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Abstract

We construct knot invariants categorifying the quantum knot variants for all
representations of quantum groups. We show that these invariants coincide with
previous invariants defined by Khovanov for sl2 and sl3 and by Mazorchuk-Stroppel
and Sussan for sln.

Our technique is to study 2-representations of 2-quantum groups (in the sense
of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible rep-
resentations. These are the representation categories of certain finite dimensional
algebras with an explicit diagrammatic presentation, generalizing the cyclotomic
quotient of the KLR algebra. When the Lie algebra under consideration is sln, we
show that these categories agree with certain subcategories of parabolic category
O for glk.

We also investigate the finer structure of these categories: they are standardly
stratified and satisfy a double centralizer property with respect to their self-dual
modules. The standard modules of the stratification play an important role as test
objects for functors, as Vermas do in more classical representation theory.

The existence of these representations has consequences for the structure of
previously studied categorifications. It allows us to prove the non-degeneracy of
Khovanov and Lauda’s 2-category (that its Hom spaces have the expected dimen-
sion) in all symmetrizable types, and that the cyclotomic quiver Hecke algebras are
symmetric Frobenius.

In work of Reshetikhin and Turaev, the braiding and (co)evaluation maps be-
tween representations of quantum groups are used to define polynomial knot invari-
ants. We show that the categorifications of tensor products are related by functors
categorifying these maps, which allow the construction of bigraded knot homologies
whose graded Euler characteristics are the original polynomial knot invariants.
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CHAPTER 1

Introduction

1. Quantum topology

Much of the theory of quantum topology rests on the structure of monoidal
categories and their use in a variety of topological constructions. In this paper, we
define a categorification of one of these constructions: the R-matrix construction of
quantum knot invariants, inspired by the work of Reshetikhin and Turaev [Tur88,
RT90].

Their work is in the context of the tensor category of representations of a
quantized universal enveloping algebra Uq(g). They assign natural maps between
tensor products to each ribbon tangle labeled with representations. One special
case of this is a polynomial invariant of framed knots for each finite-dimensional
representation of Uq(g). These maps are natural with respect to tangle composition;
thus they can be reconstructed from a small number of constituents: the maps
associated to a ribbon twist, crossing, cup and cap. The map associated to a link
whose components are labeled with a representation of g is thus simply a Laurent
polynomial.

Particular cases of these invariants include:

• the Jones polynomial when g = sl2 and all strands are labeled with the
defining representation.

• the colored Jones polynomials for other representations of g = sl2.
• specializations of the HOMFLYPT polynomial for the defining repre-
sentation of g = sln.

• the Kauffman polynomial (not to be confused with the Kauffman
bracket, a variant of the Jones polynomial) for the defining representa-
tion of son.

These special cases have been categorified to knot homologies from a number of
perspectives, beginning with work of Khovanov on the Jones polynomial. However,
the vast majority of representations previously had no homology theory attached
to them. In this paper, we will construct such a theory for any labels; that is:

Theorem A.1 For each simple complex Lie algebra g, there is a homology theory
K(L, {λi}) for links L whose components are labeled by finite dimensional repre-
sentations of g (here indicated by their highest weights λi), which associates to such
a link a bigraded vector space whose graded Euler characteristic is the quantum
invariant of this labeled link.

Given the extensive past work on knot homology, it is natural to ask which
of the homology theories mentioned above coincide with those of Theorem A.1 in
special cases.

1
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2 1. INTRODUCTION

Theorem A.2 When g = sl2, sl3 and the link is labeled with the defining repre-
sentation of these algebras, the theory K(L, {λi}) coincides up to grading shift with
Khovanov’s homologies for g = sl2, sl3. In the case g = sln and we use the defining
representation, K(L, {λi}) agrees with the Mazorchuk-Stroppel-Sussan homology.

Previous approaches to categorifying the special Reshetikhin-Turaev invariants
mentioned above have been given by Khovanov and Khovanov-Rozansky [Kho00,
Kho02,Kho04,Kho07,KR08b,KR07,KR08a], Stroppel and Mazorchuk-Stroppel
[Str05,MS09], Sussan [Sus07], Seidel-Smith [SS06], Manolescu [Man07], Cautis-
Kamnitzer [CK08a,CK08b], Mackaay, Stošić and Vaz [MSV09,MSV11] and the
author and Williamson [WW]. All of these approaches depend heavily on special
features of minuscule representations.

There has been some progress on other representations of sl2. In a paper still
in preparation, Stroppel and Sussan also consider the case of the colored Jones
polynomial [SS] (building on previous work with Frenkel [FSS12]); it seems likely
their construction is equivalent to ours (see Chapter 4). Similarly, Cooper and
Krushkal have given a categorification of the colored Jones polynomial using Bar-
Natan’s cobordism formalism for Khovanov homology [CK12]. We show in [Webf]
that Cooper and Krushkal’s theory agrees with ours for colored Jones polynomials.

On the other hand, the work of physicists suggests that categorifications for
all representations exist; one schema for defining them is given by Witten [Wit].
The relationship between Witten’s proposals and the invariants presented in this
paper is completely unknown (at least to the author) and presents a very interesting
question for consideration in the future.

Another question of particular interest is whether K(L, {λi}) for the defining
representation of sln coincides with Khovanov-Rozansky homology [KR08b]; we
will establish this agreement in future work with Mackaay [MW].

At the moment, we have not proven that K(L, {λi}) is functorial, but we do
have a proposal for the map associated to a cobordism when the weights λi are
all minuscule. As usual in knot homology, this proposed functoriality map is con-
structed by picking a Morse function on the cobordism, and associating simple maps
to the addition of handles. We have no proof that this definition is independent of
Morse function and we anticipate that proving this will be quite difficult.

2. Categorification of tensor products

The program of “higher representation theory,” begun (at least as an explicit
program) by Chuang and Rouquier in [CR08] and continued by Rouquier [Roua]
and Khovanov-Lauda [KL10], is aimed at studying “2-analogues” of the universal
enveloping algebras of simple Lie algebras U(g) and their quantizations Uq(g). The
2-analogue for us of the quantum group Uq(g) is the strict 2-category U defined in
[CL15, §2]. In this paper, we’ll define an algebra Tλ for each list λ = (λ1, . . . , λℓ) of
dominant weights for any symmetrizable Kac-Moody algebra g. Our 2-analogue of
a tensor product of simple g-representations is the categoryVλ of finite-dimensional
representations of Tλ.

Our first objective is to show that we have defined a categorification of such
tensor products.
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3. TOPOLOGY 3

Theorem B The category Vλ carries a categorical action of g, that is, it carries an
action of the 2-category U . The Grothendieck group ofVλ is canonically isomorphic
to the tensor product

Vλ
∼= Vλ1

⊗ · · · ⊗ Vλℓ

of irreducible representations Vλi
.

In the case where g is finite-type and simply-laced, the classes of indecom-
posable projectives in Vλ are Lusztig’s canonical basis of a tensor product by
[Web15, 6.11].

When λ = (λ), the algebra Tλ := T (λ) is a cyclotomic KLR algebra in the sense
of [KL10, §3.4]. Even in this case, the categorical action of Theorem B is new,
and it implies that the induction and restriction functors on these categories are
biadjoint. This was proved independently by Kang and Kashiwara [KK12] using
completely different methods. This action can be used to prove that the 2-category
U is nondegenerate in the finite type case. Earlier versions of this paper included a
discussion of non-degeneracy outside of finite type, which is now proven in [Webb]
instead.

These algebras Tλ are also quite interesting from the perspective of pure rep-
resentation theory. We’ll prove that they have a number of properties which have
already appeared in the literature.

Theorem C The projective-injective objects of Vλ form a categorification of the
subrepresentation Vλ1+···+λn

⊂ Vλ. In particular, if λ = (λ), then all projectives

are injective and the algebra T (λ) is Frobenius.
The sum of all indecomposable projective-injectives has the double centralizer

property. This realizes Tλ as the endomorphisms of a natural collection of modules
over the algebra T (λ1+···+λn).

The algebra Tλ is standardly stratified. The semi-orthogonal decomposition
for this stratification categorifies the decomposition of Vλ as the sum of tensor
products of weight spaces.

These algebras also have connections in the type A case to classical represen-
tation theory, as has been explored by Brundan and Kleshchev [BK09]. Using
Theorem C, we will build on their work in Chapter 9 by showing that the algebras
Tλ are endomorphism algebras of certain projectives in parabolic category O, while

in type Â, they are related to the representations of the cyclotomic q-Schur algebra.
This last relationship will be explored more fully in work of the author and Stroppel
[SW,Webe].

The method of proof leaves little hope for finding connections with category
O in other types. We see no reason to think that Vλ has a similar description

in terms of classical representation theory when g �∼= sln, ŝln, though we would be
quite pleased to be proven wrong in this speculation.

3. Topology

We now turn to the construction of knot invariants. As mentioned above,
the original construction of Reshetikhin-Turaev invariants is encoded in a ribbon
structure on the category of Uq(g)-representations. We can depict the structure
maps of this category in terms of diagrams.
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4 1. INTRODUCTION

• Crossing two ribbons: the corresponding operator in representations of
the quantum group is called the braiding or R-matrix1. More generally
for any braid σ on ℓ strands, this defines a homomorphism Φ(σ) : V λ →
V σ(λ).

• Creating a cup, or closing a cap: the corresponding operators in rep-
resentations of the quantum group are called the (co)evaluation and
quantum (co)trace.

• Adding a full twist to one of the ribbons: the corresponding operator in
the quantum group is called the ribbon element.

In this paper, we will categorify every of these maps to a functor, and use these
the define the invariants K(L, {λi}). This approach was pioneered by Stroppel for
the defining rep of sl2 [Str09, Str] and was extended to sln by Sussan [Sus07]
and Mazorchuk-Stroppel [MS09]. To work in complete generality, we must use the
derived categories2 Vλ = D(Vλ) of finite dimensional Tλ-representations, rather
than the variations of category O used by those authors.

Theorem D The derived category Vλ carries functors categorifying all the struc-
ture maps of the ribbon category of Uq(g)-modules:

(i) If σ is a braid, then we have an exact functor Bσ : Vλ → Vσ(λ) such that
the induced map on Grothendieck groups K0(T

λ) → K0(T
σ(λ)) coincides

with Φ(σ). Furthermore, these functors induce a strong action of the braid
groupoid on the categories associated to permutations of the set λ.

(ii) If two consecutive elements of λ label dual representations and λ− denotes
the sequence with these removed, then there are functors T,E : Vλ →
Vλ−

which induce the quantum trace and evaluation on the Grothendieck

group, and similarly functors K,C : Vλ− → Vλ for the coevaluation maps
and quantum cotrace maps.

(iii) When g = sln, the structure functors above can be described in terms of
twisting and Enright-Shelton functors on O.

By definition (see [CP95, §4]), the quantum knot invariants are given by a
composition of the decategorifications of the functors constructed in Theorem D.
Combining the functors themselves in the same pattern gives the knot homology of
Theorem A.1.

4. Summary

Let us now summarize the structure of the paper.

• In Chapters 2 and 3, we discuss the basics of the 2-category U , and prove it
acts on Vλ. This is accomplished by the construction of categorifications
U−
i for the minimal non-solvable parabolics U(pi). These categories carry

a mixture of the characteristics of U(b) and U(sl2); an appropriate non-
degeneracy result is already known for both of these algebras separately.

1As usual, the R-matrix is a map between tensor products of representations V ⊗ W →

V ⊗W intertwining the usual and opposite coproducts; we use the term braiding to refer to the
composition of this with the usual flip map, which is thus a homomorphism of representations
V ⊗W → W ⊗ V .

2We’ll want to use slightly unusual finiteness conditions on D(Vλ), so we’ll leave the precise
definition of these categories to the body of the paper. See Definition 4.8.
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NOTATION 5

By modifying the proofs of these previous results, we can show that U−
i

acts on Vλ. It is an easy consequence of this that the full U acts. These
results are of independent interest (and, in fact, some of them have been
proven independently by Kang and Kashiwara [KK12]).

• In Chapter 4, we define the algebras Tλ, using the familiar tool of graph-
ical calculus. This graphical calculus gives an easy description of the
action of the category U . We also study the relationship of this category
to T (λ1+···+λℓ).

• In Chapter 5, we develop a special class of modules which we term stan-
dard modules, which define a standardly stratified structure. In the case
where all λi are minuscule, this structure is even quasi-hereditary. These
modules also serve as categorifications of pure tensors.

• In Chapter 6, we prove Theorem D(i). That is, we construct the func-
tor lifting the braiding of the monoidal category of Uq(g)-representations.
This functor is the derived tensor product with a natural bimodule. Par-
ticularly interesting and important special cases correspond to the half-
twist braid, which sends projective modules to tiltings, and the full twist
braid, which gives the right Serre functor of Vλ.

• In Chapter 7, we prove Theorem D(ii). The most important element of
this is to identify a special simple module in the category for a pair of
dual fundamental weights, which categorifies an invariant vector.

• In Chapter 8, we prove Theorem A.1 using the functors constructed in
Theorem D and a small number of explicit computations. We also sug-
gest a map for the functoriality along a cobordism between links in the
minuscule case. As mentioned before, it is unknown whether this is inde-
pendent of choices.

• In Chapter 9, we consider the case g = sln or ŝln. In this case, we
employ results of Brundan and Kleshchev to show that Tλ is in fact the
endomorphism algebra of a projective in a parabolic category O in finite
type. In affine type, there is a similar description using the cyclotomic q-
Schur algebra. In Chapter 4, we relate the functors appearing in Theorem
D to previously defined functors on categoryO. This allows us to show the
portions of Theorem A.1 regarding comparisons to Khovanov homology
and Mazorchuk-Stroppel-Sussan homology.

We should note that an earlier version of this paper contained a section on the
connection between the algebraic material in this paper to the geometry of quiver
varieties and canonical bases. In the interest of length and heaviness of machinery,
that material has been moved to other papers [Weba,Webg,Web15].

Notation

We let g be a symmetrizable Kac-Moody algebra, which we will assume is fixed
for the remainder of the paper. Let Γ denote the Dynkin diagram of this algebra,
considered as an unoriented graph. We’ll also consider the weight lattice Y (g), root
lattice X(g), simple roots αi and coroots α∨

i . Let cij = α∨
i (αj) be the entries of

the Cartan matrix.
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6 1. INTRODUCTION

We let 〈−,−〉 denote the symmetrized inner product on Y (g), fixed by the fact

that the shortest root has length
√
2 and

2
〈αi, λ〉
〈αi, αi〉

= α∨
i (λ).

As usual, we let 2di = 〈αi, αi〉, and for λ ∈ Y (g), we let

λi = α∨
i (λ) = 〈αi, λ〉/di.

We note that we have dicij = djcji = 〈αi, αj〉 for all i, j.
We let ρ be the unique weight such that α∨

i (ρ) = 1 for all i and ρ∨ the unique
coweight such that ρ∨(αi) = 1 for all i. We note that since ρ ∈ 1/2X and ρ∨ ∈ 1/2Y ∗,
for any weight λ, the numbers 〈λ, ρ〉 and ρ∨(λ) are not necessarily integers, but
2〈λ, ρ〉 and 2ρ∨(λ) are (not necessarily even) integers.

Throughout the paper, we will use λ = (λ1, . . . , λℓ) to denote an ordered ℓ-tuple
of dominant weights, and always use the notation λ =

∑
i λi.

We let Uq(g) denote the deformed universal enveloping algebra of g; that is,
the associative C(q)-algebra given by generators Ei, Fi, Kμ for i ∈ Γ and μ ∈ Y (g),
subject to the relations:

i) K0 = 1, KμKμ′ = Kμ+μ′ for all μ, μ′ ∈ Y (g),

ii) KμEi = qα
∨
i (μ)EiKμ for all μ ∈ Y (g),

iii) KμFi = q−α∨
i (μ)FiKμ for all μ ∈ Y (g),

iv) EiFj − FjEi = δij
K̃i−K̃−i

qdi−q−di
, where K̃±i = K±diαi

,

v) For all i �= j
∑

a+b=−cij+1

(−1)aE
(a)
i EjE

(b)
i = 0 and

∑

a+b=−cij+1

(−1)aF
(a)
i FjF

(b)
i = 0.

This is a Hopf algebra with coproduct on Chevalley generators given by

Δ(Ei) = Ei ⊗ 1 + K̃i ⊗ Ei Δ(Fi) = Fi ⊗ K̃−i + 1⊗ Fi

We let UZ
q (g) denote the Lusztig (divided powers) integral form generated over

Z[q, q−1] by
En

i

[n]q!
,

Fn
i

[n]q !
for n ≥ 0. We let U̇Z be the algebra obtained by adjoining

idempotents 1μ projecting to integral weight spaces to UZ
q (g). The integral form

of the representation of highest weight λ over this quantum group will be denoted
by V Z

λ . We will always think of this integral form as generated by a fixed highest
weight vector vλ. For a sequence λ, we will be interested in the tensor product

V Z

λ = V Z

λ1
⊗Z[q,q−1] · · · ⊗Z[q,q−1] V

Z

λℓ
.

The category of representations over Uq(g) is a braided monoidal category;
of particular importance for us is the R-matrix. We use the opposite R21 of the
R-matrix defined by Tingley in [Tin]; since Tingley uses the opposite coproduct,
this will be an R-matrix for us. Thus, for two representations M,M ′, we have an
isomorphism σM,M ′ : M ⊗M ′ → M ′ ⊗M sending m⊗m′ → s(R12m⊗m′). In the
notation of [Tin], this map is defined by

(1.1) RM,M ′(m⊗m′) ∈ q〈wt(m),wt(m′)〉m′⊗m+
∑

q〈wt(m)−β,wt(m′)+β〉Xβm
′⊗Yβm

where Xβ has weight β > 0 and Yβ weight −β > 0. In particular, if m is lowest
weight or m′ highest weight, then this equation simplifies to RM,M ′(m ⊗ m′) ∈
q〈wt(m),wt(m′)〉m′ ⊗m.
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For not especially important technical reasons, it will also be helpful to consider

V
1/D
λ = V Z

λ [q1/D] and V C

λ
∼= V Z

λ [{qz}z∈C], this module with either the Dth roots of

q (for a fixed D) or all complex powers of q adjoined. We will also consider the
completion of these modules in the q-adic topology Vλ = V Z

λ ⊗Z[q,q−1] Z((q)).
For a graded ring R, we let R -mod denote the category of finitely generated

right graded R-modules. For a graded R-module M , we let Mn denote the vectors
of degree n. Let K0(R) denote the Grothendieck group of finitely generated graded
projective right R-modules. This group carries an action of Z[q, q−1] by grading
shift [A(i)] = qi[A], where A(i)n = Ai+n. The careful reader should note that this
is opposite to the grading convention of Khovanov and Lauda.
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CHAPTER 2

Categorification of quantum groups

1. Khovanov-Lauda diagrams

In this paper, our notation builds on that of Khovanov and Lauda, who give
a graphical version of the 2-quantum group, which we denote U (leaving g under-
stood). These constructions could also be rephrased in terms of Rouquier’s descrip-
tion and we have striven to make the paper readable following either [KL10] or
[Roua]; however, it is most sensible for us to use the 2-category defined by Cautis
and Lauda [CL15], which is a variation on both of these. See the introduction of
[CL15] for more detail on the connections between these different approaches.

The object of interest for this subsection is a strict 2-category; as described, for
example, in [Lau10], one natural yoga for discussing strict 2-categories is planar
diagrammatics. The 2-category U is thus most clearly described in this language.

Definition 2.1 A blank KL diagram is a collection of finitely many oriented
curves in R× [0, 1] which has no triple points or tangencies, decorated with finitely
many dots. Every strand is labeled with an element of Γ, and any open end must
meet one of the lines y = 0 or y = 1 at a distinct point from all other ends.

A KL diagram is a blank KL diagram together with a labeling of regions
between strands (the components of its complement) with weights following the
rule

i

μ μ− αi .

We identify two KL diagrams if they are isotopic via an isotopy which does
not cancel any critical points of the height function or move critical points through
crossings or dots. Ultimately, we will need to introduce scalar corrections for iso-
topies that do have these features, as shown in relations (2.1a–2.1b); particular, the
biadjunctions given by cups and caps will typically not be cyclic. In the interest of
simplifying diagrams, we’ll often write a dot with a number beside it to indicate a
group of that number of dots.

We call the lines y = 0, 1 the bottom and top of the diagram. Reading across
the bottom and top from left to right, we obtain a sequence of elements of Γ,
which we wish to record in order from left to right. Since orientations are quite
important, we let ±Γ denote Γ × {±1}, and associate i to a strand labeled with i
which is oriented upward and −i to one oriented downward. For example, we have

9
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10 2. CATEGORIFICATION OF QUANTUM GROUPS

a blank KL diagram

m =

i ij

jii

k k

i

with top given by (−k, k,−i, i,−j) and bottom given by (−k, i, k,−j,−i).
We also wish to record the labeling on regions; since fixing the label on one

region determines all the others, we’ll typically only record L, the weight of the
region at far left and R, the weight at far right. In addition, we will typically not
draw the weights on all regions in the interest of simplifying pictures. We call the
pair of a sequence i ∈ (±Γ)n and the weight L a KL pair; let R := L+

∑n
j=1 αij

where we let α−i = −αi.

Definition 2.2 Given KL diagrams a and b, their (vertical) composition ab is
given by stacking a on top of b and attempting to join the bottom of a and top of
b. If the sequences from the bottom of a and top of b don’t match or La �= Lb, then
the composition is not defined and by convention is 0, which is not a KL diagram,
just a formal symbol.

The horizontal composition a◦b of KL diagrams is the diagram which pastes
together the strips where a and b live with a to the right of b. The only compatibility
we require is that La = Rb, so that the regions of the new diagram can be labeled
consistently. If La �= Rb, the horizontal composition is 0 as well.

Implicit in this definition is a rule for horizontal composition of KL pairs in
±Γ, which is the reverse of concatenation

(i1, . . . , im) ◦ (j1, . . . , jn) = (j1, . . . , jn, i1, . . . , im),

and gives 0 unless Li = Rj.
We should warn the reader, this convention requires us to read our diagrams

differently from the conventions of [Lau10,KL10,CL15]; in our diagrammatic
calculus, 1-morphisms point from the left to the right, not from the right to the left
as indicated in [Lau10, §4]. The practical implication will be that our relations are
the reflection through a vertical line of Cautis and Lauda’s.

Definition 2.3 Let ˜̃U be the strict 2-category where

• objects are weights in Y (g),
• 1-morphisms μ → ν are KL pairs with L = μ,R = ν, and composition is
given by horizontal composition as above.

• 2-morphisms h → h′ between KL pairs are �-linear combinations of KL
diagrams with h as bottom and h′ as top, and vertical and horizontal
composition of 2-morphisms is defined above.

We’ll typically use Ei to denote the 1-morphism (i) (leaving the weight L im-
plicit) and Fi to denote (−i). More generally, we’ll let Ei = F−i denote the 1-
morphism for a sequence i.
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1. KHOVANOV-LAUDA DIAGRAMS 11

Morse theory shows that the 2-morphism spaces of ˜̃U are generated under hori-
zontal and vertical composition by identity morphisms and the following diagrams:

• a cup ι′ : ∅ → EiFi or ι : ∅ → FiEi

ι′ =

ii

λ

λ+ αi

ι =

ii

λ

λ− αi

• a cap ǫ : EiFi → ∅ or ǫ′ : FiEi → ∅

ǫ =

ii

λ

λ− αi ǫ′ =

ii

λ

λ+ αi

• a crossing ψ : FjFi → FiFj

ψ =

i

i

j

j

λ

λ− αi

λ− αj

λ− αi − αj

• a dot y : Fi → Fi

y =

i

i

λ λ− αi

In the diagrams above, we have included dashed lines to indicate the source and
target of the 2-morphisms; we will not use this convention in the future in the
interest of simplifying diagrams.

We can define a degree function on KL diagrams. The degrees are given on
elementary diagrams by

deg

i j

= −〈αi, αj〉 deg

i

= 〈αi, αi〉 deg

i j

= −〈αi, αj〉 deg

i

= 〈αi, αi〉

deg
i λ

= 〈λ, αi〉 − di deg
i λ

= −〈λ, αi〉 − di

deg
i λ

= 〈λ, αi〉 − di deg
i λ

= −〈λ, αi〉 − di.

