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Abstract

Machine Learning (ML) models are increasingly de-
ployed in the wild to perform a wide range of tasks. In this
work, we ask to what extent can an adversary steal func-
tionality of such “victim” models based solely on black-
box interactions: image in, predictions out. In contrast to
prior work, we study complex victim blackbox models, and
an adversary lacking knowledge of train/test data used by
the model, its internals, and semantics over model outputs.
We formulate model functionality stealing as a two-step ap-
proach: (i) querying a set of input images to the blackbox
model to obtain predictions; and (ii) training a “knockoff”
with queried image-prediction pairs. We make multiple re-
markable observations: (a) querying random images from
a different distribution than that of the blackbox training
data results in a well-performing knockoff; (b) this is possi-
ble even when the knockoff is represented using a different
architecture; and (c) our reinforcement learning approach
additionally improves query sample efficiency in certain set-
tings and provides performance gains. We validate model
functionality stealing on a range of datasets and tasks, as
well as show that a reasonable knockoff of an image analy-
sis API could be created for as little as $30.

1. Introduction

Machine Learning (ML) models and especially deep
neural networks are deployed to improve productivity or ex-
perience e.g., photo assistants in smartphones, image recog-
nition APIs in cloud-based internet services, and for navi-
gation and control in autonomous vehicles. Developing and
engineering such models for commercial use is a product
of intense time, money, and human effort — ranging from
collecting a massive annotated dataset to tuning the right
model for the task. The details of the dataset, exact model
architecture, and hyperparameters are naturally kept confi-
dential to protect the models’ value. However, in order to
be monetized or simply serve a purpose, they are deployed
in various applications (e.g., home assistants) to function as
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Figure 1: An adversary can create a “knockoft” of a blackbox
model solely by interacting with its API: image in, prediction out.
The knockoff bypasses the monetary costs and intellectual effort
involved in creating the blackbox model.

blackboxes: input in, predictions out.

Large-scale deployments of deep learning models in the
wild has motivated the community to ask: can someone
abuse the model solely based on blackbox access? There
has been a series of “inference attacks” [9,24,29,31] which
try to infer properties (e.g., training data [31], architecture
[24]) about the model within the blackbox. In this work,
we focus on model functionality stealing: can one create a
“knockoft™ of the blackbox model solely based on observed
input-output pairs? In contrast to prior work [19, 25, 35],
we work towards purely stealing functionality of complex
blackbox models by making fewer assumptions.

We formulate model functionality stealing as follows
(shown in Figure 1). The adversary interacts with a black-
box “victim” CNN by providing it input images and obtain-
ing respective predictions. The resulting image-prediction
pairs are used to train a “knockoff” model. The adver-
sary’s intention is for the knockoff to compete with the vic-
tim model at the victim’s task. Note that knowledge trans-
fer [4, 14] approaches are a special case within our formu-
lation, where the task, train/test data, and white-box teacher
(victim) model are known to the adversary.

Within this formulation, we spell out questions answered
in our paper with an end-goal of model functionality steal-
ing:

1. Can we train a knockoff on a random set of query im-
ages and corresponding blackbox predictions?
2. What makes for a good set of images to query?

4954



3. How can we improve sample efficiency of queries?
4. What makes for a good knockoff architecture?

2. Related Work

Model Stealing. Stealing various attributes of a blackbox
ML model has been recently gaining popularity: parameters
[35], hyperparameters [37], architecture [24], information
on training data [31] and decision boundaries [25]. These
works lay the groundwork to precisely reproduce the black-
box model. In contrast, as proposed by [35], we investigate
stealing functionality of the blackbox independent of its in-
ternals. However, [35] addresses stealing extremely sim-
ple models by making additional assumptions (e.g., model
family is known); we found chance-level performance using
the approach in our experiments. [19,25] extend the line of
work by stealing models (slightly more complex than [35]
e.g., shallow CNNis) to serve as a surrogate to craft adversar-
ial examples, but by assuming knowledge and partial access
to the training data distribution. In contrast to these works,
we propose the first approach to steal complex vision mod-
els with high accuracy by making fewer assumptions and
additionally under the constraint of minimizing queries to
the blackbox.

