# Knot Floer homology detects fibred knots 

## $\mathbf{Y i} \mathbf{N i}$

Received: 2 August 2008 / Accepted: 28 December 2008 / Published online: 13 February 2009
© Springer-Verlag 2009

## Erratum to: Invent. Math. 170(3):577-608, 2007 DOI 10.1007/s00222-007-0075-9

An important step in [5] uses JSJ theory [3, 4] to deduce some topological information about the knot complement when the knot Floer homology is monic, see [5, Sect. 6]. The version of JSJ theory cited there is from [1]. However, as pointed out by Kronheimer, the definition of "product regions" in [1] is not the one we want. In this note, we will provide the necessary background on JSJ theory following [3]. Some arguments in [5] will then be modified.

We first briefly explain the mistake in [5]. In [5, Sect. 6], we need a submanifold of $M$, such that every product annulus or product disk can be homotoped into this submanifold. The existence of such submanifold is well-known in JSJ theory, but the version of JSJ theory cited from [1] does not provide such existence result. In fact, the definition of "product regions" there [1, Definition 3.1] requires that every component of the product region contains a component of the suture. This condition is very restrictive and was ignored by the author in [5].

In this note we will use the standard JSJ theory to get the existence of such submanifold (called the characteristic pair), and prove that a large part of this submanifold is a product submanifold. This will be sufficient for our purpose.

Definition 1 An n-manifold pair is a pair $(M, T)$ where $M$ is an $n$-manifold and $T$ is an $(n-1)$-manifold contained in $\partial M$. A 3-manifold pair $(M, T)$ is irreducible if $M$ is irreducible and $T$ is incompressible. An irreducible 3-manifold pair ( $M, T$ ) is Haken if each component of $M$ contains an incompressible surface.

[^0]Definition 2 [3, p. 10] A compact 3-manifold pair $(\mathcal{S}, \mathcal{T})$ is called an $I$-pair if $\mathcal{S}$ is an $I$-bundle over a compact surface, and $\mathcal{T}$ is the corresponding $\partial I$-bundle. A compact 3-manifold pair $(\mathcal{S}, \mathcal{T})$ is called an $S^{1}$-pair if $\mathcal{S}$ is a Seifert fibred manifold and $\mathcal{T}$ is a union of Seifert fibres in some Seifert fibration. A Seifert pair is a compact 3-manifold pair $(\mathcal{S}, \mathcal{T})$, each component of which is an $I$-pair or an $S^{1}$-pair.

Definition 3 [3, p. 138] A characteristic pair for a compact, irreducible 3-manifold pair $(M, T)$ is a perfectly-embedded Seifert pair $(\Sigma, \Phi) \subset(M, \operatorname{int}(T))$ such that if $f$ is any essential, nondegenerate map of an arbitrary $\operatorname{Seifert}$ pair $(\mathcal{S}, \mathcal{T})$ into $(M, T), f$ is homotopic, as a map of pairs, to a map $f^{\prime}$ such that $f^{\prime}(\mathcal{S}) \subset \Sigma$ and $f^{\prime}(\mathcal{T}) \subset \Phi$.

The definition of a perfectly-embedded pair can be found in [3, p. 4]. We note that the definition requires that $\Sigma \cap \partial M=\Phi$, so $\Sigma$ is disjoint from $\partial M-T$.

The main result in JSJ theory is the following theorem due to Jaco-Shalen [3, p. 138] and Johannson [4].

Theorem 4 (Characteristic Pair Theorem) Every Haken 3-manifold pair ( $M, T$ ) has a characteristic pair. This characteristic pair is unique up to ambient isotopy relative to ( $\partial M-\operatorname{int}(T)$ ).

Definition 5 Let $(M, \gamma)$ be a sutured manifold. A 3-manifold pair $(P, Q) \subset(M, R(\gamma))$ is a product pair if $P=F \times[0,1], Q=F \times\{0,1\}$ for some compact surface $F$, and $F \times 0 \subset$ $R_{-}(\gamma), F \times 1 \subset R_{+}(\gamma)$. We also require that $P \cap A=\emptyset$ or $A$ for any annular component $A$ of $\gamma$. A product pair is gapless if no component of its exterior is a product pair.

