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It is shown that the eigenvalue of a quadratic Casimir operator of quantum universal enveloping 
(QUE) algebra of SUz explains successfully the observed rotational spectra of a molecule. A similar 
idea is applied to two nuclei. The problem of dissociation (binding) energy for the molecules (nuclei) 
is discussed shortly. 

Witten!) has developed the theory of QUE algebra in a set of three papers. The 
theory is generally covariant and gauge invariant. He gave a q deformed Casimir 
operator of SU2 quantum group as an example, with which we concern ourselves in 
this paper. Most of the tools2

) to prove the theoretical results are familiar with the 
high-energy physicists, except, perhaps, for the knot, braid and link theory3) which is 
developed further in recent years, in connection with the exact solvability4) of many 
models in solid stale physics and statistical mechanics. We wish to show that, in 
spite of its historical origin, the result is quite useful to interpret the rotational spectra 
of molecules and nuclei. 

In this paper we shall give some examples in both fields and wish to discuss 
shortly the dissociation (binding) energy for molecules (nuclei). From a practical 
point of view it is not necessary to understand the whole detail of the theory. We 
shall begin with the eigenvalue of the quadratic Casimir operator of QUE algebra for 
SU2 and state the physical significance of it in relevance to the available information. 
It is given by 

x(q,]) (1) 

where J is the total angular momentum and q the deformation parameter of the 
algebra. Here x(q,]) is symmetric under q~ l/q and becomes J(J + 1) in the limit 
q~ 1. . The deviation of q from 1 is interpreted as a measure of the strength of the . 
deformation of the representation space in angular momentum, or that of the 
eigenvalue of the observable in the same space in it. 

If one looks at the expression (1), he sees that it gives a gradual shrinking with 
the increase of J for a fixed q different from 1. He may immediately realize that such 
a behavior is common in molecular5)and nuclear6

) rotational spectra without making 
a detailed check. 

Before entering into an application, it would be useful to add a few more remarks. 
The parameter q in the theory is related to the coupling constant k of the three 
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dimensional Chern-Simons theory through 

(2) 

Here C2( C) is an eigenvalue of the quadratic Casimir of the relevant group C. In 
order to get a real q one is required to make an analytic continuation from a large 
integer k to an infinite complex number k with an appropriate ratio of its real and 
imaginary part. Such a continuation is certified by the famous Knizhnik and 
Zamolodchikov differentialequation.7

) Except for the conformal field theory, the 
derivation of Eq. (1) is algebraic, provided that the expectation value of Wilson lines 
in Chern-Simons gauge theory with gauge group C in a path integral formulation are 
projected on a plane, which are adjusted to the similar projections of knots, links or 
braids. In Eq. (1) the nearest neighbor interactions were taken into account with the 
help of the vertex and the interactions around a face models, which is simplified by 
considering the adjoint representation of SU2 group. In this sense, the validity of Eq. 
(1) should be tested experimentally. 

The rotational level is expressed as 

E(q, j)=Bx(q,]) , (3) 

where B is an adjustable constant. We shall not concern its numerical value, since 
we are only interested in the relative frequency interval (level spacing) for the 
molecule (nucleus) in this paper. If one wishes he can get it from Eqs. (1) and (3) by 

Table 1. Rotational spectra of 6Li19F molecule. 

vibronic q. n. (v) observed calculated 
calculated q J'<-J" frequency frequency 

PRCS (MHz) (MHz) 

v=O 1-0 89740.465 (0.02) 89740.488 
q=1.003847 2-1 179470.35 (0.10) 179470.39 
PRCS=2.11- 10-13 3-2 269179.18 (0.10) 269i79.14 

4-3 358856.19 (0.10) 358856.13 
5-4 448491.07 (0.10) 448490.82 
6-5 538072.65 (0.10) input 

v=l 1-0 88319.178 (0.02) 88319.192 

q=1.003855 2-1 176627.91 (0.10) 17662'l.92 

PRCS=5.26- 10-14 3-2 264915.79 (0.10) 264915.74 
4-3 353172.23 (0.10) 353172.19 
5-4 441386.83 (0.10) input 

v=2 1-0 86921.199 (0.02) 86921.198 

q=I.003864 2-1 173832.04 (0.10) 173832.05 

PRCS=2.37- 10-1
' 3-2 260722.24 (0.10) 260722.23 

4-3 347581.39 (0.10) input 

v=3 1-0 85546.64 (0.02) .85546.65 

q=1.003905 2-1 171082.27 (0.10) 171082.90 

PRCS=2.17- 10-11 3-2 256597.84 (0.10) 256598.37 
4-3 342082.66 (0.10) input 
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making use of q determined in this paper for a particular energy band. 
The result of an analysis on 6Li19F moleculeS) is tabulated in Table 1. The value 