Knowledge Distillation. Distillation [14] and related ap-
proaches [4, 5, 10, 38] transfer the knowledge from a com-
plex “teacher” to a simpler “student” model. Within our
problem formulation, this is a special case when the adver-
sary has strong knowledge of the victim’s blackbox model
e.g., architecture, train/test data is known. Although we dis-
cuss this, a majority of the paper makes weak assumptions
of the blackbox.

Active Learning. Active Learning [6, 34] (AL) aims to
reduce labeling effort while gathering data to train a model.
Ours is a special case of pool-based AL [30], where the
learner (adversary) chooses from a pool of unlabeled data.
However, unlike AL, the learner’s image pool in our case
is chosen without any knowledge of the data used by the
original model. Moreover, while AL considers the image
to be annotated by a human-expert, ours is annotated with
pseudo-labels by the blackbox.

3. Problem Statement

We now formalize the task of functionality stealing (see
also Figure 2).

Functionality Stealing. In this paper, we introduce the
task as: given blackbox query access to a “victim” model
Fy : X — ), to replicate its functionality using “knock-
off” model F4 of the adversary. As shown in Figure 2, we
set it up as a two-player game between a victim V" and an
adversary A. Now, we discuss the assumptions in which the
players operate and their corresponding moves in this game.

Victim V

Select Images @
x; ~ Py(X)

Adversary A

Select Images
PN 0 & Pa()

(a) (b)
Annotate Select Model Black-box Transfer Set  Select Arch.
Dy = (@)} F N > (. Fi(c))  F
v = Ui, Yi Vv [ ) Zi, Py (T A
| Fy(x) |
\ Train Model \ Train Knockoff
y = Fy(z) | Deploy y = Fa(z)

Can A steal functionality of Fv: L :
"~ 1. when Py and Fy are unknown? «--~
2. using minimum queries B?
Figure 2: Problem Statement. Laying out the task of model
functionality stealing in the view of two players - victim V' and
adversary A. We group adversary’s moves into (a) Transfer Set
Construction (b) Training Knockoff F's.

Victim’s Move.  The victim’s end-goal is to deploy a
trained CNN model Fy in the wild for a particular task
(e.g., fine-grained bird classification). To train this par-
ticular model, the victim: (i) collects task-specific images
@ ~ Py (X) and obtains expert annotations resulting in a
dataset Dy = {(=;,y;)}; (ii) selects the model Fy that
achieves best performance (accuracy) on a held-out test set
of images D™ The resulting model is deployed as a black-
box which predicts output probabilities y = Fy (x) given
an image x. Furthermore, we assume each prediction incurs
a cost (e.g., monetary, latency).

Adversary’s Unknowns. The adversary is presented with
a blackbox CNN image classifier, which given any image
x € X returns a K-dim posterior probability vector y €
[0,1]5, >, yx = 1. We relax this later by considering
truncated versions of y. We assume remaining aspects to
be unknown: (i) the internals of Fy  e.g., hyperparameters
or architecture; (ii) the data used to train and evaluate the
model; and (iii) semantics over the K classes.

Adversary’s Attack. To train a knockoff, the adversary:
(i) interactively queries images {x; ~ P4(X)} using strat-
egy 7 to obtain a “transfer set” of images and pseudo-labels
{(z;, Fy(x;))}2.;; and (ii) selects an architecture F4 for
the knockoff and trains it to mimic the behaviour of Fy, on
the transfer set.

Objective. We focus on the adversary, whose primary ob-
jective is training a knockoff that performs well on the task
for which Fy, was designed i.e., on an unknown D{*'. In
addition, we address two secondary objectives: (i) sample-
efficiency: maximizing performance within a budget of B
blackbox queries; and (ii) understanding what makes for
good images to query the blackbox.

