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Abstract—Microarray technology provides an opportunity 
for scientists to analyze thousands of gene expression 
profiles simultaneously. However, microarray gene 
expression data often contain multiple missing expression 
values due to many reasons. Effective methods for missing 
value imputation in gene expression data are needed since 
many algorithms for gene analysis require a complete 
matrix of gene array values. Several algorithms are 
proposed to handle this problem, but they have various 
limitations. In this paper, we develop a novel method to 
impute missing values in microarray time-series data 
combining k-nearest neighbor (KNN) and dynamic time 
warping (DTW). We also analyze and implement several 
variants of DTW to further improve the efficiency and 
accuracy of our method. Experimental results show that our 
method is more accurate compared with existing missing 
value imputation methods on real microarray time series 
datasets. 
 
Index Terms—microarray time series data, missing value 
imputation, dynamic time warping, k-nearest neighbor. 

I.  INTRODUCTION 

Recently, microarray technology has become one of 
the important tools in biological researches. Microarray 
makes it possible to monitor thousands of gene 
expressions in a single experiment. Numerous gene 
expression data can be generated simultaneously via this 
high throughput biological technology. Microarray time-
series data are generated by using cDNA microarray 
technology. It was previously found in many studies that 
gene expression values represent the reaction of each 
gene after the hybridization effect across time [1,2]. Each 
gene expression value represents different reaction 
degrees resulted from experiments. These quantitative 
values are in the format of logarithm. This kind of data 
provides a possible means for the inference of 
transcriptional regulatory relationships among the genes 
on the microarray gene chips. The discovery of specific 
gene pairs with highly-correlated relations could provide 
valuable information for biologists to predict important 
biological reactions [3]. 

Nevertheless, microarray gene expression data usually 
contain multiple missing values. A specific portion of 
gene expression values that do not exist in microarray 
gene expression raw data are called missing values. For 
subsequent analysis of microarray gene expression data, 
these kind of missing values need to be effectively 
estimated and imputed. The reason why missing values 

occur may result from experimental operations, 
experimental inaccuracy, or unobvious reaction at that 
time slot of certain genes [4]. If there is a particular gene 
I with one missing value at time slot J, then YIJ is 
denoted to represent the target missing value.  

In this paper, we propose a novel approach combining 
k-nearest neighbor (KNN) and dynamic time warping 
(DTW) to impute missing values in DNA gene 
expression microarray time series raw datasets. 
Furthermore, we also survey and analyze several 
techniques for accuracy and efficiency refinements of the 
DTW algorithm to further improve our method. 
Compared with existing imputation methods, our method 
is more effective because we not only keep the advantage 
of the KNN method but also make improvements on it to 
reach a better result. Our method can impute missing 
values efficiently in spite of the existence of outliers and 
time delays. Moreover, our method takes DTW as the 
similarity measurement of two genes so that it is still 
practical while handling gene sequences of different 
lengths. Experimental results show that the proposed 
method with specific variants of DTW outperforms others 
in imputing missing values in microarray time series data. 

The remaining of this paper is organized as follows. In 
Section II, discussions on existing imputation methods 
for missing values in microarray time-series dataset are 
given. The proposed method is delineated in detail in 
Section III. Section IV described the involved datasets 
and the estimation of imputation accuracy. The 
experimental result is then presented and discussed in 
Section V. The concluding remarks are drawn in Section 
VI along with future work. 

II.  LITERATURE REVIEW 

An early study summarizes and implements three 
methods: singular value decomposition based method 
(SVD-impute), weighted k-nearest neighbor (KNN-
impute), and row average imputation [5]. The results in 
the paper show that the KNN imputation appears to be a 
better solution for missing value estimation than SVD-
impute. The paper also mentions that the best number of 
k is proved to be set between 10 and 20. Both SVD-
impute and KNN-impute surpass the commonly used row 
average method or filling missing values with zeros. 
Several imputation methods are proposed based on the 
method introduced in the work. For example, Kim et al. 
develop a new cluster-based imputation method called 
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sequential k-nearest neighbor (SKNN) method [6]. The 
method imputes the missing values sequentially from the 
genes with least missing values, and uses the imputed 
values for the later imputation. This study is typically an 
example showing the effectiveness of KNN with some 
improvements on it. Besides KNN or KNN-based 
imputation methods, there are still other works proposing 
several methods of different aspects. Oba et al. propose 
an estimation method for missing values based on 
Bayesian principal component analysis (BPCA) [7]. The 
method combines mathematical theorems and needs no 
modelling parameters which are difficult to determine. 
The results outperform the KNN and SVD imputations 
according to the authors’ evaluations. Moreover, an 
imputation method called LLS-impute based on the local 
least squares formulation is proposed to estimate missing 
values in the gene expression data [8].  