For a general diagram, we sum together the degrees of the elementary diagrams it

is constructed from. This defines a grading on the 2-morphism spaces of ˜̃U .
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12 2. CATEGORIFICATION OF QUANTUM GROUPS

2. The 2-category U

Once and for all, fix a matrix of polynomials Qij(u, v) =
∑

k,m Q
(k,m)
ij ukvm

valued in � and indexed by i �= j ∈ Γ; by convention Qii = 0. We assume Qij(u, v)
is homogeneous of degree −〈αi, αj〉 = −2dicij = −2djcji when u is given degree 2di
and v degree 2dj . We will always assume that the leading order of Qij in u is −cij ,

and that Qij(u, v) = Qji(v, u). We let tij = Q
(−cij ,0)
ij = Qij(1, 0); by convention

tii = 1. In [CL15], the coefficients of this polynomial are denoted

Qij(u, v) = tiju
−cij + tjiv

−cji +
∑

pdi+qdj=dicij

spqij u
pvq.

Khovanov and Lauda’s original category uses the choice Qij = u−cij + v−cji . To
simplify, we’ll always set the parameter ri from [CL15] to be ri = 1.

Definition 2.4 Let U be the quotient of ˜̃U by the following relations on 2-morphisms:

• the cups and caps are the units and counits of a biadjunction. The mor-
phism y is cyclic. The cyclicity for crossings can be derived from the
pitchfork relation:

(2.1a) tji

i i

j

j

=

i i

j

j

tji

i ij

j

=

i ij

j

(2.1b)

i ij

j

=

i ij

j i i

j

j

=

i i

j

j

.

The mirror images of these relations through a vertical axis also hold.
• Recall that a bubble is a morphism given by a closed circle, endowed
with some number of dots. Any bubble of negative degree is zero, any
bubble of degree 0 is equal to 1. Labeling all strands with i, we have that:

(2.2a) −λi − 1− j

λ λ

= λi − 1− j =

{
1 j = 0

0 j > 0

We must add formal symbols called “fake bubbles” which are bubbles
labelled with a negative number of dots (these are explained in [KL10,
§3.1.1]); given these, we have the inversion formula for bubbles:

(2.2b)
j+λi+1∑

k=−λi−1

k

λ

j − k =

{
1 j = −2

0 j > −2

• 2 relations connecting the crossing with cups and caps, shown in (2.3a-
2.3d). Since these only involve one label i, we will leave it out of the
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2. THE 2-CATEGORY U 13

diagrams below.

(2.3a) λ
= −
∑

a+b=−1

a

b

λ

(2.3b) λ
=
∑

a+b=−1

a

b

λ

(2.3c)

λ = λ − +
∑

a+b+c=−2
a

c

b λ

(2.3d)

λ = λ − +
∑

a+b+c=−2
a

c

b λ

• Oppositely oriented crossings of differently colored strands simply cancel
with a scalar.

(2.4a) λ

i j

= tij
λ

i j

(2.4b) λ

i j

= tji
λ

i j
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14 2. CATEGORIFICATION OF QUANTUM GROUPS

• the endomorphisms of words only using Fi (or by duality only Ei’s) satisfy
the relations of the quiver Hecke algebra R.

(2.5a)

i j

=

i j

unless i = j

(2.5b)

i j

=

i j

unless i = j

(2.5c)

i i

=

i i

+

i i

(2.5d)

i i

=

i i

+

i i

(2.5e)

i i

= 0 and

i j

=

ji

Qij(y1, y2)

(2.5f)

ki j

=

ki j

unless i = k �= j

(2.5g)

ii j

=

ii j

+

ii j

Qij(y3, y2)−Qij(y1, y2)

y3 − y1
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4. BUBBLE SLIDES 15

This completes the definition of the category U .
There are 2-categorical analogues of the positive and negative Borels as well.

Definition 2.5 Let ˜̃U− be the 2-subcategory of ˜̃U formed by sequences and dia-
grams where only downward pointed strands are allowed. We let U− be the quotient

of ˜̃U− by the relations (2.5a–2.5g) on 2-morphisms. We let U+ denote the analogous
2-category where only upward pointing strands are allowed.

Note that the relations (2.5a–2.5g) in this 2-category are insensitive to the
labeling of regions (that is, to L and R). Thus, we can capture all the structure of
U− in an algebra.

Definition 2.6 The algebra R = EndU−(⊕iFi) where we let i range over all se-
quences in +Γ with L fixed is called the KLR algebra or quiver Hecke algebra
(QHA), which is discussed in [Roua, §4] and an earlier paper of Khovanov and
Lauda [KL09]. We can realize the same algebra (in a slightly different presenta-
tion) as R = EndU+(⊕iEi).

3. A spanning set

For the 2-category U , there is an expected “size” of the category predicted by
Khovanov and Lauda, both in terms of its Grothendieck group, and the graded
dimension of Hom spaces between objects. However, in [KL10] this is only proven
for g = sl(n). In particular, they give a spanning set B in [KL10, 3.2.3] for the set
of 2-morphisms between fixed 1-morphisms, which we will show is a basis.

For KL pairs G and H, any KL diagram with bottom G and top H induces
a matching between the union of the sequences for G and H, by connecting the
opposite end of each strand. The set B is indexed by the set of matchings that
occur this way: they must connect entries with opposite signs within G or H, and
like signs when connecting an entry in G to one in H.

For each such matching ϕ, we choose (arbitrarily) a diagram mϕ which realizes
this matching, and which has no dots and a minimal number of crossings. We also
choose (arbitrarily) a preferred location on each strand of mϕ.

Definition 2.7 We let BG,H denote the set of diagrams obtained frommϕ, ranging
over matchings ϕ, by

• adding any number of dots at the location we have fixed on each arc
• multiplying on the left by a monomial in positive degree, clockwise ori-
ented bubbles.

4. Bubble slides

Since these calculations are not done in Cautis and Lauda [CL15], let us record
the form of the bubble slide relations when the bubble and the strand crossing it
have different labels.

Fixing i �= j, we have that the polynomial

t−1
ji u

−cjiQji(u
−1, v) =

∑
t−1
ji Q

(−cji−k,m)
ji ukvm ∈ 1 + u�[u, v] + v�[u, v]
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16 2. CATEGORIFICATION OF QUANTUM GROUPS

has an inverse in �[[u, v]] which is given by

(t−1
ji u

−cjiQji(u
−1, v))−1 =

∑
S
(cji−p,q)
ji upvq.

More explicitly, there’s a unique collection S
(p,q)
ji ∈ � such that

∑

(k,m)

t−1
ji Q

(k−p,m−q)
ji S

(p,q)
ji =

{
1 (k,m) = (0, 0)

0 (k,m) �= (0, 0)

subject to the condition that S
(cji−p,q)
ji = 0 whenever p < 0 or q < 0.

Proposition 2.8 In the category U , the following relations and their mirror images
hold:

(2.6)

i

j

b

=
∑

k,m

t−1
ji Q

(k,m)
ji m

i

b+ k

j

(2.7)

j

b

=
∑

p,q

S
(p,q)
ji q

j

b+ p

Proof. The equations are equivalent by the definition of S
(p,q)
ij . Thus, we only

need to prove (2.6). Thus follows from

b

= t−1
ji b =

∑

k,m

t−1
ji Q

(k,m)
ji m

b+ k

.

�
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CHAPTER 3

Cyclotomic quotients

1. A first approach to the categorification of simples

When one presents a category by generators and relations, it can be difficult to
confirm that these relations have not killed more elements then expected, or that
the category is not 0. The usual technique for doing this is find a representation of
the 2-category where it is easy to confirm that things are non-zero.

For U , this representation will be a natural categorification of the simple rep-
resentation V Z

λ . We define this by imitating the construction of V Z

λ as a quotient
of a Verma module.

Definition 3.1 Let D̃R
λ

μ be the algebra EndU (
⊕

Fi) where (i, λ) ranges over all
KL pairs with L = λ and R = μ. Unlike in Definition 2.6, we allow entries both
from Γ and −Γ.

Let DRλ
μ be the quotient of D̃R

λ

μ by the two-sided ideal Iμ generated by

• the identity on Ei if i1 ∈ +Γ (that is, the left-most strand is upward
oriented) and

• the horizontal composition a◦b of any map a with a positive degree bubble
b.

We let DRλ ∼= ⊕μDRλ
μ.

We let DVλ
μ denote the category of finitely generated right modules over DRλ

μ.

We can write these relations graphically as:

(3.1a)

j

· · · = 0

(3.1b)

j

a

· · · = 0 a ≥ −λj

(3.1c)

jλj

· · · = 0

17

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



18 3. CYCLOTOMIC QUOTIENTS

where (3.1c) actually follows from (3.1a–3.1b) by (2.3b):
(3.2)

−

−λj

j

j

. . . =

−λj

λj

j

j

. . . −
λj − 1

j

j

−λj

. . . − . . . +

j

j

−1

. . . .

Note that if λ is not dominant, the algebra DRλ is 0, since if λi < 0, the identity
functor can be written as an honest clockwise bubble with label i and −λi−1 dots,
which is 0 by (3.1a).

We have an obvious functor ̟(u) = Hom(
⊕

Fi, u)/Iμ from the category of
1-morphisms λ → μ in U to DVλ

μ.

Now, we wish to define an action of U on the categoriesDVλ
μ with λ fixed. That

is, a 2-functor sending the weight μ to the category DVλ
μ, and each 1-morphism

μ → ν to a DRλ
μ -DRλ

ν -bimodule.
There is only one way to do this which is compatible with ̟. In the interest

of explicitness, we will define this action as tensor product with certain bimodules.
We let δ̃u = Hom(

⊕
Fi, u ◦⊕Fj) for u a 1-morphism μ → ν in U . We let

δu ∼= δ̃u/(Iν · δ̃u + δ̃u · Iμ).
Pictorially, we can visualize elements of this bimodule as below.

(3.3)

· · ·

· · · · · ·

DRλ
ν -action

DRλ
μ-action u : μ → ν

The 2-morphisms of U act on the bimodule δu by attaching at the top right of the
diagram (3.3). This is well-defined since the ideals I∗ are closed under horizontal
composition b → a ◦ b.

Proposition 3.2 There is a representation of the 2-category U which sends μ →
DVλ

μ such that u → − ⊗DRλ δu, with the induced action of 2-morphisms.

Proof. We have already defined the functors associated to 1-morphisms and
the action of 2-morphisms, so we need only check that the relations (2.1a-2.5g)
hold. This follows immediately from the locality of the relations, since it makes no
difference if we apply them before or after attaching at the top of the diagram. �

Unfortunately, it’s not immediately clear that DRλ
μ �= 0. From a certain per-

spective, the main result of this section is the fact that this ring contains a non-zero
element if the μ weight space of λ is non-trivial. We’ll resolve this issue by show-
ing that this ring is Morita equivalent to a more familiar ring, the cyclotomic
quotient of R.
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2. CATEGORIFICATIONS FOR MINIMAL PARABOLICS 19

Definition 3.3 The cyclotomic quiver Hecke algebra (QHA) or cyclotomic
KLR algebra Rλ for a weight λ is the quotient of R by the cyclotomic ideal, the

2-sided ideal generated by the elements yλ
i1

1 e(i) for all sequences i. This is precisely
the two-sided ideal generated by the relations (3.1c).

We let Vλ denote the category of finite dimensional graded Rλ-modules.

This algebra has attracted great interest recently in the work of Brundan-
Kleshchev [BK09], Kleshchev-Ram [KR11], Hoffnung-Lauda and Lauda-Vazirani
[LV11,HL10], Hill-Melvin-Mondragon [HMM12] and Tingley and the author
[TW]. It has a very rich structure and representation theory, and some surprising
connections to classical representation theory.

Note that we have a natural map p′ : R → DRλ thinking of a diagram in R as

one in D̃R
λ
, and then applying the quotient map. The relation (3.1c) shows that

the map p′ factors through a map p : Rλ → DRλ. We will eventually show that
this map induces a Morita equivalence.

Unfortunately, it is not easy to attack the question of whether this map is a
Morita equivalence directly. Luckily, we can deduce this result for sl2 by work of
Lauda [Lau10]. Since a Kac-Moody algebra is essentially a bunch of sl2’s with
their interactions described by a Borel, we can hope that this case can lead us to
the more general case.

Let us first give a rough sketch of the argument:

• First, we construct an intermediary Morita equivalence between Rλ and
a ring similar to DRλ where one only allows upward strands labeled with
one of the elements of Γ.

• We can use this Morita equivalence to show that the restriction and in-
duction functors (defined below) Ei and Fi define an action of Usl2 ; in
particular, these functors are biadjoint.

• We then need only check one extra relation to confirm that we have a
categorical action of U on the modules over the cyclotomic quotient; this
action can be used to confirm the Morita equivalence of Rλ and DRλ, and
to show non-degeneracy for U .

2. Categorifications for minimal parabolics

2.1. The parabolic categorification. Fix i ∈ Γ for the remainder of this
chapter.

Definition 3.4 We let ˜̃U−
i be the 2-subcategory of ˜̃U where we allow downward

pointing strands with all labels and upward pointing strands only with the label i.

We let U−
i denote the quotient of ˜̃U−

i where we impose those relations (2.1a-2.5g)
which still make sense in this 2-category.

In Rouquier’s language, we would construct this category by adjoining Ei to
U− as a formal left adjoint to Fi, and impose the relations that

• the map ρs,λ is an isomorphism whose inverse is described by the equa-
tions (2.3c–2.3d) (in the “style” of Rouquier, one would not impose this
equation, but simply adjoin an inverse to ρs,λ).
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20 3. CYCLOTOMIC QUOTIENTS

• the right adjunction between Fi and Ei is determined by the equations
(2.3a–2.3b).

It seems very likely that using an argument in the style of [Bru] would show that
this defines an equivalent category, but we have not confirmed the details of this.

There are functors U− → U−
i → U , neither of which is manifestly faithful, since

new relations could appear when the other objects are added. We note that the
2-morphisms in this category have a spanning set defined as in Definition 2.7:

Definition 3.5 Let Bi,G,H be the subset of BG,H given by KL diagrams which
make sense in U−

i , that is those where any cups, caps or bubbles are labeled with i.

This category corresponds to the parabolic pi ∼= b− ⊕ gαi
.

2.2. The quiver flag category. Lauda defines an action of his categorifi-
cation of sl2 on a “flag category,” which gives an algebraic encapsulation of the
geometry of Grassmannians. There is an appropriate generalization of Grassman-
nians for g of higher rank with symmetric Cartan matrix. These are the quiver
varieties of the graph Γ. Unfortunately, these are analogues of cotangent bundles
of Grassmannians, not the Grassmannians themselves, and are typically not cotan-
gent bundles. This makes the geometry required for defining a geometric action
of U considerably more complex. The author has implemented one version of such
an action using deformation quantization in [Weba] and an action has been de-
fined on coherent sheaves on quiver varieties in [CKL]. However, neither of these
constructions are suitable for algebras without symmetric Cartan matrices.

A standard trick to get around this issue is to work one vertex at a time. One
fixes a vertex i, assumes that it is a source, and replaces the Grassmannian with
the space of quiver representations where the sum of all maps out of i is injective.
For example, this approach is used by Zheng [Zhe] in his construction of a weak
categorical action on certain categories of sheaves attached to quiver varieties.

Inspired by this approach, we will develop an algebraic replacement for these
quiver varieties which works even in non-symmetric types.

Let us give a brief reminder on Lauda’s action on the equivariant cohomology
of Grassmannians from [Lau11]. Over any field �, we have an isomorphism

Hq
m := H∗

GLq
(Gr(m, q)) ∼= �[x1, . . . , xm, y1, . . . , yq−m],

where xg = cg(T ) and yg = cg(Cq/T ), the Chern classes of the two tautological
bundles. By convention, x0 = y0 = 1. From these, we can construct another very
important sequence of classes. Let

(3.4) wg := cg(C
q) =

g∑

k=0

xkyg−k,

where the latter equality follows from the Whitney sum formula; these are the image
of the Chern classes in HGLq

(∗) under the pullback map. Note, in particular, that
wN = 0 for N > q.

We can also write (3.4) as an equality of generating series w(u) = x(u)y(u)
where w(u) =

∑∞
i=0 wiu

i and similarly for x(u) and y(u). Note that in Lauda’s
construction, the clockwise bubbles correspond to the coefficients of the quotient
x(−u)/y(−u) and the counter-clockwise to y(−u)/x(−u) by [Lau11, (3.18)] (keep
in mind that our conventions differ from Lauda’s by a reflection through the y-axis).
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2. CATEGORIFICATIONS FOR MINIMAL PARABOLICS 21

The ring �[w1, . . . ,wq] functions as a base ring for Lauda’s construction, since
all bimodules and and bimodule maps he considers arise from pullback and push-
forward in equivariant cohomology. This is also easily seen from the algebraic
formulas he gives. In particular, for any commutative ring B and ring homomor-
phism �[w1, . . . ,wq] → B, we can base change Lauda’s action by tensoring all
bimodules in the construction with B. For example, the action on the usual co-
homology of Grassmannians given in [Lau10] is the base change via the quotient
map �[w1, . . . ,wq] → �.

The construction with Grassmannians we’ve discussed gives a categorification
of the representation Vq = Symq(C2) of sl2. We can endow this vector space with a
module structure over the whole Levi sl2+h for pi by extending the highest weight
to an integral weight λ such that q = λi.

For a fixed weight λ with λi ≥ 0, there is essentially a universal categorical
representation of U−

i which satisfies a few basic properties. As usual, we let Λ(p)
be the algebra of symmetric polynomials on an alphabet p, and let ei(p), hi(p)
denote the elementary and complete symmetric polynomials of degree i. We want
to find a module over U−

i such that:

(1) The category attached to a weight μ = λ−∑j∈Γ mjαj is the category of

representations of an algebra Λμ, with Λλ
∼= �. If μ � λ then Λμ = 0.

(2) If one only uses Fj for j �= i, then the representation coincides with
the polynomial representation of U−. That is, in the special case ν =
λ−∑j 	=i mjαj , we have that Λν

∼=
⊗

j 	=i Λ(pj) where pj is the alphabet

{pj,1, . . . , pj,mj
}, and Fi(Λλ) is a copy of the polynomial ring �[{pj,k}]

with action given by the usual polynomial action of [Roua, Prop. 3.12]
or [KL11] (also shown in equations (3.12)).

(3) On the string {ν, ν − αi, ν − 2αi, . . . } then the algebras Λν−miα arise as

the base change of Hνi

mi
by a map γν : H

νi

0
∼= �[w1, . . . ,wνi ] → Λν .

We can determine the map γν using bubble slides. Again, consider a weight of
the form ν = λ −∑j 	=i mjαj . In this case, we have that x(u) = 1, so (−1)kwk =

(−1)kyk corresponds to the clockwise bubble labeled i of degree k as calculated in
[Lau11, §4.2]. Thus, we can calculate how wk should act in Λν using the bubble
slide (2.6), reflected through a horizontal axis.

Fix a sequence (−j1, . . . ,−jm) where j ∈ −Γ appears mj many times. We will
use �i (k) as shorthand for the clockwise bubble of degree k labeled with i. We’re
interested in how this bubble will act in the rightmost region with label ν. We
introduce a power series

Θp(u) = (−1)k
∑

id(−jp+1,...,−jm) ◦ �i (k) ◦ id(−j1,...,−jp) u
k

given by the action of these bubbles when placed between the pth and p + 1st
strand. The bubble slides allow us to compute these power series inductively. By
assumption Θ0(u) = 1, and the bubble slide (2.6) can be restated as the formula

Θp(u) = Θp−1(u)t
−1
ijp

· (−u)−cijpQjpi(yk,−u−1).

Thus, we have that

(3.5) γν(w(u)) = Θm(u) =
∏

j 	=i

mj∏

k=1

t−1
ij · (−u)−cijQji(pj,k,−u−1).
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Since wi has the same action on the left and right of all bimodules in Lauda’s
construction, this formula holds for all weights of the form μ = ν −miαi as well.
Thus, we can rephrase points (1-3) above as:

Definition 3.6 The ring Λμ is the base extension of �[x1, . . . , xmi
, y1, . . . , yμi+mi

]
via the map γν . That is, if we let γμ : �[x1, . . . , xmi

, y1, . . . , yμi+mi
] → Λμ denote

the induced maps, then this ring is generated over
⊗

j 	=i Λ(pj,1, . . . , pj,mj
) by the

elements γμ(xk) for k = 1, . . . ,mi and γμ(yk) for k = 1, . . . , μi +mi, subject only
to the relation

(3.6) γμ(x(u))γμ(y(u)) =
∏

j 	=i

mj∏

k=1

t−1
ij · (−u)−cijQji(pj,k,−u−1).

We call the category Λμ -mod the quiver flag category.
We identify the images γμ(xi) with the elementary symmetric polynomials in

an alphabet pi,1, . . . , pi,mi
. That is:

γμ(x(u)) =

mi∑

m=1

em(pi) =

mi∏

k=1

(1 + pi,ku),

where pi denotes the alphabet of variables pi,∗. We can thus write Λμ as a quotient
of the ring

Λ̃μ
∼=
⊗

j∈Γ

Λ(pj,1, . . . , pj,mj
)

of polynomials, symmetric in each of a union of alphabets, one for each node of Γ,
with size given by mj . In view of (3.6), we can identify γμ(y(u)) with the power

series in Λ̃μ given by

Ξμ(p, u) :=

(
∞∑

k=0

hk(pi)(−u)k

)
∏

j 	=i

mj∏

k=1

t−1
ij · (−u)−cijQji(pj,k,−u−1).

Note that if each element of pj is given degree 2dj , and u given degree −2di,
then Ξμ is homogeneous of degree 0; this is clear for the first term in the product,
and follows from the fact that Qji(pj,k,−u−1) is homogeneous of degree −2dicij by
assumption.

We let f(u){ug} denote the ug coefficient of a polynomial or power series.

Lemma 3.7 The map sending

ek(pi) → γμ(xk) Ξμ{ug} → γμ(yg)

induces an isomorphism from the quotient of Λ̃μ by the relations:

(3.7) Ξμ{ug} = 0 for all g > μi +mi
μ.

to Λμ.

Proof. Let Λ′ be the quotient of Λ̃μ by the relations (3.7). First, we note that
we have a map Λ′ → Λμ. The equality γμ(y(u)) = γμ(w(u))/γμ(x(u)) = Ξμ(p, u)
implies that the relations (3.7) hold as the corresponding coefficients of y(u) vanish
as well.
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The ring Λμ has rank
(
μi+2mi

mi

)
as a module over

⊗
j 	=i Λ(pj,1, . . . , pj,mj

). On

the other hand, the coefficients Ξμ{ug} have the form hg(pi)+· · · where the remain-
ing terms have lower order in pi. Thus, Λ

′ is spanned over
⊗

j 	=i Λ(pj,1, . . . , pj,mj
)

by any spanning set in Λ(pi)/(hg(pi) | g > μi + mi
μ) which is isomorphic to

H∗(Gr(mi, μi + 2mi)). Therefore, the rank of Λ′ is ≤
(
μi+2mi

mi

)
, which is only

possible if the map is an isomorphism. �

2.3. The action. We wish to define a 2-functor Gλ from U−
i to the 2-category

of �-linear categories which on the level of 0-morphisms sends μ → Λμ -mod. On
1-morphisms, we need only say where we send the 1-morphisms Ei and Fj for all
j ∈ Γ.

• The functors Fj for j �= i act by tensoring with the Λμ -Λμ−αj
bimod-

ule Λμ[pj,mj+1]. The left-module structure over Λμ is the obvious one,
and right-module over Λμ−αj

is a slight tweak of this: ek(p
′
j) acts by

ek(pj , pj,mj+1), ek(p
′
m) by ek(pm) for m �= j.

• The functor Fi acts by an analogue of the action in Lauda’s paper [Lau11];
tensor product with a natural Λμ -Λμ−αi

-bimodule Λμ;i which is a quo-
tient of Λμ[pi,mi+1] by the relation

(3.8)

(
∞∑

c=0

(−pi,mi+1u)
c

)
Ξμ{ug} = 0 for all g > μi +mi − 1

with the same left and right actions as above.
• Similarly, the functor Ei acts by tensor product with Λ̇μ+αi;i, the bimodule
defined above with the actions above reversed. This can also be presented
as a quotient of Λμ[pi,mi

] by the relation

(1 + pi,mi+1u) Ξμ{ug} = 0 for all g > μi +mi.

Now, we must specify the action of 2-morphisms.
All the morphisms only involving only the label i are inherited from the corre-

sponding construction for sl2, given by Lauda in [Lau11]. Let s be a 1-morphism
in Usl2 and let η′(s) be the bimodule over equivariant cohomology rings of Grass-
mannians associated to s under the representation ΓG

p defined in [Lau11, §4.1];
recall that we have an auto-functor ω̃ : U → U defined in [KL10, §3.3.2] which
swaps Ei and Fi. Note, we must use this functor because Lauda’s construction uses
a lowest weight representation, rather than a highest weight; that is, he associates
the Grassmannian of 0 planes in CN to the −N weight space of a representation,
by [Lau11, (4.1)].1

Lemma 3.8 The base change by the map γμ sends the bimodule η′(ω̃s) to the
bimodule Gλ(s).