of q and a pseudo reduced chi-square (PRCS), which is defined by neglecting the 
weight arising from an error, are given for each vibronic state v in the first column. 
The angular momenta relevant to' the absorption spectra are shown in the second 
column. The third and the fourth column indicate the observed and the calculated 
frequency, respectively. We have chosen the ratios of relative frequencies in succes
sion as inputs and tablulated the final results in terms of the frequency interval of the 
two highest ranking states of each band. One sees that our formula (1) reproduces 
the data in an extremely good accuracy. So far we cannot find out an exception of 
those good fittings, as far as the pure rotational frequencies of the molecules con
cern.9),lO) If one wants to talk about an interband transition, he has to take into 
account a slight difference between q values of the relevant bands. 

At this stage, we are waiting a datum with a more significant numbers, where 
theory fails. 

The similar study has been made for 130Ce 11) and 174Hf12) nucleus. The results are 
given in Tables II and III, where the final expression is shown in terms of the energy 
of the highest J state. Here the result is not as impressive as that for the molecule. 
However, we think that our approach is better than' a yrast method/3) which is 
semi-classical and in some sense an analogue of that in molecular spectroscopy. The 

reason why we believe this, arises from 
Table II. Energy spectra of 'ggCe nucleus, the nature of Eq. (1). The functional 

observed 
calculated form of it has a nice convergence pro-

r energy (MeV) perty at high J and admits an extrapola-energy 
(MeV) 

q=1.07495 tion. If one expands it around q=l, he 
PRCS=0.0618 

may find extra J dependences which are 
16+ 4.558 input not contained in the current molecular 
14+ 3.864 4.022 

physics and yrast approach. Of course, 12+ 3.314 3.397 
10+ 2.811 2.701 this point should be tested by a further 
8+ 2.054 1.970 analysis of data and a more extensive 
6+ 1.324 1.259 study. For the moment we leave a final 
4+ 0.7105 0.6438 conclusion for future. 
2+ 0.2539 0.2025 There arise many interesting prob-0+ 0 input 

lems, if one once finds a good functional 

Table III. Energy spectra of l~~Hf nucleus. 

observed 
calculated 

observed 
calculated 

r energy (keV) energy (keV) 
energy 

q=1.043276 
energy 

q=1.047225 
(keV) 

PRCS=5.14 .10-5 (keV) 
PRCS=4.60·1O-4 

8+ 1009.6 input 
6+ 608.26 609.45 1307.4 input 
4+ 297.38 297.76 1062.17 1063.37 
2+ 90.985 90.820 900.24 900.10 
0+ 0 input 828.13 input 
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form adapted to the rotational spectra of molecules, in addition to those discussed by 
Herzberg5) in an introductory part of his book. In statistical physics, we usually 
estimate the partition function on the rotational part by replacing a sum over J(J + 1) 
dependence by a continuum. Is it possible to perform the similar integral by the 
functional form (1), exactly? In tables of dissociation energies for molecules, they 
are tabulated at most four significant numbers in units of eV.5) Could we improve 
this situation under a new approach? The author supposes that a complete resolution 
of this problem may require to find out a functional form which explains the observed 
vibronic spectra with the same level as that for the rotational ones. We shall 
postpone this problem in the future. 

The similar question remains in nuclear physics even if we succeed to explain the 
level structure. Franzini and RadicatiI4) have shown that Wigner's supermuItiplet 
theoryI5) can be applied to the description of the binding energies of nuclei up to rather 
high mass numbers. They gave a mass dependent parameter of supermuItiplet term, 
b(A) in Fig. 2 of that paper, which can be expressed by a 9-th degree polynomial in 
A, according to them. If we introduce a single function, known as Rosin-Rammler 
distribution/6

) it can be reproduced approximately by 89. 1 exp ( - 1.62A 0.203). This is 
a long-range effect in A space. The present authorI7) had tried to analyze the binding 
energies of nuclei by making use of the so-called Weizsacker-Bethe mass formula, by 
taking into account the pairing effect. He used a good sign factor, but he did not use 
a good A dependent coefficient function in that analysis, which was reflected to the 
estimate of the binding energies for hypernuclei in similar approach. If we use the 
Rosin-Rammler distribution, instead of A-I and A -4/3 dependences used there, we 
expect to have a better semi-empirical formula which applies to low- as well as 
high-mass regions. IS) 

The author is indebted to Professor M. limbo, Professor M. Suhara, Professor A. 
Sado and Professor A. Hayashi for sending him, Refs. 4), 5), 8), 12), 13) and many 
relevant papers, useful discussions and their interest for the latter three persons. 
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