ERRATUM

Knot Floer homology detects fibred knots

Yi Ni

Received: 2 August 2008 / Accepted: 28 December 2008 / Published online: 13 February 2009 © Springer-Verlag 2009

Erratum to: Invent. Math. 170(3):577–608, 2007 DOI 10.1007/s00222-007-0075-9

An important step in [5] uses JSJ theory [3, 4] to deduce some topological information about the knot complement when the knot Floer homology is monic, see [5, Sect. 6]. The version of JSJ theory cited there is from [1]. However, as pointed out by Kronheimer, the definition of "product regions" in [1] is not the one we want. In this note, we will provide the necessary background on JSJ theory following [3]. Some arguments in [5] will then be modified.

We first briefly explain the mistake in [5]. In [5, Sect. 6], we need a submanifold of M, such that every product annulus or product disk can be homotoped into this submanifold. The existence of such submanifold is well-known in JSJ theory, but the version of JSJ theory cited from [1] does not provide such existence result. In fact, the definition of "product regions" there [1, Definition 3.1] requires that every component of the product region contains a component of the suture. This condition is very restrictive and was ignored by the author in [5].

In this note we will use the standard JSJ theory to get the existence of such submanifold (called the characteristic pair), and prove that a large part of this submanifold is a product submanifold. This will be sufficient for our purpose.

Definition 1 An *n*-manifold pair is a pair (M, T) where M is an *n*-manifold and T is an (n - 1)-manifold contained in ∂M . A 3-manifold pair (M, T) is *irreducible* if M is irreducible and T is incompressible. An irreducible 3-manifold pair (M, T) is *Haken* if each component of M contains an incompressible surface.

Y. Ni (🖂)

The online version of the original article can be found under doi:10.1007/s00222-007-0075-9.

Department of Mathematics, MIT, Room 2-306, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA e-mail: yni@math.mit.edu

Definition 2 [3, p. 10] A compact 3-manifold pair (S, T) is called an *I-pair* if S is an *I*-bundle over a compact surface, and T is the corresponding ∂I -bundle. A compact 3-manifold pair (S, T) is called an S^1 -pair if S is a Seifert fibred manifold and T is a union of Seifert fibres in some Seifert fibration. A *Seifert pair* is a compact 3-manifold pair (S, T), each component of which is an *I*-pair or an S^1 -pair.

Definition 3 [3, p. 138] A *characteristic pair* for a compact, irreducible 3-manifold pair (M, T) is a perfectly-embedded Seifert pair $(\Sigma, \Phi) \subset (M, int(T))$ such that if f is any essential, nondegenerate map of an arbitrary Seifert pair (S, T) into (M, T), f is homotopic, as a map of pairs, to a map f' such that $f'(S) \subset \Sigma$ and $f'(T) \subset \Phi$.

The definition of a perfectly-embedded pair can be found in [3, p. 4]. We note that the definition requires that $\Sigma \cap \partial M = \Phi$, so Σ is disjoint from $\partial M - T$.

The main result in JSJ theory is the following theorem due to Jaco–Shalen [3, p. 138] and Johannson [4].

Theorem 4 (Characteristic Pair Theorem) Every Haken 3-manifold pair (M, T) has a characteristic pair. This characteristic pair is unique up to ambient isotopy relative to $(\partial M - int(T))$.

Definition 5 Let (M, γ) be a sutured manifold. A 3-manifold pair $(P, Q) \subset (M, R(\gamma))$ is a *product pair* if $P = F \times [0, 1]$, $Q = F \times \{0, 1\}$ for some compact surface F, and $F \times 0 \subset R_{-}(\gamma)$, $F \times 1 \subset R_{+}(\gamma)$. We also require that $P \cap A = \emptyset$ or A for any annular component Aof γ . A product pair is *gapless* if no component of its exterior is a product pair.

Definition 6 Suppose (M, γ) is a taut sutured manifold, (Σ, Φ) is the characteristic pair for $(M, R(\gamma))$. The *characteristic product pair* for M is the union of all components of (Σ, Φ) which are product pairs. A *maximal product pair* for M is a gapless product pair $(\mathcal{P}, \mathcal{Q})$ such that it contains the characteristic product pair, and if $(\mathcal{P}', \mathcal{Q}') \supset (\mathcal{P}, \mathcal{Q})$ is another gapless product pair, then there is an ambient isotopy relative to γ that takes $(\mathcal{P}', \mathcal{Q}')$ to $(\mathcal{P}, \mathcal{Q})$.

Although the uniqueness of maximal product pairs is not guaranteed by the definition, the existence is obvious. In fact, if there is an infinite ascending chain of gapless product pairs

 $(\mathcal{P}_0, \mathcal{Q}_0) \subset \cdots \subset (\mathcal{P}_i, \mathcal{Q}_i) \subset (\mathcal{P}_{i+1}, \mathcal{Q}_{i+1}) \subset \cdots,$

such that $(\mathcal{P}_i, \mathcal{Q}_i) \neq (\mathcal{P}_{i+1}, \mathcal{Q}_{i+1})$ up to ambient isotopy relative to γ , then we get a contradiction by Haken's Finiteness Theorem [2, Theorem III.20].

