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Abstract

The k-Nearest Neighbors classifier is a simple yet effective widely renowned
method in data mining. The actual application of this model in the big data
domain is not feasible due to time and memory restrictions. Several dis-
tributed alternatives based on MapReduce have been proposed to enable
this method to handle large-scale data. However, their performance can be
further improved with new designs that fit with newly arising technologies.

In this work we provide a new solution to perform an exact k-nearest
neighbor classification based on Spark. We take advantage of its in-memory
operations to classify big amounts of unseen cases against a big training
dataset. The map phase computes the k-nearest neighbors in different train-
ing data splits. Afterwards, multiple reducers process the definitive neighbors
from the list obtained in the map phase. The key point of this proposal lies on
the management of the test set, keeping it in memory when possible. Other-
wise, it is split into a minimum number of pieces, applying a MapReduce per
chunk, using the caching skills of Spark to reuse the previously partitioned
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training set. In our experiments we study the differences between Hadoop
and Spark implementations with datasets up to 11 million instances, showing
the scaling-up capabilities of the proposed approach. As a result of this work
an open-source Spark package is available.

Keywords: K-nearest neighbors, Big data, Apache Hadoop, Apache Spark,
MapReduce

1. Introduction

Over the last few years, gathering information has become an automatic
and relatively inexpensive task, thanks to technology improvements. This has
resulted in a severe increment of the amount of available data. Social media,
biomedicine or physics are just a few examples of areas that are producing
tons of data every day [1]. This data is useless without a proper knowledge
extraction process that can somehow take advantage of it. This fact poses
a significant challenge to the research community because standard machine
learning methods can not deal with the volume, diversity and complexity
that this data brings [2]. Therefore, existing learning techniques need to be
remodeled and updated to deal with such volume of data.

The k-Nearest Neighbor algorithm (kNN) [3] is an intuitive and effective
nonparametric model used for both classification and regression purposes. In
[4], the kNN was claimed to be one of the ten most influential data mining
algorithms. In this work, we are focused on classification tasks. As a lazy
learning model, the kNN requires that all the training data instances are
stored. Then, for each unseen case and every training instance, it performs
a pairwise computation of a certain distance or similarity measure [5, 6],
selecting the k closest instances to them. This operation has to be repeated
for all the input examples against the whole training dataset. Thus, the
application of this technique may become impractical in the big data context.
In what follows, we refer to this original algorithm as the exact kNN method,
w.r.t. partial and approximate variants of the kNN model that reduce the
computational time, assuming that distances are computed using any class
of approximation error bound [7].

Recent cloud-based technologies offer us an ideal environment to han-
dle this issue. The MapReduce framework [8], and its open-source imple-
mentation in Hadoop [9], were the precursor tools to tackle data-intensive
applications [10] based on the principle of data locality [11], which is imple-
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mented through its distributed file system. Its application in data mining
has been widely spread [12, 13, 14], to the detriment of other parallelization
schemes such as Message Passing Interface [15], because of its fault-tolerant
mechanism (recommendable for time-consuming tasks) and its ease of use
[16]. Despite its unquestionable breakthrough, researchers have found sev-
eral limitations in Hadoop Mapreduce to design scalable machine learning
tools [17]. MapReduce is inefficient for applications that share data across
multiple steps, including iterative algorithms or interactive queries. Multiple
platforms for large-scale processing have recently emerged to overcome the
issues presented by Hadoop MapReduce [18, 19]. Among them, Spark [20]
highlights as one of the most flexible and powerful engines to performed faster
distributed computing in big data by using in-memory primitives. This plat-
form allows user programs to load data into memory and query it repeatedly,
making it more suitable for online, iterative or data streams algorithms [21].

The use of the kNN algorithm and similar approaches has been already
considered in the big data context. On the one hand, some works incor-
porate a kNN classifier in a MapReduce process [22], but their purpose is
not to carry out an exact kNN classification, but use a partial kNN (kNN
is applied over subsets of the training data) as part of a larger pipeline of
experiments. In [23] the authors proposed a novel approach for clustering
in large datasets by adding kNN and Principal Component Analysis as part
of the technique proposed. The method proposed in [24] have two differ-
ent stages. The first stage used a k-means in order to separate the whole
dataset in different parts. The second stage computes a kNN in each split
providing approximate results. On the other hand, without aiming at classifi-
cation or regression tasks, several approaches have been proposed to perform
a distributed computation of kNN join queries in MapReduce. For example,
in [25] the authors apply kNN-join (exact or approximate) queries within
a two-stage MapReduce process. In [26] the authors proposed Spitfire, an
efficient and scalable kNN queries model composed of multiple distributed
stages. We further discuss these methods in Section 2.2. When focused on
pure classification, the MapReduce process can be greatly simplified because
it is not necessary to provide the k nearest neighbors themselves, but rather
their classes. In [27], an iterative Hadoop MapReduce process (iHMR-kNN)
was presented for kNN based image classification. This approach iteratively
performs MapReduce for every single test instance, with the consequent time
consumption of Hadoop-based systems for iterations. In [28], however, we
proposed a single Hadoop MapReduce process that can simultaneously clas-
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sify large amounts of test samples against a big training dataset, avoiding
start-up costs of Hadoop. To do so, we read the test set line by line from
the Hadoop File System, which make this model fully scalable but its per-
formance can be further improved by in-memory solutions.

In this paper, we propose an iterative MapReduce-based approach for
kNN algorithm implemented under Apache Spark. In our implementation,
we aim to exploit the flexibility provided by Spark, by using other in-memory
operations that alleviate the consumption costs of existing MapReduce alter-
natives. To manage enormous test sets as well, this method will iteratively
address chunks of this set, if necessary. The maximum number of possible
test examples, depending on memory limitations, will be used to minimize
the number of iterations. In each iteration, a kNN MapReduce process will
be applied. The map phase consists of deploying the computation of sim-
ilarity between a subset of the test examples and splits of the training set
through a cluster of computing nodes. As a result of each map, the class la-
bel of the k nearest neighbors together with their computed distance values
will be emitted to the reduce stage. Multiple reducers will determine which
are the final k nearest neighbors from the list provided by the maps. This
process is repeated until the whole test set is classified. Through the text,
we will denote this approach as a kNN design based on Spark (kNN-IS).

