
KNN Classifier with Self Adjusting Memory for

Heterogeneous Concept Drift

Viktor Losing∗†, Barbara Hammer∗ and Heiko Wersing†

∗Bielefeld University, Universitätsstr. 25, 33615 Bielefeld
†HONDA Research Institute Europe, Carl-Legien-Str. 30, 63073 Offenbach am Main

Abstract—Data Mining in non-stationary data streams is
gaining more attention recently, especially in the context of
Internet of Things and Big Data. It is a highly challenging task,
since the fundamentally different types of possibly occurring drift
undermine classical assumptions such as data independence or
stationary distributions. Available algorithms are either strug-
gling with certain forms of drift or require a priori knowledge
in terms of a task specific setting.
We propose the Self Adjusting Memory (SAM) model for the
k Nearest Neighbor (kNN) algorithm since kNN constitutes a
proven classifier within the streaming setting. SAM-kNN can
deal with heterogeneous concept drift, i.e different drift types
and rates, using biologically inspired memory models and their
coordination. It can be easily applied in practice since an
optimization of the meta parameters is not necessary. The basic
idea is to construct dedicated models for the current and former
concepts and apply them according to the demands of the given
situation.
An extensive evaluation on various benchmarks, consisting of
artificial streams with known drift characteristics as well as
real world datasets is conducted. Thereby, we explicitly add
new benchmarks enabling a precise performance evaluation on
multiple types of drift. The highly competitive results throughout
all experiments underline the robustness of SAM-kNN as well as
its capability to handle heterogeneous concept drift.

I. INTRODUCTION

In the classical batch setting of data mining / machine
learning, it is assumed that the complete task specific data is
all time available and can be accessed simultaneously without
any restriction regarding the processing time. Furthermore, the
i.i.d. property as well as stationary environments are presumed.
State of the art machine learning methods are able to obtain
very accurate results within this framework. However, an ever
growing field of real world applications generates data in
streaming fashion at increasing rate, requiring large-scale and
real-time processing. Streaming data is prevalent in domains
such as health monitoring, traffic management, financial
transactions, social networks [1], [2] and is the foundation
of the Internet of Things [3] technology. Supplementing
streaming data with non-stationary environments leads to one
of the recent key areas in data mining research: Learning in
streams under concept drift. Here, algorithms are challenged
by a variety of possible forms of drift under strict limitations
in terms of memory consumption and processing time.
In recent years, a few algorithms have been published able to
handle specific types of drift such as abrupt [4], incremental
[5] as well as reoccurring [6] drift. Even though some
methods can be used for several types of drift by an according
setting of their meta parameters, this requires explicit prior
knowledge about the task at hand. However, it is still unclear

how to identify the type of drift in a given real world data
stream. Furthermore, in real world applications, data usually
do not change only in one specific form, but instead multiple,
sometimes even concurrent, types of drift are taking place
at various rates. One example is the field of personalized
assistance, in which individual user behavior is taken into
account to provide appropriate assistance in various situations
[7]. But, individual behavior in particular can change in
arbitrary ways. Systems anticipating only certain forms of
drift, will perform sub-optimal at best, or fail completely at
worst, when unexpected forms of change occur.
Our Self Adjusting Memory (SAM) in combination with
the k Nearest Neighbor (kNN) classifier [8] is able to cope
with heterogeneous concept drift and can be easily applied
in practice without any parametrization. It exhibits several
analogies to the structure of the human memory as we
explicitly partition knowledge among a short- and long-term
memory.
To enable a proper analysis of algorithms in terms of
suitability for certain forms of drift we do not only contribute
new artificial benchmarks with ground truth drift type but
also vision based real world datasets recorded outdoors: An
environment where concept drift is naturally present.
Our extensive evaluation on these as well as on common
benchmarks demonstrates the gain of SAM-kNN in
comparison to current state of the art approaches. It
exclusively achieves highly competitive results throughout all
experiments, demonstrating its robustness and the capability
of handling heterogeneous concept drift.

II. FRAMEWORK

Our focus is data stream classification under supervised
learning for incremental/on-line algorithms. The aim in super-
vised classification is to predict a target variable y ∈ {1, . . . , c}
given a set of features x ∈ R

n.
In the classical batch setting an algorithm generates a model
h based on a training set Dtrain = {(xi, yi) | i ∈ {1, . . . , j}}.
For convenience we alternatively use the notation y(xi) = yi.
In the subsequent test phase the model is applied on another
set Dtest = {(xi, yi) | i ∈ {1, . . . , k}}, whose labels are kept
hidden. The model predicts a label ŷi = h(xi) for every point
xi ∈ Dtest and the 0-1 loss

L(ŷi, yi) = 1(ŷi 6= yi)

is calculated.

A. Streaming data

Data stream classification is usually evaluated in the on-
line learning setting, often called Interleaved Test-Train. A
potentially infinite sequence S = (s1, s2, . . . , st . . .) of tuples
si = (xi, yi) arrives one after another. As t represents the
current time stamp, the learning objective is to predict the
corresponding label yt for a given input xt, which is supposed
to be unknown. The prediction ŷt = ht−1(xt) is done
according to the previously learned model ht−1. Afterwards,
the true label is revealed and the loss L(ŷt, yt) determined.
Before proceeding with the next example, the applied learning
algorithm generates a new model ht on the basis of the current
tuple st and the previous model ht−1:

ht = train(ht−1, st).

The Interleaved Test-Train error for a sequence up to the
current time t is given by:

E(S) =
1

t

t
∑

i=1

1(hi−1(xi) 6= yi). (1)

Algorithms applied for streaming data face the challenge of
anytime model adaption, furthermore, the examples have to be
processed in incoming order, often violating the assumption of
sample independence.
Methods handling concept drift are, in addition, coping with
non-stationary environments, characterized by a change of the
underlying data generation process.