Proof. This follows from the definition for Ei and Fi; since these bimod-
ules are flips of each other, we need only check it that η′(Ei) is sent to η(Fi).
Using the notation of [Lau11], the bimodule η′(Ei) is just the polynomial ring

1Of course, there are other differences between our conventions and Lauda’s, but these cancel.
In this paper, we read diagrams from left to right, rather than right to left, but because we use
left modules, we have the same conventions for ordering bimodules as Lauda.
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24 3. CYCLOTOMIC QUOTIENTS

�[w1, . . . , wmi
, ξ, z1, . . . , zp−mi−1] and we can define a map of this to Λμ;i by send-

ing

wk → ek(pi) ξ → pi,mi+1 zℓ → Ξμ−αi
(u){uℓ}.

Indeed, the left and right actions match those given by Lauda in [Lau11, §3.1]; for
the left action, this follows from

xk → wk → ek(pi) yℓ → zℓ + ξ · zℓ−1 = Ξμ(u){uℓ}
where the last equality holds since (1 + upi,mi+1)Ξμ−αi

(u) = Ξμ(u). For the right
action, we have that

xk → wk + ξwk−1 → ek(pi, pi,mi+1) yℓ → zℓ → Ξμ−αi
(u){uℓ},

as desired.
The same result holds for tensor products of these bimodules, since they are free

both as left and as right modules, that is, they are sweet. Thus, tensor products
and base change commute, and we are done. �

Thus, we can define all 2-morphisms between Fi’s and Ei’s by simply base
changing the same 2-morphisms from [Lau11, §4.1]. That is, in our notation, we
have that

• the transformations y acts by

(3.9) y : Fi → Fi → (f → fpi,mi+1) y : Ei → Ei → (f → fpi,mi
)

• the transformation ψ : F2
i → F

2
i acts by multiplication by the usual De-

mazure operator in the last two variables:

(3.10) f → fs − f

pi,mi+2 − pi,mi+1

where s is the transformation switching pi,mi+1 and pi,mi+2.
• the adjunctions are given by:

ι =
i i

μ+ αi

μ

→
(
1 →

μi+mi∑

j=0

(−1)jΞμ(u){uj} ⊗ pμ
i+mi−j

i,mi

)
(3.11a)

ι′ =
i i

μ− αi

μ

→
(
1 →

mi∑

j=0

(−1)jpmi−j
i,mi+1 ⊗ ej(pi)

)
(3.11b)

ǫ′ = i i

μ

μ+ αi

→
(
pai,mi

⊗ pbi,mi
→ ha+b−mi+1(pi)

)

(3.11c)

ǫ = i i

μ

μ− αi

→
(
pai,mi+1 ⊗ pbi,mi+1 → (−1)a+b+1−mi−μi

Ξ−1
μ (u){ua+b+1−mi−μi}

)

(3.11d)
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Above, we use that by our assumptions on Qij , the power series Ξ(u) has a non-zero
constant term, and thus has a formal inverse in Λ(p)[[t]], which we denote Ξ−1(u).
By the usual Cauchy formula, we have

Ξ−1(u) =

(
∞∑

k=0

ek(pi)u
k

)
∏

j 	=i

mj∏

k=0

tij · ucij

Qji(pj,k,−u−1)
.

Now we turn to the question of describing the action of 2-morphisms involving
labels other than i. Choose an orientation on Γ so that i is a source; this is necessary
in order to pin down conventions for the action of the KLR algebra in its polynomial
representation, as we see in (3.12) below. We can identify FjFk with tensor product
with Λμ;k ⊗Λμ−αk

Λμ−αk;j , and define the transformation ψ : FjFk → FkFj as in

[Roua, Proposition 3.12] or [KL11] via the formulae

(3.12) ψ(f) =

⎧
⎪⎨
⎪⎩

fs−f
pj,mj+2−pi,mj+1

j = k

Qjk(pj,mj+1, pk,mk+1)f j → k

f j �→ k

Finally, we use (2.1a) as the definition of a crossing of a downward j colored strand
and an upward i colored one. Note that it is not obvious that these formulae are
well defined in all cases; we will check this in the course of the proof.

Theorem 3.9 The formulas of (3.9-3.12) define a strict 2-functor Gλ from U−
i to

the 2-category of �-linear categories which sends μ → Λμ -mod.

Proof. First, we must check the maps we have given above make sense, and
then we must confirm that they satisfy the correct relations. For diagrams only in-
volving the label i, this follows immediately from base change by [Lau11, Theorem
4.13].

On the other hand, for diagrams not involving i’s, the variables pj,mj+1 and
pk,mk+1 act freely. Thus, the formulae of (3.12) give well-defined maps. The rela-
tions (2.5a–2.5g) follow since these operators match a known representation of the
KLR algebra (given, for example, in [Roua, Proposition 3.12]).

Thus, the only issue is the interaction between these 2 classes of functors. In
particular, it remains to show the maps corresponding to elements of R(ν) are well
defined (the relations between them then automatically hold, since quotienting out
by relations will not cause two things to become unequal).

Now, consider the bimodulesΛμ;j⊗Λμ−αj
Λμ−αj ;i andΛμ;i⊗Λμ−αi

Λμ−αi;j . The

functors of tensor product with these are canonically isomorphic to FiFj and FjFi,
respectively (though they are not the same “on the nose”), so it suffices to define
the map ψ as a map between these bimodules. The latter is just Λμ;i[pj,mj+1], so
the relations are just (3.8).

The former is a quotient of Λμ[pj,mj+1, pi,mi+1] by

(3.13) u−cijQji(pj,mj+1,−u−1)

(
∞∑

c=0

(−pi,mi+1u)
c

)
Ξμ{ug} = 0

for all g > μi +mi − 1− cji.
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26 3. CYCLOTOMIC QUOTIENTS

Note that

(3.14)
(−u)−n

1 + pi,mi+1u
=

(−u)−n − pni,mi+1

1 + pi,mi+1u
+

pni,mi+1

1 + pi,mi+1u

= (−u)−n + (−u)−n+1pi,mi+1 + · · · − u−1pn−1
i,mi+1 +

pni,mi+1

1 + pi,mi+1u

Modulo the relations (3.7) of Λμ, we have the equality

u−cijQ
(k,n)
ji pkj,mj+1((−u)−n + (−u)−n+1pi,mi+1 + · · · − u−1pn−1

i,mi+1)Ξμ{ug} = 0

for all g > μi +mi − 1 − cji, so replacing every (−u)n in (3.13) with the equality
from (3.14), we have that

u−cijQji(pj,mj+1, pi,mi+1)

(
∞∑

c=0

(−pi,mi+1u)
c

)
Ξμ{ug} = 0

for all g > μi + mi − 1 − cji. Thus, the new relations introduced are exactly
Qji(pj,mj+1, pi,mi+1) times those of Λμ;i[pj,mj+1]. Thus, the definition of ψ given
above indeed induces a map as desired.

Let us illustrate this point in the simplest case, when μ = λ. In this case, we
have that

Λλ = �, Λλ−αi
= �[pi]/(p

λi

i )

Λλ−αj
= �[pj ] Λλ−αi−αj

= �[pi, pj ]/(p
λi

i Qji(pj , pi))

The only one of these requiring any appreciable computation is the last. In

this case, we have the relation pλ
i

i Qji(pj , pi) = 0 by taking the uλi−1−cij term of
(1− pit+ · · · )u−cijQji(pj ,−u−1).

Finally, we must prove the relations (2.4a) and (2.4b). This is simply a calcula-
tion, given that we have already defined the morphisms for all the diagrams which
appear. The composition

(3.15) FjEi
ι′1−→ EiFiFjEi

ψ2−→ EiFjFiEi
ǫ′3−→ EiFj

pictorially

ji

is given by

ǫ′3ψ2ι
′
1(p

a
i,mi

⊗ pbj,mj+1) = ǫ′3ψ2

(
m+mi−1∑

k=0

(−1)kpai,mi
⊗ pbj,mj+1 ⊗ pmi−k−1

i,mi
⊗ ek(p

−
i )

)

= ǫ′3

(
mi−1∑

k=0

(−1)kpai,mi
⊗ pmi−k−1

i,mi
⊗ pbj,mj+1 ⊗ ek(p

−
i )

)

=

a∑

k=0

(−1)kpbj,mj+1 ⊗ ha−k(pi)ek(p
−
i )

= pbj,mj+1 ⊗ pai,mi
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Above, we use p−
i to denote the alphabet {pi,1, . . . , pi,mi−1}, and we use the identity

a∑

k=0

(−1)kha−k(pi)ek(p
−
i ) =

∏mi−1
k=1 (1− upi,k)∏mi

k=1(1− upi,k)
{ua} = pai,mi

.

The composition

(3.16) EiFj
ι3−→ EiFjFiEi

ψ2−→ EiFiFjEi
ǫ1−→ FjEi

pictorially

j i

is given by

ǫ1ψ2ι3(p
b
j,mj+1 ⊗ pai,mi

)

= ǫ1ψ2

(
mi−1∑

k=0

(−1)kΞμ(u){uk} ⊗ pμ
i+mi−k

i,mi
⊗ pbj,mj+1 ⊗ pai,mi

)

= ǫ1

(
mi−1∑

k=0

(−1)kΞμ(u){uk} ⊗ pbj,mj+1 ⊗ pmi−k+1
i,mi

Qij(pi,mi
, pj,mj+1)⊗ pai,mi

)

=

a∑

k=0

(−1)kΞμ(u){uk} · Ξμ+αi−αj
(u)−1Qji(pj,mj+1,−u){ua−k−cji} ⊗ pbj,mj+1

= tijp
a
i,mi

⊗ pbj,mj+1

Thus, composing the maps (3.15) and (3.16) in either order gives tij times the
identity, confirming the relations (2.4a-2.4b). �

Recall the spanning set Bi,G,H defined in Definition 3.5. In fact, this set is a
basis:

Corollary 3.10 Every non-trivial linear combination of elements of Bi,G,H in U−
i

acts non-trivially in one of these categories. That is, U−
i is non-degenerate in the

sense of Khovanov-Lauda.

Proof. If there is any pair of 1-morphisms G,H where the set Bi,G,H is not
linearly independent, then using the biadjunction of Fi and Ei and the commuta-
tion relations, we can assume that G and H only involve elements of −Γ, that is
downward strands. In this case, the functor Fi corresponds to adjoining new vari-
ables, followed by certain relations, where morphisms in U− act on the polynomial
ring by the polynomial representation we’ve defined.

No linear combination in Bi acts trivially before modding out by the relations
(3.7). Furthermore, for each degree N , we can choose λ sufficiently large that
all relations in Λμ are of degree > N . Thus, there can be no non-trivial linear
combinations in degree N . �
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28 3. CYCLOTOMIC QUOTIENTS

3. Cyclotomic quotients

Now that we understand how to add the adjoint of one of the Fi’s to U−, we
move towards considering all of them. Just as with U− and U−

i , we prove non-
degeneracy by constructing a family of actions which are jointly faithful. As in
the previous chapter, i will denote a fixed element of Γ, and we will use j for an
arbitrary index.

Our first step is to realize the cyclotomic quotient in terms of the category U−
i .

Fix a dominant weight λ. Now, let Σi be the set of sequences in −Γ ∪ {+i}, all
considered as KL pairs with L = λ. In the definition below, we’ll only be interested
in 1-morphisms that originate at λ, and will thus use Fi to denote the 1-morphism
with this name originating at λ.

Definition 3.11 Let DiRλ be the quotient of the algebra EndU−

i
(⊕i∈Σi

Fi) by the

relations

yλ
−i1

1 1i = 0 i1 ∈ −Γ(3.17)

1i = 0 i1 = +i(3.18)

In terms of diagrams, this means that we kill all diagrams of the form

jλj

· · ·

i

· · ·

irrespective of what occurs to the right of the first strand. Note that these relations
are equivalent to (3.1a–3.1c), since any positive degree counter-clockwise bubble is
killed by (3.17). In particular, as before, if λ is not dominant, this algebra is 0. For
purposes of reference in the proof below, we’ll call the strand which is at the far
left in either diagram above violating. We’ll call a KL pair downward if it only
uses entries from −Γ.

In DiRλ, we have a natural idempotent e− which kills Fi if i is not downward,
and acts as the identity on it if it is downward. We have a natural ring map
I : Rλ → DiRλ which lands in the subalgebra e−D

iRλe−.

Lemma 3.12 The map I induces an isomorphism Rλ ∼= e−D
iRλe−.

Proof. The argument will be easier if we give a slightly different presentation
of Rλ. Let Ř denote the tensor product of the ring R with the ring EndU−

i
(idλ),

which is a polynomial ring generated by counter-clockwise bubbles with label i;
when we draw a picture, we place this element of EndU−

i
(idλ) at the far left of the

diagram. By Corollary 3.10, we can identify

Ř ∼= EndU−

i
(⊕iFi).

The bubble slides (2.6) allow us to interpret a bubble placed anywhere in the
diagram as an element of Ř. We have a ring map Ř → R which just kills positive
degree bubbles, and thus induces maps Ř → Rλ and Ř → DiRλ.

First, we must show surjectivity, that any diagram d ∈ e−D
iRλe− is in the

image of I. We know that the set BG,H,i spans the corresponding 2-morphisms
G → H in U−

i . Thus we can rewrite d as an element of the image of I, times
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3. CYCLOTOMIC QUOTIENTS 29

counter-clockwise bubbles at the left, labeled i. If such a bubble has < λi − 1 dots,
the diagram is 0 and if the bubble has at least λi dots, then it is 0 by the relation
(3.17). We are left with the case where it has exactly λj − 1 dots, and can thus be
deleted by (2.2a). This shows surjectivity.

We need now to show injectivity. That is, we need to show that the maps
from Ř → Rλ and Ř → DiRλ have the same kernel. Let J1, J2 be the kernels of
these maps. Using the identification Ř ∼= EndU−

i
(⊕iFi), we have that the ideal J2 is

spanned by KL diagrams such that the slice at y = 1/2 looks like the relations (3.17–
3.18). We’ll chop our diagram into 3 pieces: the narrow band with y ∈ [1/2−ǫ, 1/2+ǫ]
and the remainder above and below this. We’ll call the leftmost strand at its point
of intersection with the line y = 1/2 the violating point.

We can rewrite the pieces above y = 1/2 + ǫ and below y = 1/2 − ǫ in terms
of BG,H,i. If the KL pair obtained from the slices at 1/2 ± ǫ is downward, then
we obtain an element of the cyclotomic ideal and thus we are done. Thus, we can
assume there is at least one upward strand at y = 1/2.

There must be at least one one cap in the top half, and one cup in the bottom
half. By the form of BG,H,i, we may assume that at least one of these caps/cups
has no crossings or smaller caps/cups inside it. If there is any such cap above
y = 1/2 that does not connect to the violating point, we can use an isotopy to sink
it through the band y ∈ [1/2 − ǫ, 1/2 + ǫ] (which contains no crossings). We have
thus reduced the number of upward strands at y = 1/2, and we can continue this
process until the KL pair at y = 1/2 is downward (in which case are done), or there
is a single cap in the top part and single cap in the bottom part connecting to the
violating strand. This cup and cap are necessarily labeled i.

Similarly, if the remaining cap has any crossings with other strands above
y = 1/2+ǫ, we can use an isotopy to sink these through the band y ∈ [1/2−ǫ, 1/2+ǫ],
so that no crossings with this cap remain above this point.

Case 1: downward orientation at the violating point. We have now reduced to
the case where the diagram is as below:

λi

b

a

· · ·

· · ·

· · ·

We now rewrite the top and bottom piece of the diagram in terms of BG,H,i. Since
this leaves the middle unchanged, it will still be in J2. By our assumptions, the top
half consists of a diagram where every strand points downward throughout, with
one counter-clockwise cap added at the far left.

Now, consider the structure of the bottom half. It must have exactly one cup.
If this cup doesn’t connect to the violating point, then it must connect at y = 1/2−ǫ
to some strand further right. As argued earlier, we can isotope this cup upward
through y ∈ [1/2−ǫ, 1/2+ǫ], and arrive at the situation where the KL pair at y = 1/2
is downward.
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30 3. CYCLOTOMIC QUOTIENTS

The other possibility is that the cup does connect to the violating strand, in
which case we have a closed, counterclockwise oriented bubble with at least λi dots
at the left of the diagram. This is positive degree, so the diagram is in the kernel
of the map Ř → Rλ.

Case 2: upward orientation at the violating point. Now, we need only consider
the case where the diagram has the form:

b

a

As before, the bottom must have a single cup, but now this cup is required to
meet the violating point. It may be that this cup closes up the violating strand,
creating a clockwise oriented bubble at the far left. Since the region has λi ≥ 0,
this bubble has positive degree (note that it cannot be a fake bubble) so we get an
element of J1.

If this cup does not close the violating strand, it must connect to a strand at
y = 1/2 − ǫ which is right of the two leftmost. Together with the top half, this
must create a self-intersection in the violating strand. By our freedom of choice of
basis, we can assume that it makes this crossing before either strand crosses any
others. After isotopy, we see that we have obtained a diagram in which all strands
point downward, except that at the violating point, we created a curl in the strand.
Thus, we can apply the relation:

−

−λi

i

i

. . . =

−λi

λi

i

i

. . . +
λi − 1

i

i

−λi

. . . + . . . +

i

i

−1

. . .

The first term is in J1 because it has the requisite number of dots and the others
are because they have positive degree bubbles, so the RHS is in J1. �

Proposition 3.13 The algebras Rλ and DiRλ are Morita equivalent.

Proof. It’s a standard result that for an algebra A and idempotent e, the
bimodules Ae and eA induce Morita equivalences if and only if AeA = A. Thus,
we need only prove that DiRλ · e− · DiRλ = DiRλ. It suffices to prove that each
idempotent e(i) for i ∈ Σi lies in DiRλ · e− · DiRλ = DiRλ. We prove this by
induction on the number of pairs j, k ∈ [1, n] such that ij ∈ −Γ, ik = i and j < k.
If there is no such pair, then either i does not appear, in which case e(i) = e(i)e−,
or the idempotent is 0 by (3.18). If there is any such pair, there must be one where
j and k are consecutive. Thus, we can apply (2.3c) if ij = −i or (2.4a) if ij �= −i,
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3. CYCLOTOMIC QUOTIENTS 31

and rewrite our idempotent has factoring through diagrams with strictly fewer such
pairs. This completes the proof. �

We can easily define an action of U−
i on the representation category of DiRλ,

and thus of Rλ by this Morita equivalence, using an analogous definition to that of
U on DRλ.

If u is a 1-morphism in U−
i , we let eu be the idempotent in DiRλ which acts

by the identity on all KL pairs which end in u (that is, they are a horizontal
composition u ◦ t for a 1-morphism t in U) and by 0 all others.

Definition 3.14 Let β′
u be the DiRλ-DiRλ bimodule eu ·DiRλ. The left and right

actions of DiRλ on this space are by the formula a · h · b = (1u ◦ a)hb.
Let βu = e− ·β′

u ·e− be the image of this bimodule under the Morita equivalence
of Theorem 3.13.

Schematically, an element of the bimodule βu looks like

(3.19)

· · ·

· · · · · ·

right action

left action u

If we have a 2-morphism φ : u → v in U−
i , then we have an induced bimodule

map βu → βv where we act by by φ ◦ 1. In terms of the picture (3.19), the action
of 2-morphisms u → v is by attaching the diagrams at the upper right. Since the
relations of U−

i are local, they are satisfied by the bimodule maps.
Consider the map νj : R

λ
μ → Rλ

μ−αi
that adds a strand labeled with j at the

right.

Definition 3.15 We let Fj = − ⊗Rλ
μ
Rλ

μ−αi
denote the functor of extension of

scalars by this map; we will refer to this as an induction functor.
We let Ej = HomRλ

μ−αi

(Rλ
μ,−)(〈μ, αj〉 − di) denote restriction of scalars by

this map (with a grading shift), the functors left adjoint to the Fi’s; we call these
restriction functors.

Proposition 3.16 There is a strict 2-functor U−
i → Cat given by

μ → Rλ
μ−pmod

u → − ⊗Rλ βu

Fj → Fj

Ei → Ei

In particular, the functors Ei and Fi are biadjoint (up to grading shift) since Fi

and Ei are biadjoint in U−
i .
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32 3. CYCLOTOMIC QUOTIENTS

Proof. As noted above, the fact that this is a 2-representation is immediate;
one way to interpret Proposition 3.13 is that it realizes the category of modules over
Rλ as an appropriate quotient of U−

i which obviously carries such a representation.
Thus, we need only check the assignments Fj → Fj and Ei → Ei. By adjunc-

tion, it is only necessary to check one of these. The bimodule βFi
is by definition of

the subspace of Rλ where the last entry of the sequence at the top of the diagram
is i; this exactly the definition of the induction bimodule given in [KL09, §3.2]. �

4. The categorical action on cyclotomic quotients

We can upgrade the action of U−
i to an action of the full category U . This

action will, of course, assign Ej → Ej ,Fj → Fj . In particular, for any basic 2-
morphism in U except the upward oriented crossing, we have a well-defined natural
transformation of bimodules induced from the action of U−

i .
Thus, we must define a map for the upward crossing. If we apply EiEj to a

module M over Rλ, then the resulting diagrams look like the picture (3.3) with
an element of M attached at the top left. Both the strands coming from the top
right must form cups whose minimum we can assume comes to the right of all other
strands. We define the morphism ψ : EjEi → EiEj to be given by t−1

ij times the
diagram where the crossing is done left of the cups. Pictorially:

j i

a = t−1
ij

j i

a

The locality of the relations assures that this map is well-defined.

Theorem 3.17 There is a strict 2-functor U → Cat given by

μ → Rλ
μ−pmod

u → − ⊗Rλ βu

Fj → Fj

Ei → Ei

We should note that this theorem has been independently proven by Cautis
and Lauda [CL15, 7.1] based on work of Kang and Kashiwara [KK12].

Proof of Theorem 3.17. We also know that every relation of U that only
involves upward strands of one color is satisfied, since these hold in one of the U i

−.
The only remaining relations are those of (2.1b).

These simply involve manipulating the definition above and the relations (2.1a)
and (2.4a-2.4b). The argument for the first one is that:

i ij

j

= t−1
ji

i ij

j

= t−1
ji t

−1
ij

i ij

j

= t−1
ij

i ij

j

.

The second equation follows an analogous calculation. �
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4. THE CATEGORICAL ACTION ON CYCLOTOMIC QUOTIENTS 33

This completes the main goal of this chapter. However, there are several conse-
quences of this theorem which we must draw out, including the Morita equivalence
of Rλ and DRλ.

First, this equips Rλ with a map trλ : Rλ → � given by closing a diagram at
the right (if top and bottom strands match) and considering the scalar with which
this acts on Rλ

λ
∼= �, as shown below.

d

· · ·

· · ·

λ · · ·

Recall that a Frobenius structure on a �-algebra A is a linear map tr : A → �

which kills no left ideal.

Theorem 3.18 The map trλ : R
λ → � is a Frobenius trace.

Proof. This is essentially automatic from the fact that Fi and Ei are biadjoint,
and the map of “capping off” is the counit of this adjunction; however, let us give
a more concrete proof.

A trace is Frobenius if and only if the bilinear form Rλ × Rλ → � given by
(a, b) → trλ(ab) is non-degenerate. This is the case if and only if there exist dual
bases {b1, . . . , bm} and {c1, . . . , cm} such that a =

∑m
i=1 tr(abi)ci for every a ∈ Rλ.

Alternatively, it is equivalent to the existence of a canonical element
∑

bi ⊗ ci.
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34 3. CYCLOTOMIC QUOTIENTS

We can write this canonical element implicitly using the action of U . Consider
the morphism from (in, . . . , i1,−i1, . . . ,−in) given by the “arches”:

a =

in ini1 i1

in ini1 i1

λ

λ

μ μ

· · · · · ·

· · · · · ·

We can use the relations (2.3c) and (2.4a) to rewrite this element. This will be an
inductive process, where at each step, we apply a relation to decrease the number
of pairs of a cup and a cap which don’t cross, by pushing the bottom arches upward
and the top arches downward. The first step is to apply (2.3c) to the outermost
cup and cap. This results in one term where this cup and cap cross, and possibly
others with fewer cups and caps.

At each step, in the resulting diagram, if we see any pair of a cup and cap that
don’t intersect, then there is such a pair where nothing separates them, and we can
apply (2.3c) or (2.4a) depending on the label. The resulting terms have fewer such
pairs.