For existing imputation methods, BPCA is shown to 
outperform others. However, it is not easy to decide the 
number of principal axes while applying BPCA for 
missing value imputation [9]. Existing methods for 
microarray missing value imputation mainly utilize k-
nearest neighbor (KNN) or KNN-like approaches to 
estimate the missing values. When applying KNN to 
impute missing values in microarray time series-data, we 
have to choose a number of k similar genes without 
missing entries at the same time slot (experiment) as the 
target missing value. Besides, we still need to estimate 
how similar the two genes of interest are to identify 
whether the two genes have regulatory relations. 
However, most of the similarity measurements take the 
statistical or mathematical correlations among genes into 
consideration. These principles may be unsuitable to the 
microarray time-series data because of the existence of 
outliers. Outliers influence much on the correlation 
coefficient measurements, especially when there are two 
or more outliers occurring in the time-series data set. A 
study suggests that outliers do exist in certain microarray 
datasets [10]. Also, when identifying similarity of two 
genes in microarray time-series data, comparing local 
similarity is usually more important than comparing all 
time slot points. The reason is that even genes with 
known regulations may have reaction delay or offsets 
among time axis in microarray experiment results [11]. 
As a result, it is necessary to apply a similarity 
measurement method that has the capability of pointing 
out local similarity and is also effective even with certain 
existing outliers in microarray time-series data. 

III.  METHOD 

To overcome the difficulty mentioned above and to 
achieve better imputation results, we propose a novel 
missing value imputation method based on KNN and 
dynamic time warping (DTW). With our method, local 
similarity and shifted trends of gene expression data 
between each gene pair can be discovered. Studies argue 
that it is more important to observe and find out whether 
there exist sub-sequences with highly similar relations 
when analyzing whole microarray time series data. 
However, most of existing studies and approaches take 

Euclidean distance that identifies global similarity into 
account as the measurement to determine whether two 
genes are similar or not. Also, DTW is practical even 
though the two gene sequences to be aligned are of 
different length, where this often happens in real 
microarray dataset. Besides, offsets among time-axis do 
not influence much on DTW because DTW generates 
corresponding mappings of two sequences according to 
their similar shapes. Outliers will not influence on DTW 
critically compared with Euclidean distance or Pearson 
correlation coefficients. With our method, better 
imputation results can hence be achieved. Moreover, we 
also try our method with several variants of DTW to 
further improve its efficiency and accuracy of imputation. 
This section briefly describes the KNN method and the 
DTW algorithm, followed by the combined method for 
missing value imputation. 

A. K-Nearest Neighbor Imputation Method 
The k-nearest neighbor (KNN) method selects genes 

with expression values similar to those genes of interest 
to impute missing values. For example, if we consider 
gene G that has one missing values at experiment time 
slot T, KNN would find K other genes that have a value 
at experiment time slot T, but with expression values 
most similar to Gene G in experiments time slot points 
except for T. A weighted average of values at experiment 
time slot T from the chosen K closest genes is then used 
as estimation for the missing value in gene G. As for the 
weighted average, the weighted value of each gene in the 
K closest similar genes is given by the similarity of its 
expression to that of gene G. To determine the k closest 
genes which are similar to the target gene G with missing 
values to impute, matrices such as Euclidean distance 
measurement, Pearson correlation coefficient, or other 
distance-based similarity measurements are applied. 
Usually, Euclidean distance measurement is the most 
commonly used metric for this purpose. The steps of 
KNN imputation are as follows: 

Step1. In order to impute the missing value GIJ for 
gene I at time slot J, the KNN-impute algorithm chooses 
k genes that are most similar to the gene I and with the 
values in position k not missing. 