B. Concept Drift

Concept drift [9] occurs when the joint distribution Pt(x, y)
changes for at least two time steps t0 and t1:

∃x : Pt0(x, y) 6= Pt1(x, y),

The joint distribution can also be written as:

Pt(x, y) = Pt(x)Pt(y|x),

where Pt(x) is the distribution of the features and Pt(y|x)
the posterior probability of the classes. The term real drift
is used to specify that the relation between observation and
labels Pt(y|x) varies over time. Virtual drift is present when
the feature distribution Pt(x) changes without affecting the
posterior of the classes Pt(y|x). Furthermore, the rate at which
drift is taking place can be classified either as abrupt, resulting
in a severe shift within the distribution, e.g. caused by a
malfunctioning sensor, or incremental, an evolving change over
time, e.g. evoked by a slowly degrading sensor. In the context
of seasonal effects, drift is often characterized as reoccurring
to describe that previous concepts are repeatedly emerging.

III. RELATED WORK

Algorithms dealing with concept drift can be roughly
divided in active and passive approaches [10].
Active approaches explicitly detect the time of change t and
usually discard the accumulated knowledge up to this point.
Often statistics of windows, covering different time periods,
are analyzed for significant deviations. The most common
statistic is the classification error [4], [11] but measures as the
Kullback Leibler divergence, evaluating the distance between

the probability distributions of two different windows [12], are
used as well.
ADaptive sliding WINdowing (ADWIN) [11] efficiently moni-
tors the binary error history (it could be any i.i.d. value between
0 and 1) in a window containing all values since the last
detected change. The window is repeatedly partitioned into
two sub-windows of various size. Whenever the difference of
their average error exceeds a threshold, depending on the size
of the sub windows and a confidence parameter, a change is
detected and the older window is dropped.
Active approaches are often combined with a sliding window
containing the most recent examples, as these are assumed to
be the most valuable for current predictions. Hereby, the size
is a trade-off between fast adaptation (small window) and good
generalization in stable phases without drift (large window). To
achieve both properties at the same time the size is adjusted
dynamically.
In the Probabilistic Adaptive Windowing (PAW) [13] examples
from the window are removed randomly leading to a mix of
recent and older instances. The window size is not strictly
bounded and varies around a target size. ADWIN is used as
change detector and the window is cleared accordingly. This
approach is coupled with the kNN classifier and achieves a
low error rate in the experiments.
The size of the sliding window can also be adapted by using
a heuristic [14], or by minimizing the amount of errors in the
past: Klinkenberg et al. present a theoretically well founded
approach for Support Vector Machines (SVM) in [15]. They
adapt the size such that an estimation of the Leave-one-out
error is minimized without any parametrization.
Active methods are able to detect abrupt drift quickly, however,
they struggle with incremental change, which may be not
significant enough and remains undetected. Another weakness
is that knowledge either slowly fades out or is discarded in
case of detected drift. Although the most recent examples are
usually the most valuable for current predictions, there are
also cases in which older data carries crucial information, e.g.
reoccurring drift. Here, the methods have to relearn former
concepts and produce more mistakes than necessary. Our ap-
proach explicitly preserves information of former concepts and
increases the conservation time span by repeated compression,
allowing the access to former knowledge when necessary.
Passive approaches continuously adapt their model without
explicit awareness of occurring drift. This prevents pitfalls
such as missed or false detected drifts on the one hand, but the
adaption speed is more or less constant leading to costly delays
in the case of abrupt drift, on the other hand. Passive algorithms
are dominated by ensembles, consisting usually of tree based
models such as The Very Fast Deciscion Tree (VFDT) [16] 1:
A very fast anytime decision tree algorithm with asymptotic
guarantees for its output, which incrementally adds splits based
on the Hoeffding bound.
Ensemble members are continuously updated with incoming
examples using techniques such as Bagging. Furthermore, new
knowledge can be additionally incorporated by the integration
of new members, whereas irrelevant information is discarded
by the deletion of corresponding old classifier. However, one
major drawback is the comparably high computational effort.
Jaber et al. presented Dynamic Adaption to Concept Changes
(DACC) in [17], an algorithm inspired by the Dynamic

1The VFDT is often called Hoeffding Tree (HT)

Weighted Majority [5] method. A classifier of the worst half
of the pool is removed randomly after a predefined number
of examples and replaced by a new one. Newly generated
classifier are excluded for a predefined time from this elimi-
nation process. Predictions for incoming examples are solely
done by the best classifier within the pool, having the highest
accuracy in the past. This intuitive approach performed well
within incremental and abrupt drift scenarios.
In [18] Bifet et al. propose to increase the randomization of
Online Bagging [19] and thereby the diversity of the ensemble.
This is done by a higher λ value for the Poisson distribution
and the usage of output detection codes. Additionally, ADWIN
is used as change detector for every ensemble member such
that every detected change leads to the replacement of the
worst classifier by a new one. The resulting active-passive
method Leveraging Bagging (LVGB) achieves accurate results
on streaming data containing drift.
Learn++.NSE [6] processes incoming examples in chunks
with a predefined size. A base classifier is trained for each
chunk and added to the ensemble. The loss on recent chunks
is averaged with a sigmoid function to compute the weight
of each member. Similar to AdaBoost [20], instances are
weighted such that misclassified inputs have a higher impact on
the calculated loss. In contrast to other methods, here members
are not continuously learning but preserve their initial state.
This fact is used to revive former members in the presence of
reoccurring drift.
Passive approaches can deal with incremental drift, but their
inherent adaption speed has to be adjusted to the task specific
drift speed. In case of abrupt drift, the adaption delay is
usually more pronounced than in active methods. Even though,
ensembles allow more flexibility in form of addition and
deletion of new members, the fundamental issues remain,
albeit somewhat weakened. Our approach is also an ensemble,
but it distinguishes itself by the explicit generation of dedicated
classifiers for current and past knowledge. Members are neither
added nor removed, instead the ensemble is used to instantly
switch the knowledge basis for current predictions. This allows
flexible adaption to real and virtual drift at various rates
without any parametrization.
We couple the proposed architecture with the kNN classifier
as one of the most popular nonparametric models. KNN has
already been applied in the streaming scenario, mainly with
the goal to provide an efficient search [21] or a compressed
representation [22]. It was also considered for drifting data
streams [13], [23]. But one of its key advantages, the simple
editing of the data, has not been exploited as extensively as in
our method, enabling the preservation of more relevant data
for future prediction.