Thus, at the end, we only have terms where every cap intersects every cup. If
there are any caps, then the region just above the minimum of the bottom of the
cup is labeled with λ+ αi. This diagram will act trivially on Vλ

μ, since the object
corresponding to the horizontal slice through this region is trivial. Thus, the action
of a on Vλ

μ coincides with that of the morphism a′ consisting only of the diagrams
resulting from our inductive process with no arches.
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4. THE CATEGORICAL ACTION ON CYCLOTOMIC QUOTIENTS 35

That is, we can write the natural transformation a′ induced by a as a sum:

(3.20) a′ =

p∑

j=1

λ

λ

μ μ

in ini1 i1

in ini1 i1

κ
(2)
jκ

(1)
j

Note that κ
(q)
j gives a well-defined element of Rλ, since in this representation of U ,

the cyclotomic relation has become a local relation that holds whenever a strand
separates λ and λ−αi. In particular, we can use this relation and the bubble slides
to remove any positive degree bubbles. By the manifest bilinearity, we can assume

without loss of generality that κ
(2)
j ranges over any chosen basis of Rλ.

On the other hand, if we choose r ∈ Rλ, and connect the left edges of the arches
using r, we simply obtain r itself by biadjunction as shown in (3.21).
(3.21)

r =

ini1

ini1

λ

λ

μ μr =

ini1

ini1

λ

λ

μ μr a′

In this case, we can interpret the equation (3.21) as saying that

r =
∑

j

trλ(rκ
(1)
j )κ

(2)
j .

That is, κ
(1)
j and κ

(2)
j are dual bases, and κ is essentially the canonical element of

the Frobenius pairing. This shows that the pairing is non-degenerate. �

This Frobenius trace is not symmetric, since the 2-category U is not cyclic. For
example, assume λ = ω1 + ω2 is the highest weight of the adjoint rep for sl3, and
Q12(u, v) = u− v. The algebra Rλ

0 has two idempotents e(1,2), e(2,1) corresponding
to the crossingless diagrams with a strand each of label 1 and 2 in the corresponding
order. We have that

tr(ψ2e(1,2)) = tr(y1e(1,2))− tr(y2e(1,2)) = 0− 1 = −1.
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36 3. CYCLOTOMIC QUOTIENTS

On the other hand, we have that

tr(ψe(1,2)ψ) = tr(ψ2e(2,1)) = − tr(y1e(2,1)) + tr(y2e(2,1)) = 1− 0 = 1.

In general, moving a crossing to the other side of the diagram requires multi-
plying by tji/tij , as is shown by the pitchfork moves (2.1a–2.1b).

Remark 3.19 However, this trace can easily be adjusted to become symmetric.
One fixes one reference sequence iμ for each weight μ; for each other sequence i,
we pick a diagram connecting it to iμ and for each crossing with and consider the
scalar t(i) which is the product over all crossings in the diagram of tji/tij where the
NE/SW strand of the crossing is labeled with i and the NW/SE strand is labeled
j. If we multiply the trace on e(i)Rλe(i) by t(i), the result will still be Frobenius
and symmetric.

The reader may sensibly ask why we use the trace above instead; it is in large
part so we may match the conventions of [CL15] and use their results. That said,
their choice arises very naturally from a coherent principle: that degree 0 bubbles
should be 1. Trying to recover cyclicity in U will definitely break this condition.

Corollary 3.20 The map p : Rλ → DRλ is a Morita equivalence.

Proof. There is an idempotent e− that picks out downward KL pairs in DRλ,
just as in DiRλ. The proof that the map Rλ surjects onto e−DRλe− is the same
the proof in Lemma 3.12. This map is injective, since any element a killed by this
map must be killed by trλ(ab) = 0 for all b ∈ Rλ, and there are no such elements
by Theorem 3.18. The surjectivity of the map DRλe−DRλ → DRλ is the same
proof as Proposition 3.13. �

Proposition 3.21 We have an isomorphism of representations K0(R
λ) ∼= V Z

λ .

Proof. First, we note that the mapK0(R) → K0(Rλ) is surjective, since every
projective Rλ module is the quotient of a projective R module by the cyclotomic
ideal. In particular, K0(R

λ) is generated over U−
q by a single highest weight vector

of weight λ.
We need only note that

• K0(Rλ) is thus a quotient of the Verma module of highest weight λ.
• On the other hand, Vλ is an integrable categorification in the sense of
Rouquier: acting by Fi or Ei a sufficiently large number of times kills any
Rλ-module, so K0(R

λ) is integrable.
• V Z

λ is the only integrable quotient of the the Verma module which is free
as a Z[q, q−1] module. �

Recall that the q-Shapovalov form 〈−,−〉 is the unique bilinear form on V Z

λ

such that

• 〈vh, vh〉 = 1 for a fixed highest weight vector vh.
• 〈u · v, v′〉 = 〈v, τ (u) · v′〉 for any v, v′ ∈ Vλ and u ∈ Uq(g), where τ is the
q-antilinear antiautomorphism defined by

(3.22) τ (Ei) = q−1
i K̃−iFi τ (Fi) = q−1

i K̃iEi τ (Kμ) = K−μ

• f〈v, v′〉 = 〈f̄v, v′〉 = 〈v, fv′〉 for any v, v′ ∈ V Z

λ and f ∈ Z[q, q−1].
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5. UNIVERSAL CATEGORIFICATIONS 37

On the other hand, the Grothendieck group K0(R
λ) carries an Euler form, defined

by:

〈[P1], [P2]〉 = dimq Hom(P1, P2).

Corollary 3.22 The isomorphism K0(R
λ) ∼= V Z

λ intertwines the Euler form with
the q-Shapovalov form described above. In particular,

dimq e(i)R
λe(j) = 〈Fivλ, Fjvλ〉

We let 〈−,−〉1 denote the specialization of this form at q = 1, which is thus
the ungraded Euler form.

5. Universal categorifications

In [Roua, §5.1.2], Rouquier discusses universal categorifications of simple in-
tegrable modules. Of course, to speak of universality, we must have a notion of
morphisms between categorical modules. Let ℵ1,ℵ2 : U → Cat be two strict 2-
functors.

Definition 3.23 A strongly equivariant functor β is a collection of functors
β(λ) : ℵ1(λ) → ℵ2(λ) together with natural isomorphisms of functors cu : β◦ℵ1(u) ∼=
ℵ2(u) ◦ β for every 1-morphism u ∈ U such that

cv ◦ (idβ ⊗ℵ1(α)) = (ℵ2(α)⊗ idβ) ◦ cu

for every 2-morphism α : u → v in U . (Here we use ⊗ for horizontal composition,
and ◦ for vertical composition of 2-morphisms).

In [Roua, §5.1.2], it is proven that there is a unique U-module category V̌λ (he
uses the notation L(λ)) with generating highest weight object P with the universal
property that

(∗) for any additive, idempotent-complete U-module category C and any ob-
ject C ∈ Ob Cλ with Ei(C) = 0 for all i, there is a unique (up to unique
isomorphism) strongly equivariant functor φC : V̌λ → C sending P∅ to C.

This is a higher categorical analogue of the universal property of a Verma
module, but somewhat surprisingly, V̌λ does not categorify a Verma module, but
rather an integrable module.

Consider the algebra Ř := R⊗Λ where Λ ∼= (⊗j∈ΓΛ(pj)) and pj is an infinite
alphabet attached to each node. This algebra can represented diagrammatically
with R given by diagrams as usual, the clockwise bubble at the left of the diagram
of degree 2n corresponding to (−1)nen(pj), and the counterclockwise one of degree
2n corresponding to hn(pi). Note, this is compatible with our conventions from
Chapter 2, but will not require the same sort of involved calculations. This gives
us a natural homomorphism Ř → EndU (⊕iFiλ) where Λ ∼= (⊗j∈ΓΛ(pj)) and pj is
an infinite alphabet attached to each node. In [Webb, ǫ.8], we show that this map
is an isomorphism, but we do not use this fact in what follows (in fact, the results
below are useful in proving the results of [Webb]).
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38 3. CYCLOTOMIC QUOTIENTS

Definition 3.24 Let Řλ be the quotient of Ř by the relations

0=−

−λj

j

j

. . . =

−λj

λj

j

j

. . . +
λj − 1

j

j

−λj

. . . + . . . +

j

j

−1

. . .

n

. . . = 0 (n ≥ 0)

where in both pictures, the ellipses indicate that the portion of the diagram shown
is at the far left. More algebraically, these relations can be written in the form

e(i)(yλ
ii

1 − e1(pi1)y
λi1

−1
1 + · · ·+ (−1)λ

i1
eλi1 (pi1)) = 0

en(pj) = 0 (n > λj)

Note that if we specialize en(pj) = 0 for every n > 0, then we recover the usual
cyclotomic quotient Rλ.

If we extend scalars to polynomials in the p∗,∗ and form the algebra Ř ⊗Λ

�[p1,1, . . . , ] then we can rewrite these equations as

e(i)(y1 − pi1,1)(y1 − pi1,2) · · · (y1 − pi1,λi1 ) = 0

pj,n = 0 (n > λj)

In terms of the geometry of quiver varieties, Řλ arises from considering equivariant
sheaves for the action of the group

∏
GL(Wi), and its extension to polynomials

from equivariant sheaves for a maximal torus of this group.

Proposition 3.25 The algebra Řλ is Morita equivalent to the quotient of EndU (Fiλ)
by the ideal generated by all morphisms factoring through FjEj for all j, j. The

category of Řλ modules thus carries a natural action of U .

The proof of this proposition is so similar to that of Lemma 3.12 and Proposi-
tions 3.13-3.16 that we leave it to the reader.

Note that this implies that:

Corollary 3.26 The ring Řλ is a free module over Řλ
λ. That is, Řλ is a flat

deformation of Rλ.

Proof. In order to check this, we need only confirm that dimRλ coincides
with the generic rank of the Řλ

λ-module Řλ. Using the adjunction between Ei and
Fi one can write dimRλ as the sum of the dimensions of the modules EjFiP∅ over

all sequences j and i of the same weight. Similarly, the generic rank of Řλ is the
sum of the generic rank of EjFiP̌∅ over all such sequences. Just using the fact that
Ei kills the highest weight space, we find that EjFi acting on the λ weight space
is a sum of some number of copies of the identity functor; this number is both the
contribution of EjFiP∅ to the dimension of Rλ and of EjFiP̌∅ to the generic rank
and thus these numbers coincide. �
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The following corollary is essentially equivalent to [Roub, 4.25]; we include it
mainly to spare the reader the difficulty of translating between formalisms.

Corollary 3.27 For any additive, idempotent-complete U-module category C and
any object C ∈ Ob Cλ with Ei(C) = 0 for all i, there is a unique strongly equivariant
functor (up to unique isomorphism) φC : Řλ -pmod → C sending P∅ to C. The
induced base change functor φ′

C : (Řλ ⊗Řλ
λ
End(C)) -pmod → C is fully faithful.

Proof. For any object C, there is a unique strongly equivariant functor U(λ) →
C sending idλ → C. We wish to show that this factors through the functor from
U(λ) → Řλ -pmod. By Proposition 3.25, it suffices to check that this map kills any
2-morphism factoring through uEi idλ. Indeed, this is sent to uEi(C) = 0, so we
kill the required 2-morphisms.

Thus, we have a base change functor φ′
C . We wish to show that

(3.23) HomC(φ
′
C(M), φ′

C(N)) ∼= HomŘλ⊗
Řλ

λ
End(C)(M,N)

for all projectives M and N . This is clear if the weight of M is λ; in this case, we
can assume that M = End(C) as a module over itself, and N either has the wrong
weight (so both sides of the desired equation are 0), or N may also be assumed to
be End(C), in which case (3.23) is a tautology.

Now, let us induct on the weight of M . Every indecomposable projective of
weight < λ is a summand of one of the form FiM

′. Thus, we may assume that
M = FiM

′, so

HomC(φ
′
C(M), φ′

C(N)) ∼= HomC(φ
′
C(M

′), φ′
C(EiN))

∼= HomŘλ⊗
Řλ

λ
End(C)(M

′,EiN) ∼= HomŘλ⊗
Řλ

λ
End(C)(M,N),

which establishes (3.23). �

These algebras are quite interesting; though they are infinite dimensional (un-
like Rλ), they seem to have finite global dimension (unlike Rλ). We will explore
these algebras and their tensor product analogues in future work.
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CHAPTER 4

The tensor product algebras

1. Stendhal diagrams

Definition 4.1 A Stendhal diagram is a collection of finitely many oriented
curves in R× [0, 1]. Each curve is either

• colored red and labeled with a dominant weight of g, or
• colored black and labeled with i ∈ Γ and decorated with finitely many
dots.

The diagram must be locally of the form

with each curve oriented in the negative direction. In particular, no red strands can
ever cross. Each curve must meet both y = 0 and y = 1 at points we call termini.
No two strands should meet the same terminus.

We’ll typically only consider Stendhal diagrams up to isotopy. Since the orien-
tation on a diagram is clear, we typically won’t draw it.

We call the lines y = 0, 1 the bottom and top of the diagram. Reading across
the bottom and top from left to right, we obtain a sequence of dominant weights
and elements of Γ. We record this data as

• the list i = (i1, . . . , in) of elements of Γ, read from the left;
• the list λ = (λ1, . . . , λℓ) of dominant weights, read from the left;
• the weakly increasing function κ : [1, ℓ] → [0, n] such that there are κ(m)
black termini left of the mth red terminus. In particular, κ(i) = 0 if the
ith red terminus is left of all black termini.

We call such a triple of data a Stendhal triple. We will often want to partition
the sequence i in the groups of black strands between two consecutive reds, that is,
the groups

i0 = (i1, . . . , iκ(1)), i1 = (iκ(1)+1, . . . , iκ(2)), . . . , iℓ = (iκ(ℓ)+1, . . . , in).

We call these black blocks.

41
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42 4. THE TENSOR PRODUCT ALGEBRAS

Here are two examples of Stendhal diagrams:

a =

i j iλ1 λ2

b =

i j iλ2λ1

• At the top of a, we have i = (i, i, j), λ = (λ1, λ2) and κ = (1 → 0, 2 → 0).
• At the top of b and bottom of a and b, i = (i, j, i), λ = (λ1, λ2) and
κ = (1 → 0, 2 → 1).

Definition 4.2 Given Stendhal diagrams a and b, their composition ab is given
by stacking a on top of b and attempting to join the bottom of a and top of b.
If the Stendhal triples from the bottom of a and top of b don’t match, then the
composition is not defined and by convention is 0, which is not a Stendhal diagram,
just a formal symbol.

ab =

i j iλ2λ1

ba = 0

Fix a field � and let ˜̃
T be the formal span over � of Stendhal diagrams (up to

isotopy). The composition law induces an algebra structure on ˜̃
T .

Let e(i,λ, κ) be the unique crossingless, dotless diagram where the triple read off
from both top and bottom is (i,λ, κ). Composition on the left/right with e(i,λ, κ)
is an idempotent operation; it sends a diagram a to itself if the top/bottom of a
matches (i,λ, κ) and to 0 otherwise. We’ll often fix λ, and thus leave it out from
the notation, just writing e(i, κ) for this diagram.

Considered as elements of ˜̃T , the diagrams e(i,λ, κ) are orthogonal idempo-

tents. The algebra ˜̃
T is not unital, but it is locally unital. That is, for any

finite linear combination a of Stendhal diagrams, there is an idempotent such that
ea = ae = a. This can be taken to be the sum of e(i,λ, κ) for all triples that occur
at the top or bottom of one of the diagrams in a.

Alternatively, we can organize these diagrams into a category whose objects
are Stendhal triples (i,λ, κ) and whose morphisms are Stendhal diagrams read
from bottom to top. In this perspective, the idempotents e(i,λ, κ) are the identity
morphisms of different objects.

Definition 4.3 We call a black strand in a Stendhal diagram violating if at some
horizontal slice y = c for c ∈ [0, 1], it is the leftmost strand. A Stendhal diagram
which possesses a violating strand is called violated.
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2. DEFINITION AND BASIC PROPERTIES 43

Both the diagrams a and b above are violated. The diagrams

c =

i j iλ1 λ2

d =

i j iλ2λ1

are not violated. The diagram e(i,λ, κ) is violated if and only if κ(1) > 0.

Definition 4.4 The degree of a Stendhal diagram is the sum over crossings and
dots in the diagram of

• −〈αi, αj〉 for each crossing of a black strand labeled i with one labeled j;
• 〈αi, αi〉 = 2di for each dot on a black strand labeled i;
• 〈αi, λ〉 = diλ

i for each crossing of a black strand labeled i with a red
strand labeled λ.

The degree of diagrams is additive under composition. Thus, the algebra ˜̃T inherits
a grading from this degree function.

Consider the reflection through the horizontal axis of a Stendhal diagram a
with its orientations reversed. This is again a Stendhal diagram, which we denote

ȧ. Note that ˙(ab) = ḃȧ, so reflection induces an anti-automorphism of ˜̃T .

2. Definition and basic properties

Definition 4.5 Let T̃ be the quotient of ˜̃T by the following local relations between
Stendhal diagrams:

• the KLR relations (2.5a–2.5g)
• All black crossings and dots can pass through red lines. For the latter two
relations (4.1b–4.1c), we also include their mirror images:

(4.1a)

ij λ

=

ij λ

+ a

i

b

j λ

δi,j
∑

a+b+1=λi

(4.1b) =

(4.1c) =
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44 4. THE TENSOR PRODUCT ALGEBRAS

• The “cost” of a separating a red and a black line is adding λi = α∨
i (λ)

dots to the black strand.

(4.2)

i λ

=

λi

λi

λ i

=

iλ

λi

The algebra T̃ will play a mostly auxilliary role in this paper, but it is a
very natural object. For example, it has a geometric description, as we discuss in
[Webg, §4].

Definition 4.6 Let T be the quotient of T̃ by the 2-sided ideal K generated by all
violated diagrams.

Now, as before, fix a sequence of dominant weights λ = (λ1, . . . , λℓ) and let

λ =
∑ℓ

i=1 λi.

Definition 4.7 We let Tλ (resp. T̃λ) be the subalgebra of T (resp. T̃ ) where

the red lines are labeled, from left to right, with the elements of λ. Let T
λ
α for

α ∈ Y (g) be the subalgebra of Tλ where the sum of the roots associated to the

black strands is λ − α, and let T
λ
n be the subalgebra of diagrams with n black

strands (and similarly for T̃
λ
α , T̃

λ
n ).

We use the notation T
λ
α because we’ll show later that the Grothendieck group of

this algebra is canonically isomorphic to the α-weight space of V Z

λ (see Proposition

4.38). Note that every indecomposable module is killed by T
λ
α for all but one

value of α, since the identities of these algebras give collection of orthogonal central
idempotents summing to 1.

To give a simple illustration of the behavior of our algebra, let us consider
g = sl2; to avoid confusion between integers and elements of the weight lattice, we’ll
use α to denote the unique simple root of sl2, and ω = α/2 the unique fundamental
weight (and 0 · ω the trivial weight). Now consider the case λ = (ω, ω). Thus, our
diagrams have 2 red lines, both labeled with ω.

In this case, the algebras T
λ
α are easily described as follows:

• T
(ω,ω)
2ω = T

(ω,ω)
0

∼= �: it is spanned by the diagram .

• T
(ω,ω)
0·ω = T

(ω,ω)
1 is spanned by
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2. DEFINITION AND BASIC PROPERTIES 45

, , , , .

One can easily check that this is the standard presentation of a regular
block of category O for sl2 as a quotient of the path algebra of a quiver
(see, for example, [Str03]).

• T
(ω,ω)
−2ω = T

(ω,ω)
2

∼= End(�3): The algebra is spanned by the diagrams,
which one can easily check multiply (up to sign) as the elementary gener-
ators of End(�3).

Perhaps a more interesting example is the case of g = sl3 and we let λ = (ω1, ω2)
and μ = 0. Based on the construction of a cellular basis in [SW], we can calculate
that this algebra is 19 dimensional, with a basis given by

1 1 2 2
,

1 1 22
,

1 1 22
,

1 1 22
,

1 1 22
,

1 2 12
,

1 2 12
,

1 1 2 2
,

1 1 2 2
,

1 1 22
,

1 1 22
,

1 1 22
,

1 1 22
,

1 1 22
,

1 1 22
,

1 212
,

1 2 12
,

1 21 2
,

1 2 12
.

We leave the calculation of the multiplication in this basis to the reader; it is a
useful exercise to those wishing to become more comfortable with these sorts of
calculations. For example, when we multiply the last two vectors in the basis
above, we get that (for Q21(u, v) = u− v)

1 2 12

·
1 21 2

=

1 21 2

=

1 21 2

−
1 21 2

=

1 21 2

−
1 21 2

=

1 21 2

.

Definition 4.8 Let V
λ
α be the category of finite dimensional modules over T

λ
α . Let

Vλ
α be the derived category of complexes in V

λ
α that lie in C↑(Tλ), the category

of complexes of finite dimensional graded modules such that the degree j part of
the ith homological term Ci

j = 0 for i ≥ N or i+ j ≤ M for some constants M,N
(depending on the complex).
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46 4. THE TENSOR PRODUCT ALGEBRAS

There are two explanations for this (somewhat unfamiliar) category. The first
is that since in each graded degree, this complex is finite, any element of this
category will have a well-defined class in the completion Vλ. The second is that
it arises naturally from simple operations over these algebras. Note that T 2ω

1
∼=

�[y]/(y2). The trivial module � has a minimal projective resolution given by · · · →
T 2ω
1 (−2n) → · · · → T 2ω

1 (−2) → T 2ω
1 → �. In particular, �

L
⊗T 2ω

1
� is an unbounded

complex (with trivial differential), but does lie in C↑(Tλ).

3. A basis and spanning set

Given a Stendhal diagram d, we obtain a permutation by considering how its
black strands are reordered, reading from the bottom to the top. Actually, we
obtain more information than this, since the Stendhal diagram gives a factorization
of this permutation into simple transpositions. As usual, we let Sn be the symmetric
group on n letters, and sm denote the simple transposition (m,m+ 1).

Definition 4.9 Assume d is a generic Stendhal diagram (no two crossings occur
at the same value of y). Let sd = (sj1 , . . . , sjm) be the list of simple transpositions
in the symmetric group Sn obtained by reading off the crossings of black strands
from bottom to top.

Note that sd is not isotopy independent, since commuting transpositions can
move past each other. The list sd may or may not be a reduced expression; it will
be reduced if no two black strands cross twice.

For our running examples

a =

i j iλ1 λ2

b =

i j iλ2λ1

we have that sa = (s2, s1) and sb = (s2, s1, s2), which are both reduced.
For each permutation w ∈ Sn, and each Stendhal triple (i,λ, κ) and weakly

increasing function κ′ : [1, ℓ] → [0, n], we choose a Stendhal diagram ψw,κ′e(i,λ, κ)
such that

• the bottom of ψw,κ′e(i,λ, κ) corresponds to (i,λ, κ) and the top to (wi,λ, κ′).
• the sequence of transpositions sψw,κ′e(i,λ,κ) is a reduced expression for w;

that is, the permutation on black strands reading bottom to top is w and
no two black strands cross twice.

• no pair of red and black strands cross twice.

We should emphasize that this choice is very far from unique; there are various
ways one can make it more systematically, but we see no reason to prefer one of
these over any other.

Let ya for a ∈ Zn
≥0 denote the monomial ya1

1 · · · yan
n . Let B be the set

{ψw,κ′e(i,λ, κ)ya}
as (i,λ, κ) ranges over all Stendhal triples, κ′ over weakly increasing functions, w
over Sn (here n = |i|), and a over Zn

≥0.
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3. A BASIS AND SPANNING SET 47

A basic observation, but one we will use many times through the paper is:

Lemma 4.10

(1) Consider two Stendhal diagrams a and b with n crossings which differ by
a finite number of isotopies, switches through triple points (involving all
black or black and red strands) as in

ki j

↔

ki j

and switches of dots through crossings. The diagrams a and b agree as
elements of T̃λ modulo the subspace spanned by diagrams with < n total
crossings.

(2) If the isotopies and switches in (1) are contained in a subset U of the
plane, then a− b is a sum of diagrams with fewer crosses agreeing with a
outside U .

(3) Any diagram c with n crossings containing a bigon (either all black or

black/red) defines an element of T̃λ which lies in the span of diagrams
with < n crossings, which agree with c outside a neighborhood of the
bigon.

Proof. For part (1), we need only check this when a and b differ by a single
triple point switch or a single dot moving through a crossing. This is clear from the
relations (2.5f–2.5g,4.1a) in the first case and (2.5a–2.5d,4.1c) in the second. Part
(2) follows from the locality of these relations.

Now consider part (3). We can assume that this bigon contains no smaller
bigons inside it, but there may still be some number of strands which pass through,
crossing each side of the bigon once. However, by doing triple point switches, we
can move these strands out, and assume that our bigon is empty. Then we simply
apply the relations (2.5e,4.2) to rewrite this diagram in terms of those with fewer
crossings. �

Lemma 4.11 The set B spans T̃ .

