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ABSTRACT

KNOME is the user modeling component of UC, a natural language consul-
tation system for the UNIX operating system. During the course of an interactive
session with a user, KNOME infers the user’s level of expertise from the dialog
and maintains a model of the user’s knowledge of the UNIX domain. KNOME’s
model of the user makes use of a double-stereotype system in which one set of
stereotypes represents the user’s expertise and another represents the difficulty
level of the information. KNOME is used in UC to help: disambiguate the
user’s statements, avoid telling the user something that the user already knows,
take advantage of prior user knowledge in presenting new information, and
detect situations where the user lacks pertinent facts or where the user has a
misconception. UC also models its own knowledge of UNIX with meta-
knowledge (explicit facts about the limitations of the system’s own knowledge
base), which is used to help in correcting user misconceptions.
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1. Introduction

UC, the UNIX Consultant [WILE84, WILE86], is a natural language computer consultant
system under development at the University of California at Berkeley. UC advises users on using
the UNIX1 operating system. Users can ask UC how to do things in UNIX, get definitions of
UNIX terminology, and get help debugging problems in using commands.

To better accommodate a greater range of potential users, UC contains an explicit user
modeling component called KNOME (KNOwledge Model of Expertise). Some of the early
results of this research were reported in [CHIN86]. KNOME contains information about what
users know. Using such information, UC can:

1) avoid telling the user something that the user already knows

2) tailor explanations for the user’s level of understanding

3) utilize the user’s background knowledge in interpreting what the user says

KNOME is also helpful in detecting cases where the user’s knowledge is incorrect (miscon-
ceptions) and cases where the user lacks needed information. In such cases, UCEgo [CHIN87],
the component of UC that implements an intelligent agent for UC, can take the initiative and try
to correct the user’s misconception, or try to inform the user of the needed information, respec-
tively.

1.1. Some UC Examples

To see how KNOME can infer a user’s level of expertise from a conversation with the user,
and how this information can be used advantageously by UC in helping the user, consider the two
UC sessions shown in Figure 1 and Figure 2.
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* This paper is a reprint from chapter 4 in A. Kobsa and W. Wahlster (Eds.), User Models in Dialog Systems,
pp. 74-107, Berlin: Springer-Verlag, 1989.

1 UNIX is a trademark of Bell Laboratories.



- 2 -

�������������������������������������������������������������������������������������������������������������������������������������������������������������

Welcome to UC (Unix Consultant) version 3.23
To a ’#’ prompt, please type in your questions
about the UNIX file system in English.
To leave, just type ’ˆD’ or ’(exit)’.

Hi.
How can I help you?

# How can I delete a file?

Use rm.
For example, to delete the file named foo, type ‘rm foo’.

# What does ruptime do?

ruptime is used to list the uptime of all machines on the network,
list the number of all users on them, and list their load average.

Figure 1. UC session with User1.
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Welcome to UC (Unix Consultant) version 3.23
To a ’#’ prompt, please type in your questions
about the UNIX file system in English.
To leave, just type ’ˆD’ or ’(exit)’.

Hi.
How can I help you?

# How can I find out the inode of a file?

Use ls -i.

# What does ruptime do?

ruptime is like uptime, except ruptime is for all machines on the
network.

Figure 2. UC session with User2.
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The user of the first session, User1, is apparently a novice who knows very little about
UNIX. After all, User1 does not even know something as simple as how to delete a file (the sub-
ject of User1’s first question). On the other hand, the user in the second session, User2, knows
what an inode is, a relatively complex UNIX concept. So User2 is probably a much more
advanced user of UNIX than User1. KNOME uses this type of evidence about particular facts
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that users know or do not know in order to deduce their level of expertise.

Based on the different levels of expertise of the two users as deduced by KNOME, UC is
able to provide qualitatively different answers to the two users. In the first answer to User1,
KNOME gives an example of the format of the rm command (simply ‘‘rm’’ followed by the
name of the file to be deleted). UC gives an example of the format to User1, since a user as unso-
phisticated as User1 probably would not know the format of rm. On the other hand, User2 is a
more advanced user who undoubtedly already knows the format of ls. Hence UC is able to give a
very concise answer to User2’s first query, ‘‘Use ls -i,’’ that does not include an example of the
format of ls. This illustrates how KNOME is used to avoid telling the user something that the
user already knows.

The second query of both users is the same. For the more advanced user, UC was able to
explain the ruptime command in terms of a similar command, uptime, that the more advanced
user presumably already knows. Such a simile would not work for User1, since a novice user
probably would not know the uptime command, and so could not exploit the simile to understand
ruptime. KNOME’s modeling of the user’s knowledge allows UC to choose whether or not to
use different forms of presentation like similes based on whether or not the user will understand
them.

1.2. Problems in Modeling

There are many difficulties in building and maintaining a model of what the user knows.
The system must first determine what the user knows, and then represent this information inter-
nally. To determine the user’s knowledge of the domain, the system could quiz the user exhaus-
tively. However for most domains, such a quiz would be extremely time consuming and most
users would not consent to such extensive quizzing. Fortunately, users tend to learn domain
knowledge in a predictable order, so the system can make additional inferences about what a user
is likely to know or not know based on a partial user model. That is, the user modeling system
should be able to predict a user’s knowledge based on partial information about what the user
knows or does not know. Exactly which predictions/inferences are allowable is problematic.
This is the key problem for any user modeling system that wishes to take advantage of the order
in which users typically gain knowledge in a domain.

Besides the basic question of which inferences are allowable, there is also the problem of
uncertainty. Making inferences about the user based on limited prior knowledge about the user is
a form of default reasoning. Such default reasoning is not always valid, so the system needs to be
able to handle the fact that such inferences are uncertain. Usually this requires that the user
modeler be able to judge the certainty of its default inferences. Also, as the system obtains more
concrete information, it must be able to update its user model. The new information may con-
tradict previous predictions, so maintenance is not simple.

Another problem concerns the organization of the inferences. Many inferences tend to be
grouped together, because people tend to go through distinct stages of learning (see [KAYD85]).
People at a particular stage of learning tend to have similar knowledge. Once a system has deter-
mined its user’s level, it can assume that this user knows about as much as other users at that
level. A good user modeling system needs to group such inferences together in a simple and
efficient manner.

Another problem in user modeling is how to represent the model internally. The simplest
method is the overlay model [CARR77] wherein the user’s knowledge is represented as a subset
of the system’s knowledge. However, a simple overlay model cannot predict what a user might
know based on partial information. An overlay model does not represent the order in which users
typically learn information in a domain. What is needed is a model that represents such ordering
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information in a manner useful for prediction of what a user might know based on partial infor-
mation.

1.3. Other User Models

User models have appeared frequently in Intelligent Tutoring Systems (e. g. [BROW76a,
SLEE82c]). [KASS*] provides a survey of user models in ITS. Typically, ITS use some variant
of the simple overlay model [CARR77]. Overlay models encode the user’s knowledge as a sub-
set of the system’s expert knowledge base. One variant is to encode users as a collection of
differences from the system’s built-in expert. Differences may include a lack of user knowledge
relative to an expert. This is frequently augmented by a library of buggy procedures/rules that are
common among users (e. g. [BROW78, STEV79, SLEE81, JOHN84, REIS85, ANDJ85b]).
These types of user models are not designed to predict a user’s knowledge based on partial infor-
mation about what the user knows or does not know. This sort of default inference is not so
appropriate for ITS where the system needs to keep an accurate user model. On the other hand,
consultation systems usually do not interact with a single user for as much time as tutoring sys-
tems, so they do not have the time to build a complete user model. In such cases, default reason-
ing is needed. Therefore, consultation systems need a different type of user model than is com-
monly found in ITS.

An exception is the hierarchical overlay model of USCSH [MATT86] which does some
limited prediction. USCSH predicts the user’s proficiency for parent nodes in the hierarchy by
taking a weighted sum of the proficiency ratings of the children nodes. This approach allows
prediction of highly related topics, but does not extend to prediction of the user’s knowledge of
less related topics. For example, such a system could predict that a user has high proficiency in
process monitoring when the system knows that the user has high proficiency in using the ps,
who and kill commands. However such a system could not predict the proficiency of the user in
an unrelated topic, such as using the cat command, based on the system’s knowledge of the
user’s proficiency in process monitoring commands.

Other user models have been built to model a number of aspects of the user (see [WAHL*]
for a survey). For example, Grundy [RICH79b, RICH83, RICH*] modeled user personality
traits. Grundy used user stereotypes to group default inferences about user traits, then used these
traits for suggesting books to the user for reading. To determine which stereotypes were applica-
ble to a particular user, Grundy asked the user for a self description at the start of a session. Indi-
vidual phrases (e. g. self descriptions such as athletic or feminist) would trigger stereotypes that
were likely to apply to that user. Such an approach worked well for modeling personality traits,
but does not carry over to modeling domain knowledge. A user’s self description as a
‘‘beginner’’ often will not coincide with the system’s idea of a ‘‘beginner.’’ Also, stereotype
triggers cannot be used to make inferences such as inferring that the user does not know some-
thing when the user asks about it. Stereotype triggers are not sufficient for inferring what users
know.