IV. ARCHITECTURE OF THE SELF ADJUSTING

MEMORY(SAM)

In the research field of human memory the dual-store model
[24], consisting of the Short-Term and Long-Term memory
(STM & LTM), is largely accepted. Sensory information
arrives at the STM and is joined by context relevant knowl-
edge from the LTM. Information getting enough attention
by processes such as active rehearsal is transfered into the
LTM in form of Synaptic Consolidation [25]. The capacity
of the STM is quite limited and information is kept up to
one minute, whereas the LTM is able to preserve it for years

STM

LTM

t	

Fig. 1. Illustration of the general approach. The STM contains only the
current concept, while the LTM preserves only knowledge which is consistent
in regard to the STM.

[26]. Immediate processing e.g. remembering the beginning
of a read sentence, largely uses the STM. Whereas knowledge
recalled from the past either explicitly requires the LTM e.g.
consciously remembering events in life, or in an implicit way
e.g. how to ride a bike.
The SAM architecture is partly inspired by this model and
exhibits the following analogies:

• Explicit separation of current and past knowledge,
stored in dedicated memories.

• Different conservation spans among the memories.

• Transfer of filtered knowledge from the STM to the
LTM.

• Situation dependent usage.

The basic idea is to combine dedicated models for the current
concept Pt(x, y) and all former ones Pt−1(x, y), . . . , P1(x, y)
in such a way that the prediction accuracy is maximized.
This is a very general concept, which could be coupled with
different type of models, requiring a different realization. In
case of dedicated parametric models, for example, a proper
management of the distribution parameters would be necessary.
However, in this paper we realize our approach with the non-
parametric method kNN and therefore construct two different
memories: The Short-Term Memory (STM), containing data
of the current concept and the Long-Term Memory (LTM),
maintaining knowledge of past concepts. Figure 1 illustrates
this approach. We share the general assumption of new data
being more relevant for current predictions. Hence, we remove
those information from former concepts which is in conflict
with the current one, but we explicitly preserve the rest in com-
pressed fashion. We avoid any parametrization, by exploiting
the minimization of the error on recent data at various steps.
Our architecture is depicted in Figure 2 and described below
in detail.

A. Model definition

Memories are represented by sets MST, MLT, MC. Each
memory is a subset in R

n × {1, . . . , c} of varying length, ad-
justed during the adaptation process. The STM represents the

Fig. 2. SAM architecture: Incoming examples are stored within the STM. The
cleaning process keeps the LTM all-time consistent with the STM. Whenever,
the STM is reduced in size, its discarded knowledge is transfered into the
LTM. Accumulated knowledge is compressed each time the available space is
exhausted. Both models are considered during prediction, depending on their
past performances.

current concept and is a dynamic sliding window containing
the most recent m examples of the data stream:

MST = {(xi, yi) ∈ R
n×{1, . . . , c} | i = t−m+1, . . . , t}. (2)

The LTM preserves all former information which is not con-
tradicting those of the STM in a compressed way. In contrast
to the STM the LTM is neither a continuous subpart of the
data stream nor given by exemplars of it, but instead a set of
p points:

MLT = {(xi, yi) ∈ R
n × {1, . . . , c} | i = 1, . . . , p}.

The combined memory (CM) is the union of both memories
with size m+ p:

MC = MST ∪MLT.

Every set induces a classifier, in our case a distance weighted
kNN : R

n 7→ {1, . . . , c}, kNNMST
, kNNMLT

, kNNMC
. The

kNN function assigns a label for a given point x based on a
set Z = {(xi, yi) ∈ R

n × {1, ..., c} | i = 1, . . . , n}:

kNNZ(x) = argmax
ĉ

{
∑

xi∈Nk(x,Z)|yi=ĉ

1

d(xi,x)
|ĉ = 1, . . . , c},

where d(x1,x2) is the Euclidean distance between two points
and Nk(x, Z) returns the set of k nearest neighbors of x

in Z. Weights wST, wLT, wC are representing the accuracy
of the corresponding model on the current concept and are
determined as described in section IV-B4.
The prediction of our complete model relies on the sub-model
with the highest weight1 and is defined for a given point x as:

x 7→

kNNMST
(x) if wST ≥ max(wLT, wC)

kNNMLT
(x) if wLT ≥ max(wST, wC)

kNNMC
(x) if wC ≥ max(wST, wLT).

This model is adapted incrementally for every time t as
described in section IV-B.

1In case of ties, we prioritize the models in the following order: kNNMST
,

kNNMLT
, kNNMC

Model parameter: During the adaption phase we adjust the
following parameters:

• The size m of the STM.

• The data points in the LTM.

• The weights wST, wLT, wC.

The model has the subsequent hyperparameters, which can be
robustly chosen and do not require a task specific setting:

• The number of neighbors k.

• The minimum length Lmin of the STM.

• The maximum number of stored examples Lmax (STM
and LTM combined).

We used for all experiments k = 5, Lmin = 50, Lmax = 5000.

B. Model adaption

The adaption comprises every memory as well as the
corresponding weights. We denote a data point at time t as
(xt, yt) and the corresponding memories MSTt , MLTt , MCt .