Definition 6 Suppose $(M, \gamma)$ is a taut sutured manifold, $(\Sigma, \Phi)$ is the characteristic pair for $(M, R(\gamma))$. The characteristic product pair for $M$ is the union of all components of $(\Sigma, \Phi)$ which are product pairs. A maximal product pair for $M$ is a gapless product pair $(\mathcal{P}, \mathcal{Q})$ such that it contains the characteristic product pair, and if $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right) \supset(\mathcal{P}, \mathcal{Q})$ is another gapless product pair, then there is an ambient isotopy relative to $\gamma$ that takes $\left(\mathcal{P}^{\prime}, \mathcal{Q}^{\prime}\right)$ to $(\mathcal{P}, \mathcal{Q})$.

Although the uniqueness of maximal product pairs is not guaranteed by the definition, the existence is obvious. In fact, if there is an infinite ascending chain of gapless product pairs

$$
\left(\mathcal{P}_{0}, \mathcal{Q}_{0}\right) \subset \cdots \subset\left(\mathcal{P}_{i}, \mathcal{Q}_{i}\right) \subset\left(\mathcal{P}_{i+1}, \mathcal{Q}_{i+1}\right) \subset \cdots,
$$

such that $\left(\mathcal{P}_{i}, \mathcal{Q}_{i}\right) \neq\left(\mathcal{P}_{i+1}, \mathcal{Q}_{i+1}\right)$ up to ambient isotopy relative to $\gamma$, then we get a contradiction by Haken's Finiteness Theorem [2, Theorem III.20].

The exterior of a maximal product pair is also a sutured manifold. By definition the exterior does not contain essential product annuli or essential product disks.

Now we are ready to modify the arguments in [5]. The next theorem is a reformulation of [5, Theorem 6.2]. The proof is not changed though.

Theorem 6.2' Suppose $(M, \gamma)$ is an irreducible balanced sutured manifold, $\gamma$ has only one component, and $(M, \gamma)$ is vertically prime. Let $\mathcal{E}$ be the subgroup of $H_{1}(M)$ spanned by the first homologies of product annuli in $M$. If $\widehat{H F S}(M, \gamma) \cong \mathbb{Z}$, then $\mathcal{E}=H_{1}(M)$.

Corollary 7 In the last theorem, suppose $(\Pi, \Psi)$ is the characteristic product pair for $M$, then the map

$$
i_{*}: H_{1}(\Pi) \rightarrow H_{1}(M)
$$

is surjective.

Proof We recall that such an $M$ is a homology product [5, Proposition 3.1].
Suppose $(\Sigma, \Phi)$ is the characteristic pair for $(M, R(\gamma))$, then any product annulus can be homotoped into $(\Sigma, \Phi)$ without crossing $\gamma$. Let $\Phi_{+}=\left(\Phi \cap R_{+}(\gamma)\right) \subset \operatorname{int}\left(R_{+}(\gamma)\right)$. Theorem $6.2^{\prime}$ implies that the map $H_{1}\left(\Phi_{+}\right) \rightarrow H_{1}\left(R_{+}(\gamma)\right)$ is surjective, so $\partial \Phi_{+}$consists of separating circles in $R_{+}(\gamma)$. If a component $(\mathcal{S}, \mathcal{T})$ of $(\Sigma, \Phi)$ is an $S^{1}$-pair, then $\mathcal{T} \cap R_{+}(\gamma)$ consists of annuli by definition. We conclude that each annulus is null-homologous in $H_{1}\left(R_{+}(\gamma)\right)$.

Suppose a product annulus $A$ contributes to $H_{1}(M)$ nontrivially, and it can be homotoped into a component $(\sigma, \varphi)$ of $(\Sigma, \Phi)$. Given the result from the last paragraph, this $(\sigma, \varphi)$ cannot be an $S^{1}$-pair. It is neither a twisted $I$-bundle since the two components of $\partial A$ are contained in different components of $R(\gamma)$. So $(\sigma, \varphi)$ must be a trivial $I$-bundle, and the two components of $\varphi$ lie in different components of $R(\gamma)$. In other words, $(\sigma, \varphi)$ is a product pair. Now our desired result follows from Theorem 6.2'.