Another use of user models is for representing user preferences. The hotel reservation sys-
tem of HAM-ANS [HOEP84b, MORI*] and the Real Estate Agent [MORI85b] chose different
hotel rooms or apartments based on users’ needs and preferences. These systems expect users to
mention at the start of their session their requirements and preferences for a room/apartment.
Such an approach works well in domains where users tend to specify their needs and preferences
at the start of a session. However this is not the case in consultation domains where users are
unlikely to mention their level of expertise in the domain at the start of a session.

Many systems including UC have modeled the user’s plans and goals (e. g. [ALLE80,
CARB83, CARB*, LITM84, JOHN84, WILE86]) Such systems infer the user’s plans and goals
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by matching the user’s actions to steps of prestored plans. This type of inference works well for
detecting the user’s plans, but does not extend to determining what the user does or does not
know.

2. Internal Representation of Users

KNOME represents what UC believes users know about UNIX. In this sense, KNOME’s
model of the user is not necessarily meant to accurately model actual users, but is meant to con-
form to the way human UNIX consultants model their clients. So in developing KNOME’s user
models, no attempt was made to psychologically profile what different users know. Instead,
former UNIX consultants (UC’s implementors) were informally surveyed to determine how they
viewed users.

2.1. Double-Stereotypes

Humans use categorization to organize inferences (see [ROSC77, ROSC78, ROSC83]).
These categories serve as reference points or prototypes for judging objects. Once an object has
been identified as belonging to a particular category, default inferences about the object can be
made based on the object’s membership in the category.

An approach similar to human categorization is used in KNOME to organize inferences
concerning users. In KNOME, users are grouped according to their level of expertise in using
UNIX. Each group is represented by a prototype-style category. There are four such categories
in UC: novice, beginner, intermediate, and expert. Each of the categories represents an increasing
mastery of UNIX information.

Individual users are represented as members of one of these categories and inherit proper-
ties from their category. Specific information about individual users overrides inherited informa-
tion. These user categories are also termed stereotypes after the stereotypes of Grundy
[RICH79b, RICH83, RICH*], which pioneered categorization of users in computer programs.
However, unlike the stereotypes in Grundy, which consist of collections of attributes, the stereo-
types in KNOME are implemented as categories within the KODIAK representation system
[WILE87]. As such, KNOME’s stereotypes are integrated into KODIAK’s multiple inheritance
hierarchy and its default inheritance mechanisms.

Besides categorizing users, KNOME also categorizes information into levels of difficulty.
Commands, command-formats, terminology, and other relevant information are categorized
according to their level of difficulty. These stereotype categories include simple, mundane, and
complex. Information is grouped into categories based on their typical location on the learning
curve, in other words, based on when the typical user would learn the information. For example,
some simple concepts include the rm, ls, and cat commands, the technical term ‘‘file,’’ and the
simple file command-format (the name of the command followed by the name of the file to be
operated upon). These simple concepts are learned early in the experience of a typical user.
Somewhat more advanced are mundane level concepts. Some examples are the vi, diff and spell
commands, the technical term ‘‘working directory,’’ and the -l option of ls. Examples of com-
plex concepts are the grep, chmod, and tset commands, the term ‘‘inode,’’ and the fact that
write permission on the containing directory is a precondition for using the rm command for
deleting a file. Complex concepts are learned relatively late by the typical user.

In addition to the three previously mentioned levels of difficulty, KNOME has the category
esoteric that includes information that is not typically learned at any particular stage of experi-
ence. Such concepts are learned only when users have special needs. Some may be familiar to
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beginners, yet unfamiliar to many experts. An example of an esoteric command is spice, a pro-
gram used for electronic circuit simulation. Only people who need to perform circuit simulations
would know how to use spice. This group would likely include beginning users as well as inter-
mediate and expert users. On the other hand, there are many expert UNIX users who do not
know about spice, because they have never needed to perform semiconductor circuit simulations.

Once information has been classified into levels of difficulty, inferences based on user
stereotypes can easily be represented as relations between the various user stereotypes and
difficulty levels. For example, Figure 3 shows a graphical KODIAK representation of one such
relation. This Figure shows the KODIAK representation of the fact that intermediate users know
most facts that have the difficulty level of mundane. The predicate of MOST is used, because
there is uncertainty as to whether any particular intermediate user will know any particular mun-
dane level fact. However, any intermediate level user will know most mundane level facts.
Table I summarizes the relation between different user stereotypes and different knowledge
difficulty levels.

INTERMEDIATE

KNOW32

MOST23

MUNDANE

HAS-DIFFICULTY23

SOMETHING23?
knower

most-type

fact

difficulty

task
such-that

Figure 3. KODIAK representation of: intermediates know most mundane facts.
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Table I. Relation between user stereotypes and knowledge difficulty levels.

The use of stereotype categories for both users and information is an example of a double-
stereotype system. Single stereotype systems like Grundy used stereotypes for users (e. g.,
FEMINIST, INTELLECTUAL, SPORTS-PERSON) but not for information (i. e., Grundy did
not have stereotypes for books such as GOTHIC-ROMANCE, DETECTIVE-STORY, or
SCIENCE-FICTION). KNOME is the first user modeling system to utilize double-stereotypes.

The use of stereotypes allows KNOME to predict what users are likely to know or not
know based on a partial user model. Once KNOME has accumulated a small number of facts
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(typically ˜3)2 about what users do or do not know during the course of a UC session, it can infer
the user’s level of expertise (see Section 3). Then based on the user’s level of expertise, KNOME
can predict whether or not the user is likely to know other facts. The small set of facts that allows
KNOME to infer the user’s level of expertise constitutes a partial user model, and the inference
that the user belongs to a particular stereotype represents a set of default inferences that are made
on the basis of the partial user model.

The use of stereotypes allows KNOME to efficiently group these default inferences
together. A system that did not use stereotypes would need to represent individually every partial
user model and all the default inferences from that partial user model. Since a partial user model
is simply a set of facts about a user, there is a combinatorically large number of partial user
models. So, representing all such partial user models and their default inferences would be
extremely inefficient. However many partial user models have similar default inferences. These
can be grouped together efficiently using user stereotypes. A double-stereotype system is even
more efficient, since it allows the system to encode for each fact only its level of difficulty rather
than having to encode its relationship to every user stereotype. The rest of a double-stereotype
system can then be encoded in a small number of statements relating the two levels of stereo-
types. This relationship in KNOME between user stereotypes and knowledge difficulty levels is
summarized in Table I.

KNOME currently has only one double-stereotype range for users. This range represents
user’s knowledge of UNIX file manipulation commands, UNIX information gathering com-
mands, and UNIX concepts and terminology. This corresponds to UC’s domain of expertise
within UNIX. If UC were extended to cover more of UNIX or even other operating systems, then
KNOME would need more ranges of double-stereotypes. For example, if UC also covered usage
of the vi and emacs editors, then KNOME would need separate expertise ranges for each of
these domains. KNOME would also need to encode how the user’s level of expertise in one
domain might be used to predict the user’s level of expertise in another domain. So, an expert in
using vi would undoubtedly have a high level of expertise in manipulating the UNIX file system.
On the other hand, a high level of expertise in using emacs does not necessarily indicate a high
level of expertise in using UNIX, since the emacs editor is commonly found in other operating
systems.

2.2. Modeling Individual Users

Individual users usually do not completely fit any one stereotype. As a result, a user model
that uses stereotypes must also encode how individual users differ from the stereotypes. KNOME
stores specific information about what individual users know and do not know. Such information
is stored as a collection of propositions about what a user knows or does not know. These propo-
sitions are represented using KODIAK. In reasoning about what a user knows, this collection of
individual facts is checked before resorting to reasoning from the user’s stereotype category.

To avoid storing too many individual facts about what users know, only those facts that
cannot be inferred with high likelihood from a user’s category are stored. For example, the fact
that a particular intermediate user knows the rm command (a simple command) does not need to
be stored explicitly, since it is directly inferable from the fact that intermediate users know all
simple facts. Also, the fact that a particular beginner knows the rm command does not need to be
stored. This is because beginners know most simple facts and hence it is likely that any
�������������������������������

2 The actual number varies, because facts may mutually reinforce KNOME’s evaluation of the user’s lev-
el of expertise, in which case fewer facts will be needed; or facts may provide contradictory evidence, in
which case more facts will be needed to evaluate the user’s level of expertise.
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particular beginner would know rm. On the other hand, the fact that a particular novice knows
the rm command does need to be stored explicitly, since that is not inferable with high likeli-
hood. Because novice users know just a few simple facts, it is unlikely that any particular novice
would know rm.

2.3. Types of Knowing

In UC, two senses of ‘‘know’’ are used. The first is the classical sense of know: the knower
believes that some proposition P is true, and P is true. An example of this sense of knowing is: ‘‘
the user knows that the cd command is used to change the current working directory.’’ There is
also another sense of know that is found in UC. This sense of know is closer to the colloquial
usage wherein knowing an object means being familiar with that object. However, in UC this
vague usage is made precise. For UC, knowing a command such as the UNIX-RM-COMMAND
implies knowing that there exists a command with the name rm, knowing the main purposes of
this command, knowing the format of the command, knowing the main effects of the command,
and knowing the main preconditions of the command.

