association between

current and previous values in a time series.

Autocorrelation coefficients are plotted as a

function of time-lag n and can be used to quantify

the nature of autoregressive linkage in the time

series (Fritts 1976), to estimate the decorrelation

length needed to compute significances (see above),

and to investigate oscillating patterns in time series.

Spectral analysis is a more powerful way than

autocorrelation function analysis to describe cyclic-

ity in time series by examining the strength of a

periodic signal (i.e. the spectral power) in time series

at different time frequencies (Jenkins and Watts

1968). It is worth noting that, in contrast to the

autocorrelation, there are many different definitions

of the spectrum. The evolution over time of the

periodic signal can be analyzed using wavelet

analysis (Torrence and Compo 1998). Performing

a spectral analysis in CE results in a periodogram or

spectrum in which the spectral power of the time

series is plotted per cycle length (or 1/frequency) and

significance levels of the spectral power based on

Monte Carlo permutation tests are provided

(Figure 4A). When producing a periodogram in

CE, which is a simple Fourier transform of the input

data, the spectral information from neighboring

frequencies (and thus cycle lengths) can be averaged

into bins, a simple boxcar spectrum. This reduces the

number of frequency bins, but also the uncertainty

inherent to each bin. The optimal number of bins to

average over is therefore a trade-off between the

error bars on the vertical (spectral power) and

horizontal (frequency) axes of the spectrum. More

sophisticated filtering options are not yet available.

The raw data for this periodogram or

spectrum are available in column format, includ-

ing the frequency in the first column, the spectral

power in the second column, the power of a first-

order autoregression (AR(1)) process fitted to the

lag-1 autocorrelation (used for significance level

calculations) in the third, and the significance level

(p-value) in the fourth column. If there are more

peaks in the spectrum above red-noise AR(1)

process than expected by chance, the location of

these is noted in text above the plot. Figure 4A

shows the spectrum for JAF: we averaged

frequencies into 10-frequency bins, which resulted

in 49 (rather than the original 490) frequency bins.

JAF contains statistically significant cyclicity with

cycles of approximately 2.5, 4 (p , 0.01), and 12

(p , 0.05) years in length.

A wavelet analysis (Figure 4B) shows that the

2-to-5 year cyclicity is fairly constant over time,

whereas 10–20 year cycles are only prominent

prior to A.D. 1500 and in the 20th Century.

Running a wavelet analysis in CE thus results in a

plot of the periodicity of the time series over time,

with the strength (and significance level) of the

spectral power represented by shading and a black

line indicating the cone of influence. CE provides

the option to select different types (Morlet, Paul,

or DOG) and orders of wavelet functions, but for

the purpose of paleoclimatology, this selection will

have little influence on the resulting wavelet

transform. Again, be aware that on average 10%

of the area of the plot will appear significant at

p , 0.1 even in the absence of any physical signal.

CONCLUSIONS

In this note, we provide a general introduction

to the use of CE for high-resolution paleoclimatol-

ogy. We describe a number of options for the

exploration of instrumental data sets, and for the

climatic and spatiotemporal analysis of user-defined

paleoclimatic time series. It is worth noting,

however, that the described options do not consti-

tute the full spectrum of options available in CE and

that CE is a dynamic operation that is regularly

updated with new data sets and analysis tools. We

therefore encourage researchers to further explore

methods for engaging the CE tool in answering

research-specific questions. Possible CE applica-

tions that are not explicitly covered in this paper and

that could be further explored include the analysis

of event-based (not normally distributed) time series

and of lower-frequency (non-annual) time series

and the comparison of paleoclimate time series with

modeling simulations. Plans exist to link CE to the

NOAA Paleoclimatology Website (http://www.

ncdc.noaa.gov/paleo/data.html), which includes

the International Tree-Ring Database (ITRDB).

This collaboration will make a set of basic paleocli-

matic research skills attainable for researchers from

a wide range of disciplines.
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