Step2. If Euclidean distance measurement is employed 
for two gene expression vectors gx = <ex1, ex2, ex3…exn> 
and gy = <ey1, ey2, ey3…eyn>, the Euclidean distance 
between gx and gy can be calculated as follows: 

dis(gx, gy) =

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Step3. The missing value is estimated as the weighted 
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and g* denotes the set of k genes closest to gi 
When applying the KNN-based method for the 

imputation of missing values, there are no constant 
criteria for selecting the best k-value and similarity 
measurements. Both k-value and similarity measurements 
have to be determined empirically. It is not constant for 
determining the k value. Choosing a small k value 
produces poorer performance after imputation. On the 
contrary, choosing a large neighbourhood may include 
instances that are significantly different from those 
containing missing values. However, on study shows that 
setting k-value between 10 and 20 brings the best results 
for KNN imputation [5]. With this result, KNN can be an 
effective and intuitive imputation method if it works with 
a proper similarity measurement for genes. 

B. Dynamic Time Warping 
Dynamic time warping (DTW) is a commonly-used 

algorithm in voice and pattern recognition [12,13]. It has 
been shown that DTW performs well to find out the 
similarity for a pair of time series data [14,15]. In this 
paper, we combine the KNN method with the DTW 
algorithm as the similarity measurement to estimate the 
missing value in microarray time-series data. In general, 
the dynamic time warping (DTW) method is used to warp 
and match generic sequences of numbers that can be 
viewed as curves in a proper coordinate system. The aim 
of DTW is to obtain a precise matching along the 
temporal axis, and to maximize the number of point-wise 
matches between two time series. The alignment of 
temporal patterns by DTW has traditionally been used in 
the recognition of speech signals. This method is a 
widely-used algorithm for string comparison and for the 
alignment of time series data. If two series with time 
points are given as input, the DTW algorithm can select 
the best possible alignment between them by minimizing 
a local distance between the series points.  

DTW is a recursive algorithm that matches each two-
point pair from the first element to the last element on 
input sequences. After the table recording all local 
optimal paths and corresponding points is completed, a 
multiple of its last computed value returns the DTW 
distance between the two sequences. If we are going to 
align two sequences that are similar with observation, the 
application of Euclidean distance or Pearson correlation 
coefficient of these two sequences may have poor 
performance due to shifts on time axis. With DTW 
mapping method, local similarity can be found as the best 
path within the two comparison sequences. As a result, if 
two genes with similar gene expression values at certain 
parts in microarray time series data are analyzed by DTW, 
it is more precise for similarity measurement because 
DTW can discover their similarity that cannot be 

identified with other similarity measurements. Equations 
of DTW algorithm are as follows: 

 
Distance of two time slot pints: 
The distance between the elements of the two time 

series is computed as: 

 ii yxjidis ),(
       (5) 

Base Conditions: 
e(0,0) = 0; 
e(1,1) = dis(x1,y1)*WD; 
e(i,0) = ∞ for 1≦ i ≦ I; 
e(0,j) = ∞ for 1≦ j ≦ J;                 (6) 
where WD is the weighted value for the paths in the 

diagonal direction. 
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where Wv, WD, and WH denote the weighted value for 

the paths in the vertical, diagonal, and horizontal 
directions respectively. 

Output: DTW distance for two sequences X and Y: 

DTW(X,Y) = 
),(1 jie

mn


        (8)  
where length of X and Y are n and m respectively. 

C. Imputation Method Combining KNN and DTW 
While handling missing value imputation problems, we 

combine the KNN method with the DTW algorithm. 
DTW is utilized as the similarity measurement between 
gene expression values at time slots. The combined 
method substitutes equation (9) and equation (10) for 
equation (3) and equation (4) respectively. 
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Missing values for the target gene are hence imputed 
with our proposed method. 

D. Refinement of the Algorithm 
DTW is a widely-used method to align sequences in 

many fields. It works well especially to discover local 
similarity of two sequences even with different lengths. 
To further test our imputation method, we survey and 
analyze some variants of DTW and try to advance the 
efficiency and accuracy of our method. Variants of DTW 
are usually categorized for two purposes: speed up and 
accuracy. In this sub section, we describe these two sorts 
of refinements for our proposed method. 
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1) Computational Efficiency 
The critical disadvantage of DTW is its high 