Proof. Given a Stendhal diagram d, we must show that modulo the relations
of T̃ , we can rewrite d as a sum of elements of B. We’ll induct on the number
of crossings. If there are 0 crossings, then d must be e(i,λ, κ) multiplied by a
monomial in the dots, which is an element of B by definition.

By Lemma 4.10, we can assume that d has no bigons and that all dots are at
the bottom of the diagram. Let w be the induced permutation on black strands.
It only remains to show that we can rewrite a dotless diagram d with no bigons as
the fixed diagram ψw,κ′ with the same top, bottom and induced permutation on
black strands, plus diagrams with fewer crossings.

The isotopy class of d is encoded not just in the expression sd, but also contains
encodes a reduced decomposition of the permutation induced on both red and black
strands. Thus, the moves necessary to get from d to ψw,κ′ are encoded in the series
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48 4. THE TENSOR PRODUCT ALGEBRAS

of braid relations that takes one reduced expression to the other. The swapping of
commuting transpositions is just an isotopy, and the braid relation corresponds to
a triple point switch. Each time we apply one of these, Lemma 4.10 shows that
the class modulo diagrams with fewer crossings is unchanged. After finitely many
moves, we get to ψw,κ′ , and the result is proven. �

Fix λ and n ≥ 0. Let Pn be a free module over the polynomial ring �[Y1, · · · , Yn]
generated by elements ε(i, κ) for each Stendhal triple (i,λ, κ). Choose polynomials
Pij(u, v) such that Qij(u, v) = Pij(u, v)Pji(v, u).

Lemma 4.12 The algebra T̃
λ
n acts on Pn by the rule that:

• The dots yi act as the variables Yi.
• e(i, κ) · ε(i′, κ′) = δi,i′δκ,κ′ε(i, κ).
• Assume κ(j) = k. The diagram crossing the kth black strand right over

the jth red strand sends ε(i, κ) → Y
λ
ik
j

k ε(i, κ′) where κ′(m) = κ(m)−δj,m.
• Assume κ(j) = k. The diagram crossing the k + 1st black strand left of
the jth red sends ε(i, κ) → ε(i, κ′′) where κ′′(m) = κ(m) + δj,m.

• Crossing the mth and m+1st black strands (assuming there is no red be-
tween them) sends ε(i, κ) → 0 if im = im+1 and ε(i, κ) → Pji(Ym, Ym+1)ε(sm·
i, κ) if im �= im+1.

• Since the elements ε(i, κ) generate Pn over the polynomial ring C[Yi],
the action on any other element can be computed using the relations
commuting elements of Tλ past yi’s.

More schematically, if we leave all but the two strands after the k − 1st black out
of the diagram, we can represent this action by:

λ

λ

i

i

• f = f

λ

λ

i

i

• f = Y λi

k · f
i

i

• f = Yk · f

j

j

i

i

• f =

⎧
⎪⎨
⎪⎩

Pji(Yk, Yk+1)f
sk i �= j

fsk − f

Yk+1 − Yk
i = j

Proof. The KLR relations (2.5a–2.5g) follow from [Roua, Proposition 3.12].
Thus the only relations we need check are our additional relations (4.1a-c) and
(4.2). All of these are manifest except for (4.1a) in the case where i = j. The LHS
is

f → Y λi

k+1f
sk − Y λi

k f

Yk+1 − Yk

and the RHS is

f → Y λi

k+1

fsk − f

Yk+1 − Yk
+

Y λi

k+1 − Y λi

k

Yk+1 − Yk
f

so the relation is verified. �
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Fix any sequence of elements of the root lattice ν = (ν0, . . . , νℓ). Then we have

a map from the tensor product of KLR algebras ℘ν : Rν0
⊗· · ·⊗Rνℓ

→ T̃λ sending
(4.3)

r0 · · · rℓ → r0 · · · rℓ⊗ ⊗

λℓλ1

In the KLR algebra, there are idempotents attached not just to sequences of el-
ements of Γ, but to divided powers of these elements, as defined in [KL09, 2.5].

That is, consider i = (i
(ϑ1)
1 , . . . , i

(ϑn)
n ) for ij ∈ Γ and ϑj ∈ Z>0 with

∑
j ϑjαij = ν

(in the notation of [KL09], this is an element of Seqd(ν)). We denote the idempo-
tent attached to this sequence by e(i) ∈ Rν (the same idempotent is denoted 1i in
[KL09]).

Now, consider such a sequence i together with λ and κ as in a Stendhal triple,
and let i0, . . . , iℓ be the black blocks of the sequence i (that is, i0 is the first κ(1)
entries, i1 the next κ(2)− κ(1), etc.) and νj = wt(ij)

Definition 4.13 Let e(i, κ) := ℘ν0,...,νℓ
(e(i0)⊠ · · ·⊠ e(iℓ)). Note that if ϑj = 1 for

all j, this is agrees with the previous definition of e(i, κ)

Usually, we will not require these multiplicities, and will thus exclude them
from the notation. Unless they are indicated explicitly, the reader should assume
that they are 1.

Recall that the KLR algebra Rν has a faithful polynomial representation1 Πν

defined in [Roua, 3.2.2]; special cases of this are also defined in [KL09,KL11].

Lemma 4.14 The action of Rν0
⊗ · · · ⊗ Rνℓ

on ℘ν(1)Pn via ℘ν is isomorphic to
Πν0

⊠ · · ·⊠Πνℓ
.

Proof. Obviously, any element of the image of ℘ν will act trivially if the
weight of the black block does not match ν0, . . . , νℓ. If it does, then the generated
of Rνi

act by the formulas given in [Roua, 3.2.2] which exactly match those of
Lemma 4.12. �

Corollary 4.15 The map ℘ν is injective.

Proof. Any element of the kernel acts trivially on Πν0
⊠ · · ·⊠Πνℓ

and this is
impossible by [Roua, 3.2.2]. �

Proposition 4.16 The set B is a basis of T̃ .

We will always refer to the process of rewriting an element in terms of this basis
as “straightening” since, visually, it is akin to pulling all the strands taut until they

1This representation is denoted by Rn in [Roua]; for obvious reasons, we won’t use this
notation.
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50 4. THE TENSOR PRODUCT ALGEBRAS

are straight. In the course of the proof, we’ll need the element θκ, which is the sum
over all i of the unique Stendhal diagram which

• has bottom triple given by (i,λ, 0),
• has top triple given by (i,λ, κ),
• has no dots and a minimal number of crossings.

For example, for κ = (1 → 0, 2 → 1, 3 → 1, 4 → 3), we sum over all ways of adding
black labels with the diagram:

λ1 λ2 λ3 λ4

The product θ̇κ′ψw,κ′yae(i, κ)θκ is quite close to being an element of B, except
that we may have created some bigons between red and black strands. Such a bigon
will have been created with the strand which connects to the kth black terminus
at the bottom and pth red strand if either k < κ(p) or w(k) < κ′(p). We define a
vector b ∈ Zn

≥0 whose kth entry is the sum over such p of λik
p .

Lemma 4.17 The diagram θ̇κ′ψw,κ′yae(i, κ)θκ is equal to ψw,0y
a+be(i, 0) modulo

the span of diagrams with fewer crossings than ψw,0.

Proof. It is easiest to see this inductively. If κ �= 0, then we can multiply
ψw,κ′e(i, κ) on the bottom by crossing the black strand attached to the κ(j)th
terminus (at the bottom) over the jth red strand, reducing κ. If this black strand
had not already crossed the jth in ψw,κ′e(i, κ), then this is still a basis vector
(modulo diagrams with fewer crossings), and b is unchanged. On the other hand, if
it had, then we can apply Lemma 4.10 and the relation (4.2) to move this strand to
the right side of the jth strand and arrive at a basis vector, at the cost of multiplying

it by λ
iκ(j)

j dots. However, we also must decrease b in order to compensate for this

change, meaning that ψw,0y
a+be(i, 0) is left unchanged (modulo diagrams with

fewer crossings). Applying this until κ = κ′ = 0 shows the claim. �

Proof of Proposition 4.16. First, consider the map ℘0,...,0,ν : Rν → T̃
λ
n .

By Corollary 4.15, this map is injective. Furthermore, the algebra Rν has a basis
denoted S in [Roua, 3.1.2] which depends on a choice of reduced word for each
permutation. As long as we choose these compatibly with the reduced word given by
our basis vectors ψw,0e(i, 0), the basis S of Rν is sent to the elements ψw,0y

ae(i, 0) ∈
B for i such that

∑
j αij = ν. By the injectivity of ℘0,...,0,ν , these vectors are linearly

independent.
Fix κ and κ′, and suppose there is a non-trivial linear relation between elements

of B with κ in the Stendhal triple at bottom and κ′ at top. Now, multiply the
relations on the left by θ̇κ′ and on the right by θκ. As shown in Lemma 4.11, we
can rewrite each term of the resulting relation in terms of the vectors ψw′,0y

a′

e(i, 0).
Now, choose a permutation w ∈ Sn such that for some a, the vector ψw,κ′yae(i, κ)

has nontrivial coefficient m, and such that w is maximal in Bruhat order amongst
such permutations. Now, multiply by θκ and θ̇κ′ and rewrite in terms of B. We
find that ψw,0y

a+be(i, 0) also has coefficient m since no element of B other than
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4. SPLITTING RED STRANDS 51

ψw,κ′yae(i, κ) could contribute to its coefficient by Lemma 4.17. Since the ele-

ments {ψw′,0y
a′

e(i, 0)} are linearly independent, we must have m = 0, giving a

contradiction. Thus, this relation is trivial and we have a basis of T̃λ. �

If λ = (λ), then we will simplify notation by writing Tλ for Tλ.

Theorem 4.18 Rλ ∼= Tλ.

Proof. We have an injective map ℘ : R →֒ T̃λ given by adding a red line at
the left. Composing with the projection T̃λ → Tλ, we obtain a map ℘′ : R → Tλ.
This map is a surjection since each element of the basis of Proposition 4.16 is in
the image.

Thus, it only remains to show that the kernel of the map ℘′ is precisely the
cyclotomic ideal. To show that the latter is contained in the former, we need only

show that the image of yλ
i1

1 e(i) is 0 in Tλ; this follows immediately from (4.2).

Consider a diagram d with a violating strand in T̃λ; we will prove by induction
that d lies in the image of the cyclotomic ideal of R. The statistic c on which
we induct on is half the number of red/black crossings in d plus the number of
black/black crossings left of the red line. If c = 1, we must have a single black
strand labeled with i which crosses over and immediately crosses back, and (4.2)
shows that this diagram is equal to one with no strands left of the red, but with
λi dots on the left-most strand at some value of y, which is thus in the cyclotomic
ideal.

If c > 1, then there is either a bigon or a triangle formed with a red strand
on the right side. Applying either the relation (4.2) if there is a bigon or (4.1a) if
there is a triangle, every term on the RHS has c lower, but ≥ 1. Thus, applying the
inductive hypothesis, we can rewrite d in T̃ as sum of diagrams in the cyclotomic
ideal.

Thus, if r ∈ R lies in the kernel of the map ℘′, its image is a sum of diagrams
in the cyclotomic ideal. Thus, it can be rewritten as a sum of elements of the
cyclotomic ideal. By the injectivity of ℘, the element r thus lies in the cyclotomic
ideal. This completes the proof. �

4. Splitting red strands

This leads us to an observation which will be quite useful in the future. Let eℓ
be the idempotent given by the sum of e(i, κ) where κ(ℓ) = n, i.e., those where the
last strand is colored red, not black. Let λ− = (λ1, . . . , λℓ−1).

Proposition 4.19 There is an isomorphism Tλ− → eℓT
λeℓ.

Proof. The map is induced by the map T̃λ− → eℓT̃
λeℓ which adds a red

strand at the far right of the Stendhal diagram. Proposition 4.16 shows that this
is surjective, and obviously it sends violated diagrams to violated diagrams. Thus,

we have a surjective map Tλ− → eℓT
λeℓ.

Now assume, we have an element of eℓT̃
λeℓ, which is a sum of violated diagrams.

We need only to consider diagrams where top and bottom satisfy κ(1) = 0, since

otherwise the diagrams are automatically 0 in eℓT̃
λeℓ. In particular, if ℓ = 1, we
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52 4. THE TENSOR PRODUCT ALGEBRAS

need only consider diagrams with no black strands, and thus obtain an isomorphism

Tλ− ∼= � ∼= eℓT
λeℓ. Assume from now on that ℓ > 1.

Thus, let a be a violated diagram whose top and bottom satisfy κ(ℓ) = n. If at
any point, there is a black strand right of the rightmost red strand, these strands
must form a bigon. By Lemma 4.10, we can rewrite a as a sum of diagrams with
fewer crossings without this bigon. Furthermore, in the proof, we use isotopies
are relations that never change the fact that a is violating. Thus, if we write an
element a of the kernel of the map eℓT̃

λeℓ → eℓT
λeℓ as a sum of violated diagrams

with a minimal number of crossings, there will be no bigons involving the ℓth red

strand. Thus, a is in the image of the violating ideal in T̃λ−

and we have the desired
isomorphism. �

This isomorphism induces a Tλ−

-Tλ-bimodule structure on eℓT
λ.

Definition 4.20 Let Iλℓ
(M) := M ⊗Tλ− eℓT

λ. Let IRλℓ
(N) := Neℓ be its right

adjoint.

We’ll often use the functor Iμ without carefully defining in relevant lists of

weights first. For any sequence λ, by definition Iμ is a functor Vλ → V(λ1,...,λℓ,μ).
Fix 1 ≤ k < ℓ, and let λ′ = (λ1, . . . , λk + λk+1, . . . , λℓ). Given a Stendhal

diagram with red lines labeled by λ′, we can obtain a new Stendhal diagram by
“splitting” the kth red strand into two, labeled with λk and λk+1. This is compati-

ble with composition and thus induces an algebra map σ : ˜̃T
λ′

n → ˜̃
T

λ

n . The algebra

˜̃
T

λ′

n is unital; its unit is the sum over all Stendhal diagrams for λ′ with n black
strands and no crossings or dots. However, this homomorphism is not unital. It

sends 1 ∈ ˜̃
T

λ′

n to an idempotent eλ′ ∈ ˜̃
T

λ

n consisting of the sum of e(i, κ) for all κ
with κ(k) = κ(k + 1).

Proposition 4.21 The map σ induces isomorphisms T̃λ′ → eλ′ T̃λeλ′ and Tλ′ →
eλ′Tλeλ′ .

Proof. First, we must show that σ induces a homomorphism T̃λ′ → T̃λ.
Obviously, the KLR relations present no issue, nor do (4.1b) and (4.1c). Thus, we
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4. SPLITTING RED STRANDS 53

need only confirm (4.1a) and (4.2). The first follows from

ij λk λk+1

=

ij λk λk+1

+ a

i

b

j λk λk+1

δi,j
∑

a+b+1=λi
k+1

=

ij λk λk+1

a

i

b

j λk λk+1

δi,j
∑

a+b+1=λi
k+1

+ a

i

b

j λk λk+1

δi,j
∑

a+b+1=λi
k

=

ij λk λk+1

+ a

i

b

j λk λk+1

δi,j
∑

a+b+1=λi
k
+λi

k+1

and the second from

i λk λk+1

=

λk λk+1λk+1 i

λi
k+1 =

λk λk+1i

λi
k + λi

k+1
.

This further induces a map Tλ′ → Tλ since it sends violated diagrams to violated
diagrams.

That the image lies in eλ′ T̃λeλ′ is clear from the definition. Furthermore, the

map T̃λ′ → eλ′ T̃λeλ′ sends the basis B in T̃λ′

to the intersection of the same basis

with eλ′ T̃λeλ′ . Thus, it is an isomorphism.
Finally, we must show that this remains an isomorphism when we pass to the

map Tλ′ → eλ′Tλeλ′ . That is, we must show that any violated diagram d is the
image of a sum of violated diagrams. This is achieved by an argument very similar to
Lemma 4.19: if d is not the image of a diagram under the splitting, then there must
be a bigon or triangle inside the region between the k and k+1st red strands with
one side formed by one of the strands. We can use Lemma 4.10(1) for a triangle,
or Lemma 4.10(3) for a bigon in order to remove these features from between the
two strands, modulo diagrams with fewer crossings Furthermore, by locality, these
operations don’t change whether the diagram is violated. Thus, writing d as a sum
of violated diagrams with a minimal number of crossings and none between the kth
and k + 1st strands, we see that d is in the image of the violating ideal under the
map T̃λ′ → eλ′ T̃λeλ′ , so we have the desired isomorphism. �
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54 4. THE TENSOR PRODUCT ALGEBRAS

5. The double tensor product algebras

We’ll give a presentation of a Morita equivalent algebra to Tλ. This involves
a “doubled” generalization of Stendhal diagrams which roughly includes both the
original Stendhal diagrams and morphisms from U . More formally.

Definition 4.22 A blank double Stendhal diagram is a collection of finitely
many oriented curves in R× [0, 1]. Each curve is either

• colored red and labeled with a dominant weight of g, or
• colored black and labeled with i ∈ Γ and decorated with finitely many
dots.

and has the same local restrictions as a Stendhal diagram. However only the red
strands are constrained to be oriented downwards, and the black strands are allowed
to close into circles, self-intersect, etc.

Blank double Stendhal diagrams divide their complement in R2 × [0, 1] into
finitely many connected components, and we define a double Stendhal diagram
(DSD) to be a blank DSD together with a labeling of these regions by weights
consistent with the rules

λ

μ μ+ λ

i

μ μ− αi

Since this labeling is fixed as soon as one region is labeled, we will typically not
draw in the weights in all regions in the interest of simplifying pictures.

Any Stendhal diagram is also a blank double Stendhal diagram, but not vice

versa. For example,

a′ =

i ij

jii

λ1 λ2

i

is blank double Stendhal, but not Stendhal. Similarly, every KL diagram is a DSD.
There is a unique extension of the degree function of Stendhal and KL diagrams to
DSD’s which is compatible with composition.

For the top and bottom of a double Stendhal diagram, we must record orien-
tation information in addition to the labels. Thus, in the list of labels on black
strands, we write −i for a strand with label i oriented downward and +i when it
is oriented upward. Note that this means that when we consider consider a usual
Stendhal diagram as a DSD, we will only have elements of −Γ at the top and bot-
tom; this convention saves us from negating everything, and matches better the
literature on KLR algebras.

Definition 4.23 A double Stendhal triple2 (DST) is a pair of lists i ∈ (±Γ)n,
λ ∈ X+(g)ℓ, a weakly increasing function κ : [1, ℓ] → [0, n], and weights L and R

2Somewhat inaccurately named.
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5. THE DOUBLE TENSOR PRODUCT ALGEBRAS 55

such that

L+
ℓ∑

k=1

λk +
n∑

m=1

αim = R.

As usual, we employ the convention that α−i = −αi.

Thus, for the diagram a′ above, the blank double Stendhal triple at the top
is i = (−i, i,−j),λ = (λ1, λ2) and κ = (1 → 0, 2 → 0), and for the bottom it is
i = (i,−j,−i),λ = (λ1, λ2) and κ = (1 → 0, 2 → 1). We haven’t chosen labelings of
the regions, but if the leftmost region is labeled with L, the rightmost must carry
R = L+ λ1 + λ2 − αj .

We can define (vertical) composition for double Stendhal diagrams as with
usual Stendhal diagrams, though we must also require that orientations on strands
and labels of regions match at bottom of a and top of b to get a non-zero result for
ab.

We can also define horizontal composition a ◦ b of DSD’s which pastes to-
gether the strips where a and b live with a to the right of b. The only compatibility
we require is that La = Rb, so that the regions of the new diagram can be labeled
consistently. Of course, this gives a notion of composition of DST’s h2h1 where
hm = (im,λm, κm,Lm,Rm). In terms of sequences, we take the concatenations
i = i1i2 and λ = λ1λ2,

κ(j) =

{
κ1(j) j ≤ ℓ1

κ2(j) + n1 j > ℓ1,

and L = L1,R = R2, with the composition being 0 if L2 �= R1.

Definition 4.24 Let T be the strict 2-category whose

• objects are weights in X(g),
• 1-morphisms μ → ν are DST’s with L = μ,R = ν and composition is
given by horizontal composition as above.

• 2-morphisms h → h′ between DST’s are �-linear combinations of DSD’s
with h as bottom and h′ as top, modulo the relations

∗ all the relations of Figures (2.1a–2.5g) hold for KL diagrams thought
of as DSD’s.

∗ all the relations of (3.1-2) hold for Stendhal diagrams thought of
DSD’s (ignoring labeling of regions).

∗ the further relations and their mirror images through a vertical line,
which are again independent of labels, hold

(4.4a) =

(4.4b) =
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56 4. THE TENSOR PRODUCT ALGEBRAS

(4.4c) =

(4.4d) =

(4.4e)

i λ

=

λi

λ i

=

iλ

Note that if λ, ν is are dominant weights, we have natural map Rν+λ → Rν

induced by the inclusion of cyclotomic ideals. We let Iλ : R
ν -mod → Rν+λ -mod

denote the functor of pullback by these maps.

Theorem 4.25 There is a representation of T in the strict 2-category of categories,
sending μ → ⊕νR

ν
μ -mod, sending the image of U to the previously defined action

of Theorem 3.17 and a single red line with label λ to Iλ.

Proof. The action of U on the same category defines how all diagrams only
involving black strands act, and checks all of their relations. Thus, we need only
define how the diagrams involving red strands act. Luckily, this is quite easy: the
functors Iλ of pullback and and Ei of restriction obviously commute, since they
are pullbacks along the two sides of a commuting square. Thus, the morphisms

a =

iλ

and b =

i λ

are assigned to the identity map on the underlying

vector spaces.
The relations (4.4a–4.4e) follow immediately from this assignment. Thus, we

need only calculate where this sends the diagrams b′ =

iλ

and a′ =

i λ

and

check the relations (3.1-2).
We can write a′ and b′ in terms of the morphisms a and b above and the adjunc-

tions from U . We can factor a′ as the sequence FiIλ → FiIλEiFi → FiEiIλFi →
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5. THE DOUBLE TENSOR PRODUCT ALGEBRAS 57

IλFi. Pictorially,

a =

ji

Consider a Tλ-module M (which we will sometimes consider as a module over T̃λ).

Both the modules FiIλM and IλFiM are quotients of F̃iM , the induction of M
considered as a module over T̃λ. The identity map F̃iM → F̃iM induces a natural
projection c : FiIλ → IλFi. We claim that this is the map induced by a′. In order to
represent the functors that appear diagrammatically, we use blue dots to represent
the strands created by an Fi or eaten by an Ei, and use a dashed line to denote the
moment where we do the pullback. Since we consider right (i.e. bottom) modules,
the order these functors appear is reading down the page.
(4.5)

m

a

· · ·
λ

m

a

· · ·
λ

m

a

· · ·
λ

m

a

· · · λ

On the other hand, the map yλ
i

: F̃iM → F̃iM induces a map d : IλFi → FiIλ;
we claim that this coincides with b′. In order to show this, we note that the map b′ is
the dual of a′ under the natural pairing between FiIλM and FiIλM

⋆ and similarly
with the functors in the other order. From the relation (2.3a) and the bubble slides
of [KL10, §3.1.2], we see that decreasing all labeling of regions by λ and adding λi

dots to each bubble and any loop formed by the rightmost strand just applies the
projection Rν+λ → Rν . That is, given two elements m⊗p ∈ FiIλM,m′⊗p′FiIλM

⋆,
we have that

λi

m

pṗ′
· · ·λ

λ
m′

=

m

pṗ′
· · ·

m′

This shows that 〈m⊗ p, d(m′ ⊗ p′)〉 = 〈a′(m⊗ p),m′ ⊗ p′〉, so we must have d = b′.

Thus, we have that the compositions a′b′ and b′a′ are both yλ
i

. This confirms
(4.2). The relations (4.1a–4.1c) are confirmed by same the calculations as the proof
of Lemma 4.12. �

As with a usual Stendhal diagram, we call a DSD violated if it factors through
a DST with κ(0) > 1, that is, which has a black strand (of either orientation) at
the far left.

Definition 4.26 Let the double tensor product algebra DTλ be the �-algebra
spanned by DSD’s with L = 0 and red lines labeled by λ, modulo the relations of
T and all violated diagrams.

We let DVλ = DTλ -mod be the category of finite dimensional representations
of equivalently DTλ graded by Z. We wish to show that this category carries a
categorical g-action. Consider a 1-morphism u in U . This is a word in Ei and Fi,
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58 4. THE TENSOR PRODUCT ALGEBRAS

which we can consider as a DST with no red lines. Let eu be the idempotent in
DTλ which acts by the identity on all DST’s which end in u : μ → ν (that is, they
are a horizontal composition u ◦ t for a 1-morphism t in T ) and by 0 all others.

Definition 4.27 Let β′
u be the DT

λ
μ -DT

λ
ν bimodule eu ·DTλ. The left and right

actions of DTλ on this space are by the formula a · h · b = (1u ◦ a)hb.