Victim’s Defense. Although we primarily address the ad-
versary’s strategy in the paper, we briefly discuss victim’s
counter strategies (in Section 6) of reducing informative-
ness of predictions by truncation e.g., rounding-off.
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(a) (b)

Figure 3: Comparison to KD. (a) Adversary has access only to
image distribution P4 (X) (b) Training in a KD-manner requires
stronger knowledge of the victim. Both S and F4 are trained to
classify images « € Py (X)

Remarks: Comparison to Knowledge Distillation (KD).
Training the knockoff model is reminiscent of KD ap-
proaches [14,27], whose goal is to transfer the knowledge
from a larger teacher network 7' (white-box) to a compact
student network S (knockoff) via the transfer set. We il-
lustrate key differences between KD and our setting in Fig-
ure 3: (a) Independent distribution P4: F4 is trained on
images @ ~ Pa(X) independent to distribution Py used
for training FYy; (b) Data for supervision: Student network
S minimize variants of KD loss:

Lxp = M LCE(Yirve, Ys) + AoLce(Ys, yT) (D

where y7. = softmax(ar/7) is the softened posterior distri-
bution of logits a controlled by temperature 7. In contrast,
the knockoff (student) in our case lacks logits a7 and true
labels ye to supervise training.

4. Generating Knockoffs

In this section, we elaborate on the adversary’s approach
in two steps: transfer set construction (Section 4.1) and
training knockoff F'4 (Section 4.2).

4.1. Transfer Set Construction

The goal is to obtain a transfer set i.e., image-prediction
pairs, on which the knockoff will be trained to imitate the
victim’s blackbox model Fy, .

Selecting P4 (X). The adversary first selects an image
distribution to sample images. We consider this to be a large
discrete set of images. For instance, one of the distributions
P4 we consider is the 1.2M images of ILSVRC dataset [7].

Sampling Strategy 7r. Once the image distribution P4 (X)
is chosen, the adversary samples images & ~ P4 (X) using
a strategy 7. We consider two strategies.

e T

:)Update z = animal

policy
Y 4
Reward bird
(¢, yt) Signal,
4y = FA(wt)

Fa D Train

(b) Hierarchical policy P,

sparrow

(a) Overview

Figure 4: Strategy adaptive.

4.1.1 Random Strategy

In this strategy, we randomly sample images (without re-
placement) x ~ P4(X) to query Fy. This is an extreme
case where adversary performs pure exploration. However,
there is a risk that the adversary samples images irrelevant
to learning the task (e.g., over-querying dog images to a
birds classifier).

4.1.2 Adaptive Strategy

We now incorporate a feedback signal resulting from each
image queried to the blackbox. A policy 7 to adaptively
sample images (x; ~ P ({x;, y; ﬁ;})) is learnt to achieve
two goals: (i) improving sample-efficiency of queries; and
(ii) aiding interpretability of blackbox Fy,. The approach is
outlined in Figure 4a. At each time-step t, the policy mod-
ule P, samples a set of query images. A reward signal r; is
shaped based on multiple criteria and is used to update the
policy with an end-goal of maximizing the expected reward.

Supplementing P4. To encourage relevant queries, we
enrich images in the adversary’s distribution by associat-
ing each image x; with a label z; € Z. No semantic rela-
tion of these labels with the blackbox’s output classes is as-
sumed or exploited. As an example, when P4 corresponds
to 1.2M images of the ILSVRC [7] dataset, we use labels
defined over 1000 classes. These labels can be alternatively
obtained by unsupervised measures e.g., clustering or esti-
mating graph-density [2,8]. We find using labels aids under-
standing blackbox functionality. Furthermore, since we ex-
pect labels {z; € Z} to be correlated or inter-dependent, we
represent them within a coarse-to-fine hierarchy, as nodes of
a tree as shown in Figure 4b.

Actions. At each time-step ¢, we sample actions from
a discrete action space z; € Z i.e., adversary’s indepen-
dent label space. Drawing an action is a forward-pass (de-
noted by a blue line in Figure 4b) through the tree: at
each node, we sample a child node with probability 7;(2)
(which sums to 1 over siblings). The probabilities are de-
termined by a softmax distribution over the node potentials:
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Hy (=) .
m(2) = m Upon reaching a leaf-node, a sample
z

of images is returned corresponding to label z;.