1) Adaption of the Short Term Memory: The STM is a
dynamic sliding window containing the most recent examples.
Every incoming example of the stream gets inserted such
that the STM grows continuously. Its role is to exclusively
contain data of the current concept. Therefore, its size has to be
reduced, whenever the concept changes such that examples of
the former concept are dropped. However, we do not explicitly
detect a concept change, but instead we adjust the size such
that the Interleaved Test-Train error of the remaining STM
is minimized. This approach relies on the fact that a model
trained on internally consistent data yields less errors and
we assume the remaining instances to represent the current
concept or being sufficiently ”close” to it.
Formally, we evaluate differently sized STMs and adopt the
one with minimum Interleaved Test-Train error (see equation
1). To compare only a logarithmic number, we use bisection
for the selection of the window size. Tested windows are:

Ml = {(xt−l+1, yt−l+1), . . . , (xt, yt)},

where l ∈ {m,m/2,m/4 . . .} and l ≥ Lmin.

MSTt+1
= argmin

S∈{Mm,Mm/2,...}

E(S).

Whenever the STM is shrunk, the set of discarded examples
Ot is defined as

Ot = MSTt \MSTt+1
. (3)

We choose the Interleaved Test-Train error because it has
various advantages in the streaming setting over the commonly
used cross validation error. The latter is applied on random
splits of the data and requires multiple repetitions to deliver
a stable estimation of the error, which significantly increases
the computational cost. Whereas the former is efficiently using
every example for test and training in the original order and
therefore is a stable and natural choice in the setting of
incremental learning.
Our way to adapt the size of the STM has similarities with [15].
However, the approach is based on SVM specific estimates of

the leave one out error and it is not indicated how to choose
evaluated window sizes. Whereas we propose to directly deter-
mine the Interleaved Test-Train error on recursively bisected
windows, which is applicable for arbitrary models.

2) Cleaning and Transfer: The LTM contains all data of
former concepts that is consistent with the STM. This requires
a cleaning of the LTM according to every seen example. In
addition, whenever the STM is reduced in size, we do not
simply discard the sorted out data, since it still may contain
valuable information for future prediction. One example for
such a situation is reoccurring drift, as methods preserving
knowledge in this case do not have to relearn former concepts
and therefore produce fewer errors.
Instead, we transfer as much knowledge as possible into the
LTM. Before doing so, we delete examples from the separated
set Ot (see equation 3) which are contradicting those in
MSTt+1

.
This adaption is formalized by two operations.

1) We clean a set A by another set B regarding an
example (xi, yi) ∈ B

clean : (A,B, (xi, yi)) 7→ Â

where A,B, Â ⊂ R
n × {1, . . . , c} and (xi, yi) ∈ B.

Â is defined in two steps.
(1) We determine the k nearest neighbors of xi in
B \ (xi, yi) and select the ones with label yi. These
define the threshold

θ = max{d(xi,x))|x ∈ Nk(xi, B \ (xi, yi)},

y(x) = yi).

(2) The k nearest neighbors of xi ∈ A which are
inconsistent to B are cleaned based on the threshold,
yielding the result of this operation:

Â = A \ {(xj , y(xj))|xj ∈ Nk(xi, A),

d(xj ,xi) ≤ θ, y(xj) 6= yi}.

2) Furthermore, we require a cleaning operation for the
full set B

clean : (A,B) 7→ Â|B|

where A,B, Â|B| ⊂ R
n ×{1, . . . , c}. This is defined

iteratively by applying the former cleaning for all
(xi, yi) ∈ B = {(x1, y1), . . . , (x|B|, y|B|)} as

Â0 = A

Ât+1 = clean(Ât, B, (xt+1, yt+1)).

The adaption of the LTM takes place at two different steps.
To ensure a consistent model at any time, cleaning takes place
according to every incoming sample (xt, yt)

M̃LTt = clean(MLTt ,MSTt , (xt, yt)).

Whenever the STM is shrunk, the discarded set Ot is trans-
ferred into the LTM after cleaning, i.e. the LTM becomes

MLTt+1
=

{

M̃LTt
∪ clean(Ot,MSTt+1

) if STM is shrunk

M̃LTt otherwise

3) Compression of the LTM: In contrast to the FIFO
principle of the STM, instances are not fading out as soon as
the size limit of the LTM is reached. Instead, we condense the
available information to a sparse knowledge representation via
clustering. This enables a far longer conservation than possible
with simple out fading. Formally, for every class label ĉ we
group the corresponding data points in the LTM

MLTĉ
= {xi|(xi, ĉ) ∈ MLT}.

We use the clustering algorithm kMeans++2 with |MLTĉ
|/2

clusters. The resulting prototypes M̂LTĉ
represent the com-

pressed original data. The LTM is given by the union of all
prototypes

MLT =
⋃

ĉ

{(xi, ĉ)|x ∈ M̂LTĉ
}

This process is repeated each time the size limit is reached
leading to a self-adapting level of compression.

4) Model weight adaption: The weight of a memory is
its accuracy averaged over the last mt samples, where mt =
|MSTt

| is the size of the current STM. Hence, the weight of
the LTM at time stamp t equals

wt
LT =

|{i ∈ {t−mt + 1, . . . , t} | kNNMLTi
(xi) = yi}|

mt

and analogously for STM and CM.

C. Time Complexity

The adaption of the STM is by far the most time consuming
process of SAM and upper bounds the complexity of the al-
gorithm. Therefore, we exclusively give a complexity analysis
of this part and neglect the others.
Given a query point, the determination of its k nearest neigh-
bors within a pool of m examples is linear O(m). Each time,

we are evaluating up to log Lmax

Lmin
differently sized STMs, where

Lmin and Lmax are the minimum and maximum lengths of the
STM. The complete calculation of the error for one STM is
upper bounded by O(L2

max). This results in the overall worst

case complexity of O(nL2
max log

Lmax

Lmin
) for n examples. There

is a lot of room to reduce this complexity, for instance, the
calculation of the error can be done incrementally whenever
the following condition is met:
Given an exemplary STM St−1 (defined as in equation 2).
If its successor St is simply an extension of St−1, such that
St = [St−1, (xt, yt)], the corresponding error is given by

E(St) =
(t− 1)E(St−1) + 1(ht−1(xt) 6= yt)

t
.