computational cost. The time complexity of the 
traditional DTW algorithm is O(n*m) for two input 
sequences with length n and m, respectively. Despite the 
high throughput and computational ability of modern 
computers, speeding up the calculations for DTW 
distance is still essential when the size of involved data is 
very large. As we will show in Section IV, we use the 
Spellman’s dataset to perform missing value imputation 
with totally 6178 genes in the dataset. However, if we 
naively use the original DTW algorithm to calculate 
DTW distance of the total 6178 genes, the calculation 
time needed is awfully amazing and reduces the 
practicability of the algorithm. As a result, several 
methods to speed up the calculation of DTW are 
proposed. Among all existing methods, we find the most 
useful one proposed in [16]. The authors propose an 
approximation of DTW called FastDTW that has linear 
time and space complexity. In other words, if there are 
two time series sequences with near the same length n, 
time complexity for FastDTW is only O(n). The method 
uses a multilevel approach that recursively projects a 
solution from a coarse resolution version of original data 
and refines the projected solution. With FastDTW, the 
computational cost can hence be reduced. FastDTW 
works somehow like the “divide and conquer” technique 
in the algorithm field. It uses a multilevel approach with 
three operations: 

a) Coarsening: Coarsening means that FastDTW 
shrinks a time series into a smaller one which represents 
the same curve as accurately as possible with fewer data 
points. 

b) Projection: After FastDTW performs the 
coarsening step, it will find a minimum- distance warping 
path at a lower resolution, and use the path to guess 
another minimum-distance warping path in a higher 
resolution. 

c) Refinement: Finally, FastDTW refines each 
warping path in every resolution projected from a lower 
resolution with local adjustments. 

FastDTW cut the points needed from original time 
series to the lowest resolution from 1/1 to 1/2 to 1/4 and 
so forth, and then projects paths from each lower 
resolution to a higher one. For example, if there are 18 
points in an original time series, FastDTW cuts the points 
needed from 18 with a two-times reducing rate. This 
forms every resolution in the coarsening process. 
However, according to our testing, we find that 
coarsening with a three-times reducing rate performs 
better than coarsening with a two-times reducing rate in 
terms of the dataset involved. This is because the dataset 
we use only contain 18 or 17 time points and only need 
two times of coarsening. As a result, we modify the 
FastDTW algorithm and set the coarsening rate from 1/1 
to 1/3 to 1/9 as shown in Fig. 1. With three-times 
reducing rate, we can retrieve better computational 
efficiency with almost the same accuracy. Finally, 
FastDTW gives a specific tolerance region for projecting 

the warping path from a lower resolution to increase the 
probability that paths of FastDTW runs through paths of 
real DTW. This procedure is performed to slightly 
improve the accuracy of FastDTW. 

2) Accuracy of imputation 
The other attractive issue for the improvement of the 

DTW algorithm is in accuracy increasing. Although 
DTW has been used in various fields with success, there 
is still a drawback called the singularity problem [17]. In 
some cases, DTW would lead to unintuitive alignments 
where a single point on one time series is mapped onto a 
large subsection of the other time series. In other words, a 
specific point on one input sequence may map into even 
more than three points on the other sequence. This kind 
of undesirable behavior is so called the singularity 
problem. As we mentioned in previous sections, DTW 
works well due to its capability of discovering local 
similarity of two sequences so that forms a dynamic 
mapping which is better than usual global similarity 
measurement like Euclidean distance or Pearson 
correlation coefficient. However, when the two sequences 
to be aligned are highly similar but with only slightly 
different height of the peaks mapped on the two 
sequences, DTW will perform a one-to-many mapping. 
This reduces the effectiveness of the algorithm because 
this kind of mapping is not expectative theoretically and 
will easily fail to find obvious and intuitive alignments 
for sequences. As a result, modifications on DTW to 
mitigate the singularity problem are essential.  

 

 
Figure 1. Modification of FastDTW 

Several works to mitigate this problem are developed 
with certain effectiveness respectively. We survey and 
analyze existing methods aiming to reduce the singularity 
problem and choose four of them to implement on our 
proposed missing value imputation method. Within the 
four methods, three of them are typical constraining 
modifications of DTW developed one decade ago, while 
the other one is a recently-revised method. In the 
following paragraph, we give a brief description on the 
four methods. 