Learning the Policy. We use the received reward r; for
an action z; to update the policy 7 using the gradient bandit
algorithm [33]. This update is equivalent to a backward-
pass through the tree (denoted by a green line in Figure 4b),
where the node potentials are updated as:

Ht+1(Zt) = Ht(Zt) + Oé(Tt — ft)(l — Wt(Zt)) and (2)
Hi1(2') = Hy(Z') + alry — 7)m(2') V2 # 2z (3)

where & = 1/N(z) is the learning rate, N(z) is the num-
ber of times action z has been drawn, and 7; is the mean-
reward over past A time-steps. mo(z) and Hy(z) are intial-
ized such that reaching all leaf nodes in the hierarchy are
equally probable.

Rewards. To evaluate the quality of sampled images x;,
we study three rewards. We use a margin-based certainty
measure [18,30] to encourage images where the victim is
confident (hence indicating the domain Fy, was trained on):

Ry) = P(Yers|Te) — P(Yeho|20) “)
where k; is the ith-most confident class. To prevent the de-
generate case of image exploitation over a single label, we
introduce a diversity reward:

Rdiv(yl:t) - Z ma'X(Ov Ytk — gt:t—A,k) (5)
k
To encourage images where the knockoff prediction y; =
F4(x;) does not imitate Fy,, we reward high CE loss:

Rﬁ(ym Ut) = L(Yt, Yr) (6)
We sum up individual rewards when multiple measures are
used. To maintain an equal weighting, each reward is in-
dividually rescaled to [0, 1] and subtracted with a baseline
computed over past A time-steps.

4.2. Training Knockoff 4

As a product of the previous step of interactively
querying the blackbox model, we have a transfer set
{(z4, Fv(z)}2.,, ; ~ Pa(X). Now we address how
this is used to train a knockoff F4.

Selecting Architecture F'4. Few works [24,37] have re-
cently explored reverse-engineering the blackbox i.e., iden-
tifying the architecture, hyperparameters, etc. We how-
ever argue this is orthogonal to our requirement of sim-
ply stealing the functionality. Instead, we represent Fy
with a reasonably complex architecture e.g., VGG [32] or
ResNet [13]. Existing findings in KD [10, 14] and model
compression [4, 12, 16] indicate robustness to choice of rea-
sonably complex student models. We investigate the choice
under weaker knowledge of the teacher (Fy/) e.g., training
data and architecture is unknown.

Blackbox (Fy) |Diain| 4 | DSt Output classes K
Caltech256 [11]  23.3k + 6.4k 256 general object categories
CUBS200 [36] 6k + 5.8k 200 bird species

Indoor67 [26] 14.3k + 1.3k 67 indoor scenes
Diabetich [1] 34.1k + 1k 5 diabetic retinopathy scales

Table 1: Four victim blackboxes Fy . Each blackbox is named
in the format: [dataset][# output classes].

Training to Imitate. To bootstrap learning, we begin with
a pretrained Imagenet network F'4 (see § D.1 in supplemen-
tary for discussion on other initializations). We train the
knockoff F'4 to imitate Fy, on the transfer set by minimiz-
ing the cross-entropy (CE) loss: Lce(y,9) = — > P(Yk) -
log p(yk). This is a standard CE loss, albeit weighed with
the confidence p(yy) of the victim’s label.

5. Experimental Setup

We now discuss the experimental setup of multiple vic-
tim blackboxes (Section 5.1), followed by details on the ad-
versary’s approach (Section 5.2).

5.1. Black-box Victim Models Fy

We choose four diverse image classification CNNs, ad-
dressing multiple challenges in image classification e.g.,
fine-grained recognition. Each CNN performs a task spe-
cific to a dataset. A summary of the blackboxes is presented
in Table 1 (extended descriptions in appendix).

Training the Black-boxes.  All models are trained us-
ing a ResNet-34 architecture (with ImageNet [7] pretrained
weights) on the training split of the respective datasets. We
find this architecture choice achieve strong performance on
all datasets at a reasonable computational cost. Models are
trained using SGD with momentum (of 0.5) optimizer for
200 epochs with a base learning rate of 0.1 decayed by a
factor of 0.1 every 60 epochs. We follow the train-test splits
suggested by the respective authors for Caltech-256 [11],
CUBS-200-2011 [36], and Indoor-Scenes [26]. Since GT
annotations for Diabetic-Retinopathy [1] test images are
not provided, we reserve 200 training images for each of
the five classes for testing. The number of test images per
class for all datasets are roughly balanced. The test images
of these datasets DY are used to evaluate both the victim
and knockoff models.