The main purposes of a command are represented in UC using the planfor [CHIN83,
WILE86] relation, which relates a goal and the plan that is typically used to satisfy that goal. The
planfors of a plan are different from the effects of the plan, since not all of a plan’s effects can be
considered goals that the plan is typically used to satisfy. All goals in the planfors of a command
are also effects of the command, but some side effects of the command may not be part of its
planfors. For instance, calling the game program rogue with a file argument has a side effect that
is not found in the planfors of rogue. When rogue is given a file argument that is not a rogue-
format save file, then rogue arbitrarily removes the file. This is a side effect of the rogue pro-
gram, but it is not in any planfors, since users do not typically run rogue in order to remove files.

2.4. Dealing with Uncertainty

In any user model, the inferences that the model makes about the user contains some degree
of uncertainty. In KNOME, an attempt was made to avoid the use of numeric representations of
uncertainty, because their use tends to lead systems to overestimate the accuracy of their ratings
of uncertainty. So, UC uses a fixed number of simple rating levels instead: LIKELY,
UNLIKELY, VERY-LIKELY, VERY-UNLIKELY, SOMEWHAT-LIKELY, SOMEWHAT-
UNLIKELY, TRUE, FALSE, and UNCERTAIN (c. f. fuzzy logic [ZADE65]). KNOME also
uses predicates such as AFEW, MOST, ALL, and NONE (c. f. [ZADE82]). Such predicates and
ratings are used by KNOME to express the certainty of its inferences. For example, when
KNOME is asked whether an particular user knows some particular fact, it will return either
TRUE, LIKELY, UNLIKELY, FALSE, or UNCERTAIN. TRUE and FALSE indicate that
KNOME has complete confidence. LIKELY and UNLIKELY indicate some uncertainty. An
UNCERTAIN result indicates that KNOME does not have enough information to guess whether
the user does or does not know that fact.

To deduce whether a particular user knows some particular fact, KNOME uses a multi-step
inference process. First, KNOME checks the individual user model for that user. If the indivi-
dual user model records that this user does or does not know this fact, then the answer is, respec-
tively, TRUE or FALSE. If there is no specific information in the user’s individual user model,
KNOME next checks the stereotype category of the user. If users of the user’s stereotype do or
do not know that fact, then the answer is again TRUE or FALSE, respectively. If these checks
fail, KNOME resorts to inference based on the difficulty level of the fact. If the user’s stereotype
knows ALL facts of that difficulty level, then the answer is TRUE; if the stereotype knows
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MOST facts of that difficulty then, the answer is LIKELY; and if the stereotype knows AFEW
facts of that difficulty, then the answer is UNLIKELY. Finally, if this process fails due to lack of
information, then the answer is UNCERTAIN. This algorithm is summarized in the flow chart of
Figure 4.

does User
know Fact?

input:
User & Fact

TRUE

does
stereotype(User)

know Fact?
FALSE

stereotype(User)
knows how many facts of

difficulty(Fact)?

UNCERTAIN LIKELYUNLIKELY

F T

TF

NONE

AFEW

ALL

MOST

unknown

unknown

unknown

Figure 4. Algorithm for determining whether User knows Fact.

3. Deducing the User’s Level of Expertise

One of the main problems in user modeling is how to build up a model of a particular user.
In a user modeling system based on stereotypes, this means determining which stereotype(s) best
fit the current user and how that user differs from the stereotypes. In UC, this means that
KNOME must determine the user’s level of expertise in using UNIX.

3.1. Other Model Acquisition Systems

Various approaches to building up models of users have been used. Some systems such as
the Real Estate Agent [MORI85b] expect users to mention enough self-characteristics at the start
of a session so that the system can build up the user model. This works for situations such as a
real estate agent interchange with a client where the client is likely to mention what he/she
needs/wants at the beginning of a dialog. However, this does not extend to other consultation
situations where the user usually will not mention what he/she knows at the start of a session. In
such consultation situations the user typically begins by describing his/her problem to the consul-
tant.

Another approach is to ask the user for a self-description at the start of a session as in
Grundy [RICH79b] This is a reasonable approach for judging the user’s personality traits, but
does not work well for determining what the user knows. For judging the user’s level of exper-
tise, this approach is inaccurate, since the user’s concept of different levels of expertise like



- 10 -

‘‘intermediate’’ may differ considerably from the system’s concept or from other users’ concept
of an ‘‘intermediate.’’ Also, this requirement is not very practical for occasional users, since this
increases the overhead of using the system.

A third approach is to quiz users at the start of a session so that the system may estimate the
user’s expertise. For example, the MAP system [MACM83] helps a user to specify a correct user
model of how that user interacts with an operating system. Such an approach is extremely time
consuming. For tasks like intelligent operating system interfaces for which MAP was designed,
such a protracted process is somewhat more acceptable, since the user will realize its benefits
over a long period of time. However for interacting with a consultation system like UC where
typical sessions are short, such a process would be too time consuming. The casual user that only
needed the answer to a single question would be better off without a user model rather than hav-
ing to put up with such a lengthy process.

The most common approach in ITS (Intelligent Tutoring Systems) is to compare the user’s
performance with what a built-in expert would do. Differences in performance can then be attri-
buted to either a lack of user knowledge or differences in user knowledge such as improper pro-
cedures or rules. However such an approach is only applicable if the system can ‘‘look over the
shoulder’’ of the user. Consultation systems often cannot observe the user at work. Even when
this is possible, consultation systems should not be expected to constantly observe the user, since
human consultants do not do so.

To properly emulate a human consultant, the system should be able to assess the expertise
level of the user while talking to the user. None of the previously mentioned approaches model
this ability, which is a difficult problem in natural language understanding. One system that has
addressed this problem is the VIE-DPM user modeling system [KOBS85d]. However, VIE-DPM
uses only a syntactic interpretation of the user’s statements to derive the user’s beliefs. VIE-
DPM makes assumptions about the user’s beliefs based on the form of the user’s input (a yes/no
question, a wh-question, or a command) [KOBS85d, KOBS86a] or the presence of linguistic par-
ticles (e. g. ‘‘not’’) in the user’s input [KOBS85b]. Such a syntax-only system would not be able
to properly interpret phenomena such as indirect speech acts [SEAR69]. For example, ‘‘Can you
pass the salt?’’ is a yes/no question, but one should not assume from this question that the speaker
does not know whether the listener can pass the salt. Despite such limitations, VIE-DPM is a
step in the right direction.

3.2. KNOME’s Approach

KNOME uses the approach of inferring the user’s level during the course of a session. At
the beginning of a session, UC has no information about the user. In such cases, KNOME
remains open to the possibility that the user may belong to any stereotype. KNOME maintains a
list of candidate stereotypes to which the user may belong. KNOME also rates the likelihood that
the user may be a member of any particular stereotype. At the start, the likelihood ratings for
membership in any stereotypes is neutral, except for the beginner stereotype. The likelihood rat-
ing for beginner is initially slightly higher than neutral, since more of UC’s users tend to be
beginners rather than novices, intermediates, or experts. As more information is gathered about
the user during the session, the stereotypes may rise or fall in likelihood.

KNOME deduces the user’s level of expertise using a two phase process. First, during the
course of the conversation, KNOME deduces individual facts about what the user does or does
not know. As such facts are gathered, KNOME combines the evidence to adjust the likelihood
ratings for the different levels of expertise. Eventually KNOME identifies the stereotype level of
expertise to which the user belongs.
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3.3. Collecting Evidence

The first step in the process of deducing the user’s level of expertise is to collect evidence
on that subject. Typically, such evidence takes the form of individual facts about what the user
knows or does not know. Such facts and other forms of evidence can be deduced from what the
user says (or does not say) and from an analysis of the user’s goals. KNOME distinguishes six
classes of inferences that were found to be useful in UC for determining the user’s level of exper-
tise. These inference classes are summarized in Table II, which lists the inference class and the
kinds of inferences that are commonly found in each inference class.

� �����������������������������������������������������������������������������������������������������������������������������������������
Inference

Class
Kinds of Inferences
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Claim user states that user does (not) know ?x → user does (not) know ?x

Goal user wants to know ?x → user does not know ?x

Usage user uses ?x → user knows ?x

Background user mentions his/her background → user knows as much as the
stereotype indicated by the background

Query-Reply system asks if user knows, user replies → user’s reply

No-Clarify system uses new terminology, user does not ask for clarification
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Table II. Taxonomy of deduction types for inferring what users know.

The first class of inferences, Claim inferences, applies when the user claims to know or not
know something. The second class, Goal inferences, applies when the system can infer that the
user wants to know something. In such cases, the system can also infer that the user must not
know whatever is wanted, since if the user already knew it, then the user would not have the goal
of knowing it. The third class, Usage inferences, are made when the user properly uses some
command or terminology. KNOME can then deduce that the user must know the command or
terminology. The fourth class, Background inferences, are made when the user mentions some
relevant information about his/her background. The fifth class of inference, Query-Reply, applies
when the system queries the user about the user’s knowledge and the user replies. The last type
of deduction, No-Clarify, is made when the system uses some new terminology that the user may
or may not know. If the user does not ask for a clarification of the terminology, then the system
can assume that the user probably already knew the terminology. Each of these classes of infer-
ence is described in greater detail below.