a) Windowing: Berndt and Clifford proposed a 
restricted version of DTW so that the allowable paths in 
the cost matrix are limited with a warping window : |i-j| 
≦ w, where w is a positive value [18]. The windowing 
constraint makes the corners in the cost matrix of the 
DTW algorithm pruned so that possible paths of modified 
DTW are reduced. This constraint may mitigate the 
seriousness of singularity but it is not able to prevent it. 
The point in one sequence is limited to match a number of 
points on the other sequence. 
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b) Slope weighting: Kruskall and Liberman 
proposed a modification of DTW so that the recursive 
equation in the original DTW algorithm is replaced by 
r(i,j) = d(i,j) +min{r(i-1,j-1) , X*r(i-1, j), X*r(i, j-1)} 
where X is a positive real number [19]. With this 
constraint, the warping path is biased toward the 
diagonal if the weighted value X gets larger. Since each 
step in recursive procedures of DTW searches for 
minimum distance summed up so far, the warping path 
with slope weighting tends to walk through the diagonal 
direction if larger weighted value X is assigned. This 
modification of DTW takes the weighted value into 
consideration that it tries to slightly encourage the 
warping path goes in diagonal direction to reduce 
singularity. 

c) Step patterns (Slope constraint): Itakura 
proposed a permissible step for the warping path with 
r(i,j) = d(i,j)+min{r(i-1,j-1) , r(i-1, j-2), r(i-2,j-1)}[20]. 
With this constraint, the warping path is forced to move 
one diagonal step for each step parallel to an axis. In 
other words, if the DTW algorithm selects the horizontal 
or vertical adjacent path in one step, the subsequent path 
is forced to move one diagonal step. 

d) Derivative Dynamic Time Warping: Keogh and 
Pazzani introduced a modification of DTW [21]. This 
modification of DTW is called derivative dynamic time 
warping (DDTW). The author considered only the 
estimated local derivatives of gene expression values in 
sequences instead of using the whole gene expression 
values themselves. DDTW uses a modified estimation to 
substitute for equation (5) while calculating the distance 
between two time points from two time series. This 
estimation equation is as follows:  

Distance for two time points in two sequences  
dis(i, j) = | E(Xi) – E(Yi)|2 while  
E(Xi) ={ (Xi – Xi-1) + [(Xi+1 – Xi-1) / 2] } / 2 , and  
E(Yi) ={ (Yi – Yi-1) + [(Yi+1 – Yi-1) / 2] } / 2     (11) 
  
DDTW takes moving trends of certain subsequences 

into account in order to judge the similarity of the two 
sequences. Instead of the distance between two points, 
DDTW is said to be more sensitive to discover local 
similarity of two sequences. 

Among four above-mentioned methods, windowing 
and slope weighting are intuitive because they simply 
form the constraints to force the warping path not to go 
along the horizontal or vertical direction too much. Step 
patterns also try to mitigate the singularity problem by 
leading the warping path to cross the diagonal if the 
previous step goes along the X-axis or Y-axis. DDTW 
seems to work well on certain datasets, but it is not 
suitable for some cases such as sequences with great 
portions of empty values. The four variants of the DTW 
algorithm may successfully mitigate the singularity 
problem under specific situations.  

For the four variants of DTW mentioned above, we 
consider that slope weighting should bring the best results 
for imputation. This is because slope weighting is more 
flexible that slightly encourages the warping path goes to 
the diagonal. For the microarray dataset we use, what 

counts lies in local similarity of two genes. Forcing the 
warping path to go to the diagonal too much may mitigate 
the singularity problem, but it is also at the risk of losing 
the alignment that reveals the best mapping of two genes. 
Slope windowing will be effective if the window size w 
is small. On the other hand, imputation will be brittle as 
the window size w is set to be too large. Step patterns 
also forces the warping path with its constraints. This 
may results in possible loss of the best mapping. DDTW 
is not suitable for our microarray time series dataset. The 
reason is because of the great portion of missing values. 
Our goal is to retrieve the most proper modification of 
DTW so that our proposed imputation method can 
acquire the best results. To fit this need, we have 
implemented the four above modifications for DTW on 
our proposed method. We also compare the imputation 
effectiveness resulted from of these modifications of 
DTW in order to improve the accuracy of our proposed 
method. Experimental results stand by our assumptions 
that performing windowing and slope weighting brings a 
better result. The detail will be presented and discussed in 
Section V. 

IV. DATASETS AND PERFORMANCE ASSESSMENT 

In order to evaluate the effectiveness of the proposed 
imputation method, we implement the method on real 
microarray datasets. In this section, we first give a brief 
description about the dataset involved in our experiments. 
Subsequently, performance measurement of imputation 
methods is explained. The NRMS equation is used to 
assess whether the imputation method are effective or not. 