After these four victim models are trained, we use them
as a blackbox for the remainder of the paper: images in,
posterior probabilities out.

5.2. Representing P,

In this section, we elaborate on the setup of two aspects
relevant to transfer set construction (Section 4.1).
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5.2.1 Choice of P4

Our approach for transfer set construction involves the ad-
versary querying images from a large discrete image distri-
bution P4. In this section, we present four choices con-
sidered in our experiments. Any information apart from
the images from the respective datasets are unused in the
random strategy. For the adaptive strategy, we use image-
level labels (chosen independent of blackbox models) to
guide sampling.

P4, = Py. For reference, we sample from the exact set
of images used to train the blackboxes. This is a special
case of knowledge-distillation [14] with unlabeled data at
temperature 7 = 1.

P, = ILSVRC [7,28]. We use the collection of 1.2M
images over 1000 categories presented in the [ILSVRC-2012
[28] challenge.

P4 = Openlmages [21]. Openlmages v4 is a large-scale
dataset of 9.2M images gathered from Flickr. We use a sub-
set of 550K unique images, gathered by sampling 2k images
from each of 600 categories.

P4, = D?2. We construct a dataset wherein the adver-
sary has access to all images in the universe. In our case,
we create the dataset by pooling training data from: (i) all
four datasets listed in Section 5.1; and (ii) both datasets pre-
sented in this section. This results in a “dataset of datasets”
D? of 2.2M images and 2129 classes.

Overlap between P4 and Py,. We compute overlap be-
tween labels of the blackbox (K, e.g., 256 Caltech classes)
and the adversary’s dataset (Z, e.g., Ik ILSVRC classes) as:
100 x |K N Z|/|K|. Based on the overlap between the two
image distributions, we categorize P4 as:

1. P4 = Py: Images queried are identical to the ones
used for training Fy, . There is a 100% overlap.

2. Closed-world (P4 = D?): Blackbox train data Py
is a subset of the image universe P4. There is a 100%
overlap.

3. Open-world (P4 € {ILSVRC, Openlmages}): Any
overlap between Py and P, is purely coinciden-
tal. Overlaps are: Caltech256 (42% ILSVRC, 44%
Openlmages), CUBS200 (1%, 0.5%), Indoor67 (15%,
6%), and Diabetich (0%, 0%).

5.2.2 Adaptive Strategy

In the adaptive strategy (Section 4.1.2), we make use of
auxiliary information (labels) in the adversary’s data P4 to
guide the construction of the transfer set. We represent these
labels as the leaf nodes in the coarse-to-fine concept hier-
archy tree. The root node in all cases is a single concept
“entity”. We obtain the rest of the hierarchy as follows: (i)
D?: we add as parents the dataset the images belong to; (ii)
ILSVRC: for each of the 1K labels, we obtain 30 coarse

labels by clustering the mean visual features of each label
obtained using 2048-dim pool features of an ILSVRC pre-
trained Resnet model; (iii) Openlmages: We use the exact
hierarchy provided by the authors.

6. Results

We now discuss the experimental results.

Training Phases. The knockoff models are trained in two
phases: (a) Online: during transfer set construction (Section
4.1); followed by (b) Offline: the model is retrained using
transfer set obtained thus far (Section 4.2). All results on
knockoff are reported after step (b).

Evaluation Metric. We evaluate two aspects of the knock-
off: (a) Top-1 accuracy: computed on victim’s held-out test
data D™ (b) sample-efficiency: best performance achieved
after a budget of B queries. Accuracy is reported in two
forms: absolute (x%) or relative to blackbox Fy (xX).

In each of the following experiments, we evaluate our
approach with identical hyperparameters across all black-
boxes, highlighting the generalizability of model function-
ality stealing.

6.1. Transfer Set Construction

In this section, we analyze influence of transfer set
{(x;, Fv(2;)} on the knockoff. For simplicity, for the re-
mainder of this section we fix the architecture of the victim
and knockoff to a Resnet-34 [13].

Reference: Py = Py (KD). From Table 2 (second row),
we observe: (i) all knockoff models recover 0.92-1.05x
performance of Fy ; (ii) a better performance than Fy- itself
(e.g., 3.8% improvement on Caltech256) due to regulariz-
ing effect of training on soft-labels [14].