Claim inferences are concerned with direct statements by the user about what the user does
or does not know. Examples of such statements and the inferences that KNOME makes based on
the statements include:

I already know about mkdir.
→ the user knows the mkdir command
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I don’t know how to move a file.
→ the user does not know how to move a file
→ the user does not know that mv is a plan for moving files
→ the user does not know the mv command

In the first example, the user claims to already know the mkdir command. This statement is
not as straightforward as it might seem, since the user and the system may not agree on what it
means to know a command. A reasonable interpretation of what a user might mean is that the
user knows how to use mkdir, knows the main purpose of mkdir and knows the main effects and
preconditions of mkdir. This interpretation is the same as what UC means when it encodes that a
user knows a command (see Section 2.3).

Of course, it may be that the system should not believe the user’s statement about knowing
mkdir. It is possible that the user may be confused and does not actually know mkdir. But, there
is always doubt about what someone might really know, no matter how strong the evidence. For
example, even if the system were to watch the user use the mkdir command successfully, it is
possible that the user may have actually wanted to create a file instead of a directory. However,
in none of these cases is there any reason to doubt the user. Unless KNOME obtains evidence to
the contrary, it assumes that the user really does (or does not) know something when the user
makes such a claim.

The second example requires somewhat more complex processing than the first example.
In the second example, the user claims not to know how to move a file. Since UC knows that mv
is used to move files, KNOME is able to deduce that the user does not know that mv is a plan for
moving files. Finally, because the user does not know one of the main purposes of the mv com-
mand, KNOME deduces that the user must not know mv.

KNOME only stores information about levels of difficulty for objects and not for descrip-
tions, so only facts about a user knowing (or not knowing) specific objects (e. g. commands, con-
cepts, etc.) can be used in deducing the user’s level of expertise. This approach eliminates redun-
dancy, since any object will have many possible descriptions. For example, the user could have
referred to mv by ‘‘how to rename a file’’ rather than ‘‘how to move a file.’’ So, the fact that the
user does not know mv is useful for deducing the user’s level of expertise, but the descriptive fact
that the user does not know how to move a file cannot be directly used. UC must first determine
that this description applies to the mv command before it can be used for deducing the user’s
level of expertise. In UC, descriptions of the purpose of commands are interpreted by UC’s
UNIX planner [WILE86]. After UC’s UNIX planner has determined the command referred to by
the command description, KNOME can use this information in deducing the user’s level of
expertise.

Goal inferences apply when UC can deduce the user’s goals. If UC can infer that the user
wants to know something, ?x, then KNOME can deduce that the user does not know ?x and also
does not know the answer to ?x. For example, if the user asks ‘‘How can I delete a file?’’ then
UC can deduce that the user’s goal is to know how to delete a file. From this goal, KNOME can
deduce that the user does not know how to delete a file. Then, after UC computes that a plan for
deleting a file is to use the rm command, KNOME can infer that the user does not know this
planfor relation between deleting files and the rm command. Finally, since the planfor relation is
central to UNIX commands, KNOME can deduce that the user does not know rm in the sense
that the user is not familiar with rm (see Section 2.3).

In UC, the initial deduction about the user’s goal is made by UC’s goal analysis component,
PAGAN [WILE86]. PAGAN computes the user’s plans and goals from the dialogue, and can
handle phenomena such as indirect speech acts. In some cases, PAGAN utilizes KNOME’s
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model of the user’s knowledge in deducing the user’s goals. For example, if the user asks, ‘‘Do
you know how to compact a file?’’, then the choice between the direct interpretation (the user
wants to know if UC knows how to compact a file) and the indirect interpretation (the user wants
to know how to compact a file) depends partly on whether or not KNOME believes the user
already knows the compress command. If KNOME does believe that the user is likely to know
compress, then that will bias PAGAN toward the direct interpretation that the user is testing UC
(not uncommon), and vice-versa.

This process may seem circular, since PAGAN’s analysis of the user’s goal depends on
KNOME, while KNOME’s analysis of the user’s knowledge depends on PAGAN. However,
KNOME’s initial evaluation of whether the user knows is only a prediction from a partial user
model. This prediction does not determine PAGAN’s interpretation, because PAGAN must also
take into account other factors in its analysis. One such factor is the frequency of usage of the
direct versus indirect interpretations. PAGAN is biased toward adopting the more frequent usage.
Another factor is the the context of the dialog. When UC is configured in knowledge acquisition
mode as UCTeacher [MARJ85], then the direct interpretation (i. e. the user is testing UC’s
knowledge), is inherently more likely than the indirect interpretation. KNOME’s beliefs about
the state of the user’s knowledge is only one factor in PAGAN’s analysis, which then leads
KNOME to its own inference about the state of the user’s knowledge.

Besides questions on how to do something, Goal deductions apply to many other kinds of
queries such as:

What is a directory?
→ the user wants to know what is a directory (goal)
→ the user does not know what is a directory
→ the user does not know the directory concept

Can you tell me how to find out who is on the system?
→ the user wants to know who is on the system (goal)
→ the user does not know who is on the system

What does ruptime do?
→ the user wants to know the effects of the ruptime command (goal)
→ the user does not know the effects of the ruptime command
→ the user does not know the ruptime command

All of the above queries represent Goal deductions, since PAGAN can deduce that the user
wants to know some information. Based on this initial deduction, KNOME can infer that the user
does not know the information that is sought.

Usage deductions are made when the user applies some plan/procedure correctly, or uses
some specialized terminology correctly. Examples include:

I tried typing ‘‘rm foo,’’ but I got the message, ‘‘rm: foo not removed.’’
→ the user knows the rm command

How can I find out the inode of a file?
→ the user knows the inode concept
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I tried typing ‘‘del foo’’, but I got the message ‘‘del: Command not found.’’
→ the user knows the DOS del command
→ the user does not know the UNIX rm command

In the first example, KNOME can deduce that the user knows the rm plan. In the second
example, KNOME deduces that the user knows the meaning of the term ‘‘inode.’’ This is the
main type of deduction used in ITS in which the system observes the user at work solving prob-
lems. This type of deduction is suggested by [RICH83] for consulting situations.

In general, whenever the user uses specialized terminology correctly, KNOME infers that
the user must know the concept denoted by the terminology. In UC, terms include UNIX com-
mand names and operating system terminology such as ‘‘file protection’’, ‘‘directory,’’ and
‘‘inode.’’ Checking that the user used the terms correctly is not very sophisticated in KNOME.
The first check is simply that the term must be used in an English sentence that UC can parse and
understand. However, the fact that the user used a term in an understandable sentence does not
automatically mean that the user knows the meaning of the term. For example, if the user asks,
‘‘What does rm do?’’, KNOME should not infer that the user knows the rm command. The same
principle applies when the user states, ‘‘I don’t know the rm command.’’ In these types of sen-
tences, KNOME actually first infers that the user does know rm and then reverses its inference
later based on the fact that the user has the goal of knowing the effects of rm, which is a Goal
type inference. In cases when KNOME has evidence both that the user knows something and that
does not know it, KNOME always assumes that the user doesn’t know, since it is always possible
that the user just seems to know and in fact doesn’t know.

The last example is somewhat more complex than the previous examples. In this case,
KNOME first infers that the user knows the DOS del command. Then, since the DOS del com-
mand is used to delete files and the user mistakenly tried to use the del command, KNOME can
deduce that the user does not know the UNIX command for deleting files, that is, the rm com-
mand. In general, whenever the user tries to use a foreign command in UNIX, then KNOME
assumes that the user does not know the corresponding UNIX command. This correspondence is
found by looking at the goal of the foreign command and finding a UNIX command that is a plan
for the same goal.

Background deductions are made when the system learns some relevant fact about the
user’s background. Examples include:

I am a fourth year computer science graduate student.
→ the user is a member of the 4TH-YEAR-CS-GRAD stereotype
→ the user is LIKELY to be an EXPERT

In my CS2 class, . . .
→ the user is a member of the CS2-STUDENT stereotype
→ the user is LIKELY to be a BEGINNER

In the first example, KNOME infers that the user is a member of the 4TH-YEAR-CS-
GRAD stereotype. This allows KNOME to further infer that the user is LIKELY to be an expert,
because most 4th year CS graduate students are experts. In the second example, UC’s Concretion
mechanism infers from ‘‘my CS2 class’’ that the user is a CS2-STUDENT. Based on this,
KNOME then infers that the user is a member of the CS2-STUDENT stereotype, and so is likely
to be a beginner.
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To make Background deductions, KNOME uses a collection of rules, one for each stereo-
type related to the user expertise levels. For example, the rule for CS2-STUDENT is: if the user
is a CS2-STUDENT, the the user is LIKELY to be a BEGINNER.

Query-Reply deductions are made after the system asks whether or not the user knows some
fact. The user’s answer usually provides information about whether or not the user knows the
fact. For example, if a system were to ask the user, ‘‘Do you know the rcp command?’’ and the
user answers ‘‘Yes,’’ then the system can infer that the user knows the rcp command. This type
of deduction has not been implemented in KNOME, since the current version of UC does not ask
the user whether the user knows particular facts.