This is the case whenever an STM simply is growing by the
current example, which happens frequently in practice and
clearly dwindles the time complexity of the method.
We are currently experimenting with approximations of the
error to reduce the complexity further.

2We used kMeans++ [27] because of its efficiency and scalability to larger
datasets.

TABLE I. EVALUATED ARTIFICIAL DATASETS.

Dataset #Samples #Feat. #Class Drift type

SEA Concepts 50K 3 2 real abrupt

Rotating Hyperplane 200K 10 2 real incremental

Moving RBF 200K 10 5 real incremental

Interchanging RBF 200K 2 15 real abrupt

Moving Squares 200K 2 4 real incremental

Transient Chessboard 200K 2 8 virtual reoccurring

Mixed Drift 600K 2 15 abr/incr/virt

V. DATASETS

We used well known artificial as well as real world datasets
for the experiments. Links to all datasets and algorithms,
including our own, are available at GitHub3. In the following
we describe the data more detailed.

A. Artificial Data

Artificial datasets have the advantage that any desired
drift behavior can be explicitly simulated. They are often 2-
dimensional to enable a straightforward visualization. We con-
sidered published benchmarks or used generators from Massive
Online Analysis (MOA) [28] with common parametrization.
We also added four new datasets allowing an extensive eval-
uation on specific drift types, including virtual drift, which
is often ignored in the community. Table I shows their main
characteristics.

SEA Concepts This dataset was proposed in [29] and
consists of 50000 instances with three attributes of which
only two are relevant. The two class decision boundary is
given by f1 + f2 = θ, where f1, f2 are the two relevant
features and θ a predefined threshold. Abrupt drift is
simulated with four different concepts, by changing the
value of θ every 12500 samples. Also included are 10%
of noise.

Rotating Hyperplane A hyperplane in d-dimensional
space is defined by the set of points x that satisfy
∑d

i=1 wixi = w0. The position and orientation of the
hyperplane are changed by continuous addition of a
term δ to the weights wi = wi + δ. We used the
Random Hyperplane generator in MOA with the same
parametrization as in [13] (10 dimensions, 2 classes,
δ=0.001).

Moving RBF Gaussian distributions with random initial
positions, weights and standard deviations are moved
with constant speed v in d-dimensional space. The
weight controls the partitioning of the examples among
the Gaussians.
We used the Random RBF generator in MOA with the
same parametrization as in [13] (10 dimensions, 50
Gaussians, 5 classes, v=0.001).

Interchanging RBF Fifteen Gaussians with random
covariance matrices are replacing each other every
3000 samples. Thereby, the number of Gaussians
switching their position increases each time by one
until all are simultaneously changing their location. This

3https://github.com/vlosing

TABLE II. CONSIDERED REAL WORLD DATASETS.

Dataset #Samples #Feat. #Class

Weather 18159 8 2

Electricity 45312 5 2

Cover Type 581012 54 7

Poker Hand 829200 10 10

Outdoor 4000 21 40

Rialto 82250 27 10

allows to evaluate an algorithm in the context of abrupt
drift with increasing strength. Altogether 67 abrupt drifts
are occurring within this dataset.

Moving Squares Four equidistantly separated, squared
uniform distributions are moving in horizontal direction
with constant speed. The direction is inverted whenever
the leading square reaches a predefined boundary. Each
square represents a different class. The added value
of this dataset is the predefined time horizon of 120
examples before old instances may start to overlap
current ones. This is especially useful for dynamic
sliding window approaches, allowing to test whether the
size is adjusted accordingly.

Transient Chessboard Virtual drift is generated by revealing
successively parts of a chessboard. This is done square by
square randomly chosen from the whole chessboard such
that each square represents an own concept. Every time
after four fields have been revealed, samples covering
the whole chessboard are presented. This reoccurring
alternation penalizes algorithms tending to discard
former concepts. To reduce the impact of classification
by chance we used eight classes instead of two.

Mixed Drift The datasets Interchanging RBF, Moving
Squares and Transient Chessboard are arranged next
to each other and samples of these are alternately
introduced. Therefore, incremental, abrupt and virtual
drift are occurring at the same time, requiring a local
adaptation to different drift types.

B. Real World Data

A few real world drift benchmarks are available of which
we considered the largest ones. We contribute two new chal-
lenging datasets obtained from visual data. The characteristics
are given in Table II.

Weather Elwell et al. introduced this dataset in [6]. In the
period of 1949-1999 eight different features such as
temperature, pressure wind speed etc. were measured at
the Offutt Air Force Base in Bellevue, Nebraska. The
target is to predict whether it is going to rain on a certain
day or not. The dataset contains 18159 instances with an
imbalance towards no rain (69%).

Electricity market dataset This problem is often used as
a benchmark for concept drift classification. Initially
described in [30], it was used thereafter for several
performance comparisons [31], [32], [13], [4]. A critical
note to its suitability as a benchmark can be found in
[33]. The dataset holds information of the Australian
New South Wales Electricity Market, whose prices

Fig. 3. Objects, positioned in a garden, are approached by a mobile robot
under different lighting conditions. Each row shows the first, fifth and tenth
image of one approach.

are affected by supply and demand. Each sample,
characterized by attributes such as day of week, time
stamp, market demand etc., refers to a period of 30
minutes and the class label identifies the relative change
(higher or lower) compared to the last 24 hours.