In summary, the contributions of this work are as follows:

• We extend the MapReduce scheme proposed in [28] by using multiples
reducers to speed up the processing when the number of maps needed
is very high.

• A fully parallel implementation of the kNN classifier that makes use of
in-memory Spark operations to accelerate all the stages of the method,
including normalization of the data, processing of big test datasets,
and computation of pairwise similarities, without incurring in Hadoop
startup costs.

To test the performance of the proposed classification model, we will
conduct experiments on big datasets with up to 11 millions instances. We
investigate the influence of number of maps and reducers and we will estab-
lish a comparison among existing Hadoop MapReduce alternatives and the
proposed approach. A repository of code with the implementation of this
technique can be found at https://github.com/JMailloH/kNN_IS.
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The remainder of this paper is organized as follows. Section 2 introduces
the big data technologies used in this work and the current state-of-art in kNN
big data classification. Then, Section 3 details the proposed kNN-IS model.
Section 4 describes the experimental setup and Section 5 includes multiple
analyses of results. Finally, Section 6 outlines the conclusions drawn in this
work. The Appendix provides a quick start guide with the developed Spark
package.

2. Preliminaries

This section provides the necessary background for the remainder of the
paper. First, Section 2.1 introduces the concept of MapReduce and the
platforms Hadoop and Spark. Then, Section 2.2 formally defines the kNN
algorithm and its weaknesses to tackle big data problems, presenting the
current alternatives to alleviate them.

2.1. MapReduce Programming Model and Frameworks: Hadoop and Spark

The MapReduce programming paradigm [8] is a scale-out data processing
tool for Big Data, designed by Google in 2003. This was thought to be the
most powerful search-engine on the Internet, but it rapidly became one of
the most effective techniques for general-purpose data parallelization.

MapReduce is based on two separate user-defined primitives: Map and
Reduce. The Map function reads the raw data in form of key-value (<
key, value >) pairs, and transforms them into a set of intermediate< key, value >

pairs, conceivably of different types. Both key and value types must be de-
fined by the user. Then, MapReduce merges all the values associated with
the same intermediate key as a list (shuffle phase). Finally, the Reduce func-
tion takes the grouped output from the maps and aggregates it into a smaller
set of pairs. This process can be schematized as shown in Figure 1.

This transparent and scalable platform automatically processes data in
a distributed cluster, relieving the user from technical details, such as: data
partitioning, fault-tolerance or job communication. We refer to [16] for an
exhaustive review of this framework and other distributed paradigms.

Apache Hadoop [29, 30] is the most popular open-source implementation
of MapReduce for large-scale processing and storage on commodity clusters.
The use of this framework has become widespread in many fields because of
its performance, open source nature, installation facilities and its distributed
file system (Hadoop Distributed File System, HDFS). In spite of its great
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Figure 1: Data flow overview of MapReduce

popularity, Hadoop and MapReduce have shown not to fit well in many
cases, like online or iterative computing [31]. Its inability to reuse data
through in-memory primitives makes the application of Hadoop for many
machine learning algorithms unfeasible.

Apache Spark, a novel solution for large-scale data processing, was thought
to be able to solve the Hadoop’s drawbacks [32, 33]. Spark was introduced as
part of the Hadoop Ecosystem and it is designed to cooperate with Hadoop,
specially by using its distributed file system. This framework proposes a set
of in-memory primitives, beyond the standard MapReduce, with the aim of
processing data more rapidly on distributed environments, up to 100x faster
than Hadoop.

Spark is based on Resilient Distributed Datasets (RDDs), a special type
of data structure used to parallelize the computations in a transparent way.
These parallel structures let us persist and reuse results, cached in memory.
Moreover, they also let us manage the partitioning to optimize data place-
ment, and manipulate data using a wide set of transparent primitives. All
these features allow users to easily design new data processing pipelines.

A scalable machine learning library (MLlib) [34] was built on top of Spark,
thanks to its implicit suitability for iterative processes. The current version
of MLlib (v1.6.0) contains a large set of standard learning algorithms and
statistic tools, which covers many important fields in the knowledge discovery
process, such as: classification, regression, clustering, optimization or data
pre-processing. The MLlib is a key component of the MLbase [35] platform.
It provides a high-level API that makes easier for the user to connect multiple
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machine learning algorithms. However, this platform does not include lazy
learning algorithms such as the kNN algorithm.

2.2. The kNN classifier and big data

The kNN algorithm is a non-parametric method that can be used for
either classification and regression tasks. Here, we define the kNN problem,
its current trends and the drawbacks to manage big data. A formal notation
for the kNN algorithm is the following:

Let TR be a training dataset and TS a test set, they are formed by
a determined number n and t of samples, respectively. Each sample xp is
a tuple (xp1,xp2, ...,xpD, ω), where, xpf is the value of the f -th feature of
the p-th sample. This sample belongs to a class ω, given by xω

p , and a D-
dimensional space. For the TR set the class ω is known, while it is unknown
for TS. For each sample xtest included in the TS set, the kNN algorithm
searches the k closest samples in the TR set. Thus, the kNN calculates the
distances between xtest and all the samples of TR. The Euclidean distance
is the most widely-used measure for this purpose. The training samples
are ranked in ascending order according to the computed distance, taking
the k nearest samples (neigh1,neigh2, ...,neighk). Then, they are used
to compute the most predominant class label. The chosen value of k may
influence the performance and the noise tolerance of this technique.