No-Clarify deductions show how a system might obtain information based on what the user
does not say. If the system uses some terminology that the system is not sure of the user knows,
then the system can infer that the user does know this terminology provided that the user does not
ask for a clarification and the meaning of the terminology is not evident from the context. Such
deductions are more complex than the previous ones, since they require that the system keep
track of the conversation. This type of deduction has not been implemented in KNOME, since
UC tries to avoid the use of terminology unfamiliar to the user.

In KNOME, deductions are made using a rule-based system. The actual rules were shown
in Table II, with the exception of the Background type of inference. The Background type infer-
ence is actually implemented by a collection of rules. For every type of user background that
gives some clue about the user’s level of expertise in using UNIX, there is a rule. Since there are
potentially many types of user backgrounds that are relevant, there will be a corresponding
number of such rules. For example, if the user is a CS2 student, then that is a relevant piece of
background information which provides some clue about user’s level of expertise in using UNIX.
On the other hand, the fact that the user is a scuba diver, likes blueberry pies, or is a bachelor are
irrelevant. The particular Background rules that have been implemented in KNOME are shown
in Table III, which also lists the auxiliary inferences which support the major inferences that were
shown in Table II.

�����������������������������������������������������������������������������������������������
user is a fourth year
CS graduate student

→ user is likely to be an expert

user is a CS2 student → user is likely to be a beginner

user does (not) know ?x,
where ?x is a description,
and ?y is the referent of ?x

→ user does (not) know ?x
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a planfor of command ?x
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the effects of command ?x

→ user does (not) know ?x
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Table III. Other rules used to infer what users know.

Such rules are implemented using if-detected daemons [CHIN87], which are daemons that
detect specific configurations of knowledge in UC’s KODIAK knowledge bases. For example,
the first rule shown above would normally fire after PAGAN has inferred that the user wants to
know something. Then the action part of the rule allows KNOME to infer that the user does not
know some fact.
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These classes of deductions were found to be important in the domain of a natural language
consultation system. Other domains may provide other clues as to what a user knows. For exam-
ple, in a domain where the user provides speech input, a system may be able to make deductions
about the user’s knowledge when the user mispronounces technical words.

3.4. Combining Evidence

After collecting evidence that the user does or does not know certain facts, the system must
combine the evidence to determine the user’s level of expertise. Facts are particular pieces of
information about what the user does or does not know as described in the previous section. Note
that a single user statement or query may produce several facts. Each unique fact is treated
equally in determining the user’s level of expertise. When KNOME deduces that the user does or
does not know something more than once (perhaps from different user statements), only the first
such fact is used in deducing the user’s level of expertise. The rest only reconfirm the first fact,
so they do not contribute to determining the user’s level of expertise.

At the start of a session, KNOME has very little idea about the level of expertise of the user.
KNOME’s beliefs about the user’s level is encoded as ratings of the likelihood that the user is a
member of a candidate stereotype category. As evidence is gathered during the dialog, KNOME
continuously adjusts its ratings concerning the likelihood that the user might be a member of any
particular stereotype. Eventually, KNOME gathers enough evidence to peg the expertise level of
the user. Typically, this takes about three interchanges. After making this decision, KNOME
does not change its estimation of the user’s level. This works well in UC where typical sessions
are short and it is advantageous to quickly guess the user’s level of expertise. A more flexible
approach is to keep a running account of likelihoods as in SC-UM [NESS87], a user modeling
system that is based on the methodology demonstrated in KNOME. However, a system that does
not commit to a particular interpretation of the user’s level of expertise cannot avoid the need to
store information that can be predicted from the user’s stereotype. This becomes inefficient as
more is learned about the user.

There are two types of conclusions that may be drawn from any particular fact about what
the user knows or does not know. First, the evidence may be enough to eliminate some stereo-
types from consideration. An example is when the user does not know a simple fact such as the
rm or ls commands. In these cases, KNOME can rule out the possibility that the user may be an
intermediate or an expert, since all intermediates and experts know all simple facts (see Table I).
So, if the user does not know a simple command like rm or ls, then the user could not possibly be
more advanced than a beginner.

Even when the evidence is not enough to rule out a category, the system can still infer that
the category is either more likely or less likely. KNOME does this by increasing or decreasing
the likelihood rating of candidate categories.

Likelihood ratings are combined using the following linear scale: FALSE, VERY-
UNLIKELY, UNLIKELY, SOMEWHAT-UNLIKELY, UNCERTAIN, SOMEWHAT-LIKELY,
LIKELY, VERY-LIKELY, TRUE. The UNCERTAIN rating is neutral. It implies that the sys-
tem does not believe that membership in that category is either likely or unlikely. Likelihood rat-
ings combine linearly according to the scale. For example, a rating of LIKELY when combined
with another LIKELY rating produces a TRUE rating. Also a SOMEWHAT-LIKELY rating
combined with a VERY-UNLIKELY rating produces an UNLIKELY rating.

To see why KNOME might change a likelihood rating, consider what happens when
KNOME determines that a user does not know some mundane level fact. In this case, KNOME
infers that the user cannot be an expert, since experts know all mundane facts. Also, KNOME
considers it somewhat less likely that the user might be an intermediate, since intermediates
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know most mundane level facts. Similarly, the user is considered somewhat more likely to be a
beginner, since beginners know a few mundane facts. Finally, since the stereotypical novice does
not know any mundane facts, the user is considered more likely to be a novice.

Table IV shows the basis for these deductions. Given that a user does or does not know a
fact of some difficulty level, and given that a particular user stereotype knows none/afew/most/all
of the facts of that difficulty level, then KNOME can deduce that the user belongs to that stereo-
type with the additional likelihood shown in Table IV.
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Table IV. Deductions when user does (not) know some fact.

Combining Table IV with Table I, yields Tables V and VI. Given the particular stereotypes
used in KNOME, these two tables show the deductions that are made when KNOME determines
that a user does (Table V) or does not (Table VI) know some fact that has the difficulty level indi-
cated. Deductions consist of eliminating categories (FALSE) or increasing/decreasing the likeli-
hood ratings of categories. Since these two Tables are easily derivable from the previous two,
KNOME does not actually store the information of these two Tables internally. Table I is
represented declaratively as a KODIAK network that is accessible to the rest of UC. Only Table
IV is stored internally in KNOME. This Table is used when needed to derive the likelihood rat-
ing differences shown in Tables V and VI.
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Table V. Deduction when user knows some fact.
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Table VI. Deduction when user does not know some fact.

When the likelihood rating of a stereotype reaches TRUE, it is selected as the user’s
category. The user’s category can also be deduced by elimination. Candidate stereotypes are
eliminated when their likelihood drops to FALSE. When all but one candidate have been elim-
inated, the remaining candidate is selected. During the period before the final decision, KNOME
works under the provisional assumption that the user belongs to the category with the highest
current likelihood. In the case of a tie (i. e. when there are two or more candidate categories with
the same highest likelihood rating), the lower level of expertise is chosen to represent the user
temporarily. Using the lower level helps prevent KNOME from overestimating the user before
KNOME is sure about the user’s level of expertise. Underestimating the user’s level may result
in more verbose descriptions, but does not lead KNOME to leave out information that the user
may not know. Also, inferences that are made based on these provisional stereotype assumptions
are marked as having greater uncertainty.

3.5. Examples

To see how KNOME deduces a user’s level of expertise, consider the following traces from
the UC sessions shown in Figures 5 and 6. At the start of either session, UC does not have any
information about either user. In such cases, UC starts with a slight bias toward believing that the
user is a beginner, because more UC users tend to be beginners. Hence the likelihood rating for
the user being a beginner is SOMEWHAT-LIKELY, whereas the likelihood ratings for the user
being a novice, intermediate or expert are all UNCERTAIN (the neutral likelihood rating).

In Figure 5, KNOME deduces that the user is a novice, because the user does not know
either the more or lpr commands, which are both simple commands, nor the rwho command,
which is of mundane difficulty. When KNOME first deduces that the user does not know the
more command, KNOME can draw a number of inferences based on the fact that the user does
not know a simple command. Since experts and intermediates know all simple commands (see
Table I), KNOME rules out the possibility that the user might be an intermediate or an expert.
Also, since beginners know most simple facts, KNOME lowers the likelihood rating for the user
being a beginner from SOMEWHAT-LIKELY to UNCERTAIN. Likewise, since novices know
only a few simple facts, KNOME raises the likelihood rating for the user being a novice to
SOMEWHAT-LIKELY.

When KNOME next determines that the user does not know the simple command, lpr,
KNOME makes additional inferences. KNOME raises the likelihood rating of the user as a
novice to LIKELY and lowers the likelihood rating of the user as a beginner to SOMEWHAT-
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UNLIKELY. Finally when KNOME finds that the user does not know the mundane command
rwho, the likelihood rating for the user being a novice rises from LIKELY to TRUE. TRUE is
the threshold (nothing can have a higher likelihood than TRUE), so KNOME concludes that this
user is a novice.
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Welcome to UC (Unix Consultant) version 3.23
To a ’#’ prompt, please type in your questions
about the UNIX file system in English.
To leave, just type ’ˆD’ or ’(exit)’.