A. Real Microarray Dataset 
Spellman et al. and Cho et al. provided the yeast 

microarray dataset (http://genome-
www.stanford.edu/cellcycle) [2,22]. The data was 
obtained for genes of Yeast Saccharomyces cerevisiae 
cells that were collected with four synchronization 
methods: alpha-factor, cdc15, cdc28, and elutriation. 
Spellman’s dataset is widely used as the real dataset in 
microarray research [5,7,8]. These four subsets of the 
dataset contain totally 6178 gene ORF profiles with their 
expression values across individual amounts of time slots. 
For example, the alpha subset contains 18 time points 
with seven minutes as the time interval, while the cdc28 
contains 17 time points with ten minutes as the time 
interval. Here we pick alpha and cdc28 sub-datasets in 
Spellman’s microarray datasets as the testing data 
because they are representative samples. Alpha sub-
dataset contains missing values with nearly uniform 
distribution, while cdc28 sub-dataset contains a great 
portion of missing values. These four kinds of sub-
datasets record the gene expression reactions during 
different phases in cell cycle. However, some of the 6178 
gene ORF profiles are incomplete with missing values at 
certain time slots which are the missing values that we 
are going to impute and estimate. The Spellman’s raw 
dataset is tab-delimited matrix-liked data.  
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B. Assessment of Imputation Accuracy 
After the imputation for missing values, we have to 

assess the performance of our method and the comparison 
with existing imputation methods. For assessment of 
imputation accuracy, genes with missing values in 
microarray gene expression data are first filtered to 
generate a complete matrix. As for Spellman’s dataset, 
there are about 4304 genes in the complete matrix. 
Missing values with different missing rates ranging from 
1%, 5%, 10%, 15% and 20% of the data in the complete 
matrix are deleted at random to create testing datasets. 
Afterward, we impute missing values in testing datasets 
with our method to recover the introduced missing values 
for each data set. The estimated values are compared to 
those in the complete matrix. The commonest way for the 
assessment of missing value imputation is to calculate the 
normalized root mean square (NRMS) error. The most 
commonly-used equation for NRMS error is as follows: 

 
NRMS= 

][])[( 2
knownknownpredict ystdyymean 

 (12) 

where and are estimated values 
and known values in the complete matrix, respectively, 

and is the standard deviation of known 
values. After generating complete matrices and 
randomly-removed testing datasets, we will impute 
missing values with our method. NRMS errors will also 
be calculated as the assessment to be compared with 
those of other imputation methods. 

predicty

][ knowny

knowny

std

V. EXPERIMENTAL RESULTS 

A. Mission Value Imputation 
We combine the KNN method and the modified DTW 

algorithm based on FastDTW, along with four variants of 
DTW to impute missing values in alpha and cdc28 testing 
datasets. NRMS errors are then calculated as the 
assessment to determine whether an imputation method is 
effective or not. An imputation method is said to 
outperform other methods if and only if its NRMS value 
is lower than that of others. We first implement our 
method by using FastDTW-based DTW algorithm. Then 
we also experiment on the four variants of DTW for 
accuracy improvement. Moreover, we add the original 
KNN imputation method, zero imputation, row average 
imputation, BPCA imputation and LLS imputation in our 
experiment. We try to compare and explain imputation 
results from all mentioned methods. Imputations are 
performed on alpha sub-dataset and cdc28 sub-dataset in 
Spellman’s yeast microarray datasets. Missing rates range 
from 1%, 5%, 10%, 15%, to 20% individually. The 
number of K for KNN is set from 10, 15, 20, 50, and 100. 
DTW with weighting value ranges from 1.2 to 1.8 
because we find that the effectiveness is reduced if the 
weighting value is larger than 1.8. DTW with windowing 
parameter ranges from 2 to 5 for the same reason. For 

each experiment, we run 10 times and calculate the 
average value to reduce the randomness. We then pick 
out parameters that generate the best result for each 
method and compare the NRMS values among these 
methods.  

B. Results and Discussion 
With the experimental results, we find that the most 

proper parameter for each variant of DTW differs. For 
observation convenience, here we merely list the result of 
each method generated with the parameter that brings the 
best outcome. We observe and compare the results above 
and hence make some summaries. First, for all 
experimental results, we find that methods relative to 
KNN including KNN, FastDTW, and FastDTW with 
variants of DTW retrieve the best results when the 
number of K is set between K =10 and K = 20. This 
stands for Troyanskaya’s research in 2001. As a result, 
while applying KNN or KNN-like methods to impute 
missing values in microarray time series data, setting the 
number of K between 10 and 20 generates the best result 
empirically. Assigning the value of K less than 10 or 
more than 20 will not bring a better result. 