Although the kNN has shown outstanding performance in a wide variety
of problems, it lacks the scalability to manage big TR datasets. The main
problems found for dealing with large-scale data are:

• Runtime: The complexity to find the nearest neighbor training example
of a single test instance is O((n ·D)), where n is the number of training
instances andD the number of features. This becomes computationally
more expensive when it involves finding the k closets neighbors, since
it requires the sorting of the computed distances, so that, an extra
complexity O(n · log(n)). Finally, this process needs to be repeated for
every test example.

• Memory consumption: For a rapid computation of the distances, the
kNN model requires the training data to be stored in memory. When
TR and the TS sets are too big, they may easily exceed the available
RAM memory.

7
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These drawbacks motivate the use of big data technologies to distribute
the processing of kNN over a cluster of nodes.

In the literature, we can find a family of approaches that perform kNN
joins with MapReduce. A recent review on this topic can be found in [36].
The kNN joins differs from kNN classifier in the expected output. While
the kNN classifier aims to provide the predicted class, the kNN join outputs
the neighbors themselves for a single test. Thus, these methods cannot be
applied for classification.

For an exact kNN join, two main alternatives have been proposed in [25].
The first one, named H-BkNNJ, consists of a single round of MapReduce in
which TR and TS sets are partitioned together, so that, every map task pro-
cesses a pair TSi and TRi, and carries out the pairwise distance comparison
between each training and test splits. Let m the number of used partitions,
it creates m2 blocks by performing a linear scan on both sets. The reduce
task then processes all computed distances for a given test instance and sorts
them in ascending order to output the top k results. A second alternative
called H-BNLJ is proposed, by using two MapReduce processes, in order
to reduce the complexity of the sort phase. However, it still requires m2

tasks. The main deficiencies of these approaches are: (1) they generate ex-
tra blocks of data, and therefore, they make the size of the problem tackled
even bigger; (2) they square the complexity of the solution (m2 tasks); (3)
it relied on Hadoop MapReduce, so that, the two-stage MapReduce model
needs to serialize intermediate data into disk, with its consequent cost. Some
other models, such as PGBJ [37], perform a preprocessing phase and distance
based partitioning strategy to reduce the number of task to m. Nevertheless,
it adds an extra computational cost to carry out this phase. More recently,
a new alternative called Spitfire was proposed in [26]. Following its own dis-
tributed procedure (i.e. not a MapReduce model), it calculates the k nearest
neighbors of all the elements of a single set. To do so, it first partitions the
search space, and then, calculates and replicates the k nearest neighbors in
each split. The last phase computes a local kNN to provide the final result.

Focusing on classification tasks (also valid for regression), existing meth-
ods are simpler than kNN join approaches, since they do not need to provide
the neighbors themselves (or reference to them to search for them later), only
their classes. Two main approaches have been presented so far, and they are
both focused on using the Map phase to split the training data in m disjoint
parts. The former was presented in [27], and it proposes iteratively repeating
a MapReduce process (without an explicitly defined reduce function) for each
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single test example, which is very time consuming in both Hadoop and also
in Spark (as we will discuss further in the experiment section). The latter
was proposed in [28], denoted as MR-kNN, in which a single MapReduce
process manages the classification of the (big) test set. To do that, Hadoop
primitives are used to read line by line the test data within the map phase.
As such, this model is scalable but its performance can be further improved
by in-memory solutions.

3. kNN-IS: An Iterative Spark-based design of the kNN classifier

for Big Data

In this section we present an alternative distributed kNN model for big
data classification using Spark. We will denote our method as kNN-IS. We
focus on the reduction of the runtime of the kNN classifier, when both train-
ing and test sets are big datasets. As stated in [36], when computing kNN
within a parallel framework, many additional factors may impact the execu-
tion time, such as number of MapReduce jobs j or number of Map m and
Reduce r tasks required. Therefore, writing an efficient exact kNN in Spark
is challenging, and multiple key-points must be taken into account to obtain
an efficient and scalable model.

Aiming to alleviate the main issues presented by previously MapReduce
solutions for kNN, we introduce the following ideas in our proposal:

• As in [28] and [27], a MapReduce process will split the training dataset,
as it is usually the biggest dataset, into m tasks. In contradistinction
to kNN-join approaches that need m2 tasks, we reduce the complexity
of kNN to m tasks without requiring any preprocessing in advanced.

• To tackle large test datasets, we rely on Spark to reuse the previously
split training set with different chunks of the test set. The use of
multiple MapReduce jobs over the same data does not imply significant
extra costs in Spark, but we keep this number to a minimum. The MR-
kNN approach only performs m tasks independently of the test data
size, by reading line-by-line the test set within the maps. Here we show
how in-memory operations highly reduce the cost of every task.

• It is also noteworthy that none of the alternatives proposed for pure
kNN classification (e.g. [28, 27]) discuss the influence of the number

9



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

of reducers, which can be determinant when the size of the dataset
becomes very big (See Section 5.3).

• In addition, every single operation will be performed within the RDD
objects provided by Spark. It means that even simple operations such
as normalization, are also efficient and fully scalable.

This is the reasoning behind our model. In what follows, we detail its
main components. First of all, we will present the main MapReduce process
that classifies a subset of the test set against the whole training set (Section
3.1). Then, we give a global overview of the method, showing the details to
carry out the iterative computation over the test data (Section 3.2).

3.1. MapReduce for kNN classification within Spark

This subsection introduces the MapReduce process that will manage the
classification of subsets of test data that fit in memory. As such, this MapRe-
duce process is based on our previously proposed alternative MR-kNN, with
the distinction that it allows for multiple reducers, checks the iterations re-
quired to run avoiding memory swap, and is implemented under Spark.