Forest Cover Type Assigns cartographic variables such as
elevation, slope, soil type, . . . of 30 × 30 meter cells to
different forest cover types. Only forests with minimal
human-caused disturbances were used, so that resulting
forest cover types are more a result of ecological
processes. It is often used as a benchmark for drift
algorithms [13], [34], [35].

Poker Hand One million randomly drawn poker hands are
represented by five cards each encoded with its suit and
rank. The class is the resulting poker hand itself such as
one pair, full house and so forth. This dataset has in its
original form no drift, since the poker hand definitions
do not change and the instances are randomly generated.
However, we used the version presented in [13], in which
virtual drift is introduced via sorting the instances by
rank and suit. Duplicate hands were also removed.

Outdoor Objects We obtained this dataset from images
recorded by a mobile in a garden environment. The task
is to classify 40 different objects, each approached ten
times under varying lighting conditions affecting the
color based representation (see Figure 3). Each approach
consists of 10 images and is represented in temporal
order within the dataset. The objects are encoded in a
normalized 21-dimensional RG-Chromaticity histogram.

Rialto Bridge Timelapse Ten of the colorful buildings next
to the famous Rialto bridge in Venice are encoded in a
normalized 27-dimensional RGB histogram. We obtained
the images from time-lapse videos captured by a webcam
with fixed position. The recordings cover 20 consecu-
tive days during may-june 2016. Continuously changing
weather and lighting conditions affect the representation
as can be seen in Figure 4. We generated the labels
by manually masking the corresponding buildings and

Fig. 4. Images of the Rialto bridge recorded at different
times of day. The color based representation of the buildings
changes significantly during each of the 20 recorded days.
Source of the images: https://www.skylinewebcams.com.

TABLE III. THE COMPARED ALGORITHMS AND THE CHOSEN

HYPERPARAMETER. ENSEMBLES CONSISTED OF 10 MEMBERS. WE USED A

MAXIMUM WINDOW SIZE OF 5000 SAMPLES AND k WAS SET TO 5 FOR ALL

KNN BASED METHODS.

Abbr. Classifier Parameter

L++.NSE Learn++.NSE with CART chunk-size = optimized

DACC DACC with HT n = 10
LVGB LVGB with HT n = 10
KNNS KNN with fixed size sliding window Lmax = 5000, k = 5
KNNWA

KNN with PAW+ADWIN Lmax = 5000, k = 5
SAM Self adjusting memory-kNN Lmax = 5000, k = 5

excluded overnight recordings since they were too dark
for being useful.

VI. EXPERIMENTS

We compare our STM-LTM approach with well-known
state of the art algorithms for handling drift in streaming data.
Implementations of the original authors or those available in
MOA have been used to conduct the experiments. Table III
gives an overview of the algorithms as well as the chosen
hyperparameter. Next to the method already discussed in III,
we compare against a distance weighted kNN classifier with a
sliding window of fixed size. Learn++.NSE is combined with
Classification and Regression Trees (CART) [36] as it is done
by its author.
Window based approaches were allowed to store 5000 samples
(we also report results for a size of 1000 samples) but never
more than 10% of the whole dataset.4 This rather large amount
gives the approaches a high degree of freedom and prevents
the concealment of their qualities with a too restricted window.
L++.NSE requires a setting of its crucial chunk size parameter,
which plays a similar role as the size of sliding windows. To
avoid any disadvantage we evaluated several sizes and report
the best result. No further dataset specific hyperparameter
tuning was done, since we wanted to provide as little prior
knowledge as possible.

4Regarding our approach, the available space is shared between the STM
and LTM.

TABLE IV. INTERLEAVED TEST-TRAIN ERROR RATES OF ALL

EXPERIMENTS. WINDOW BASED APPROACHES ARE CONSIDERED WITH

THE MAXIMUM SIZE OF 5000 EXAMPLES FOR THE RANKING. FOR EACH

DATASET THE LOWEST VALUE IS MARKED IN BOLD.

Window size 5000 Window size 1000

Dataset L++.NSE DACC LVGB kNNS kNNWA
SAM kNNS kNNWA

SAM

SEA Concepts 14.48 15.68 11.69 13.83 13.39 12.50 13.96 13.22 13.44

Rotating Hyperplane 15.58 18.20 12.53 16.00 16.16 13.31 18.44 18.02 14.53

Moving RBF 44.50 54.34 44.84 20.36 24.04 15.30 12.89 17.3 12.12

Interchanging RBF 27.52 1.40 6.11 45.92 8.56 5.70 10.15 8.56 2.60

Moving Squares 65.90 1.17 12.17 68.87 61.01 2.30 59.24 56.52 2.30

Transient Chessb. 1.98 43.21 17.95 7.36 14.44 6.25 13.72 16.34 11.27

Mixed Drift 40.37 61.06 26.29 31.00 26.75 13.33 20.27 23.99 12.22

Artificial ∅ 30.05 27.87 18.80 29.05 23.48 9.81 21.24 21.99 9.78

Artificial ∅ Rank 4.00 4.57 2.86 4.29 3.57 1.71 - - -

Weather 22.88 26.78 21.89 21.53 23.11 21.74 22.09 23.40 22.45

Electricity 27.24 16.87 16.78 28.61 26.13 17.52 24.74 23.30 17.46

Cover Type 15.00 10.05 9.07 4.21 6.76 4.8 3.96 6.51 5.85

Poker Hand 22.14 20.97 13.65 17.08 27.94 18.45 17.08 27.94 19.77

Outdoor 57.80 35.65 39.97 13.98 16.30 11.25 14.02 16.90 11.52

Rialto 40.36 28.93 39.64 22.74 24.96 18.58 20.72 24.61 18.21

Real world ∅ 30.90 23.21 23.50 18.03 20.87 15.40 17.10 20.44 15.88

Real word ∅ Rank 5.33 4.17 3.17 2.33 4.00 2.00 - - -

Overall ∅ 30.44 25.72 20.97 23.96 22.27 12.39 19.33 21.28 12.60

Overall ∅ Rank 4.62 4.38 3.00 3.38 3.77 1.85 - - -

A. Results

We evaluated the methods by measuring the Interleaved
Test-Train error. The error rates of all experiments are shown
in Table IV.