The following proof of the main theorem in [5] is only slightly changed. Basically we use "maximal product pair" here instead of the wrong notion "characteristic product region" in [5].

Proof of [5, Theorem 1.1] Suppose ( $M, \gamma$ ) is the sutured manifold obtained by cutting open $Y-\operatorname{int}(\operatorname{Nd}(K))$ along $F,(\mathcal{P}, \mathcal{Q})$ is a maximal product pair for $M$. We need to show that $M$ is a product. By [5, Proposition 3.1], $M$ is a homology product. Moreover, by [5, Theorem 4.1], we can assume $M$ is vertically prime.

If $M$ is not a product, then $M-\mathcal{P}$ is nonempty. Thus there exist some product annuli in $(M, \gamma)$, which split off $\mathcal{P}$ from $M$. Let $\left(M^{\prime}, \gamma^{\prime}\right)$ be the remaining sutured manifold. By definition $(\mathcal{P}, \mathcal{Q})$ contains the characteristic product pair for $M$. Corollary 7 then implies that the map $H_{1}(\mathcal{P}) \rightarrow H_{1}(M)$ is surjective. So $R_{ \pm}\left(\gamma^{\prime}\right)$ are planar surfaces, and $M^{\prime} \cap \mathcal{P}$ consists of separating product annuli in $M$. Since we assume that $M$ is vertically prime, $M^{\prime}$ must be connected. (See the first paragraph in the proof of [5, Theorem 5.1].) Moreover, $M^{\prime}$ is also vertically prime. By [5, Theorem 5.1], $\widehat{H F S}\left(M^{\prime}, \gamma^{\prime}\right) \cong \mathbb{Z}$.

We add some product 1 -handles to $M^{\prime}$ to get a new sutured manifold ( $M^{\prime \prime}, \gamma^{\prime \prime}$ ) with $\gamma^{\prime \prime}$ connected. By [5, Proposition 2.9], $\widehat{H F S}\left(M^{\prime \prime}, \gamma^{\prime \prime}\right) \cong \mathbb{Z}$. It is easy to see that $M^{\prime \prime}$ is also vertically prime. [5, Proposition 3.1] shows that $M^{\prime \prime}$ is a homology product.

Let $H$ be one of the product 1-handles added to $M^{\prime}$ such that $H$ connects two different components of $\gamma^{\prime}$. By Theorem $6.2^{\prime}$, there is at least one product annulus $A$ in $M^{\prime \prime}$, such that $A$ cannot be homotoped to be disjoint from the cocore of $H$. Isotope $A$ if necessary, we find that at least one component of $A \cap M^{\prime}$ is an essential product disk in $M^{\prime}$, a contradiction to the assumption that $(\mathcal{P}, \mathcal{Q})$ is a maximal product pair.

Acknowledgements We are extremely grateful to Peter Kronheimer for pointing out the mistake in [5]. We also thank the referee for valuable suggestions. This note is written when the author visited Zhejiang University. The author wishes to thank Feng Luo for his hospitality during the visit.

## References

1. Cooper, D., Long, D.: Virtually Haken Dehn-filling. J. Differ. Geom. 52(1), 173-187 (1999)
2. Jaco, W.: Lectures on Three-manifold Topology. CBMS Regional Conference Series in Mathematics, vol. 43. American Mathematical Society, Providence (1980)
3. Jaco, W., Shalen, P.: Seifert fibered spaces in 3-manifolds, Mem. Am. Math. Soc. 21(220) (1979)
4. Johannson, K.: Homotopy Equivalences of 3-manifolds with Boundaries. Lecture Notes in Mathematics, vol. 761. Springer, Berlin (1979)
5. Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170(3), 577-608 (2007)

[^0]:    The online version of the original article can be found under doi:10.1007/s00222-007-0075-9.
    Y. $\mathrm{Ni}(\boxtimes)$

    Department of Mathematics, MIT, Room 2-306, 77 Massachusetts Avenue, Cambridge, MA
    02139-4307, USA
    e-mail: yni@math.mit.edu