This definition is perhaps a bit clearer from the schematic diagram

(4.6)

· · ·

· · · · · ·

DT
λ
ν -action

DT
λ
μ -action u

Any 2-morphism φ : u → v in U can be considered as a DSD, and it defines
a map of bimodules β′

φ = (φ ◦ 1)(−) : Fu → Fv; in the diagram (4.6), this action
attaches the 2-morphism to the group of strands in the upper right. Since DSD’s
satisfy all the relations of U , it immediately follows that:

Theorem 4.28 There is a representation of U which sends

μ → DVλ
μ u → β′

u φ → β′
φ

6. A Morita equivalence

Note that we have a natural map f : Tλ → DTλ given by considering a Stend-
hal diagram as a double Stendhal diagram; the image of the identity in Tλ is an
idempotent e− ∈ DTλ.

Lemma 4.29 The map f induces an isomorphism Tλ ∼= e−DTλe−.

Proof. We first show that any diagram d of e−DTλe− is in the image of f .
As in the proof of [KL10, 3.9], we can apply the relations of T to write d as a sum
of diagrams with fewer strands that intersect twice or self-intersect until neither
of these occurs, and we have slid all bubbles to the far left. Any diagram with a
bubble at far left is 0, so we are left with only diagrams with no bubbles, and all
strands connect top to bottom. That is, we are left only with Stendhal diagrams.

Now, we need to show that the map is injective. If we use [Webb, 4.5], then
we can apply the argument of Lemma 3.12 to show that any element of the kernel
can be rewritten in terms of the cyclotomic ideal.

We can also sketch out a proof of this result that follows the path of Chapter 3
and thus keeps this paper self-contained. Since the results are, on the whole, very
similar, we will spare the reader most of the details.

As before, we can define an intermediate category T i
− and quotient algebra

DiTλ spanned by DSD’s where only strands with label i can be upward. The
action of Chapter 2 can be extended to T i

− analogously to the action of Theorem
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6. A MORITA EQUIVALENCE 59

4.25. If we let Λλ
ν denote the ring Λν attached to the weight ν when fix λ at the

start of the construction, then the relations (3.7) show that we have a projection

map Λλ+μ
ν+μ → Λλ

ν . The action of T i
− sends Iμ to the pullback map under this

homomorphism.
This action allows us to show the analogue of Corollary 3.10 in this case, that

the diagrams given by Bi,G,H with the red strands adding introducing a minimal
number of crossings is a basis for the Hom space. Repeating the proof of Lemma
3.12 and Proposition 3.13 shows that the quotient DiTλ is Morita equivalent to
Tλ via the analogue of f . Thus, by the argument of Proposition 3.16, we have an
action of T i

− on ⊕λV
λ, which we can extend as in Theorem 3.17 to an action of T .

Thus, any diagram in T can be interpreted as a natural transformation between
functors from Tλ -mod to Tλ′

-mod in a functorial way. In particular, the operator
of left multiplication by a diagram appears this way, by thinking of that diagram
in T and letting it act on the identity of the weight 0.

Thus if a in Tλ is in the kernel of this map, this means that if we interpret this
diagram as an 2-morphism of T , this 2-morphism acts trivially on the identity of
the weight 0. But this means that left multiplication by a is 0, that is a = 0. This
proves injectivity. �

Theorem 4.30 The algebras Tλ and DTλ are Morita equivalent.

Proof. Recall again that for an algebra A and idempotent e, the bimodules
Ae and eA induce Morita equivalences if and only if AeA = A. Thus, we need
only prove that the idempotent attached to any DST in DTλ actually lies in DTλ ·
e− ·DTλ. In order to prove this, we fix a region near y = 1/2. If we see a pair of
consecutive black lines where the rightward is upward oriented, and the leftward
downward oriented, we use the relations (2.3c) and (2.4a) to swap them past each
other. If we see an upward oriented strand immediately to the right of a red
strand, we use relation (4.4e) to swap them. Thus, ultimately, we can rewrite the
idempotent as a sum of DSD’s factoring through DST’s which have all their upward
oriented strands left of all other strands, red or black. Of course, such a DST will
only be non-zero in DTλ if it has no upward oriented strands. Thus, this central
portion is in the image of f , and the whole diagram lies in DTλ · e− ·DTλ. The
result follows. �

We can consider the image βu = e− ·β′
u · e− of the action bimodules under this

Morita equivalence. It immediately follows that:

Theorem 4.31 There is a representation of U which sends

μ → Vλ
μ u → βu φ → βφ

The bimodule βu is the subspace inside β′
u such that the only upward termini

are attached to u in the diagram above. In the interior of the diagram, we allow
bubbles and self-intersections, and the diagram is only constrained by the rules of
a DSD. However, elements like self-intersections can always be removed using the
relations.

Two special cases of these functors merit special attention. When u = Fi,Ei,
we denote the corresponding functors Fi := − ⊗Tλ βFi

and Ei := − ⊗Tλ βEi
. In

Figure 1, we show the diagrams as in (4.6) for these functors. The bimodule βFi
is
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i

· · · · · ·

m

Ei

i

· · · · · ·

m

Fi

Figure 1. The functors Ei and Fi

spanned by diagrams where all strands are downward, and βEi
by diagrams where

all but a single cup turned up at the right. As in the case of the cyclotomic quotient,
we can interpret Fi as an extension of scalars via the map νi : T

λ → Tλ given by
adding a i-labeled strand at the far right. We will often call this strand new to
distinguish it from the others. In βFi

, this is the strand connected to the rightmost
terminal at top.

Similarly, we can interpret Ei as restriction under the same map νi (with a
grading shift, due to the cup).

Proposition 4.32 We have

IRμ Iμ = id IRμFiIμ = Fi(−μi) IRμEiIμ = Ei

Proof. We only need to check these equalities on the algebra Tλ itself. The
image of this algebra under the functor Iμ is eℓ+1T

(λ1,...,λℓ,μ). The image of this

under IRμ is indeed Tλ ∼= eℓ+1T
(λ1,...,λℓ,μ)eℓ+1.

Now we turn to the interaction of Iμ and Fi. We note that IRμFiIμ(T
λ) =

eℓβ
+
Fi
eℓ where β

+
Fi

denotes the action bimodule for T (λ1,...,λℓ,μ). This is the subspace

spanned by diagrams in βFi
where no strand is right of the rightmost (labeled μ)

except the new strand attached to the rightmost terminal at top, corresponding to
Fi. There’s a map of βFi

, the corresponding bimodule for Tλ, to eℓβ
+
Fi
eℓ given by

adding in the μ labeled strand adding just a crossing with the new strand. Since
the bimodule action only works on the strands left of the red labeled μ, this will
be a bimodule map, and simply deleting the red strand is its inverse. To see that
these maps are well-defined, just note that they respect local relations and neither
can get rid of a violating strand. Note that this map is of degree μi, because of the
degree of the red/black crossing.

A similar argument shows the same for Ei. This completes the proof. �

7. Decategorification

In order to understand the Grothendieck group K0(T
λ), we need to better

understand its Euler form. In particular, we need a candidate bilinear form on V Z

λ ,
which we hope will match with the Euler form under a hypothetical isomorphism
K0(T

λ) ∼= V Z

λ . There is a system of non-degenerate Uq(g)-invariant sesquilinear

forms 〈−,−〉 on all tensor products V Z

λ defined by 〈v, w〉 = 〈Θ(ℓ)v, w〉X, where Θ(ℓ)

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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is the ℓ-fold quasi-R-matrix and 〈−,−〉X is the factor-wise q-Shapovalov form.
The usual quasi-R-matrix Θ(2) on two tensor factors is defined in [Lus93, §4]; the
ℓ-fold one is defined inductively by Θ(ℓ) = (Θ(2) ⊗ 1⊗ℓ−2)(Δ⊗ 1⊗ℓ−2(Θ(ℓ−1))). Let
〈−,−〉1 denote the specialization of this form at q = 1, which is the same as the
factor-wise Shapovalov form.

Proposition 4.33 The form 〈−,−〉 is the unique system of sesquilinear forms on
V Z

λ which are

(1) non-degenerate, and
(2) if τ is the antiautomorphism defined in (3.22), then 〈u·v, v′〉 = 〈v, τ (u)·v′〉

for any v, v′ ∈ Vλ and u ∈ Uq(g); that is, the form is τ -Hermitian, and

(3) the natural map tensoring with a highest weight vector V Z

λ1
⊗· · ·⊗V Z

λℓ−1
⊗

{vλℓ
} →֒ V Z

λ is an isometric embedding.

Proof. The uniqueness follows by induction on the number of tensor factors.
Two τ -hermitian forms on a UZ

q (g)-module M agree if they agree on a generating

subspace M ′ which is invariant under U≥0
q (g). Since Vλ1

⊗· · ·⊗Vλℓ−1
⊗{vλℓ

}} ⊂ Vλ

is such a subspace, the uniqueness follows immediately from the inductive hypoth-
esis.

Non-degeneracy follows from the fact that Θ(ℓ) is invertible and the non-
degeneracy of the q-Shapovalov form for q generic.

That 〈−,−〉 is τ -Hermitian follows from the following calculation, where we
use the notation Δ(ℓ)(u)v freely in place of u · v to emphasize when we are using
the usual coproduct and when we are using its bar-conjugate Δ̄(ℓ)(u)v.

〈u·v, v′〉 = 〈Θ(ℓ)Δ(ℓ)(u)v, v′〉X = 〈Δ̄(ℓ)(u)Θ(ℓ)v, v′〉X = 〈Θ(ℓ)v, (τ⊗· · ·⊗τ )Δ̄(ℓ)(u)v′〉X
= 〈Θ(ℓ)v,Δ(ℓ)(τ (u))v′〉X = 〈v, τ (u) · v′〉.

Above, we use the fact that Θ(ℓ) conjugates the coproduct to the bar-coproduct,
that the q-Shapovalov form on a simple is τ -Hermitian, and that τ also conjugates
the bar-coproduct to the coproduct.

Statement (3) follows from the fact that Θ(n) ∈ 1 ⊗ · · · ⊗ 1 +
∑

i Uq(g)
⊗ℓ−1 ⊗

Uq(g)Ei, so Θ(n) fixes Vλ1
⊗ · · · ⊗ Vλℓ−1

⊗ vh. �

Definition 4.34 Consider a double Stendhal triple (i,λ, κ), possibly with divided

powers in i. We let P κ
i = e(i, κ)DTλe− = e(i, κ)Tλ and P̃ κ

i = e(i, κ)T̃λ.

Fix a Stendhal triple (i, κ), and i ∈ Γ. We’ll want to consider a DST (i(j), κ(j))
where we add an upward oriented i-labeled strand right of the jth black strand and
a Stendhal triple (i(j), κ(j)) where we remove the j+1st strand. More precisely, we

consider the (D)STs corresponding to i(j) = (−i1, . . . ,−ij , i,−ij+1, . . . ,−in) and

κ(j)(m) = κ(m)+ δκ(m)≤j, and i(j) = (−i1, . . . ,−ij ,−ij+2, . . . ,−in) and κ(j)(m) =

κ(m) − δκ(m)≤j+1. We let μ(j) =
∑

κ(m)<j λm −∑j
k=1 αik be the weight of the

region right of the jth black strand in the original idempotent. Visually, these
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62 4. THE TENSOR PRODUCT ALGEBRAS

correspond to the diagrams

e(i(j), κ(j)) = · · · · · ·

ij i ij+1 ij+2

e(i(j), κ(j)) = · · · · · ·

ij ij+2

.

We’ve left out red strands from this diagram, but there could be some present.
When a red strand separates ij andij+1, there is ambiguity in the definition of

e(i(j), k(j)), based on whether the new upward strand is to the left or right of the
red strand. However, the relation (4.4e) shows the corresponding projectives are
isomorphic.

Lemma 4.35 As right DTλ-modules, we have isomorphisms:

P κ(j)

i(j)
∼= P κ(j+1)

i(j+1) i �= ij+1

P κ(j)

i(j)
⊕ (P

κ(j)

i(j)
)⊕[μi

(j+1)]q ∼= P κ(j+1)

i(j+1) i = ij+1, μ
i
(j+1) ≥ 0

P κ(j+1)

i(j+1) ⊕ (P
κ(j)

i(j)
)⊕[μi

(j+1)]q ∼= P κ(j)

i(j)
i = ij+1, μ

i
(j+1) ≤ 0

Proof. This is an immediate consequence of the categorified commutation
relations of Ei and Fi. The DST’s (i(j+1), κ(j+1)) and (i(j), κ(j)) differ by commuting
the upward oriented strand labeled i past the j + 1st black strand, and any red
strands with κ(m) = j. Commuting past red strands is immediate from (4.4e), so
we need only deal with commuting past the j +1st black strand, in which case the
desired isomorphism follows from (2.3c–2.4b) as argued in [KL10, 3.25]. �

For any DST (i, κ), let pκi ∈ Vλ be defined inductively by:

• if κ(ℓ) = n, then pκi := pκ
−

i ⊗ vλℓ
where, as defined earlier, vλℓ

is the
highest weight vector of Vλℓ

, and κ− is the restriction to [1, ℓ− 1].
• If κ(ℓ) �= n, so pκi := Einp

κ
i−

= F−inp
κ
i−
, where i− = (i1, . . . , in−1).

Lemma 4.36 dimq Hom(P κ
i , P

κ′

i′ ) = 〈pκi , pκ
′

i′ 〉.

Proof. Note that unless (i, κ) and (i′, κ′) have the same weight R, both sides
of the equation are 0; thus we need only consider the case where they have the same
weight. As is often true, it’s easier to prove a slightly more general result. Thus,
we will show that the formula above holds when (i, κ) is allowed to be a DST with
at most one upward strand. The proof will be by induction on the statement:

(wμ,j,ℓ) Lemma 4.36 holds when there are ℓ red strands, when R ≥ μ and (i, κ)
and (i′, κ′) are DSTs with at most one upward strand, which is left of the
jth downward strand. Lemma 4.36 also holds in all cases with < ℓ red
strands.

If j = 0, then if there is an upward strand, it comes left all downward strands
by definition. Thus, this DST corresponds to a trivial idempotent and pi,κ = 0.
Thus when j = 0, we need only consider the case of downward DSTs. In particular,
(wλ,0,1) is simply the fact that 〈p∅,0, p∅,0〉 = 1, and Tλ

λ
∼= �.

First, we wish to show that (wμ,j,ℓ) ⇒ (wμ,j+1,ℓ). If neither (i, κ) nor (i′, κ′)
have a upward strand in the j+1st position, then the formula follows from (wμ,j,ℓ).
To simplify the proof, let’s assume that (i, κ) has such a strand and (i′, κ′) does
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7. DECATEGORIFICATION 63

not; the other cases follow from the same argument. Thus, using the notation of
Lemma 4.35, we have that (i, κ) ∼= (k(j), ϑ(j)) for some DST (k, ϑ), with i being the
label of the upward strand. The reduction to wμ,j,ℓ follows from the match between
Lemma 4.35 and the commutator relation

Ei(Fkj
pκ(k1,...,kj)

) = Fkj
(Eip

κ
(k1,...,kj)

) + [Ei, Fkj
]pκ(k1,...,kj)

= Fkj
(Eip

κ
(k1,...,kj)

) + δi,kj
μi
(j)p

κ
(k1,...,kj)

.

For example, if i �= kj , then Pϑ(j)

k(j)
∼= Pϑ(j−1)

k(j−1) and pϑ
(j)

k(j) = pϑ
(j−1)

k(j−1) , so

dimq Hom(Pϑ(j)

k(j) , P
κ′

i′ ) = dimq Hom(Pϑ(j−1)

k(j−1) , P
κ′

i′ ) = 〈pϑ(j−1)

k(j−1) , p
κ′

i′ 〉 = 〈pϑ(j)

k(j) , p
κ′

i′ 〉
and the Lemma holds in this case. Similarly, if i = kj then

dimq Hom(Pϑ(j)

k(j) , P
κ′

i′ ) = dimq Hom(Pϑ(j−1)

k(j−1) , P
κ′

i′ ) + [μi
(j)]q dimq Hom(P

ϑ(j−1)

k(j−1)
, P κ′

i′ )

= 〈pϑ(j−1)

k(j−1) , p
κ′

i′ 〉+ [μi
(j)]q〈p

ϑ(j−1)

k(j−1)
, pκ

′

i′ 〉

= 〈pϑ(j)

k(j) , p
κ′

i′ 〉.
Now, we wish to establish that (wμ,0,ℓ) is implied by (wμ+αi,j,ℓ)+(wμ−λℓ,j,ℓ−1)

for all i, j. Assume that in either i or i′, we have that κ(ℓ) < n, that is, the
rightmost strand is black, not red; for simplicity, assume this is the case for i. Then
we can use adjunction to write

dimq Hom(P κ
i , P

κ′

i′ ) = dimq Hom(P κ
(i1,...,in−1)

,EinP
κ′

i′ )

= 〈pκ(i1,...,in−1)
, Eip

κ′

i′ 〉 = 〈pκi , pκ
′

i′ 〉.
In the middle step, we use (wμ−αin ,n+1,ℓ).

Finally, we must consider the case where κ(ℓ) = κ′(ℓ) = n. In this case, we can
use Proposition 4.19 to show that

dimq Hom(P κ
i , P

κ′

i′ ) = dimq Hom(P κ−

i , P
(κ′)−

i′ ) = 〈pκ−

i , p
(κ′)−

i′ 〉 = 〈pκi , pκ
′

i′ 〉.
In the middle step, this time, we use (wμ−λℓ,n,ℓ−1). �

Lemma 4.37 The classes [P κ
i ] span K0(T

λ) as a Z[q, q−1] module.

Proof. Let K ⊆ K0(T
λ) denote the span of these classes over Z[q, q−1]. We

wish to show that the class of any indecomposable projective P is in the span of
these classes. As usual, we induct on the number of red lines; the case of one red
line follows from [LV11, 7.8].

Let q(P ) be the minimal integer such that P is a summand of P κ
i with κ(ℓ) =

n− q(P ); within a fixed number of tensor factors, we will further induct based on
this statistic.

If q(P ) = 0, then P is a summand of P κ
i with κ(ℓ) = n. In this case P

is the image of a module over Tλ−

under the functor − ⊗Tλ− eℓT
λ induced by

the isomorphism of Proposition 4.19. Thus, applying the inductive hypothesis to

P κ
i eℓ as a module over Tλ−

, we obtain that [P ] ∈ K. This covers the case where
q(P ) = 0.

Now, we can assume that P is a summand of u ◦ P ′ for u ∈ U and P ′ with
q(P ′) = 0 which are both indecomposable. Thus, it must be that P ′ is the image of
a primitive idempotent endomorphism e′ acting on P κ

i′ with i = (i1, . . . , iκ(ℓ)) and

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



64 4. THE TENSOR PRODUCT ALGEBRAS

u the image of a primitive idempotent endomorphism e′′ acting on Fin · · ·Fiκ(ℓ)+1
∈

U−. Inside End(u ◦ P ′), there is a 2-sided ideal I of morphisms factoring through
projective modules Q with q(Q) < q(P ). By Proposition 4.16, any Stendhal di-
agram with top and bottom given by (i, κ) with a black strand that crosses the
rightmost red strand can be written as an element of I, plus a correction term with
fewer crossings. Thus, the subalgebra A in End(u ◦P ′) generated by Stendhal dia-
grams where no black strand crosses the rightmost red surjects onto End(u◦P ′)/I.
We have an isomorphism A ∼= e′ End(P κ

i′ )e
′ ⊗ e′′ End(Fin · · ·Fiκ(ℓ)+1

)e′′; since e′

and e′′ are primitive, the latter is a graded local ring. Thus, End(u ◦ P ′)/I is
again graded local. This implies that u ◦ P ′ has at most one summand H with
q(H) ≥ q(P ). That is, every summand Q of u ◦ P ′ other than P has q(Q) < q(P ).
Let Q′ be the kernel of the projection u ◦ P ′ → P .

Since K is invariant under the action of UZ
q (g) by Theorem 4.31, we have that

[u ◦ P ′] ∈ K, and by induction [Q′] ∈ K. Thus, [P ] = [u ◦ P ′] − [Q′] ∈ K, and we
are done. �

Theorem 4.38 There is a canonical isomorphism η : K0(T
λ) → V Z

λ given by

[P κ
i ] → pκi intertwining the inner product defined above with the Euler form.

Proof. First, we note that by the non-degeneracy of 〈−,−〉, we can interpret
V Z

λ as the quotient of the formal span of pκi over Z[q, q−1] modulo the kernel of the
induced form.

Thus, if we find any other Z[q, q−1]-module W equipped with a bilinear form
{−,−}, generated by elements qκi such that

{qκi , qκ
′

i′ } = 〈pκi , pκ
′

i′ 〉,
we immediately have a map η : W → V which sends qκi → pκi such that {−,−} =
η∗〈−,−〉.

By Lemma 4.36, the Grothendieck group K0(T
λ) and the classes [P κ

i ] are
exactly such a module and set of vectors. Thus, we have a map η as desired, which
is surjective.

In order to prove injectivity, we need to show that the rank of K0(T
λ) is no

greater than V Z

λ . Again, we induct on the number of tensor factors; we have already
established the case where ℓ = 1 in Proposition 3.21.

Thus, by our inductive hypothesis, we can assume that there are precisely∏ℓ−1
j=1 dimVλj

indecomposable projectives with q(P ) = 0. Every indecomposable

projective P appears in u ◦ Q for q(Q) = 0. As shown in Lemma 4.37, there are
unique indecomposable u and Q such that P is the unique summand of u ◦Q with
q(P ) = n− κ(ℓ) (that is, the number of black termini in u).

Consider a single index i. To simplify notation, let m = λi
ℓ. Note that the

algebra Tλℓ

(m+1)αi
= 0, that is, the identity of T̃λℓ

(m+1)αi
can be written as a sum of

violating diagrams. Applying the map ℘ to this sum, we can write the idempotent
e(i, κ) for a Stendhal triple with κ(ℓ) = n − m − 1 and in−m−1 = · · · = in = i
(that is, it’s last black block is m+1 instances of i) in terms of diagrams factoring
through Stendhal triples with κ(ℓ) ≥ n−m. That is, the corresponding projective
P κ
i is a sum of projective modules P with q(P ) ≤ m.

Now, assume u is a summand of u′ ◦ F
m+1
i , with p as before. As argued

above, every summand P of u ◦ Q has q(P ) < p. That is, we may assume that
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7. DECATEGORIFICATION 65

u : μ′ → μ is a summand of Fin · · ·Fiκ(ℓ)+1
but not a summand of u′ ◦ F

λi
ℓ+1

i for
any index i. Such a 1-morphism is the image of a primitive idempotent e in the
KLR algebra Rμ′−μ whose corresponding simple quotient L = Rμ′−μe/ rad(Rμ′−μe)
satisfies Hom(Re(j), L) = 0 if j1 = · · · = jλi

ℓ
+1 = i for all i. In the notation of

[LV11], this is the assertion that ǫ∗i (L) ≤ λi
ℓ. By [LV11, 7.8], such simples are

in bijection with the crystal of the representation Vλℓ
, so the number of them is

dimVλℓ
.

For every indecomposable projective P , there is a unique u as above and Q with
q(Q) = 0, such that P is a summand of u◦Q and every other summand has q < q(P ).
In particular, no pair u and Q can correspond to two indecomposable projectives,
so the number of indecomposable projectives is bounded above by the number of

such pairs. By induction, there are
∏ℓ−1

j=1 dimVλj
indecomposables with q(Q) = 0

and dimVλℓ
such u. Thus, we have that there are no more than

∏ℓ
j=1 dimVλj

indecomposable projectives, as desired. �

We can easily extend this statement to the category Ṽλ = T̃λ -mod. The
Z[q, q−1]-module U−,Z

q ⊗ V Z

λ has left and right actions of U−,Z
q given by

Fi · (u⊗ w1 ⊗ · · · ⊗ wℓ) = Fiu⊗ w1 ⊗ · · · ⊗ wℓ

(u⊗ w1 ⊗ · · · ⊗ wℓ) · Fi = uFi ⊗K−1
i (w1 ⊗ · · · ⊗ wℓ) + u⊗ Fi(w1 ⊗ · · · ⊗ wℓ)

We can define vectors p̃κi defined by the same inductive rules as pκi , except that p
∅
∅

is by definition the generator of the trivial representation, and p̃∅∅ is the element 1 in

U−,Z
q . Thus, if λ = ∅, then pi∅ = Fin · · ·Fi1 ∈ U−,Z

q . Let F̃∗
i , Ĩ

∗
λ be the conjugates of

F̃i, Ĩλ by the algebra reflecting diagrams through a horizontal line (and multiplying
each crossing of strands with the same label by −1).