As a MapReduce model, this divides the computation into two main
phases: the map and the reduce operations. The map phase splits the train-
ing data and calculates for each chunk the distances and the corresponding
classes of the k nearest neighbors for every test sample. The reduce stage ag-
gregates the distances of the k nearest neighbors from each map and makes a
definitive list of k nearest neighbors. Ultimately, it conducts the usual major-
ity voting procedure of the kNN algorithm to predict the resulting class. Map
and reduce functions are now defined in Sections 3.1.1 and 3.1.2, respectively.

3.1.1. Map Phase

Let us assume that the training set TR and the corresponding subset
of test samples TSi have been previously read from HDFS as RDD ob-
jects. Hence, the training dataset TR has already been split into a user-
defined number m of disjoint subsets when it was read. Each map task
(Map1,Map2, ...,Mapm) tackles a subset TRj, where 1 ≤ j ≤ m, with the
samples of each chunk in which the training set file is divided. Therefore,
each map approximately processes a similar number of training instances.

To obtain an exact implementation of kNN, the input test set TSi is not
split together with the training set, but it is read in each map in order to

10
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compare every test sample against the whole training set. It implies that
both TSi and TRj are supposed to fit altogether in memory.

Algorithm 1 Map function

Require: TRj TSi; k
1: for t = 0 to size(TSi) do
2: CDt,j ← Compute kNN (TRj, TSi(x), k)
3: resultj ← (< key : t, value : CDt,j >)
4: EMIT(resultj)
5: end for

Algorithm 1 contains the pseudo-code of this function. In our imple-
mentation in Spark we make use of the mapPartitions(func) transformation,
which runs the function defined in Algorithm 1 on each block of the RDD
separately.

Every map j will constitute a class-distance vector CDt,j of pairs <

class, distance > of dimension k for each test sample t in TSi. To do so,
Instruction 2 computes for each test sample the class and the distance to
its k nearest neighbors. To accelerate the posterior actualization of the
nearest neighbors in the reducers, every vector CDt,j is sorted in ascend-
ing order regarding the distance to the test sample, so that, Dist(neigh1) <
Dist(neigh2) < .... < Dist(neighk).

Unlike the MapReduce proposed in [28], every map sends multiple out-
puts, e.g. one per test instance. The vector CDt,j is outputted as value
together with an identifier of test instance t as key (Instruction 3). In this
way, we allow this method to use multiple reducers. Having more reducers
may be useful when the used training and test datasets are very big.

3.1.2. Reduce Phase

The reduce phase consists of collecting, from the tentative k nearest neigh-
bors provided by the maps, the closest ones for the examples contained in
TSi. After the map phase, all the elements with the same key have been
grouped. A reducer is run over a list(CDt,0, CDt,1, .., CDt,m) and determines
the k nearest neighbors of this test example t.

This function will process every element of such list one after another.
Instructions 2 to 7 update a resulting list resultsreducer with the k neigh-
bors. Since the vectors coming from the maps are ordered according to the
distance, the update process becomes faster. This consists of merging two

11
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sorted lists up to get k values, so that, the complexity in the worst case is
O(k). Therefore, this function compares every distance value of each of the
neighbors one by one, starting with the closest neighbor. If the distance is
lesser than the current value, the class and the distance of this position is up-
dated with the corresponding values, otherwise we proceed with the following
value. Algorithm 2 provides the details of the reduce operation.

In summary, for every instance in the test set, the reduce function will
aggregate the values according to function described before. To ease the
implementation of this idea, we use the transformation ReduceByKey(func)
from Spark. Algorithm 2 corresponds to the function required in Spark.

Algorithm 2 Reduce by key operation

Require: resultkey, k
1: cont=0
2: for i = 0 to k do

3: if resultkey(cont).Dist < resultreducer(i).Dist then

4: resultreducer(i) = resultkey(cont)
5: cont++
6: end if

7: end for

3.2. General scheme of kNN-IS

When the size of the test set is very large, we may exceed the memory
allowance of the map tasks. In this case, we also have to split the test
dataset and carry out multiple iterations of the MapReduce process defined
above. Figure 2 depicts the general work-flow of the method. Algorithm
3 shows the pseudo-code of the whole method with precise details of the
functions utilized in Spark. In the following, we describe the most significant
instructions, enumerated from 1 to 13.

As input, we receive the path in the HDFS for both training and test
data as well as the number of maps m and reducers r. We also dispose of
the number of neighbors k and the memory allowance for each map.

Firstly, we create an RDD object with the training set TR formed by
m blocks (Instruction 1). The test set TS is also read as an RDD without
specifying a number of partitions. As this is read, we establish the key of
every single test instance according to its position in the dataset (Instruction
2, function zipWithIndex() in Spark).

12
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Figure 2: Flowchart of the proposed kNN-IS algorithm
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Since we will use Euclidean distance to compute the similarity between
instances, normalizing both datasets becomes a mandatory task. Thus, In-
structions 3 and 4 both perform a parallel operation to normalize the data
into the range [0,1]. Both datasets are also cached for future reuse.

Even though Spark can be iteratively applied with the same data without
incurring excessive time consumption, we reduce the number of iterations to
a minimum because the fewer iterations there are, the better the performance
will be. Instruction 5 calculates the minimum number of iterations #Iter

that we will have to perform to manage the input data. To do so, it will use
the size of every chunk of the training dataset, the size of the test set and
the memory allowance for each map.

With the computed number of iterations #Iter, we can easily split the
test dataset into subsets of a similar number of samples. To do that, we make
use of the previously established keys in TS (in Instruction 2). Instruction
6 will perform the partitioning of the test dataset by using the function
RangePartitioner.

Next, the algorithm enters into a loop in which we classify subsets of the
test set (Instructions 7-12). Instruction 7 firstly gets the split corresponding
to the current iteration. We use the transformation filterByRange(lowKey,
maxKey) to efficiently take the corresponding subset. This function takes
advantage of the split performed in Instruction 6, to only scan the matching
elements. Then, we broadcast this subset TSi into the main memory of all
the computing nodes involved. The broadcast function of Spark allows us
to keep a read-only variable cached on each machine rather than copying it
with the tasks.