Can we learn by querying randomly from an indepen-
dent distribution? Unlike KD, the knockoff is now trained
and evaluated on different image distributions (P4 and Py
respectively). We first focus on the random strategy, which
does not use any auxiliary information.

We make the following observations from Table 2
(random): (i) closed-world: the knockoff is able to rea-
sonably imitate all the blackbox models, recovering 0.84-
0.97 x blackbox performance; (ii) open-world: in this chal-
lenging scenario, the knockoff model has never encountered
images of numerous classes at test-time e.g., >90% of the
bird classes in CUBS200. Yet remarkably, the knockoff is
able to obtain 0.81-0.96x performance of the blackbox.
Moreover, results marginally vary (at most 0.04 x) between
ILSVRC and Openlmages, indicating any large diverse set
of images makes for a good transfer set.

Upon qualitative analysis, we find the image and pseudo-
label pairs in the transfer set are semantically incoherent
(Fig. 6a) for output classes non-existent in training images
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random adaptive
Pa Caltech256 CUBS200 Indoor67 Diabetich Caltech256 CUBS200 Indoor67 Diabetich
Py (Fv) 78.8 (1) 76.5 (1x) 74.9 (1x) 58.1 (1x) - - -
Py (KD) 82.6 (1.05x%x) 70.3 (0.92%) 74.4 (0.99%) 54.3(0.93%) - - -
Closed D? 76.6 (0.97x) 68.3 (0.89%) 68.3 (0.91x) 48.9 (0.84x) 82.7 (1.05%) 74.7 (0.98 %) 76.3 (1.02x) 48.3 (0.83%)
Open ILSVRC 75.4 (0.96%) 68.0 (0.89%) 66.5 (0.89%) 47.7 (0.82x) 76.2 (0.97x) 69.7 (0.91%) 69.9 (0.93%) 44.6 (0.77x)
P Openlmg 73.6 (0.93%) 65.6 (0.86X) 69.9 (0.93%) 47.0 (0.81x) 74.2 (0.94%) 70.1 (0.92%) 70.2 (0.94x) 47.7 (0.82x)

Table 2: Accuracy on test sets. Accuracy of blackbox /' indicated in gray and knockoffs F'4 in black. KD = Knowledge Distillation.

Closed- and open-world accuracies reported at B=60k.
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Figure 5: Performance of the knockoff at various budgets. Across choices of adversary’s image distribution (P4) and sampling strategy
m. - represents accuracy of blackbox Fy and - represents chance-level performance. Enlarged version available in supplementary.

P,4. However, when relevant images are presented at test-
time (Fig. 6b), the adversary displays strong performance.
Furthermore, we find the top predictions by knockoff rele-
vant to the image e.g., predicting one comic character (su-
perman) for another.

How sample-efficient can we get? Now we evaluate the
adaptive strategy (discussed in Section 4.1.2). Note that
we make use of auxiliary information of the images in these
tasks (labels of images in P4). We use the reward set which
obtained the best performance in each scenario: {certainty}
(Eq. 4) in closed-world and {certainty, diversity, loss} (Eq.
4-6) in open-world.

From Figure 5, we observe: (i) closed-world: adaptive
is extremely sample-efficient in all but one case. Moreover,
we also find the label hierarchy result in better performance
(see supp. §D.3). Its performance is comparable to KD in
spite of samples drawn from a 36-188 x larger image distri-
bution. We find significant sample-efficiency improvements
e.g., while CUBS200-random reaches 68.3% at B=60k,
adaptive achieves this 6x quicker at B=10k. We find
comparably low performance in Diabetich as the black-
box exhibits confident predictions for all images resulting in
poor feedback signal to guide policy; (ii) open-world: al-
though we find marginal improvements over random in this
challenging scenario, they are pronounced in few cases e.g.,
1.5% quicker to reach an accuracy 57% on CUBS200 with
Openlmages. (iii) as an added-benefit apart from sample-
efficiency, from Table 2, we find adaptive display im-
proved performance (up to 4.5%) consistently across all
choices of Fy, .