Proposition 4.39 We have an isomorphism

K0
q (T̃

λ) ∼= U−,Z
q ⊗ V Z

λ .

This isomorphism sends

(4.7a) [F̃∗
i ](u⊗ w) → Fi · (u⊗ w) [F̃i](u⊗ w) → (u⊗ w) · Fi

(4.7b) [Ĩ∗λ](u⊗ w) → u(1) ⊗ (u(2)vλ ⊗ w) [Ĩλ](u⊗ w) → u⊗ w ⊗ vλ

Proof. We hope to find an isomorphism K0
q (Ṽ

λ) → U−,Z
q ⊗ V Z

λ1
⊗ · · · ⊗ V Z

λℓ

which sends [P κ
i ] → pκi . In order to check that such a map exists, we use the fact

that both groups have non-degenerate forms which match. For any fixed dominant
weight λ0 with λi

0 ≥ 1 for all i, we have a functor rN : Ṽλ → VNλ0,λ given by

applying Ĩ∗λ and then adding the violating relation. This functor is full, and for each
degree d and fixed weight space μ, there is a boundN(d, μ) such that ifN ≥ N(d, μ),

then this functor is also faithful is degree d. In particular, no projective in Ṽλ is
killed for all N . This shows that the classes [P i

κ] span the Grothendieck group

K0
q (T̃

λ), since the same is true of K0
q (T

Nλ0,λ).
Furthermore, on the level of Euler forms, we have

〈[M ], [M ′]〉Ṽλ = lim
N→∞

〈[rNM ], [rNM ′]〉VNλ0,λ
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66 4. THE TENSOR PRODUCT ALGEBRAS

where the convergence is in power series with the q-adic topology. For any weight
vector m ∈ K0

q (T̃
λ), we can consider the minimal degree of a non-vanishing term

of 〈rNm, [rNM ′]〉VNλ0,λ for any fixed M ′. This valuation is is bounded above as N
varies, since each weight space is finite rank over Z[q, q−1]. Since the classes [P κ

i ]

span K0
q (T̃

λ), we must have that 〈rNm, [rNP κ
i ]〉VNλ0,λ �= 0 for some i, κ for each

N . While i, κ might depend on N , since there are finitely many options, there is
at least one that gives a non-zero answer for infinitely many N . The upper bound
on valuation shows that the limit limN→∞〈rNm, [rNP κ

i ]〉VNλ0,λ �= 0 as well. This
form is thus non-degenerate.

Similarly, U−,Z
q ⊗ V Z

λ is endowed with a form defined a similar limit. Let

qN : U−,Z
q ⊗ V Z

λ → V Z

Nλ0,λ
such that qN (u⊗w) = uvNλ0

⊗w. We define a form by

〈u⊗ w, u′ ⊗ w′〉U−,Z
q ⊗V Z

λ

= lim
N→∞

〈qN (u⊗ w), qN (u′ ⊗ w′)〉V Z

Nλ0,λ

where the form on V Z

Nλ0,λ
is that given in Theorem 4.33. A similar argument gives

the non-degeneracy of this form.
By Theorem 4.38, we have an isomorphism V Z

Nλ0,λ
∼= K0

q (T
Nλ0,λ) of free

Z[q, q−1] modules endowed with sesquilinear forms such that [rNP κ
i ] → qNpκi . Thus,

we have that:

(4.8) 〈[P κ
i ], [P

κ′

i′ ]〉Ṽλ = lim
N→∞

〈[rNP κ
i ], [rNP κ′

i′ ]〉VNλ0,λ

= lim
N→∞

〈qNpκi , qNpκ
′

i′ 〉VNλ0,λ
= 〈pκi , pκ

′

i′ 〉U−
q ⊗Vλ

As in the proof of Theorem 4.38, we can view K0
q (T̃

λ) and U−,Z
q ⊗ V Z

λ as

quotients of the free span of [P κ
i ] and pκi by the kernel of these forms, so (4.8)

shows that we have the desired isomorphism. Compatibility with F̃i and Ĩλ is
obvious. The functors F̃

∗
i and Ĩ∗λ commute with F̃i and Ĩλ, and similarly for the

maps we intend to match them with in equations (4.7a–4.7b). Thus, need only
check that they give the right answer when acting on P∅, which is clear. �
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CHAPTER 5

Standard modules

1. Standard modules defined

When analyzing the structure of representation-theoretic categories, such as the
categories O appearing in Stroppel’s construction of Khovanov homology [Str09],
a crucial role is played by the Verma modules and their analogues. The property of
“having objects like Verma modules” was formalized by Cline-Parshall-Scott as the
property of being quasi-hereditary [CPS88]. Unfortunately, this is too strong of
an assumption for us; as we noted earlier, the cyclotomic QHA is Frobenius, and
thus very far from being quasi-hereditary (any ring which is both Frobenius and
quasi-hereditary is semi-simple).

Luckily, our categories satisfy a weaker condition: they are standardly strat-
ified, as defined by the same authors [CPS96]. To show this, we must construct a
collection of modules which are called standard, and show that projectives have a
filtration by these modules compatible with a preorder.

From another perspective, given the isomorphism between K0(Tλ) ∼= V Z

λ , it is

natural to expect that pure tensors in V Z

λ correspond to modules, and that things
like the definition of the coproducts

(5.1) Δ(ℓ)(Ei) = Ei ⊗ 1⊗ · · · ⊗ 1 + K̃i ⊗ Ei ⊗ 1⊗ · · · ⊗ 1 + · · ·+
K̃i ⊗ · · · ⊗ K̃i ⊗ Ei ⊗ 1 + K̃i ⊗ · · · ⊗ K̃i ⊗ Ei.

(5.2) Δ(ℓ)(Fi) = Fi ⊗ K̃−i ⊗ · · · ⊗ K̃−i + 1⊗ Fi ⊗ K̃−i ⊗ · · · ⊗ K̃−i + · · ·+
1⊗ · · · ⊗ 1⊗ Fi ⊗ K̃−i + 1⊗ · · · ⊗ 1⊗ Fi.

will have a categorical interpretation. Standard modules are the key to both these
questions.

We define a preorder on Stendhal triples (i, κ)’s by (i, κ) ≤ (i′, κ′) if
∑

k≤κ(j)

αik ≤
∑

k≤κ′(j)

αi′
k

for all j ∈ [1, ℓ].

Since there is a danger of sign confusion, let us emphasize that we are summing
positive roots here, since we are using the sign conventions of a Stendhal triple. Put
more informally, one gets higher in this order as black strands move left and red
strands move right.

This preorder can be packaged as the dominance order for a functionαi,κ : [0, ℓ] →
X(g) which we call a root function given by

αi,κ(k) =
∑

κ(k−1)<j≤κ(k)

αij .

67
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68 5. STANDARD MODULES

Note that this preorder is entirely insensitive to permutations of the black strands
which do not cross any red strands.

Definition 5.1 Let Uκ
i ⊂ P̃ κ

i be the submodule generated by the image of all

maps P̃ κ′

i′ → P̃ κ
i with (i′, κ′) ≥ (i, κ). We define Sκ

i = P̃ κ
i /U

κ
i to be the standard

module for κ and i.
If κ(1) = 0, then the action of T̃λ on Sκ

i factors through the natural map

T̃λ → Tλ, and we will typically consider Sκ
i as a module over this smaller algebra.

Recall that according to our conventions, elements of the algebra T̃λ act at the
bottom of the diagram. Thus, the submodule Uκ

i is the span of all diagrams where
the slice at the top is given by (i, κ) and somewhere in the middle of the diagram
is given by (i′, κ′) ≥ (i, κ).

By convention, we call a red/black crossing where black strands go from NW to
SE left and the mirror image of such a crossing right. Note that this terminology
does not apply to black/black crossings; if we call a crossing left or right we are
implicitly assuming it is black/red.

(5.3)
a “left” crossing a “right” crossing

We can alternatively define Uκ
i as the submodule generated by all diagrams

with at least one right crossing and no left crossings.

Definition 5.2 We will call a black strand that makes a right crossing above
all left crossings standardly violating, and a diagram containing such a strand
standardly violated.

Let eα be the idempotent which is 1 on projectives P κ
i with root function

αi,κ = α. We let Sα be the standard quotient of the projective eαT
λ, that is, its

quotient by the submodule generated by the image of all maps P κ′

i′ → eαT
λ with

αi′,κ′ > α. Recall that we have a map ℘α : Rα(1) ⊗ · · · ⊗Rα(ℓ) → eαT̃
λeα defined

in Chapter 3. Let μi = λi −α(i).

Proposition 5.3 The map ℘α induces an algebra map

Rα(0) ⊗ Tλ1
μ1

⊗ · · · ⊗ Tλℓ
μℓ

→ EndT̃λ(Sα).

Proof. First, we note that left (top) multiplication by ℘α induces an action
of Rα(0)⊗Rα(1)⊗· · ·⊗Rα(ℓ) on eαT

λ. This further induces an action on Sα, since
the elements of ℘α only rearrange strands within black blocks. Let Uα be the sum
of the submodules Uκ

i with α(i, κ) = α. The map ℘α(r) must send Uα to itself,

since a map from P κ′

i′ composed with ℘α(r) is still a map from a higher projective
and thus in Uα.

It follows that we have a map Rα(0) ⊗ Rα(1) ⊗ · · · ⊗ Rα(ℓ) → EndTλ(Sα).
Furthermore, consider r in the span of Rα(0) ⊗ Rα(1) ⊗ · · · ⊗ Iλi

⊗ · · · ⊗ Rα(ℓ) for
i = 1, . . . , ℓ, where Iλi

⊂ Rα(i) is the cyclotomic ideal of corresponding to λi. In
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1. STANDARD MODULES DEFINED 69

this case, r can be written in Tλ as elements factoring through a higher projective
by Theorem 4.18. In this case r will send the entirety of Pα to Uα, and thus acts
trivially on Sα. It follows that we have the desired induced action. �

Thus, we can think of Sα as a Rα(0) ⊗ Tλ1
μ1

⊗ · · · ⊗ Tλℓ
μℓ

− T̃
λ
α -bimodule, and

S = ⊕αSα as a R ⊗ Tλ1 ⊗ · · · ⊗ Tλℓ − T̃λ-bimodule. Let

V∞;λ1;...;λℓ := R⊗ Tλ1 ⊗ · · · ⊗ Tλℓ -mod Vλ1;...;λℓ := Tλ1 ⊗ · · · ⊗ Tλℓ -mod

Definition 5.4 The standardization functor is the tensor product with this
bimodule:

Sλ : V∞;λ1;...;λℓ → T̃λ -mod Sλ(−) = −⊗R⊗Tλ1⊗···⊗Tλℓ S

Note that if we restrict to sequences where α(0) = 0, then we can view this as a
functor Sλ : Vλ1;...;λℓ → Vλ.

More generally, we can construct partial standardization modules, where we
only kill the right crossings for some of the red strands. This will give us a stan-
dardization functor

Sλ1;...;λm : Vλ1;...;λℓ → Vλ

for any list of sequences λ1, . . . ,λm such that the concatenation λ1 · · ·λm is equal
to λ.

We’ve already seen one example of these functors. For any dominant weight
μ, we can rewrite the functor Iμ defined in Definition 4.20 as the standardization

functor Iμ(M) = Sλ;(μ)(M ⊠P∅). This categorifies the inclusion of Vλ⊗{vhigh} →֒
Vλ ⊗ Vμ. This map is not a map of g-representations, though we will discuss the
interaction of standardization functors with the categorical g-action below.

The category Vλ1;...;λm has a categorical action of g⊕m by functors we denote

kEi and kFi which act only on the kth factor. That is:

kEi(· · ·⊠Mk−1 ⊠Mk ⊠Mk+1 ⊠ · · · ) ∼= · · ·⊠Mk−1 ⊠ EiMk ⊠Mk+1 ⊠ · · · .
These actions are compatible with the action via Ei,Fi on Vλ as follows:

Proposition 5.5 For any T
λ1
μ1 ⊗· · ·⊗T

λm
μℓ -module M , the module EiSλ1;...;λm(M)

has a natural filtration Q1 ⊃ Q2 ⊃ · · · such that

Qk/Qk+1
∼= Sλ1;...;λm(kEiM)

⎛
⎝

k−1∑

j=1

〈αi, λj −α(j)〉

⎞
⎠ .

The module FiSλ1;...;λm(M) has a natural filtration Om ⊃ Om−1 ⊃ · · · such
that

Ok/Ok−1
∼= Sλ1;...;λm(kFiM)

⎛
⎝−

k∑

j=k+1

〈αi, λj −α(j)〉

⎞
⎠ .

These filtrations are precisely the categorification of the coproducts (5.1) and
(5.2).

Proof. We can easily reduce from the general case to the case where there
are two tensor factors. For any sequence (λ1; . . . ;λm), we first apply the two term

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



70 5. STANDARD MODULES

result for (λ1;λ2 · · ·λm) and then on (λ2;λ3 · · ·λm), and so on. Thus, throughout,
we’ll assume that m = 2 and λ1 = (λ1, . . . , λj−1),λ2 = (λj , . . . , λℓ).

First, consider EiSλ1;λ2(M). Let Q(M) be the submodule of diagrams where
the strand forming the unique cup stays to the right of the jth red strand. One
can easily check that this is a subfunctor of EiSλ1;λ2 . In the diagrams below, the
left-hand diagram is in Q(M) and the right-hand is not (or at least this is not clear
from how it is written).

λ1

λ1

· · ·

λj

λj

· · ·

ij

λ1

λ1

· · ·

λj

λj

· · ·

ij

For any M ∈ Vλ1;λ2 , we have a natural transformation γ2 : Sλ1;λ2(2EiM) →
Q(M) where we take a diagram in the former module and think of it in the latter.

One can think of this as a map from of bimodules γ2 : (T
λ1 ⊠ βEi

) ⊗Tλ1⊗Tλ2

S → S ⊗Tλ βEi
, where again, the inclusion is just isotopy of diagrams. Let ci

be the diagram just making a cup between the only upward terminal, and the ith
downward terminal from the right. Every element of (Tλ1 ⊠βEi

)⊗S can be written
as a sum of diagrams of the form ci ⊗ a where a is an element of S; in this case,
γ1((1 ⊠ ci) ⊗ a) = 1 ⊗ cia. This is well-defined by the usual locality of relations,
but not obviously injective.

Note, however, that this map is not grading preserving. The degree of the cup
will increase by 〈αi, λ1 −α(1)〉, since we must change the labeling of regions in the
diagram.

Dually, we have a natural transformation γ1 : Sλ1;λ2(1EiM) → EiSλ1;λ2(M)/Q.
One can think of this as a map of bimodules (βEi

⊠ Tλ2) ⊗Tλ1⊗Tλ2 S → (S ⊗Tλ

βEi
)/ im(γ1). This maps

γ1((ci ⊠ 1)⊗ a) = 1⊗ ci+ρ∨(α(2))a.

This map is only well-defined modulo the image im(γ∨
ρ (α(2))) since when need to

move a dot or crossing past the cup ci+n, the equations (2.5c,2.5g) show that two
representations of the same element will differ by diagrams of the form γ1((1⊠cb)⊗a)
for b < n.

Note that this map is surjective, since the module EiSλ1;λ2(M)/Q is spanned
by elements of the form (1⊠ e(j, κ))⊗ ci+na, which is in the image of γ1.

The map γ1 is shown in (5.4). In each, case, the diagram we have shown would
be acting on an element of M as in Figure 1. For the legibility of the pictures, we
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have not shown these elements.
(5.4)

λ1

λ1

d1

λ2

λ2

λj−1

λj−1

dj−1

λj

λj

dj

λj+1

λj+1

· · ·

λℓ

λℓ

dℓ
· · ·

λ1

λ1

d1

λ2

λ2

λj−1

λj−1

dj−1

λj

λj

dj

λj+1

λj+1

· · ·

λℓ

λℓ

dℓ
· · ·

We turn to the module FiSλ1;λ2(M). This has a submodule O generated by the
diagram g where the “new” strand at the far right is pulled to the spot left of the
jth red strand with no other crossings or dots. Much like the case of Ei, we have
a map δ1 : Sλ1;λ2(1FiM) → O of degree −〈αi, λ2 −α(2)〉. As in the case of E, this
can be described as a bimodule map (βFi

⊠ Tλ2) ⊗ S → S ⊗ βFi
which sends a

diagram 1 ⊗ a → 1 ⊗ ga. This map is shown in (5.5). Note that in the course of
this proof, we will draw several diagrams representing elements of functors applied
to M .
(5.5)

λ1

λ1

d1

λ2

λ2

λj−1

λj−1

dj−1

λj

λj

dj

λj+1

λj+1

· · ·

λℓ

λℓ

dℓ· · ·

λ1

λ1

d1

λ2

λ2

λj−1

λj−1

dj−1

λj

λj

dj

λj+1

λj+1

· · ·

λℓ

λℓ

dℓ· · ·

Dually, we have a map δ2 : Sλ1;λ2(2FiM) → FiSλ1;λ2(M)/O. This sends a diagram
to the same underlying diagram. As with γ1, this isn’t well-defined as a map to
FiSλ1;λ2(M) since diagrams where the new strand 2Fi adds is violating aren’t sent
to elements of the violating ideal. However, such a diagram does land in O, so the
map to the quotient is well-defined.

Thus, in order to finish the proof, we must prove that the maps γk, δk are
isomorphisms. Since the maps γk and δk are surjections, suffices to check that the
dimensions of the source and target coincide. That is, it suffices to prove for any
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projective that

dimHom(P,EiS
λ1;λ2(M)) = dimHom(P, Sλ1;λ2(1EiM))(5.6)

+ dimHom(P, Sλ1;λ2(2EiM))

dimHom(P,FiS
λ1;λ2(M)) = dimHom(P, Sλ1;λ2(1FiM))(5.7)

+ dimHom(P, Sλ1;λ2(2FiM)).

Surjectivity implies that in both (5.6) and (5.7), the LHS must be ≤ the RHS.
We’ll induct on ℓ, and on the weight of the module P . More precisely, our

inductive hypothesis will be that

f(μ,ℓ) For all i, The equation (5.6) holds for any P projective over T
λ
μ+αi

, and

the equation (5.7) holds for any P projective over T
λ
μ .

For our induction, we prove f(μ,ℓ) assuming f(ν,k) holds if k < ℓ or ℓ = k and ν > μ.
When ℓ = 1 the equations (5.6) and (5.7) are tautological, and for μ = λ, the
module P in (5.6) can only be the trivial module, and similarly for the module M
in (5.7), so this establishes the base case.

Obviously, if either (5.6) or (5.7) fails for a projective P , it will still fail if P
is replaced by its sum with any other projective module, and it must fail for some
indecomposable summand of P . Similarly, since Hom with a projective is exact,
the formulas (5.6) or (5.7) hold for M if and only if they hold for all its composition
factors. Thus, we can assume that either P = Iλℓ

P ′, or that P = FjP
′ for some j

and some other projective P ′.
In the former case, we can assume without loss of generality that M = mIλℓ

M ′

for some M ′, since any simple which is not a composition factor of such a module
has Hom(P, Sλ1;λ2L) = 0. By Proposition 4.32, we have that:

dimHom(P,FiS
λ1;...;λm(M)) =

∑
dimHom(Iλℓ

P ′,FiIλℓ
Sλ1;...;λ

−
m(M ′))

=
∑

dimHom(P ′, IRλℓ
FiIλℓ

Sλ1;...;λ
−
m(M ′))

=
∑

dimHom(P ′,FiS
λ1;...;λ

−
m(M ′))

=
∑

dimHom(P ′, Sλ1;...;λ
−
m(kFiM

′))

=
∑

dimHom(P, Sλ1;...;λm(kFiM))

applying the inductive hypothesis f(μ−λℓ,ℓ−1). This establishes (5.7) and (5.6) fol-
lows by a similar argument.

Thus, we may assume that P = FjP
′ for some j. In this case, we can apply

the adjunction to show that

dimHom(FjP
′,FiS

λ1;...;λm(M)) = dimHom(P ′,EjFiS
λ1;...;λm(M))(5.8)

≤
∑

dimHom(P,EiS
λ1;...;λm(kFiM)(5.9)

≤
∑

dimHom(P, Sλ1;...;λm(pEj ◦ kFiM)(5.10)

where (5.9) and (5.10) follow from the inequality LHS ≤ RHS in (5.7) and (5.6)
respectively. Applying the commutation relations in U , we find that this implies
that

(5.11) Hom(P ′,FiEjS
λ1;...;λm(M)) ≤

∑
dimHom(P, Sλ1;...;λm(kFi ◦ pEjM)
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1. STANDARD MODULES DEFINED 73

with equality if and only if both steps (5.9) and (5.10) are equalities. On the
other hand, the inductive hypothesis f(μ+αj ,ℓ) implies that (5.11) is an equality, by

applying (5.6) to Sλ1;...;λm(M) and then (5.7) to Sλ1;...;λm(pEjM).
Thus, we must have that (5.9) is an equality, which shows (5.7) for P = FjP

′

and M arbitrary. This establishes the second half of f(μ,ℓ) in complete generality.
On the other hand, we also know that (5.10) is an equality. This establishes (5.6)
for P arbitrary, and M any composition factor of kFiM

′ with M ′ arbitrary.
Thus it only remains to establish (5.6) when M is a simple module which

receives no maps from kFiM
′ for any i. In this case, adjunction shows that kEiM =

0 for every k and i. This shows that the right hand side of (5.6) is 0, so the equation
must hold. Thus, the result is proven. �

We let sκi = Fiκ(2)
· · ·Fi1p1 ⊗ · · · ⊗ Fin · · ·Fiκ(ℓ)+1

pℓ.

Proposition 5.6 η([Sκ
i ]) = sκi .

Proof. We’ll induct on ℓ and on the height of (i, κ) in our preorder. For ℓ = 1,
this is simply the statement of Proposition 4.38. This establishes the base case.

Now, assume that κ(ℓ) = n; in this case, we can assume that η([Sκ−

i ]) = sκ
−

i

by the inductive hypothesis. The class of Sκ
i = Iλℓ

(Sκ−

i ) is thus sκ
−

i ⊗ pℓ = sκi by
definition.

Thus, we may assume that κ(ℓ) < n. We let ik and κk be the sequence i with
in moved from the end of the sequence to the end of the kth black block (so iℓ = i),
and the function κ changed appropriately, that is, with 1 added to its values above
k. By Proposition 5.5 we see that the kernel of the surjection FinS

κ
i−

→ Sκ
i has a

filtration by the standard modules Sκk

ik
for k = 1, . . . , ℓ− 1. Thus, we have that

[Sκ
i ] = [FinS

κ
i− ]−

ℓ−1∑

k=1

qα
∨
i (λk+1+···+λℓ)[Sκk

ik
]

= Δ(n)(Fi)s
κ
i− −

ℓ−1∑

k=1

qα
∨
i (λk+1+···+λℓ)sκk

ik

= Δ(n)(Fi)s
κ
i− −

ℓ−1∑

k=1

(1⊗ · · · ⊗ 1⊗ Fi ⊗ K̃−i ⊗ · · · ⊗ K̃−i)s
κ
i−

= (1⊗ · · · ⊗ 1⊗ Fi)s
κ
i−

= sκi �

This result also shows the exactness of the standardization functor:

Proposition 5.7 The standardization functor Sλ1;...;λm : Vλ1;...;λℓ → Vλ is exact.

Proof. Note that we need only consider the case where m = ℓ and λi =
(λi). We induct as in the proof of Theorem 4.38 on n and ℓ. It suffices to prove
that Hom(P κ

i , S
λ(−)) is always exact since every indecomposable projective is a

summand of P κ
i .
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Unless n = κ(ℓ), the projective P κ
i is a sum of summands of modules of the

form Fi(P
′). Thus, we can use the adjunction

Hom(Fi(P
′), Sλ(−)) ∼= Hom(P ′,EiS

λ(−)).

By Proposition 5.5, EiSλ(M) is filtered by the modules Sλ(jEiM) where jEi is the
categorification functor applied in the jth tensor factor. By induction, we have that
Sλ(jEi(−)) is exact, so this establishes this induction step.

If n = κ(ℓ), then Hom(P κ
i , S

λ(M)) is the same as Hom(P κ−

i , S(λ1,...,λℓ−1)(M+))
where M+ is the Tλ1 ⊗ · · · ⊗ Tλℓ−1 submodule in M where the weight for Tλℓ is
λℓ. Since M → M+ is exact (it is the projection of a sum of idempotents), by
induction M → S(λ1,...,λℓ−1)(M+) is exact as well. This completes the induction
step, and thus the proof. �

2. Simple modules and crystals

Lauda and Vazirani show that there is a natural crystal structure on simple
representations of Rλ = Tλ, which is isomorphic to the usual highest weight crystal
B(λ). A similar crystal structure exists for simples of Tλ; we denote the set of
isomorphism classes of simple modules by Bλ.