After that, the main map phase starts in Instruction 9. As stated before,
the mapPartition function computes the kNN for each partitions of TRj and
TSi and emits a pair RDD with key equals to the number of instance and
value equals to a list of class-distance. The reduce phase joins the results
of each map grouping by key (Instruction 9). As a result, we obtain the k

neighbors with the smallest distance and their classes for each test input in
TSi. More details can be found in the previous section.

The last step in this loop collects the right and predicted classes storing
them as an array in every iteration (Instruction 11).

Finally, when the loop is done, Instruction 13 computes the resulting
confusion matrix and outputs the desired performance measures.
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Algorithm 3 kNN-IS

Require: TR; TS; k; #Maps; #Reduces; #MemAllow

1: TR-RDDraw ← textFile(TR, #Maps)
2: TS-RDDraw ← textFile(TS).zipWithIndex()
3: TR-RDD ← TR-RDDraw.map(normalize).cache
4: TS-RDD ← TS-RDDraw.map(normalize).cache
5: #Iter ← calIter(TR-RDD.weight(), TS-RDD.weight, MemAllow)
6: TS-RDD.RangePartitioner(#Iter)
7: for i = 0 to #Iter do

8: TSi ← broadcast(TS-RDD.getSplit(i))
9: resultKNN ← TR-RDD.mapPartition(TRj → kNN(TRj, TSi, k))

10: result← resultKNN.reduceByKey(combineResult,#Reduces).collect
11: right-predictedClasses[i] ← calculateRightPredicted(result)
12: end for

13: cm ← calculateConfusionMatrix(right-predictedClasses)

4. Experimental set-up

In this section, we show the factors and points related to the experimental
study. We provide the performance measures used (Section 4.1), the details
of the problems chosen for the experimentation (Section 4.2) and the involved
methods with their respective parameters (Section 4.3). Finally, we specify
the hardware and software resources that support our experiments (Section
4.4).

4.1. Performance measures

In this work we assess the performance and scalability with the following
three measures:

• Accuracy: Represents the number of correct classifications against the
total number of classified instances. This is calculated from a resulting
confusion matrix, dividing the sum of the diagonal elements between
the total of the elements of the confusion matrix. This is the most
commonly used metric for assessing the performance of classifiers for
years in standard classification ([38] [39]).

• Runtime: We will collect the total time spent by the kNN classifier
to classify a given test set against the training dataset. Moreover, we
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will take intermediate times from the map phase and the reduce phase
to better analyze the behavior of our proposal. The total runtime for
the parallel approach includes reading and distributing all the data, in
addition to calculating k nearest neighbors and majority vote.

• Speed up: Proves the efficiency of a parallel algorithm comparing against
the sequential version of the algorithm. Thus, it measures the relation
between the runtime of sequential and parallel versions. In a fully par-
allelism environment, the maximum theoretical speed up would be the
same as the number of used cores, according to the Amdahl’s Law [40].

Speedup =
base line

parallel time
(1)

where base line is the runtime spent with the sequential version and
parallel time is the total runtime achieved with its improved version.

4.2. Datasets

In this experimental study we will use four big data classification prob-
lems. PokerHand, Susy and Higgs are extracted from the UCI machine learn-
ing repository [41]. Moreover, we take an extra dataset that comes from the
ECBDL’14 competition [42]. This is a highly imbalanced problem (Imbal-
anced ratio > 45), in which the kNN may be biased towards the negative
class. Thus, we randomly sample said dataset to obtain more balance. The
point of using said dataset, is that apart from containing a substantial num-
ber of instances, it has a relatively high number of features, so that, we can
see how this fact affects the proposed model.

Table 1 summarizes the characteristics of these datasets. We show the
number of examples (#Examples), number of features (#Features), and
the number of classes (#ω). Note that with a fewer number of instances, the
ECBLD’14 datasets become the larger datasets in terms of size because of
its number of features.

For the experimental study all datasets have been partitioned using a 5
fold cross-validation (5-fcv) scheme. It means that the dataset is partitioned
into 5 folds, each one including 80% training samples and the rest test ex-
amples. For each fold, the kNN algorithm computes the nearest neighbors
from the TS against TR.

In the presented MapReduce scheme, the number of instances of a dataset
and the number of maps used have a direct relation, so that, the greater the
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Table 1: Summary description of the used datasets

Dataset #Examples #Features #ω

PokerHand 1,025,010 10 10
ECBDL’14 2,063,187 631 2

Susy 5,000,000 18 2
Higgs 11,000,000 28 2

number of maps is, the fewer number of instances there are in them. Table 2
presents the number of instances in each training set according to the number
of maps used. In italics we represent the settings that are not used in our
experiments because there are either too few instances or too many.

Table 2: Approximate number of instances in the training subset depending on the number
of mappers

Number of maps

Dataset 32 64 128 256 512 1024 2048
PokerHand 25,626 12,813 6,406 3,203 1,602 800 400
ECBDL’14 51,580 25,790 12,895 6,448 3,224 1,612 806

Susy 62,468 31,234 15,617 7,809 3,905 1,953 976
Higgs 275,000 137,500 68,750 34,375 17,188 8,594 4,297

The number of reducers also plays an important role in how the test
dataset is managed in kNN-IS. The larger the number of reducers, the smaller
the number of test instances that have to be processed for each reducer.
Table 3 shows this relation, assuming that the test set is not split because
of memory restrictions (so, number of iterations = 1). Once again, we point
out in italics those settings that have not been explored.

Table 3: Approximate number of instances in the test subset depending on the number of
reducers

Number of reducers

Dataset 1 32 64 128
PokerHand 205,002 102,501 51,250 25,625
ECBDL’14 412,637 12,895 6,448 3,224

Susy 1,000,000 31,250 15,625 7,813
Higgs 2,200,000 68,750 34,375 17,188
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Table 4: Parameter settings for the used methods.