What can we learn by inspecting the policy? From previ-
ous experiments, we observed two benefits of the adaptive
strategy: sample-efficiency (although more prominent in
the closed-world) and improved performance. The policy 7,
learnt by adaptive (Section 4.1.2) additionally allows us to
understand what makes for good images to query. m¢(z) is
a discrete probability distribution indicating preference over
action z. Each action z in our case corresponds to labels in
the adversary’s image distribution.

We visualize 7¢(z) in Figure 7, where each bar repre-
sents an action and its color, the parent in the hierarchy.
We observe: (i) closed-world (Fig. 7 top): actions sampled
with higher probabilities consistently correspond to output
classes of Fy,. Upon analyzing parents of these actions (the
dataset source), the policy also learns to sample images for
the output classes from an alternative richer image source
e.g., “ladder” images in Caltech256 sampled from Open-
Images instead; (ii) open-world (Fig. 7 bottom): unlike
closed-world, the optimal mapping between adversary’s ac-
tions to blackbox’s output classes is non-trivial and unclear.
However, we find top actions typically correspond to output
classes of Fy, e.g., indigo bunting. The policy, in addition,
learns to sample coarser actions related to the Fy’s task e.g.,
predominantly drawing from birds and animals images to
knockoff CUBS200.

What makes for a good reward? Using the adaptive
sampling strategy, we now address influence of three re-
wards (discussed in Section 4.1.2). We observe: (i) closed-
world (Fig. 8 left): All reward signals in adaptive helps
with the sample efficiency over random. Reward cert (Eq.
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Figure 6: Qualitative Results. (a) Samples from the transfer set ({(x;, Fyv (x:))}, ; ~ Pa(X)) displayed for four output classes (one
from each blackbox): ‘Homer Simpson’, ‘Harris Sparrow’, ‘Gym’, and ‘Proliferative DR’. (b) With the knockoff F'4 trained on the transfer
set, we visualize its predictions on victim’s test set ({(x;, Fa(x;))}, ©; ~ D). Ground truth labels are underlined. Objects from these
classes, among numerous others, were never encountered while training F'a.
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Figure 7: Policy 7 learnt by the adaptive approach. Each bar
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1k) are displayed. Colors indicate parent of action in hierarchy.
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Figure 8: Reward Ablation. cert: certainty, uncert: uncertainty,
div: diversity, £: loss, none: no reward (random strategy).

4, which encourages exploitation) provides the best feed-
back signal. Including other rewards (Eq. 5-6) slightly de-
teriorates performance, as they encourage exploration over
related or unseen actions — which is not ideal in a closed-
world. Reward uncert, a popular measure used in AL liter-
ature [2, 8, 30] underperforms in our setting since it encour-
ages uncertain (in our case, irrelevant) images. (ii) open-
world (Fig. 8 right): Using all rewards (Eq. 4-6) display
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Figure 9: Truncated Posteriors. Influence of training knockoff
with truncated posteriors.

only none-to-marginal improvements for all choices of Fy/,
with the highest improvement in CUBS200. However, we
notice an influence on learnt policies where adopting explo-
ration (div + L) with exploitation (cert) goals result in a
softer probability distribution 7 over the action space and in
turn, encouraging related images.

Can we train knockoffs with truncated blackbox outputs?
So far, we found adversary’s attack objective of knocking
off blackbox models can be effectively carried out with min-
imal assumptions. Now we explore the influence of vic-
tim’s defense strategy of reducing informativeness of black-
box predictions to counter adversary’s model stealing at-
tack. We consider two truncation strategies: (a) top-k: top-
k (out of K) unnormalized posterior probabilities are re-
tained, while rest are zeroed-out; (b) rounding 7: posteriors
are rounded to r decimals e.g., round(0.127, r=2) = 0.13.
In addition, we consider the extreme case “argmax”, where
only index k = arg max;, yy, is returned.