Besides, we find that the best result occurs when we 
apply our proposed method with FastDTW-based 
modification and slope weighting with weighted value 
between 1.5 and 1.8. For cdc28 sub-dataset, FastDTW 
with windowing and slope weighting both surpass other 
imputation methods. This indicates that DTW works well 
with slightly weighted value that forces the warping path 
to the diagonal direction. But if we put too much force, it 
will generate unfavorable results. As for the various 
missing rate of experimental dataset, we find that our 
proposed method with FastDTW-based modification 
works better than the traditional KNN imputation method 
in most cases. Moreover, if we add proper variants such 
as slope weighting with weighted value between 1.5 and 
1.8, or windowing with window size = 2 for the 
improvement of DTW, it will bring better results. The 
proposed DTW imputation method outperforms other 
methods including BPCA, especially when the missing 
rate is large such as 15% or 20%. 

Moreover, there is an interesting discovery. We find 
that applying DTW with Step Patterns and DDTW even 
makes the imputation results worse on the contrary. The 
reason may possibly because DTW with Step Patterns is 
not suitable for handing microarray dataset. Because it 
forces the warping path to across only the limited region 
it forms so that expectative alignments of two genes may 
hence lose. The same situation happens on DDTW. 
DDTW could also generate the warping path that DTW is 
not originally supposed to generate because DDTW takes 
vectors of time slot points on two time series of DTW 
into consideration. However, two regulatory genes may 
only have reactions on a few time points of the whole 
sequences. In this case, measuring the distance between 
two time points is more proper than calculating vectors of 
them. Furthermore, DDTW fails to work in the case that a 
portion of empty values exist just like what we find in the 
microarray dataset. Experimental results support our 
assumptions mentioned in previous sections that 
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performing windowing and slope weighting improves the 
accuracy of the proposed method. In order to reduce the 
problem of singularity, several techniques are proposed.  

As shown in Fig. 2, average imputation and zero 
imputation seem to be brittle. These two simple 
imputation methods provide limited help. The imputation 
method that only utilizes KNN with FastDTW achieves 
better results than using KNN. This proves that taking 
DTW distance as the similarity measurement is more 
suitable than taking Euclidean distance while handling 
microarray time series data. However, if we modify the 
algorithm with step patterns or DDTW, the accuracy of 
imputation decreases. This shows that it is improper to 
apply step patterns and DDTW for the dataset. The 
reason is discussed in previous paragraph. BPCA and 
LLS seem to outperform KNN and other brittle 
imputation methods. Using FastDTW with windowing 
results in better results than LLS brings. The most 
effective method is using FastDTW with slope weighting 

that slightly outperforms than BPCA. Sequences of 
effectiveness of these imputation methods may change a 
little bit in certain percentage of missed data. This may 
result from the randomness while deciding which values 
to be removed in the complete matrix. 

Fig. 3 illustrates almost the same situation as Fig. 2. 
Basically results of all imputation methods are worsened 
a little. This is because the cdc28 sub-dataset contains 
more missing values than the alpha sub-dataset. 
Theoretically, NRMS error increases while missing 
values are getting more in the dataset. We can also see 
that using FastDTW with windowing and slope weighting 
both outperform BPCA. Furthermore, even using 
FastDTW brings better results than BPCA when the 
missing rate is larger than 15%. This shows the weakness 
of BPCA while dealing with microarray time series 
dataset with a large portion of missing values. To 
summarize, using our proposed method with the variant 
of slope weighting can retrieve the best imputation results. 

 

 
Figure 2. Imputation results of alpha dataset 

 

Figure 3. Imputation results of cdc28 dataset 

VI. CONCLUSION 

Missing value imputation is very important in 
microarray gene expression time series data. In this paper, 
we propose a novel method that combines the traditional 
KNN method with the DTW algorithm to perform the 
imputation. We also implement variants of DTW both 

for efficiency increasing and accuracy improvement to 
achieve better imputation results. Experimental results 
show that our proposed method with the DTW variant of 
slope weighting outperforms other imputation methods 
in terms of accuracy assessment. In the future, we aim to 
take external information for genes such as annotations 
from gene ontology into consideration to further improve 
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the imputation method. We believe our approach 
facilitates research for microarray gene expression data. 
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