The exterior of a maximal product pair is also a sutured manifold. By definition the exterior does not contain essential product annuli or essential product disks.

Now we are ready to modify the arguments in [5]. The next theorem is a reformulation of [5, Theorem 6.2]. The proof is not changed though.

Theorem 6.2' Suppose (M, γ) is an irreducible balanced sutured manifold, γ has only one component, and (M, γ) is vertically prime. Let \mathcal{E} be the subgroup of $H_1(M)$ spanned by the first homologies of product annuli in M. If $\widehat{HFS}(M, \gamma) \cong \mathbb{Z}$, then $\mathcal{E} = H_1(M)$.

Corollary 7 In the last theorem, suppose (Π, Ψ) is the characteristic product pair for M, then the map

$$i_*: H_1(\Pi) \to H_1(M)$$

is surjective.

Proof We recall that such an *M* is a homology product [5, Proposition 3.1].

Suppose (Σ, Φ) is the characteristic pair for $(M, R(\gamma))$, then any product annulus can be homotoped into (Σ, Φ) without crossing γ . Let $\Phi_+ = (\Phi \cap R_+(\gamma)) \subset \operatorname{int}(R_+(\gamma))$. Theorem 6.2' implies that the map $H_1(\Phi_+) \to H_1(R_+(\gamma))$ is surjective, so $\partial \Phi_+$ consists of separating circles in $R_+(\gamma)$. If a component (S, \mathcal{T}) of (Σ, Φ) is an S^1 -pair, then $\mathcal{T} \cap R_+(\gamma)$ consists of annuli by definition. We conclude that each annulus is null-homologous in $H_1(R_+(\gamma))$.

Suppose a product annulus *A* contributes to $H_1(M)$ nontrivially, and it can be homotoped into a component (σ, φ) of (Σ, Φ) . Given the result from the last paragraph, this (σ, φ) cannot be an S^1 -pair. It is neither a twisted *I*-bundle since the two components of ∂A are contained in different components of $R(\gamma)$. So (σ, φ) must be a trivial *I*-bundle, and the two components of φ lie in different components of $R(\gamma)$. In other words, (σ, φ) is a product pair. Now our desired result follows from Theorem 6.2'.

The following proof of the main theorem in [5] is only slightly changed. Basically we use "maximal product pair" here instead of the wrong notion "characteristic product region" in [5].

Proof of [5, Theorem 1.1] Suppose (M, γ) is the sutured manifold obtained by cutting open Y - int(Nd(K)) along F, $(\mathcal{P}, \mathcal{Q})$ is a maximal product pair for M. We need to show that M is a product. By [5, Proposition 3.1], M is a homology product. Moreover, by [5, Theorem 4.1], we can assume M is vertically prime.

If *M* is not a product, then $M - \mathcal{P}$ is nonempty. Thus there exist some product annuli in (M, γ) , which split off \mathcal{P} from *M*. Let (M', γ') be the remaining sutured manifold. By definition $(\mathcal{P}, \mathcal{Q})$ contains the characteristic product pair for *M*. Corollary 7 then implies that the map $H_1(\mathcal{P}) \rightarrow H_1(M)$ is surjective. So $R_{\pm}(\gamma')$ are planar surfaces, and $M' \cap \mathcal{P}$ consists of separating product annuli in *M*. Since we assume that *M* is vertically prime, *M'* must be connected. (See the first paragraph in the proof of [5, Theorem 5.1].) Moreover, *M'* is also vertically prime. By [5, Theorem 5.1], $\widehat{HFS}(M', \gamma') \cong \mathbb{Z}$.

We add some product 1-handles to M' to get a new sutured manifold (M'', γ'') with γ'' connected. By [5, Proposition 2.9], $\widehat{HFS}(M'', \gamma'') \cong \mathbb{Z}$. It is easy to see that M'' is also vertically prime. [5, Proposition 3.1] shows that M'' is a homology product.

Let *H* be one of the product 1-handles added to *M'* such that *H* connects two different components of γ' . By Theorem 6.2', there is at least one product annulus *A* in *M''*, such that *A* cannot be homotoped to be disjoint from the cocore of *H*. Isotope *A* if necessary, we find that at least one component of $A \cap M'$ is an essential product disk in *M'*, a contradiction to the assumption that $(\mathcal{P}, \mathcal{Q})$ is a maximal product pair.

Acknowledgements We are extremely grateful to Peter Kronheimer for pointing out the mistake in [5]. We also thank the referee for valuable suggestions. This note is written when the author visited Zhejiang University. The author wishes to thank Feng Luo for his hospitality during the visit.

References

- 1. Cooper, D., Long, D.: Virtually Haken Dehn-filling. J. Differ. Geom. 52(1), 173–187 (1999)
- Jaco, W.: Lectures on Three-manifold Topology. CBMS Regional Conference Series in Mathematics, vol. 43. American Mathematical Society, Providence (1980)
- 3. Jaco, W., Shalen, P.: Seifert fibered spaces in 3-manifolds, Mem. Am. Math. Soc. 21(220) (1979)
- 4. Johannson, K.: Homotopy Equivalences of 3-manifolds with Boundaries. Lecture Notes in Mathematics, vol. 761. Springer, Berlin (1979)
- 5. Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170(3), 577-608 (2007)