Hi.
How can I help you?

# What will display a file on my terminal?

KNOME: Asserting *USER* does not know ACTION12?

KNOME: Asserting *USER* does not know PLANFOR40

KNOME: Asserting *USER* does not know UNIX-MORE-COMMAND0
KNOME: Since UNIX-MORE-COMMAND0 is a UNIX-MORE-COMMAND,

asserting *USER* does not know UNIX-MORE-COMMAND
KNOME: UNIX-MORE-COMMAND has difficulty SIMPLE, so deducing:
KNOME: ruling out *USER* = INTERMEDIATE
KNOME: ruling out *USER* = EXPERT
KNOME: *USER* is SOMEWHAT-LIKELY to be NOVICE

=> likelihood(*USER* = NOVICE) = SOMEWHAT-LIKELY
KNOME: *USER* is SOMEWHAT-UNLIKELY to be BEGINNER

=> likelihood(*USER* = BEGINNER) = UNCERTAIN

Use more.
For example, to display the file named foo, type ‘more foo’.

# How can I print a file on the lineprinter?

KNOME: Asserting *USER* does not know UNIX-DLPR-COMMAND0
KNOME: Since UNIX-DLPR-COMMAND0 is a UNIX-DLPR-COMMAND,

asserting *USER* does not know UNIX-DLPR-COMMAND
KNOME: UNIX-DLPR-COMMAND has difficulty SIMPLE, so deducing:
KNOME: *USER* is SOMEWHAT-LIKELY to be NOVICE

=> likelihood(*USER* = NOVICE) = LIKELY
KNOME: *USER* is SOMEWHAT-UNLIKELY to be BEGINNER

=> likelihood(*USER* = BEGINNER) = SOMEWHAT-UNLIKELY

Use lpr.
For example, to print the file named foo, type ‘lpr foo’.

# What does rwho do?

KNOME: Asserting *USER* does not know STATE11?

KNOME: Asserting *USER* does not know HAS-EFFECT23

KNOME: Asserting *USER* does not know UNIX-RWHO-COMMAND0
KNOME: Since UNIX-RWHO-COMMAND0 is a UNIX-RWHO-COMMAND,
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asserting *USER* does not know UNIX-RWHO-COMMAND
KNOME: UNIX-RWHO-COMMAND has difficulty MUNDANE, so deducing:
KNOME: asserting *USER* = NOVICE

rwho is used to list all users on the network, list their tty,
and list their login time.

Figure 5. UC session with an novice.
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In Figure 6, KNOME deduces that the user is an intermediate. First, KNOME deduces that
the user knows what an inode is, since the user mentions ‘‘the inode of a file.’’ Since knowing
about inodes is a complex fact, KNOME is able to eliminate the novice and beginner categories
as possibilities. KNOME also lowers the likelihood rating of the user as an intermediate and
raises the likelihood rating of the user as an expert. However, these changes in likelihood ratings
are canceled out by KNOME’s deduction from the same user query that the user does not know
the ls -i command, which is of complex difficulty. Next, KNOME deduces that the user does not
know the rwho command, which is of mundane difficulty. This allows KNOME to eliminate the
possibility that the user might be an expert, leaving KNOME to conclude that the user is an inter-
mediate, since that is the only possibility left.
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Welcome to UC (Unix Consultant) version 3.23
To a ’#’ prompt, please type in your questions
about the UNIX file system in English.
To leave, just type ’ˆD’ or ’(exit)’.

Hi.
How can I help you?

# Can you tell me how to find out the inode of a file?

KNOME: Asserting *USER* knows INODE1
KNOME: Since INODE1 is a INODE,

asserting *USER* knows INODE
KNOME: INODE has difficulty COMPLEX, so deducing:
KNOME: ruling out *USER* = NOVICE
KNOME: ruling out *USER* = BEGINNER
KNOME: *USER* is SOMEWHAT-UNLIKELY to be INTERMEDIATE

=> likelihood(*USER* = INTERMEDIATE) = SOMEWHAT-UNLIKELY
KNOME: *USER* is SOMEWHAT-LIKELY to be EXPERT

=> likelihood(*USER* = EXPERT) = SOMEWHAT-LIKELY

KNOME: Asserting *USER* does not know ACTION15?

KNOME: Asserting *USER* does not know PLANFOR390

KNOME: Asserting *USER* does not know UNIX-LS-i-COMMAND0
KNOME: Since UNIX-LS-i-COMMAND0 is a UNIX-LS-i-COMMAND,

asserting *USER* does not know UNIX-LS-i-COMMAND
KNOME: UNIX-LS-i-COMMAND has difficulty COMPLEX, so deducing:
KNOME: *USER* is SOMEWHAT-LIKELY to be INTERMEDIATE
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=> likelihood(*USER* = INTERMEDIATE) = UNCERTAIN
KNOME: *USER* is SOMEWHAT-UNLIKELY to be EXPERT

=> likelihood(*USER* = EXPERT) = UNCERTAIN

Type ‘ls -i’.

# What does rwho do?

KNOME: Asserting *USER* does not know UNIX-RWHO-COMMAND0
KNOME: Since UNIX-RWHO-COMMAND0 is a UNIX-RWHO-COMMAND,

asserting *USER* does not know UNIX-RWHO-COMMAND
KNOME: UNIX-RWHO-COMMAND has difficulty MUNDANE, so deducing:
KNOME: ruling out *USER* = EXPERT
KNOME: only one candidate left, so asserting *USER* = INTERMEDIATE

rwho is like who, except rwho is for all users on the network.

Figure 6. UC session with an intermediate.
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Even before KNOME has completely determined the expertise level of the user, KNOME’s
partial user model is still useful to the other components of UC. In the dialog with the novice,
UC chooses to provide the user with examples of command-formats based on KNOME’s initial
deduction that the user is SOMEWHAT-LIKELY to be a novice. On the other hand, UC does not
provide examples of simple command-formats to the intermediate user who presumably would
already know such simple formats. Also, UC is able to use a simile to explain to the intermediate
user the rwho command in terms of the who command. The novice user was given a complete
explanation of rwho, since KNOME believed that the user would not know the who command
and so would not understand the simile.

4. Modeling UC’s Knowledge

Besides modeling what users know, KNOME also models what UC itself knows. Such a
model allows KNOME to differentiate between cases where UC lacks knowledge and where the
user has a

4.1. Open vs. Closed World Models

An important problem in AI knowledge bases is to define the limitations of the knowledge
base. One solution is to use a closed world model, which states that the knowledge base knows
everything (see [REIT78]). In a closed world model, anything that is neither in the knowledge
base nor deducible from the knowledge base is deemed false. Such a model works only for com-
pletely self-contained micro-worlds such as airline reservation systems that know all airline
flights. For real world applications, a closed world model is untenable, since real world
knowledge bases cannot know everything even in just their own area of expertise. So a system
with a closed model would be prone to giving out false information such as claiming that objects
that the system did not happen to know about do not exist, claiming that actions that the system
could not figure out cannot be done, etc.
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The other extreme is an open world model, which states that anything that is neither in the
knowledge base nor directly deducible from the knowledge base is not known. This model has a
significant problem with ruling out things that do not exist. For example, a knowledge base
might list all the participants in any particular relation. Using a closed world model, the system
would know that these are the only participants of that relation. However, in an open world
model, the system cannot rule out that there might not be other participants unless the knowledge
base explicitly encodes for all other possible participants that they do not participate in that rela-
tion. Since there are usually many more such negative facts than positive facts, encoding such
facts in a knowledge base is extremely inefficient.

Neither model is quite adequate. A closed world model allows a system to rule out spurious
hypotheses easily, but is prone to ruling out true facts that were not in the knowledge base. An
open world model allows the system to be non-committal about hypotheses that are not covered
by its knowledge base, but does not allow it to rule out spurious hypotheses when the system
does have complete information. The ideal system needs to combine the best of both models. It
needs to be assertive in ruling out spurious hypotheses when the system does have complete
information, yet remain non-committal when it does not have complete information. To do this,
a system needs to know the limitations of its own knowledge.

4.2. Meta-Knowledge

UC uses an open world model augmented by knowledge about the coverage limitations of
the knowledge base. By using an open world model, UC is able to remain non-committal about
information that is not in its knowledge base. This allows UC to profess ignorance about things
outside its area of expertise. On the other hand, when UC does have complete information about
an area, this is explicitly encoded in KNOME’s model of UC’s knowledge. In a sense, this is a
model of what UC itself knows. Such knowledge is called meta-knowledge .

The term meta-knowledge was previously used for AI knowledge bases by [BARR77,
DAVI77]. [BARR77] argues that AI knowledge bases need meta-knowledge, i. e. the system’s
knowledge about ‘‘the extent and limit of available knowledge, what facts are relevant in a given
situation, how dependable they are, and how they are to be used.’’ [DAVI77] describes meta-
knowledge in the TEIRESIAS system and its use in knowledge acquisition and in selecting which
rules to try applying first through the use of meta-rules. [SMID83] use meta-level reasoning to
find all of the solutions to a problem. Although they use a closed world assumption, they suggest
that other systems for which the closed world assumption is not valid can encode limits on the
number of solutions and use these limits to cut off inference. Such limits can be considered a
type of meta-knowledge.