Method Parameter values

MR-kNN [28] k=1,3,5,7; Number Of Maps = 32/64/128; Number Of Reducers:1

Implementation: Hadoop MapReduce; Euclidean Distance

kNN-IS k=1,3,5,7; Number Of Maps = 32/64/128/256/512/1024/2048;

Number Of Reducers: 1/32/64/128

Implementation: Spark; Euclidean Distance

Memory allowance per Map: 2GB

Multiple iterations: Automatically determined or Fixed.

4.3. Methods and Parameters

Among the existing distributed kNN models based on MapReduce, we
establish a comparison with the model proposed in [28], MR-kNN, as the most
promising alternative proposed so far, which is based in Hadoop MapReduce.

As stated in Section 2.2, kNN-join methods [36] were originally designed
for other purposes rather than classification. They also require the data
size to increase and even a squared number of Map tasks. Therefore, their
theoretical complexity is so much higher than the proposed technique that
we have discarded a comparison of such models, as it would be very time
consuming.

We have also conducted preliminary experiments in order to apply the
iterative method proposed iHMR-kNN [27]. However, the iterative processing
becomes so slow that we have not been able to apply it to any of the datasets
considered in a timely manner.

This work is mainly devoted to testing the scalability capabilities of the
proposed model, showing how it palliates the weaknesses of previously pro-
posed models stated in Section 2.2. To do so, we will analyze the effect of
the number of neighbors, and the number of maps and reducers. Table 4
summarizes the parameters used for both MR-kNN and kNN-IS models.

4.4. Hardware and software used

All the experiments have been executed on a cluster which is composed of
sixteen nodes: the master node and sixteen computing nodes. All the nodes
have the following features:
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• Processors: 2x Intel Xeon CPU E5-2620

• Cores: 6 cores (12 threads)

• Clock speed: 2 GHz

• Cache: 15 MB

• Network: Infiniband (40Gb/s)

• RAM: 64 GB

The specific details of the software used and its configuration are the
following:

• MapReduce implementations: Hadoop 2.6.0-cdh5.4.2 and Spark 1.5.1

• Maximum number of map tasks: 256

• Maximum number of reduce tasks: 128

• Maximum memory per task: 2GB.

• Operating System: Cent OS 6.5

Note that the total number of available cores is 192, which becomes 384
by using hyper-threading technology. Thus, when we explore a number of
maps greater than 384, we cannot expect linear speedups, since there will
be queued tasks. For these cases, we will focus on analyzing the map and
reduce runtimes.

5. Analysis of results

In this section, we study the results collected from different experimental
studies. Specifically, we analyze the next four points:

• First, we establish a comparison between kNN-IS and MR-kNN (Sec-
tion 5.1).

• Second, we deeply analyze the influence of the number of neighbors k
value in the performance proposed model (Section 5.2).
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• Third, we check the impact of the number of reducers in relation to the
number of maps when tackling very large datasets (Section 5.3).

• Finally, we study the behavior of kNN-IS with huge test datasets, in
which the method is obliged to perform multiple iterations (Section
5.4).

5.1. Comparison with MR-kNN

This section compares kNN-IS with MR-kNN, as the potentially fastest
alternative proposed so far. To do this, we make use of PokerHand and Susy
datasets. We could not go further than these datasets in order to obtain
the results of the sequential kNN. In these datasets, kNN-IS only needs to
conduct one iteration, since the test datasets fits in the memory in a every
map. The number of reducers in kNN-IS has been also fixed to 1, to establish
a comparison between very similar MapReduce alternatives under Hadoop
(MR-kNN) or Spark (kNN-IS).

First of all, we run the sequential version of kNN over these datasets as a
baseline. As in [28], this sequential version reads the test set line by line, as
done by MR-kNN, as a straightforward solution to avoid memory problems.
We understand that this scenario corresponds to the worst possible case
for the sequential version, and better sequential versions could be designed.
However, our aim here is to compare with the simplest sequential version,
assuming that large test sets do not fit in memory together with the training
set.

Table 5 shows the runtime (in seconds) and the average accuracy (Ac-
cTest) results obtained by the standard kNN algorithm, depending on the
number of neighbors.

Table 6 summarizes the results obtained with both methods with k=1.
The next Section will detail the influence of the value of k. It shows, for
each number of maps (#Maps) the average total time (AvgRuntime) and
the speedup achieved against the sequential version. As stated before, both
methods correspond to exact implementation of the kNN, so that, we obtain
exactly the same average accuracy as presented in Table 5.

Figure 3 plots speed up comparisons of both approaches against the se-
quential version as the number of maps is increased (k = 1).

According to all these tables and figures, we can make the following anal-
ysis:
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Table 5: Sequential kNN performance

Dataset Number of Neighbors Runtime(s) AccTest

1 105475.0060 0.5019

PokerHand 3 105507.8470 0.4959

5 105677.1990 0.5280

7 107735.0380 0.5386

1 3258848.8114 0.6936

Susy 3 3259619.4959 0.7239

5 3265185.9036 0.7338

7 3325338.1457 0.7379

Table 6: Results obtained by MR-kNN and kNN-IS algorithms in PokerHand dataset

MR-kNN kNN-IS

Dataset #Map AvgRunTime Speedup AvgRuntime Speedup
128 804.4560 131.1135 102.9380 1024.6460

PokerHand 64 1470.9524 71.7052 179.2381 588.4631
32 3003.3630 35.1190 327.5347 322.0270
256 12367.9657 263.4911 1900.0393 1715.1481

Susy 128 26438.5201 123.2614 3163.9710 1029.9869
64 50417.4493 64.6373 6332.8108 514.5975
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Figure 3: Speedup comparisons between MR-kNN and kNN-IS against the sequential kNN

• As we can observe in Table 5, that the required runtime for this sequen-
tial version of the kNN method is considerably high in both datasets.
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However, Table 6 shows how this runtime can be greatly reduced in
both approaches as the number of maps is increased. As stated above,
both alternatives always provide the same accuracy as the sequential
version.