The proposed method SAM-kNN outperforms the others
quite significantly by having nearly half the error rate in
average compared to the second best method LVGB. Even
more important is in our eyes the fact that other methods
struggle at one or another dataset but our approach delivers
robust results without any hiccup. All drift types are handled
better or at least competitive. This is particularly clarified in
the large gap achieved within the Mixed Drift dataset, which
contains incremental, abrupt and virtual drift at the same time.
The methodically most similar method to ours is kNNWA

, since
it also uses kNN and actively manages its window. However,
it performs worse in all experiments. To clarify that this is not
due to the distance weighting, we repeated the experiments
with SAM-kNN using majority voting instead and got an
overall average error rate of 14.72%.
For the sake of completeness, we also report the error rates
of all window based approaches with a window size of 1000
samples as done in [13]. We can see that especially the
results of kNNS and kNNWA

are significantly better with the
smaller window. SAM also profits sometimes, e.g. Moving
RBF dataset, albeit clearly weakened. The reason for the
higher performance is that samples of former concepts are
fading out faster of the smaller window and are, therefore,
less often contradicting the current concept in the case of real
drift. Hence, the smaller window conceals the issue that the
methods now and than fail to shrink the window appropriately.
Therefore, we chose the larger and more informative size of
5000 samples for the ranking.
Our results confirm the fact that kNN is in general a very
competitive algorithm in the streaming setting. It is quite
surprising that the simple sliding window approach kNNS per-
forms comparably well or even better than more sophisticated
methods such as DACC or L++.NSE.

Fig. 5. Illustrations of the Interchanging RBF dataset. Only
a part of the dataset is depicted for the sake of clarity.
Top: The size adaption of the STM is shown on the left.
Dashed vertical lines mark the moments of abruptly changed
concepts. The delay of the model shrinks with increasing
strength of drift. Only the STM is used for prediction (right).
Bottom: Snapshots of the STM and LTM. Points of the LTM that are
in accordance with the STM are preserved. Different classes are represented
by different colors.

B. Memory behaviour

In this section we illustrate the adaptation of the memories
as well as their task specific roles.
Figure 5 depicts on the top left the size adjustment of the
STM during the Interchanging RBF experiment. The algorithm
reliably reduces the window size after each abrupt drift.
However, we also observe a certain delay, during which wrong
predictions are likely to be done. This delay is due to two
reasons. Firstly, a certain amount of examples is required to
reliably predict the new concept. Secondly, the more examples
of the former concept are contained in the STM, the more
stable is its representation and the more examples of the
new concept are required to deteriorate the overall accuracy
sufficiently. Hence, the delay illustrates a self-adjusting trade-
off between adaption speed to new concepts and the robustness
against noise, governed by the stability of both concepts. The
adaption delay decreases with increasing drift strength.
The selective cleaning of the LTM is also visible in Figure 5.
Points interfering with the STM were deleted as can be seen by
the empty spots within the clusters. Whereas samples around
are harmless and consequently kept in memory.
As already mentioned, the Moving Squares dataset is con-
structed in such a way that the squares may overlap each
other if more than 120 of the recent examples are kept in
memory. Hence, the best strategy for this problem is to keep
the window as small as possible and to use only the most recent
examples for prediction. Figure 6 shows how the size of the
STM is most of the time kept between 50 and 100 samples,
allowing a nearly perfect prediction. This is also clarified by its

Fig. 6. Depictions of the Moving Squares benchmark.
Top: The STM size is most of the time kept below 120
samples and avoids the overlap of current points by outdated
ones. The STM is exclusively used for prediction (right).
Bottom: Snapshots of the STM and LTM. Classes do not overlap
within both memories.

Fig. 7. Illustrations of the Transient Chessbord dataset.
Top: Each 1000 examples the square by square revelation (blue background)
is alternated by samples covering the whole chessboard(white background).
The STM tracks the current concept: It shrinks after each revealed field
in the first phase and grows during the second phase to contain the whole
chessboard. Only a part of the dataset is depicted for the sake of clarity.
Bottom: The LTM preserves the whole chessboard in compressed fashion,
whereas only the current concept is contained in the STM.

snapshot, illustrating the absence of overlapping instances. The
parameter controlling the minimum size of the STM prevents
a size reduction below 50 examples, otherwise an even better
result is possible.
In contrast to the previous two datasets, which basically do not
require the LTM, we see in Figure 7 its importance during the
prediction of the Transient Chessboard task. The STM is used
alone whenever the data is presented square by square because
it contains solely relevant information for the current square
and produces less mistakes than in combination with the LTM.
But during the periods in which examples are distributed over
the whole board, the LTM is heavily used since it contains

Fig. 8. Model selection for the datasets Rialto (left) and Weather (right).

beneficial information from the past. Its snapshot reveals the
compressed preservation of the whole chessboard.
The task dependent relevance of both memories is exemplified
with real world data in Fig.8: While the LTM is the preferred
prediction model in the Weather dataset, it is the STM that
classifies most of the instances of the Rialto task.