In KNOME, meta-knowledge is not primarily used for the same purposes as in
TEIRESIAS; rather it is primarily used in dealing with user misconceptions. So KNOME’s
meta-knowledge describes the coverage limitations of UC’s knowledge base. Chapter III, Sec-
tion 4 describes how user misconceptions are detected and how meta-knowledge is used in
correcting the user’s misconceptions.

4.3. Representation of Meta-Knowledge

Meta-knowledge in KNOME is represented explicitly as a collection of KODIAK state-
ments about what UC knows. Examples of meta-knowledge include the fact that UC knows that
it knows all file manipulation commands and the fact that UC knows all possible side effects for
all known simple commands, most known mundane commands, and a few known complex com-
mands. The fact that UC does not know all of the side effects for known commands is due to not
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enough programming and the knowledge limitations of UC’s programmers rather than any
inherent limitation of UC.

Figure 7 shows the representation of KNOME’s meta-knowledge about simple commands.
KNOW1 states that UC knows all of the effects of simple commands, and KNOW2 represents the
fact that UC knows all of the options of simple commands.

KNOW2

UC ALL2

SIMPLE-COMMAND1?

HAS-OPTION1?
OPTION1?

KNOW1

ALL1

ACTION1?

HAS-EFFECT1?

knower fact

such-that all-type

command-of-option
option

knowerfact

all-type

such-that

effect-of-command
command-of-effect

Figure 7. KODIAK representation of some of UC’s meta-knowledge.

Besides the explicit meta-knowledge modeled by KNOME, UC also has meta-knowledge
that is represented implicitly within the KODIAK representation language. For example, any
aspectual of a relation can be constrained to be filled by only certain classes of objects. This
effectively constrains the way in which different objects may be related to other objects in
KODIAK. Of course, these constraints are sometimes violated when users speak metaphorically.

4.4. Other Approaches to User Misconceptions

Other systems that have dealt with user misconceptions use one of two common
approaches. The first approach compiles an a priori list of possible user misconceptions for use in
detecting misconceptions. This is common among ITS (Intelligent Tutoring Systems) (e. g.
[BROW78, STEV79, SLEE81, JOHN84, REIS85, ANDJ85b]). These systems are not very flexi-
ble, since they cannot deal with any user misconceptions that are not listed among their precom-
piled a priori lists.

Another approach attempts to detect classes of misconceptions. Among the best of these is
Kaplan’s CO-OP natural language database-query system [KAPS83], which handles a class of
faulty user presumptions. An example from CO-OP is shown in Figure 8.
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User: Who advises projects in area 36?

CO-OP: I don’t know of any area #36.

Figure 8. CO-OP example with hedged response to misconception.
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The user in the CO-OP example believes that there is an area 36. In processing the user’s
query, CO-OP finds that there is no area 36 listed in its database, so it detects a possible user



- 24 -

misconception: the user may mistakenly presume that there is an area 36 when in actuality there
might not be an area 36. Note that CO-OP’s reply does not actually correct the user’s miscon-
ception, rather it hedges , claiming that it does not know of any area #36. By hedging, CO-OP
cannot correct the user’s misconception, but can only suggest to the user that the user might be
mistaken. CO-OP is unable to take corrective action, because it does not assume either an open
or closed world model for its database. As a result, it cannot tell from the fact that there is no
area 36 in its database whether there really is no area 36, or if area 36 was just left out of its data-
base. Unlike UC, in which the KNOME subcomponent models UC’s own knowledge with
meta-knowledge (see Chapter II, Section 4),

A corrective response is shown in Kaplan’s example of a cooperative human, shown in Fig-
ure 9.
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User: Which students got a grade of F in CS105 in Spring 1980?

Human: CS105 was not given in Spring 1980.

Figure 9. Kaplan’s example of a cooperative human respondent.
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Because CO-OP does not adopt either an open or closed world model, it would not be able
to deny that CS105 was given in Spring 1980 as in Kaplan’s example of a cooperative human.
CO-OP would only be able to suggest a misconception by saying something like, ‘‘I don’t know
of any CS105 in Spring 1980.’’ To be able to actually correct the user, CO-OP would need to
know that the absence of a CS105 among the Spring 1980 courses implies that there was no
CS105 offered then. That is, CO-OP would need meta-knowledge. Since CO-OP was designed
to be easily transportable among different databases, it did not have such non-transportable
meta-knowledge.

The DAIQUIRY module of HAM-ANS [MARB87] extended the misconception approach
of CO-OP to include conceptual failures in which the user asks about objects not modeled by the
database. Because DAIQUIRY, like CO-OP, did not have meta-knowledge, it too could only
hedge its replies to the user. For example, it would reply, ‘‘The system has no knowledge about
‘SHIP’,’’ when SHIP was not in its conceptual hierarchy.

[MAYS80b, WEBB83] report efforts to deal with user misconceptions that can be found by
constraint violations on relations. For example, if the TEACH relation is constrained to relate
only FACULTY to COURSES, then the system can detect a misconception if the user asks about
UNDERGRADUATES that TEACH. This type of relational constraint can be considered a kind
of implicit meta-knowledge. It differs from the explicit meta-knowledge of KNOME in that rela-
tional constraints can only be used to detect misconceptions about what can be the case, and not
misconceptions about what is the case. For example, relational constraints can be used to deduce
that only commands can have command-options, but not whether any particular command has
any particular command-option.

After a user misconception has been detected, it must be corrected. [MCCO85a, MCCO*]
discuss strategies for correcting object-oriented misconceptions. [QUIL*] discusses correcting
plan-oriented misconceptions in AQUA. AQUA assumes a closed world model for its knowledge
base of plans, called an ‘‘advisor model.’’ As a result of this assumption, AQUA can only model
perfect advisors that have complete knowledge of the domain. If AQUA’s advisor model were
incomplete, then AQUA would tend to mislead the user. For example, if an obscure side effect of
a plan were inadvertently left out of AQUA’s knowledge base, then AQUA would mislead the
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user to believe that the plan did not have this a side-effect. Some form of meta-knowledge would
be required to allow AQUA to model an advisor without perfect knowledge of the domain.

4.5. Detecting Misconceptions in UC

User misconceptions are detected by UC during the processing of the user’s query.
Currently, UC only handles relational misconceptions, that is, misconceptions in which the user
believes a relation holds between two objects when in fact, such a relation cannot hold or does
not happen to hold between those particular objects. UC does not handle object-oriented miscon-
ceptions, such as those for which [MCCO85a] discusses correction strategies.

In processing the user’s query, UC checks to see whether all relations mentioned by the user
in the user’s query have a counterpart in UC’s knowledge base. For example, if the user asks,
‘‘What does ls -e do?’’, then UC’s parser/understander understands part of this as a HAS-
OPTION relation relating an instances of the ls command and an instance of the -e option.
While looking for the effects of the command, UC finds that there is no corresponding HAS-
OPTION relation between the ls command and the -e option in UC’s knowledge base. At this
point, UC suspects that the user may have a misconception.

In order to see whether the user actually has a misconception, or whether UC just lacks
information about this particular option of this command, UC checks with the KNOME subcom-
ponent, which models the limitations of UC’s knowledge base using meta-knowledge (see
Chapter II, Section 4). If KNOME has meta-knowledge that UC knows all of the options of this
command, then UC knows that the user has a misconception. On the other hand, if the options of
this command are not covered by KNOME’s meta-knowledge, then UC cannot assume that the
user has a misconception. Instead, UC must assume that it lacks information about this
command/option combination.

4.6. Correcting Misconceptions

After UC has determined either that the user has a misconception or that UC lacks
knowledge, UCEgo decides how UC should reply to the user. When the user has a misconcep-
tion, UCEgo tries to correct this misconception by denying that what the user mistakenly believes
is the case. On the other hand, if UC determines that it lacks information, then UCEgo apolo-
gizes to the user for not knowing the answer to the user’s query. These two types of responses
are shown in the UC session of Figure 10.

In the first query, UC corrects the user’s misconception that who has a -b option. It does
this by first noticing that the user’s usage of ‘‘who -b’’ translates into a HAS-OPTION relation
between a UNIX-WHO-COMMAND and a -b-OPTION. There is no equivalent HAS-OPTION
relation in UC’s knowledge base, so UC suspects a possible user misconception. To see if this is
the case or if UC just lacks knowledge about this particular option, UC consults the meta-
knowledge stored in KNOME. The appropriate meta-knowledge in this case is the fact that UC
knows all the options of all simple commands. Since who is a simple command, and since the
-b-OPTION is not listed among the options of UNIX-WHO-COMMAND in UC’s knowledge
base, KNOME can infer that there is no such option for who. Next, UCEgo decides that UC
should correct the user’s misconception by denying the existence of a -b option for who.