• According to Figure 3, a linear speed up for the hadoop-based kNN
model has been achieved since both models read the test dataset set
line-by-line, which is sometimes even superlinear what is related to
memory-consumption problems of the original kNN model to manage
the training set. However, kNN-IS presents a faster speed up than a
linear speed up in respect to this sequential version. This is because of
the use of in-memory data structures that allowed us to avoid reading
test data from HDFS line-by-line.

• Comparing MR-kNN and kNN-IS, the results show how Spark has al-
lowed us to reduce the runtime needed almost 10-fold in comparison to
Hadoop.

5.2. Influence of the number of neighbors

To deeply analyze the influence of the number of neighbors we focus on
the Susy dataset, and we set the number of reducer tasks to one again. We
analyze its effect in both map and reduce phases.

Table 7 collects for each number of neighbors (#Neigh) and number of
maps (#Maps), the average map execution time (AvgMapTime), the average
reduce time (AvgRedTime) and the average total runtime (AvgTotalTime).
Recall that in our cluster the maximum number of map tasks is set to 256.
Thus, the total runtime for 512 maps does not show a linear reduction, but
it can be appreciated in the reduction of the map runtime.

Figure 4 presents how the value of k influences in map runtimes. It depicts
the map runtimes in terms of number of maps for k = 1, 3, 5 and 7. Figure
5 plots the reduce runtime in relation to the k value and number of maps.

According to these tables and plots, we can conclude that:

• Even though larger values of k imply that the data transferred from
the maps to the reducers is bigger, this value does not drastically affect
the total runtimes. In Table 7, we can appreciate that, in general, the
total runtime slightly increments.
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Figure 4: Influence of parameter k in the map phase: Susy dataset
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Figure 5: Influence of parameter k in the reduce phase. Susy dataset
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Table 7: Results obtained with Susy dataset

k #Map AvgMapTime AvgRedTime AvgTotalTime
1 512 730.3893 560.4334 2042.2533

256 1531.6145 345.5664 1900.0393
128 2975.3013 166.3976 3163.9710
64 6210.6177 92.8188 6332.8108

3 512 770.3924 736.8489 2298.3384
256 1553.4222 410.2235 2615.0150
128 3641.9363 253.5656 3921.3640
64 6405.3132 152.9890 6593.5531

5 512 781.3855 928.2620 2511.8909
256 1773.3579 479.0801 2273.6377
128 3685.3194 332.9783 4042.1755
64 6582.0373 194.7054 6802.8159

7 512 782.5756 930.5107 2516.5011
256 1827.9189 522.6219 2372.4100
128 3401.2547 414.2961 3838.2360
64 6637.8837 224.7191 6890.8242

• Comparing Figures 4 and 5, we can see that the number of neighbors
seem to have more influence on the reduce runtime than on the map
phase. This is because the number of neighbors does not affect the main
computation cost (computing the distances between test and training
instances) of the map phase, while it may affect the updating process
performed in the reducers since its complexity is O(k).

Finally, as a general appreciation, Figure 5 reveals that when a larger
number of maps is used, which is clearly necessary to deal big datasets, the
reduce runtimes increase considerably. This has motivated the study carried
out in the next Section.

5.3. Influence of the number of reducers

As we just saw in the previous section, a high number of maps greatly
increases the load of the reduce phase. However, the use of a large number of
maps may be absolutely necessary to tackle very big datasets. This section
investigates how the proposed idea of managing different test instances in
multiple reducers may help to alleviate such an issue.

In this experiment, we involve the three biggest datasets: ECBLD’14,
Susy, Higgs. Once again, kNN-IS does not require multiple iterations for
these test datasets’ sizes. To be concise, in this study we only focus on k=1.
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Figure 6 plots the reduce time required with a single reducer for all these
problems. It confirms, as pointed out in the previous section, the drastic
increment when the number of maps is very high. It is actually even more
accentuated as Higgs and ECBLD’14 are larger datasets that require a greater
number of maps.
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Figure 6: Reduce runtime required against the number of map tasks, k=1, Number of
reducers = 1.
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Figure 7: Map and Reduce runtimes required according to the number of maps - ECBDL
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Figure 8: Map and Reduce runtimes required according to the number of maps - SUSY
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Figure 9: Map and Reduce runtimes required according to the number of maps - HIGGS
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For sake of clarity, we do not present the associated tables of results
for the three considered problems, but we visually present such results in
Figures 7, 8 and 9. These figures plot the map and reduce runtimes spent
in ECBLD’14, Susy and Higgs, respectively, in terms of the number of maps
and reduces utilized.
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Figure 10: Reduce Runtime vs. number of maps and reducers — SUSY

These figures reveal that:

• Using multiple reducers effectively softens the runtime spent in the
reduce phase when it is necessary to use a larger number of maps. In
the previous plots, we can see how the version with a single reducer
rapidly increases its computational cost in comparison to the version
with more reducers.

• The reduction in the required time is not linear in respect to the number
of reducers. As pointed out in [43], an excessive number of reducers
can also lead to a MapReduce overhead in the network. As we can see,
for example in Figure 10, there are no great differences when using 32
or 64 reducers.

• The use of multiple reducers is devised to use with a high number of
maps. Otherwise, its behavior may damage the efficiency. For example,
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for the Susy dataset, it is not convenient to use more than 32 reducers
unless we have more than 512 maps.

In conclusion, it is important to find a trade-off between the number of
maps and reducers according to the cluster and the dataset that we dispose.

5.4. Dealing with large amounts of test data

To test the behavior of the full model presented here, we carry out a study
in which both training and test sets are composed of the same number of
instances. In this way, we ensure that kNN-IS is obliged to perform multiple
iterations. To do so, we test training versus training datasets.