From Figure 9 (with K = 256), we observe: (i) truncat-
ing y; —either using top-k or rounding — slightly impacts the
knockoff performance, with argmax achieving 0.76-0.84 x
accuracy of original performance for any budget B; (ii) top-
k: even small increments of £ significantly recovers the
original performance — 0.91x at k = 2 and 0.96x at k = 5;
(iii) rounding: recovery is more pronounced, with 0.99x
original accuracy achieved at just » = 2. We find model
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Figure 10: Architecture choices. Fy (left: Resnet-34 and right:
VGG-16) and F'4 (lines in each plot).

functionality stealing minimally impacted by reducing in-
formativeness of blackbox predictions.

6.2. Architecture choice

In the previous section, we found model functionality
stealing to be consistently effective while keeping the ar-
chitectures of the blackbox and knockoff fixed. Now we
study the influence of the architectural choice F4 vs. Fy .

How does the architecture of F'5 influence knockoff per-
formance? We study the influence using two choices of
the blackbox Fy, architecture: Resnet-34 [13] and VGG-
16 [32]. Keeping these fixed, we vary architecture of the
knockoff F4 by choosing from: Alexnet [20], VGG-16
[32], Resnet-{18, 34, 50, 101} [13], and Densenet-161 [15].

From Figure 10, we observe: (i) performance of the
knockoff ordered by model complexity: Alexnet (lowest
performance) is at one end of the spectrum while sig-
nificantly more complex Resnet-101/Densenet-161 are at
the other; (ii) performance transfers across model fami-
lies: Resnet-34 achieves similar performance when stealing
VGG-16 and vice versa; (iii) complexity helps: selecting a
more complex model architecture of the knockoff is bene-
ficial. This contrasts KD settings where the objective is to
have a more compact student (knockoff) model.

6.3. Stealing Functionality of a Real-world Black-
box Model

Now we validate how our model functionality stealing
attack translates to a real-world scenario. Image recogni-
tion services are gaining popularity allowing users to obtain
image-predictions for a variety of tasks at low costs ($1-2
per 1k queries). These image recognition APIs have also
been used to evaluate other attacks e.g., adversarial exam-
ples [3, 17,22]. We focus on a facial characteristics API
which given an image, returns attributes and confidences
per face. Note that in this experiment, we have semantic
information of blackbox output classes.

Collecting P4. The API returns probability vectors per
face in the image and thus, querying irrelevant images leads
to a wasted result with no output information. Hence, we
use two face image sets P4 for this experiment: CelebA
(220k images) [23] and Openlmages-Faces (98k images).
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>
3
5 50
£ Test set Fa
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Figure 11: Knocking-off a real-world API. Performance of the
knockoff achieved with two choices of Pj.

We create the latter by cropping faces (plus margin) from
images in the Openlmages dataset [21].

Evaluation. Unlike previous experiments, we cannot ac-
cess victim’s test data. Hence, we create test sets for each
image set by collecting and manually screening seed anno-
tations from the API on ~5K images.

How does this translate to the real-world? We model
two variants of the knockoff using the random strategy
(adaptive is not used since no relevant auxiliary informa-
tion of images are available). We present each variant using
two choices of architecture F4: a compact Resnet-34 and
a complex Resnet-101. From Figure 11, we observe: (i)
strong performance of the knockoffs achieving 0.76-0.82 %
performance as that of the API on the test sets; (ii) the di-
verse nature OpenImages-Faces helps improve generaliza-
tion resulting in 0.82x accuracy of the API on both test-
sets; (iii) the complexity of F)y does not play a significant
role: both Resnet-34 and Resnet-101 show similar perfor-
mance indicating a compact architecture is sufficient to cap-
ture discriminative features for this particular task.

We find model functionality stealing translates well to
the real-world with knockoffs exhibiting a strong perfor-
mance. The knockoff circumvents monetary and labour
costs of: (a) collecting images; (b) obtaining expert anno-
tations; and (c) tuning a model. As a result, an inexpensive
knockoff can be trained which exhibits strong performance,
using victim API queries amounting to only $30.

7. Conclusion

We investigated the problem of model functionality
stealing where an adversary transfers the functionality of
a victim model into a knockoff via blackbox access. In
spite of minimal assumptions on the blackbox, we demon-
strated the surprising effectiveness of our approach. Finally,
we validated our approach on a real-world image recogni-
tion API and found strong performance of knockoffs. We
find functionality stealing poses a real-world threat that po-
tentially undercuts an increasing number of deployed ML
models.
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