VII. CONCLUSION

In this paper we presented the Self Adjusting Memory
(SAM) architecture, especially designed to handle heteroge-
neous concept drift within streaming data. It explicitly sep-
arates the current concept from former ones and preserves
both in dedicated memories combining them according to
the demands of the current situation. Thereby, it omits a
common weakness of available methods that simply discard
former knowledge and, therefore, produce more mistakes in
case of reoccurring drift. Our method is easy to use in practice,
since it requires neither meta-parameterization nor related prior
knowledge about the task at hand.
We compared this approach in an extensive evaluation with
current state of the art methods. As the only algorithm in
the field, it demonstrated consistently accurate results for het-
erogeneous drift types: virtual versus real drift, abrupt versus
incremental drift. We also showed that the different memory
types take over different functions in the overall model. While
the STM represents the actual concept, the LTM conserves
established knowledge as long as it is consistent with the
STM. This decomposition proved to be particularly effective
to simultaneously deal with heterogeneous drift types in real
world streaming data.
We want to pursue our promising approach further and es-
pecially consider a spacial decomposition to enable a more
fine-grained combination of the memory models. This allows
a reaction to different concurring drift types for different
locations in space. Furthermore, the generality of the proposed
architecture permits a combination with alternative models
such as memory and time efficient parametric probabilistic
models or incremental/decremental SVMs. We already con-
ducted some experiments with the Naive Bayes algorithm and
the first results are very promising.

REFERENCES

[1] L. S, “The age of big data,” New York Times, 2012. [Online].
Available: http://www.nytimes.com/2012/02/12/sunday-review/
big-datas-impact-in-the-world.html? r=2&scp=1&sq=Big%20Data&
st=cse

[2] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile

Netw. and Appl., vol. 19, no. 2, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11036-013-0489-0

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Advances in artificial intelligence–SBIA 2004. Springer,
2004, pp. 286–295.

[5] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” The Journal of Machine

Learning Research, vol. 8, pp. 2755–2790, 2007.

[6] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, Oct 2011.

[7] S. Schiaffino, P. Garcia, and A. Amandi, “eteacher: Providing personal-
ized assistance to e-learning students,” Computers & Education, vol. 51,
no. 4, pp. 1744–1754, 2008.

[8] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” Sys-

tems, Man and Cybernetics, IEEE Transactions on, no. 4, pp. 325–327,
1976.

[9] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[10] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonsta-
tionary environments: A survey,” Computational Intelligence Magazine,

IEEE, vol. 10, no. 4, pp. 12–25, 2015.

[11] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing.” in SDM, vol. 7. SIAM, 2007, p. 2007.

[12] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multi-
dimensional data streams,” in In Proc. Symp. on the Interface of

Statistics, Computing Science, and Applications. Citeseer, 2006.

[13] A. Bifet, B. Pfahringer, J. Read, and G. Holmes, “Efficient data stream
classification via probabilistic adaptive windows,” in Proceedings of

the 28th Annual ACM Symposium on Applied Computing, ser. SAC
’13. New York, NY, USA: ACM, 2013, pp. 801–806. [Online].
Available: http://doi.acm.org/10.1145/2480362.2480516

[14] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine learning, vol. 23, no. 1, pp. 69–101,
1996.

[15] R. Klinkenberg and T. Joachims, “Detecting concept drift with support
vector machines.” in ICML, 2000, pp. 487–494.

[16] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2000, pp. 71–80.

[17] G. Jaber, A. Cornuéjols, and P. Tarroux, “Online learning: Searching for
the best forgetting strategy under concept drift,” in Neural Information

Processing. Springer, 2013, pp. 400–408.

[18] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Machine learning and knowledge discovery

in databases. Springer, 2010, pp. 135–150.

[19] N. C. Oza, “Online bagging and boosting,” in Systems, man and

cybernetics, 2005 IEEE international conference on, vol. 3. IEEE,
2005, pp. 2340–2345.

[20] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-
780, p. 1612, 1999.

[21] P. Zhang, B. J. Gao, X. Zhu, and L. Guo, “Enabling fast lazy learning for
data streams,” in Data Mining (ICDM), 2011 IEEE 11th International

Conference on. IEEE, 2011, pp. 932–941.

[22] Y.-N. Law and C. Zaniolo, “An adaptive nearest neighbor classification
algorithm for data streams,” in Knowledge Discovery in Databases:

PKDD 2005. Springer, 2005, pp. 108–120.

[23] E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas,
“Dealing with concept drift and class imbalance in multi-label stream
classification,” in Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence - Volume Volume Two, ser.
IJCAI’11. AAAI Press, 2011, pp. 1583–1588. [Online]. Available:
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-266

[24] R. C. Atkinson and R. M. Shiffrin, “Human memory: A proposed
system and its control processes,” The psychology of learning and

motivation, vol. 2, pp. 89–195, 1968.

[25] Y. Dudai, “The neurobiology of consolidations, or, how stable is the
engram?” Annu. Rev. Psychol., vol. 55, pp. 51–86, 2004.

[26] G. A. Miller, “The magical number seven, plus or minus two: some lim-
its on our capacity for processing information.” Psychological review,
vol. 63, no. 2, p. 81, 1956.

[27] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-

posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[28] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive
online analysis,” The Journal of Machine Learning Research, vol. 11,
pp. 1601–1604, 2010.

[29] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’01. New York, NY, USA: ACM, 2001, pp. 377–382.
[Online]. Available: http://doi.acm.org/10.1145/502512.502568

[30] M. Harries and N. S. Wales, “Splice-2 comparative evaluation: Elec-
tricity pricing,” 1999.

[31] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in Fourth

international workshop on knowledge discovery from data streams,
vol. 6, 2006, pp. 77–86.

[32] L. I. Kuncheva and C. O. Plumpton, “Adaptive learning rate for online
linear discriminant classifiers,” in Structural, Syntactic, and Statistical

Pattern Recognition. Springer, 2008, pp. 510–519.

[33] I. Zliobaite, “How good is the electricity benchmark for evaluating
concept drift adaptation,” arXiv preprint arXiv:1301.3524, 2013.

[34] J. Gama, R. Rocha, and P. Medas, “Accurate decision trees for mining
high-speed data streams,” in Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining.
ACM, 2003, pp. 523–528.

[35] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” in Proceedings of the seventh

ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 2001, pp. 359–364.

[36] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and

Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