Table 8 presents the results of the three datasets with more than one
iteration (#Iter), average reduce runtime (AvgRedTime) and the average
total runtime (AvgTotalTime). To study the influence of test size, we focus
on k=1, with 256 maps, 64 reduces for Susy and ECBDL’14 datasets and
128 reduce tasks for the Higgs dataset (#Red).

Table 8: Results obtained with more than one iteration.

Dataset #Iter AvgMapTime AvgRedTime AvgTotalTime
ECBDL’14 3 7309.7122 8.8911 28673.7015
#Red=64 5 4303.7106 5.2520 28918.2992

10 2027.5685 2.8076 29121.0583
SUSY 2 2385.6183 34.2682 6723.7762

#Red=64 5 1156.9453 14.1350 9493.5098
10 649.7218 5.9823 10278.2612

HIGGS 2 16835.6982 144.3371 44414.1423
#Red=128 5 7145.7838 59.3202 46806.8294

10 3668.4418 29.7266 51836.9468

Figure 11 presents the influence of the number of iterations. The ECBDL’14
dataset needs 3 iterations to fit the main memory. The other datasets only
need 2 iterations. Figure 11a shows the map time with a different number of
iterations for the three datasets used. Figure 11b presents how the number
of iterations influences the reduce runtimes and Figure 11c plots the total
runtime versus the number of iterations.

Analyzing these tables and plots, we can observe that:

• As Figures 11 and 12 show and as we can expected, when more than one
iteration is used, the map and reduce runtimes decrease. This occurs
because the number of instances to be calculated on each core are less
than a simple iteration.
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Figure 11: Runtimes vs Number of Iterations

• However, Figure 11c shows how it slightly increases the total runtime.
This behavior could be caused by a network saturation of the cluster.
For ECBDL’14 dataset, the total runtime increases less than other two
datasets. This happens because it has fewer samples as shown in Table
1. Thus, it produces less network traffic in spite of having more features.

In conclusion, the iterative functionality of kNN-IS has to be used when
the size of datasets exceeds the available memory of a core of the cluster
because it becomes slower in total runtimes and network traffic is increased.
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6. Conclusions and further work

In this paper we have developed a Iterative MapReduce solution for the
k-Nearest Neighbors algorithm based on Spark. It is denominated as kNN-
IS. The proposed scheme is an exact model of the kNN algorithm that we
have enabled to apply with large-datasets. Thus, kNN-IS obtains the same
accuracy as kNN. However, the kNN algorithm has two main issues when
dealing with large-scale data: Runtime and Memory consumption. The use
of Apache Spark has provided us with a simple, transparent and efficient
environment to parallelize the kNN algorithm as an iterative MapReduce
process.

The experimental study carried out has shown that kNN-IS obtains a very
competitive runtime. We have tested its behavior with datasets of different
sizes (different number of features and different number of samples).

The main achievements obtained are the following:

• kNN-IS is an exact parallel approach and obtains the same accuracy
and very good achievements on runtimes.

• kNN-IS (Spark) has allowed us to reduce the runtime needed by almost
10 times in comparison to MR-kNN (Hadoop).

• Despite producing more transfer from the map to reduce, the number
of neighbors (k) does not drastically affect to the total runtime.

• We can optimize the runtime with a trade-off between the number of
maps and reducers according to the cluster and the dataset used

• When datasets are enormous and it exceed the memory capacity of the
cluster, kNN-IS calculates the solution with more than one iteration by
splitting the test set. Therefore, it has allowed us to apply the kNN
algorithm in large-scale problems.

• The software of this contribution can be found as a spark-package at
http://spark-packages.org/package/JMailloH/kNN_IS. The source
code of this technique can be found in the next repository https:

//github.com/JMailloH/kNN_IS

As future work, we aim to tackle big datasets that contain missing values
[44] by using kNN-IS to impute them, and datasets with a very large number
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of features by using multi-view approaches. We are planning to extend the
use of kNN-IS to instance selection techniques for big data [45], where it
reports good results. Another direction for future work is to extend the
application of the presented kNN-IS approach to a big data semi-supervised
learning [46] context.

APPENDIX

As consequence of this work, we have developed a Spark package with the
kNN-IS implementation. It has all the functionalities exposed in this study.
In addition, we have developed kNN-IS for the machine learning library on
Spark, as part of the MLlib library and the MLbase platform.

Prerequisites: You must have Spark 1.5.1, Scala 2.10 and Maven 3.3.3 or
higher installed. Java Virtual Machine 1.7.0 is necessary because Scala runs
over it.

The implementation allows us to determine the:

• Number of Cores to be used: Number of cores to compute the MapRe-
duce approach.

• Number of neighbors: Number of neighbors. The value of k.

• Number of maps: Number of map tasks.

• Number of reduces: Number of reduce tasks.

• Number of iterations: Number of iterations. Setting to -1 to auto-
setting the iterations. We give optional parameter (Maximum memory
per node) limit on GB for each map task. This selects the minimum
number of iterations within the limit provided.

The input data is expected to be in KEEL Dataset format [47]. The
datasets are previously stored in HDFS.

The output will be stored in HDFS in the following format: ./output-
Path/Predictions.txt/part-00000 contains the predicted and right class in two
column. ./outputPath/Result.txt/part-00000 shows confusion matrix, accu-
racy and total runtime. ./outputPath/Times.txt/part-00000 presents higher
map time, higher reduce time, average iterative time and total runtime.

For more details, please refer to the README in the GitHub repository:
https://github.com/JMailloH/kNN_IS/blob/master/README.md
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The proposed kNN-IS is now available as a Spark Package at http://

spark-packages.org/package/JMailloH/kNN_IS
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selection of linear complexity for big data, Knowledge-Based Systems
(2016) –doi:10.1016/j.knosys.2016.05.056.
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