On the other hand, in the second query, UC professes ignorance about the -t option of the
ruptime command. As in the previous query about who, UC detects a possible misconception
when it does not find a -t option listed for ruptime in its knowledge base. However, in this case,
ruptime is a complex command, so the previous meta-knowledge does not apply. There is no
meta-knowledge about the options of complex commands (due to not enough programming by
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Welcome to UC (Unix Consultant) version 3.23
To a ’#’ prompt, please type in your questions
about the UNIX file system in English.
To leave, just type ’ˆD’ or ’(exit)’.

Hi.
How can I help you?

# What does who -b do?

who does not have a -b option.

# What does ruptime -t do?

I’m sorry, I do not know that.

Figure 10. UC session showing different UC responses to possible misconceptions.
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UC’s implementors rather than any inherent limitation of UC), so UC cannot tell if ruptime has a
-t option. In order to be polite, UCEgo apologizes to the user for not knowing.

5. Exploiting KNOME

KNOME is used by several different components of UC. This section will provide a survey
of these applications, since a detailed analysis is be beyond the scope of this paper.

One application of KNOME is in goal analysis (see [WILE86]). KNOME can be used to
select between different interpretations of the user’s statements. For example, consider the user’s
query ‘‘Do you know how to delete a file?’’ There are two possible interpretations of this query:
a direct interpretation where the user wants to know if UC knows how to delete a file; and an
indirect speech act interpretation where the user wants to know how to delete a file. If the goal
analyzer knows that the speaker already knows how to delete a file, then the system can rule out
the indirect interpretation. Similarly, if the system believes that the user does not know how to
delete a file, then the indirect interpretation is more likely.

Another use for the user model is to keep UC from telling the user something that the user
already knows, and to express information in terms of concepts with which the user is already
familiar. For example, in expressing the answer, the UCExpress component of UC prunes those
parts of the answer that the user already knows. So in the following UC dialog, UCExpress gives
an example of the format of the vi command to a novice, since the novice likely does not know
the simple-file-format. To beginners and other non-novices, UCExpress does not provide the
example, since UC can assume that the user will know that to use vi, one types ‘‘vi’’ followed by
the name of the file to edit.



- 27 -

User: How can I edit a file?

UC to novice: Use vi.
For example, to edit the file named foo, type ‘vi foo’.

UC to beginner: Use vi.

KNOME is also used by UCExpress when determining whether or not to use an analogy in
explaining the usage of a command. Consider the following UC dialog. UCExpress needs to
know that the user already knows the uptime command before it can choose to use the analogy.

User: What does ruptime do?

UC: ruptime is like uptime, except ruptime is for all machines on the
network.

UCEgo [CHIN87], the agent component of UC, uses KNOME when deciding whether or
not to provide additional information that the user may need (c. f. [JOSH84a, JOSH84b] for
other theoretical approaches). For example, in the UC dialog shown in Figure 11, UCEgo does
not actually answer the user’s question.
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User: Who is on the system?

UC: To find out who is on the system, type ‘who’.

Figure 11. UC volunteers information that the user does not know.
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UC does not actually tell the user who is on the system (e. g. by saying ‘‘John, Mary, and
David are on the system’’). Instead, UCEgo decides to tell the user how to find out this informa-
tion, namely use the who command. However, if the user already knows the who command,
then UC’s answer would be superfluous. So UCEgo first consults KNOME to see if the user
lacks such knowledge before providing the additional information.

6. Conclusion

6.1. Summary

The user modeling system of KNOME is extremely simple, yet it provides enough func-
tionality for the needs of UC. KNOME can infer what the user knows from a consulation dialog
with the user. Based on only a few such facts about what a user does or does not know, KNOME
can also predict many other default facts about what the user might or might not know.
KNOME’s stereotypes serve to efficiently group those default inferences that commonly co-
occur. Using only a few such stereotypes, KNOME is able to provide enough differentiation
among potential users so that UC can use these differences in answer expression, goal analysis,
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and detection of situations when the user lacks knowledge or has misconceptions. The double-
stereotype system is not only space efficient, but also allows easy addition of knowledge to
KNOME. When a new fact is added to UC, the knowledge engineer needs only to classify the
new fact according to its difficulty level.

Although no attempt has been made yet to apply the methodology to other areas, it would
seem that many of the techniques should transfer well. Stereotype categories are used in UC in
similar fashion to the way humans use categories, that is as reference points for reasoning about
individual members (see [ROSC77, ROSC78, ROSC83]). Thus stereotypes should be useful for
approximate reasoning wherever human categorization has proven to be useful. The double-
stereotype system extends the use of computer stereotype categories to cover more of human
categorization, that is to include categories for knowledge as well as categories/stereotypes for
people/users. The double-stereotype system can be applied straightforwardly to other domains
where a computer system needs to model the relation between different classes of users and dif-
ferent classes of information. In cases where the user population is homogeneous or where the
information is homogeneous, then a double-stereotypes system would not be applicable.

The methodology used to deduce the user’s stereotype in KNOME transfers in two ways to
other domains. First, the method used to infer individual facts about what the user knows is
applicable to any natural language system that needs to infer facts about the user’s knowledge
based on what the user says. On the other hand, the methodology used to combine such evidence
is highly dependent on a double-stereotype system. However it can be used in any double-
stereotype system where the system can deduce particular relations between the user’s stereotype
and the modeled information.

6.2. Current Status

KNOME is currently implemented in FRANZ LISP and Common LISP in a version of
KODIAK [WILE87], which is a network style knowledge representation language featuring
objects and relations, multiple inheritance, and other epistemological tools.

6.3. Problems

Currently, KNOME does not address the problem of whether the user knows something
after UC has informed the user. The difficulty is that the user may not understand the system’s
presentation, in which case the user modeling system should not infer that the user knows the
new information. A drawback of systems limited to natural language interactions is that these
systems cannot watch the user’s reactions to deduce whether or not the user is having trouble
understanding the system’s presentation. Human consultants are able to switch explanation stra-
tegies midway through a presentation when they notice their clients’ facial expressions showing
confusion. A computer consultant would have to wait for the user to respond with language in
order to get feedback. In such cases, the best that a user modeling system can do may be to
assume that the user has understood (perhaps with a lower certainty factor), until the modeler gets
evidence to the contrary. Then, if the user does not ask for a clarification in the next exchange,
the modeler can increase the certainty of its belief that the user has indeed understood.

Another deficiency in KNOME is that it does not contain very many specific rules for infer-
ring what specific facts a user might know based on other specific facts that the user knows. For
example, if a user knows the rwho command, then it is very likely that the user will also know
the who command. KNOME has avoided these types of explicit rules in favor of the more
efficient, though less specific mechanism of double stereotypes. The double stereotypes allow
KNOME to combine a small number of explicit facts to first infer the user’s level of expertise and
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from this, the user’s knowledge of large sets of other facts. Although this powerful general
mechanism works well, there are still cases when explicit rules will give more specific informa-
tion about what a user knows with a higher degree of certainty. The GUMS general user model-
ing shell [FINI*] makes good use of these explicit rules.

A possible deficiency with KNOME’s method of combining evidence is that KNOME
marks the user as belonging to a particular stereotype after only a short time (typically ˜3 inter-
changes). After this, KNOME does not alter its conception of the user’s level of expertise. This
is reasonable in the UC domain, because UC sessions are typically short. However, this would
not be acceptable for longer term user models. If a system needs to keep track of a user’s level of
expertise over periods long enough that the user’s expertise may increase appreciably, then the
system needs to be able to change its judgment of the user’s level of expertise. This process is
easier than one might suppose, since a user’s level of expertise tends to grow monotonically (it
seems reasonable to ignore the phenomenon of forgetting).

Currently, KNOME only has a single range of user expertise and a single range of
knowledge difficulty. This is sufficient for UC, since UC only covers commands related to the
UNIX file system. In order to extend UC to cover other areas of UNIX such as using the vi or
emacs editors, KNOME would need additional ranges of user expertise levels and information
difficulty levels. Problems which need to be addressed with multiple ranges include how the lev-
els in one range might relate to the levels of other ranges. For example, a system may be able to
predict that an expert in using vi is likely to be an expert in using the UNIX file system. On the
other hand, there may be no such relations between familiarity with emacs and familiarity with
the UNIX file system, since the emacs editor is common to many other operating systems.

Another area which KNOME does not address completely is how to model users of other
operating systems. Such users may be able to transfer some amounts of expertise to UNIX.
These users can benefit from analogies between UNIX and the operating system that they know.
On the other hand, such users sometimes incorrectly apply analogies and often mix up com-
mands. Adding additional stereotypes for such users would enhance KNOME’s ability to provide
proper analogies and to detect improper analogies or command usage. [MACM83] has shown
that one user modeling system can adequately model different operating systems (UNIX, TOPS-
20, and VM). However, no-one has investigated how knowledge of the user’s expertise in one
domain transfers to another domain (correctly or incorrectly) or how to exploit such knowledge
(e. g. to provide analogies).

Other areas not addressed by KNOME include applying the techniques demonstrated in
KNOME for other purposes such as selection of terminology in generation (c. f. [LEHM*]). The
approach used in KNOME would also be useful in the selection of different explanation strategies
as in the TAILOR system [PARI*].
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