Recall that the cosocle or head hd(M) of a representation M is its maximal
semi-simple quotient. As many examples in representation theory show, it is often
easiest to construct simple modules by first considering other modules that they
are cosocle of. For example, this is done for KLR algebras in [KR11].

Theorem 5.8 For Li a simple Tλi module, the module Sλ(L1 ⊠ · · · ⊠ Lℓ) has a
unique simple quotient. This defines a bijection

h : Bλ1 × · · · × Bλℓ → Bλ,

h(L1, . . . , Lℓ) → hd Sλ(L1 ⊠ · · ·⊠ Lℓ).

We’ll use the following standard lemma:

Lemma 5.9 Let A be an algebra and M a right A-module, and e ∈ A an idempo-
tent. If

(1) Me is simple as an eAe-module and
(2) Me generates M as an A module,

then M has a unique simple quotient.

Proof. Any proper submodule is killed by the idempotent e, since any non-
zero vector in Me generates M . Thus, the sum of two proper submodules is killed
by e, and is again proper. Therefore, we have a unique maximal submodule. �

Proof of Theorem 5.8. Since Li is indecomposable, it makes sense to speak
of its weight. Thus we have a root function α of L1⊠· · ·⊠Lℓ, and the corresponding
idempotent eα as defined earlier. Note that the functor Sλ restricted to Tλ1

μ1
⊗· · ·⊗

Tλℓ
μℓ

-modules has a right adjoint given by Hom(Sα,−). For a fixed module Tλ

module M , if Meα �= 0 and α is maximal amongst α′ with this property, then we
have that Hom(Sα,M) ∼= Meα.
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The unit of the adjunction gives an inclusion of Tλ1
μ1

⊗ · · · ⊗ Tλℓ
μℓ

-modules

L1 ⊠ · · ·⊠ Lℓ →֒ Sλ(L1 ⊠ · · ·⊠ Lℓ)eα.

This map is actually an isomorphism since by Proposition 4.16, we can rewrite
all elements of eαT

λeα as a sum of diagrams in the image of ℘, which preserve
L1⊠ · · ·⊠Lℓ, and of diagrams with standardly violating strands, which act trivially.

We apply Lemma 5.9 to the idempotent eα and the Tλ-module Sλ(L1⊠· · ·⊠Lℓ);
condition (1) follows from the simplicity of Li, and condition (2) from the definition
of standard modules (these are quotients of projectives generated by the same
subspace). Thus h is indeed well-defined.

Now we wish to show bijectivity by constructing an inverse. Fix a simple L
and let α be a maximal root function such that Leα �= 0. Let L1 ⊠ · · · ⊠ Lℓ be
a simple submodule of Leα. Since α is maximal, the counit of the adjunction
between Sλ and ·eα induces a map Sλ(L1 ⊠ · · ·⊠ Lℓ) → L, which is non-zero, and
thus surjective. This shows that the map h is surjective.

Now, assume there is another set of simples L′
1, . . . , L

′
ℓ with a possibly different

root function α′ such that L is also a quotient of Sλ(L′
1⊠ · · ·⊠L′

ℓ). Since Leα �= 0,
we must have Sλ(L′

1⊠ · · ·⊠L′
ℓ)eα �= 0. This only possible if α ≤ α′. By symmetry,

this also implies that α′ ≤ α, so we must have α′ = α.
Furthermore, we have that

L1 ⊠ · · ·⊠Lℓ
∼= Sλ(L1 ⊠ · · ·⊠Lℓ)eλ ∼= Leα ∼= Sλ(L′

1 ⊠ · · ·⊠L′
ℓ)eλ

∼= L′
1 ⊠ · · ·⊠L′

ℓ.

This shows that the map h is also injective. �

If M is a right module over Tλ, we let Ṁ be the left module given by twisting
the action by the anti-automorphism a → ȧ flipping diagrams through the vertical
axis.

Definition 5.10 For a finite-dimensional right module M , we define the dual
module by M⋆ = Ṁ∗, where (·)∗ denotes usual vector space duality interchanging
left and right modules.

This is a right module since both vector space dual and the anti-automorphism
interchange left and right modules.

Proposition 5.11 Any simple module L ∈ Bλ is isomorphic to its dual: L ∼= L⋆.

Proof. From Theorem 5.8, we have that two simple modules L,L′are isomor-
phic if there is a root function α such that Leα′ = L′eα′ = 0 for all α′ �≤ α, and
Leα and L′eα are non-zero and isomorphic as modules over Tλ1

μ1
⊗ · · · ⊗ Tλℓ

μℓ
. Since

ėα = eα, we have that Leα′ = 0 if and only if L⋆eα′ = 0. Thus, the criterion above
shows that L ∼= L⋆ if and only if Leα ∼= L⋆eα. Khovanov and Lauda have shown
[KL09, §3.2] that every simple module over Tλi

μi
, and thus over the tensor products

of these algebras, is self-dual. Applying this to Leα gives the result. �

Now, we wish to understand how the simple modules of Vλ are related by
categorification functors. In particular, it follows from [CR08, 5.20] that:

Proposition 5.12 For a simple module L, the modules f̃i(L) := hd(FiL), and
ẽi(L) := hd(EiL) are simple.
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Remark 5.13 It would be more in the spirit of earlier work on crystals of repre-
sentations, such as [LV11], to let ẽi(L) be the socle of the kernel of the action of y
on EiL; however, EiL is self-dual, so this is the same up to isomorphism.

Theorem 5.14 These operators make the classes of the simple modules a perfect
basis of K0(T

λ) in the sense of Berenstein and Kazhdan [BK07, Definition 5.30].
In particular, they define a crystal structure on simple modules.

Proof. By [CR08, Prop. 5.20], if a is the largest integer such that ẽai (L) �= 0,

then Ea
i (L) is semi-simple; in fact, it is a sum of copies of ẽai (L) (since F

(a)
i (ẽai (L))

surjects onto L). In particular, any other simple constituent of Ei(L) is killed by
ẽa−1
i . This is the definition of a perfect basis. �

Since K0(T
λ) ∼= Vλ, this implies that an isomorphism of crystals exists between

Bλ and the tensor product Bλ1 × · · · × Bλℓ without actually determining what it
is. In [LW, 7.2], the author and Losev prove that:

Theorem 5.15 The crystal structure induced on Bλ by h has Kashiwara operators
given by f̃i and ẽi, where Bλ1 ×· · ·×Bλℓ is endowed with the tensor product crystal
structure.

3. Stringy triples

Our system of projectives P κ
i is quite redundant; there are many more of them

than there are simple modules, as Proposition 5.8 shows. We can produce a smaller
projective generator by using string parametrizations.

Choose any infinite sequence {i1, i2, . . . } ∈ Γ of simple roots such that each
element of Γ appears infinitely often. For any element v of a highest weight
crystal Bλ, there are unique integers {a1, . . . } such that · · · ẽa2

i2
ẽa1
i1
v = vhigh and

ẽak+1
k · · · ẽa1

i1
v = 0. The parametrization of the elements of the crystal by this tuple

is called the string parametrization. We can associate this to a sequence with

multiplicities (. . . , i
(a2)
2 , i

(a1)
1 ). While this is a priori infinite, aj = 0 for all but

finitely many j, so deleting entries with multiplicity 0, we obtain a finite sequence,
which we’ll call the string parametrization of the corresponding simple.

Definition 5.16 We call a Stendhal triple (i,λ, κ) stringy if the jth black block,
that is, the sequence of i’s between the jth and j + 1st red lines, is the string
parametrization of a crystal basis vector in Vλj

.
We will implicitly use the canonical identification between stringy triples and

Bλ via h.

As in Khovanov and Lauda [KL09, §3.2], we order the elements of the crystal
Bλ by first decreasing weight (so that the smallest element is the highest weight
vector) and then lexicographically by the string parametrization.

For the tensor product crystal, we use the dominance order on α’s, with the
order discussed above in the factors used to break ties.

Proposition 5.17 The projective cover of any simple appears as a summand of
P κ
i where (i, κ) is the corresponding stringy triple. This cover is, in fact, the
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4. STANDARD STRATIFICATION 77

unique indecomposable summand which doesn’t appear in P κ′

i′ for (i′, κ′) > (i, κ).

If (i, κ) is not stringy, then every indecomposable summand of P κ
i appears in P κ′

i′

for (i′, κ′) > (i, κ).

As a matter of convention, we call the root function of the stringy triple where
an indecomposable projective first appears the root function of that projective.

Proof. Obviously,

P κ
i ։ Sκ

i = Sλ(F
(aκ(2))

iκ(2)
· · ·F(a1)

i1
P∅ ⊠ · · ·⊠ F

(an)
in

· · ·F(aκ(ℓ)+1)

iκ(ℓ)+1
P∅)

which in turn surjects to the corresponding simple, by the definition of Kashiwara
operators on simple modules, and of the map h. Thus, the indecomposable projec-
tive cover of the simple with this string parametrization is a summand of P κ

i .
The other indecomposable projective summands of P κ

i are precisely the pro-
jective covers of simples such that Hom(P κ

i , L) �= 0, which is the same as requiring
that Lei,κ �= 0. This can only hold if the simple L has an associated root function
(under the bijection h) which greater than or equal to that for (i, κ). If it is strictly

greater, then L must be a quotient of P κ′

i′ with (i′, κ′) having greater root function
than (i, κ). Thus, in this case, we must have (i′, κ′) > (i, κ).

On the other hand, if the root functions are equal, any map of P κ
i to Lmust fac-

tor through Sκ
i . In this case, Leα will be a quotient of Sκ

i eα
∼= F

(aκ(2))

iκ(2)
· · ·F(a1)

i1
P∅⊠

· · ·⊠ F
(an)
in

· · ·F(aκ(ℓ)+1)

iκ(ℓ)+1
P∅.

By [KL09, Lemma 3.7], this module has a unique simple quotient that doesn’t
appear as a quotient associated to a word higher in lexicographic order if each of
the black blocks is a string parametrization, and none if any one of them is not.
This completes the proof. �

For an indecomposable projective P , its standard quotient is its quotient
under the sum of all images of maps from projectives with higher root sequences.
This coincides with its image in Sκ

i , the standard quotient for its associated stringy
triple. This standard quotient is indecomposable, since it is a quotient of an inde-
composable projective.

Proposition 5.18 Consider (i, κ) with the associated root function α. Then the
sum of indecomposable summands of P κ

i that have the same root function surject
to Sκ

i , which is a direct sum of the standard quotients of those projectives.

Proof. If an indecomposable summand of P κ
i has a different root function, it

must be higher, so this summand is in the image of a higher stringy projective and
thus in Uκ

i . Thus, the other summands must surject.
Similarly, it is clear that the intersection of any indecomposable with the same

root function with Uκ
i is exactly the trace of the projectives with higher root func-

tions. �

4. Standard stratification

Now, we proceed to showing that the algebra Tλ is standardly stratified. Fix
a Stendhal triple (i, κ). Any Stendhal diagram with top (i, κ) thus has its black
strands divided in black blocks divided by the red strands at the top of the diagram.
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Consider the set Φ̃ of permutations of the terminals at the top of the diagram
which do not move black strands into blocks to their right and are minimal coset
representatives for the permutations within blocks at the bottom of the diagram.
We let Φ be the subset of Φ̃ where the bottom of the diagram is not violating.

Lemma 5.19 vκi =
∑

φ∈Φ q− deg xφs
κφ

iφ

Proof. As usual, we prove this by induction on the number of red and black
strands. If κ(ℓ) = n, then Φ is unchanged by removing the red strand, and we have
that

vκi = vκ
−

i ⊗ vλℓ
=
∑

φ∈Φ

q− deg xφs
κ−

φ

iφ
⊗ vλℓ

=
∑

φ∈Φ

q− deg xφs
κφ

iφ
.

Thus, we may assume that κ(ℓ) < n. We let Φ− be the set of permutations
associated to the Stendhal triple (κ−, i−) where we remove the rightmost black
strand. Each element of Φ− contributes ℓ elements to Φ given by moving the far
right element to the far right of the ℓ different black blocks (it can only be at
the far right since we must have a shortest coset representative). As computed in
Proposition 5.5, the grading shifts of these elements match those in the coproduct
formula for Fin acting on s

κφ

i
−

φ

. Thus, we have

vκi = Finv
κ
i− =
∑

φ∈Φ−

q− deg xφFins
κφ

i
−

φ

=
∑

φ∈Φ

q− deg xφs
κφ

iφ
.

This completes the proof. �

We preorder Φ̃ according to the preorder on the idempotent (iφ, κφ) which
appears at the bottom of the diagram.

Let xφ be a Stendhal diagram where we permute the strands exactly according

to a chosen reduced word of φ ∈ Φ̃.

Example 5.20 So, for example, in the case of sl2, if we have λ = (1, 1), i = (1, 1)

and κ(1, 2) = 0, 1, then the elements in Φ̃ are given (with their ordering) by:

> ,

>

>

>

>

Only the rightmost and topmost diagrams lie in Φ. The others have a violating
strand. Note that
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4. STANDARD STRATIFICATION 79

is not one of the diagrams we consider, since it is not a shortest coset representative.

Consider the submodules

P>φ =
∑

φ′>φ

xφ′Tλ ⊂ P κ
i P≥φ = P>φ + xφT

λ.

Proposition 5.21 For any φ ∈ Φ, we have P≥φ/P>φ
∼= S

κφ

iφ
.

We note that some of these subquotients are trivial, but in this case the corre-
sponding standard module is trivial as well.

Proof. The multiplying by the element xφ induces a map P
κφ

iφ
→ P≥φ. This

map sends U
κφ

iφ
to P>φ, and thus induces a surjective map γφ : S

κφ

iφ
→ P≥φ/P>φ.

Since this map is surjective, we have

(5.12) dimP≥φ/P>φ ≤ dimS
κφ

iφ
.

On the other hand, we have vκi =
∑

φ∈Φ q− deg xφs
κφ

iφ
by Lemma 5.19, so taking

inner product with [Tλ], we obtain dimP κ
i =
∑

φ∈Φ dimS
κφ

iφ
.

Thus we must have equality in (5.12), and the map γφ is an isomorphism for
dimension reasons. �

Corollary 5.22 The algebra Tλ is standardly stratified with standard modules
given by the standard quotients of indecomposable projectives, and the preorder
on simples/standards/projectives given by the dominance order on root functions
α.

Note that we can easily bootstrap this to prove that

Corollary 5.23 The algebra T̃λ is standardly stratified with standard modules
given by the standard quotients of indecomposable projectives, and the preorder
on simples/standards/projectives given by the dominance order on root functions
α.

Proof. The indexing set for the standard filtration on a projective is now Φ̃
instead of Φ. As before, the map of S

κφ

iφ
to the successive quotient is clear. In

order to check that the dimensions are correct, the easiest thing to note is that we
can add a new red strand at the left and impose the violating relation in both the
projective to be filtered and the standard modules. In this case, Proposition 5.21
shows that the dimensions match in each degree.

For each fixed degree, we can choose the label on the new red strand to be
sufficiently dominant so that in both the projective and standard modules, adding
the red strand and imposing the violating relation kills no elements of that degree
in either the projective or standard modules. Thus, Proposition 5.21 shows the
same result for T̃λ, and the standard stratification follows. �

Corollary 5.24 Every standard module has a finite length projective resolution.
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This is a standard fact about finite dimensional standardly stratified algebras;
in particular, any module with a standard filtration has a well-defined class in
K0(T

λ).

Proof. We induct on the preorder order ≤. If a standard is maximal in this
order, it is projective. For an arbitrary standard, there is a map P i

κ → Si
κ with

kernel filtered by standards higher in the partial order. Since each of these has a
finite length projective resolution, we can glue these to form one of Sκ

i by Lemma
5.29. �

We note that e(i, κ)Tλe(i, 0) has a unique element consisting of a diagram with
no dots and no crossings between black strands which simply pulls red strands to
the left and black to the right. As before, we call this element θκ (leaving i implicit).

Lemma 5.25 The map from P κ
i → P 0

i given by the action of θ̇κ is injective.

Proof. Obviously, this map is filtered, where we include Φi,κ ⊂ Φi,0 by pre-

composing with θ̇κ. Furthermore, it induces an isomorphism on each successive
quotient in this image. Thus, it is injective. �

Let Cα be the subcategory of Vλ generated by standard modules with root
function α.

Proposition 5.26 We have a natural isomorphism

EndT̃λ(Sα) ∼= Rα(0) ⊗ Tλ1
μ1

⊗ · · · ⊗ Tλℓ
μℓ

.

The triangulated subcategories generated by Cα form a semi-orthogonal decompo-
sition of Ṽλ with respect to dominance order.

For more general standardizations, this implies that for modules M and N over

Rμ0
⊗ T

λ1
μ1 ⊗ · · · ⊗ T

λm
μℓ that

HomT̃λ(Sλ1;...;λm(M), Sλ1;...;λm(N)) ∼= Hom
Rμ0

⊗T
λ1
μ1

⊗···⊗T
λm
μℓ

(M,N),

that is, that standardization is fully faithful

Proof. Since standardization is exact, it’s enough to check full faithfulness on
standards, which is the first part of the theorem.

Since the map ν : eαT̃
λ → Sα is surjective, the projective lifting property

shows that every endomorphism of Sα is induced by an endomorphism of eαT̃
λ.

Thus Endop(Sα) is a subquotient of eαT̃
λeα: it is the quotient of the subalgebra in

eαT̃
λeα which preserves the kernel of the map ν modulo the ideal of endomorphisms

whose composition with ν is 0.
Now let us use Proposition 4.16 to better understand how elements of eαT̃

λeα
act. We choose a reduced word for each permutation. First we split the strands,
both red and black, into groups consisting of a black block at y = 1 and the red
strand immediately to its left. For each permutation, we choose a reduced word
so that so that all crossings that occur within such a group are above y = 1/2 and
all crossings that occur between different groups are below. This implies that the
diagram for any permutation which has a left crossing has at least one above any
right crossings. By the definition of the standard quotient such a diagram acts
trivially (assuming it preserves the kernel of ν). On the other hand, an element
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4. STANDARD STRATIFICATION 81

of eαT̃
λeα must have equal numbers of the two types of crossings, so our element

acts in the same way as one that has been “straightened” so that no red and black
strands ever cross. Thus, the map Rα(0)⊗· · ·⊗Rα(ℓ) → EndT̃λ(Sα) of Proposition
5.3 is surjective.

By definition of a standard quotient, the cyclotomic ideal of this tensor prod-
uct is killed by the map to Endop(Sα), so we have a surjective map Rα(0) ⊗
Tλ1

α(1) ⊗ · · · ⊗ Tλℓ

α(ℓ) → Endop(Sα), which we need only show is also injective. Since

Ext>0(Sα, Sα) = 0, this is equivalent to showing that

dimq End(Sα, Sα) = 〈[Sα], [Sα]〉 = dimq Rα(0) ⊗ Tλ1

α(1) ⊗ · · · ⊗ Tλℓ

α(ℓ).

The second equality follows from the equality 〈a ⊗ b, a′ ⊗ b′〉 = 〈a, b〉〈a′, b′〉 if a, a′
and b, b′ are weight vectors with each pair having the same weight, which follows,
in turn, from the upper-triangularity of Θ(2).

Finally, we establish the semi-orthogonal decomposition: by Proposition 5.21,
the subcategory generated by Cα′

for α′ > α in the dominance order is the same
as that generated by P κ

i such that αi,κ > α. Since all the simple modules in Sκ
i

are given by idempotents ei,κ such that αi,κ ≤ α, we have

Ext•(Sκ′

i′ , S
κ
i ) = 0

whenever αi,κ < αi′,κ′ , and higher Ext’s vanish when equality holds. �

Together, the results above show that the category Vλ is a tensor product
categorification in the sense introduced by the author and Losev in [LW, §3.2].

Corollary 5.27 The Vλ with its standardly stratified structure from Corollary
5.22 and categorical g-action from Theorem 4.31 forms a tensor product categori-
fication of Vλ.

Proof. We consider the axioms of a tensor product categorification in turn,
and confirm them:

(TPC1) We must have that the poset underlying the stratification is that of n-
tuples µ = (μ1, . . . , μn), where μi is a weight of Vi. The poset structure
is given by “inverse dominance order”: we have

µ = (μ1, . . . , μn) � µ′ = (μ′
1, . . . , μ

′
n)

if and only if
∑n

i=1 μi =
∑n

i=1 μ
′
i and for all 1 � j < n, we have

j∑

i=1

μi �

j∑

i=1

μ′
i.

This precisely matches the definition of the order on root functions from
Chapter 1, since μi = λi−α(i). Proposition 5.7 shows that the standard-
ization functors are exact, as required in [LW].

(TPC2) Proposition 5.26 shows that the subquotients of this standardly stratified
structure are equivalent to Vλ1;...;λℓ and thus carry the expected categor-
ical g⊕ℓ action on these subquotients.

(TPC3) Proposition 5.5 shows that Ei and Fi acting on a standard module have
the desired filtrations. �
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82 5. STANDARD MODULES

Finally, we prove a result which, while somewhat technical in nature, is very
important for understanding how to decategorify our construction. As in [BGS96,
§2.12], we let C↑(Tλ) denote the category of complexes of graded modules such
that the degree j part of the ith homological term Ci

j = 0 for i ≫ 0 or i+ j ≪ 0.

Theorem 5.28 Every simple module over T
λ
α has a projective resolution in C↑(Tλ).

In particular, each simple module L has a well-defined class in K0(T
λ) ⊗Z[q,q−1]

Z((q)) ∼= Vλ.

This observation would be clear if Tλ were Morita equivalent to a positively
graded algebra. This case is called mixed by Achar and Stroppel [AS13], and is
carefully worked out in their paper. As shown in [Webg, 4.6], this is true when �
is characteristic 0, the Cartan matrix of g is symmetric, and polynomials Qij are
carefully chosen, but as the example [Web15, 5.6] shows, outside these cases there
may simply be no such Morita equivalence.

Lemma 5.29 If a module M is filtered by modules which have finite length pro-
jective resolutions, these resolutions can be glued to give a finite length resolution
of the entire module.

Proof. This is a standard lemma in homological algebra, but let us include a
proof. By induction, we need only prove this for a short exact sequence 0 → M ′ →
M → M ′′ → 0, with M ′ ← P ′

0 ← · · · and M ′′ ← P ′′
0 ← · · · projective resolutions.

If we delete M ′′ and P ′′
0 from the second resolution, we obtain a resolution of K ′′,

the kernel of the map P ′′
0 → M ′′.

By the universal property of projectives, we have a map P ′′
0 → M which lifts

the projection P ′′
0 → M ′′ and thus induces a map K ′′ → M ′. Let νi : P

′′
i → P ′

i−1

be a lift of this map to the projective resolutions, and let ν0 = 0. The cone of this
chain map is a new complex of projectives, necessarily exact except in degree 0. In
degree 0, the homology is the cokernel of the map P ′

1⊕P ′′
1 → P ′

0⊕P ′′
1 given by the

matrix [
∂′ ν1
0 ∂′′

]

which is easily checked to be M . Thus we have found a finite length resolution of
this module. �

Proof of Theorem 5.28. The proof is by induction on our order above.

First, we do the base case of λ = (λ) and λ − β = kαi. This case, T
λ

β is Morita
equivalent to its center, which is the cohomology ring on a Grassmannian of k-
planes in λi-dimensional space. In particular, it is positively graded, so such a
resolution exists.

Now, we bootstrap to the case where λ = (λ) but β is arbitrary. In this case,
we may assume that L′ = ẽa1

i1
L has this type of resolution. Now, we consider

M = Indβ+a1αi1
,aiαi1

L′
⊠ L(ia1

1 ),

where here we use the notation of [KL09, §3.2]. The module M has a projective
resolution of the prescribed type, by inducing the outer tensors of the resolutions
on the two factors. Furthermore, there is a surjection M ։ L whose kernel has
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5. SELF-DUAL PROJECTIVES 83

composition factors smaller in the order given above on simples, by [KL09, Theo-
rem 3.7]. Since each of these has an appropriate resolution by induction, we may
lift the inclusion of each composition factor to a map of projective resolutions, and
take the cone to obtain a resolution of L in C↑(Tλ).

Finally, we deal with the general case using standardization; let L = h({Li}).
By standardizing the resolutions of Li, we obtain a standard resolution of Sλ(L1 ⊠

· · · ⊠ Lℓ). Replacing each standard with its finite projective resolution, we obtain
a projective resolution of the same module. As before, the kernel of the surjection
of this module to L has composition factors all smaller in the partial order, so we
may attach projective resolutions of each composition factor to obtain a projective
resolution of L in C↑(Tλ). �

5. Self-dual projectives

One interesting consequence of the module structure over U and standard
stratification is the understanding it gives us of the self-dual projectives of our
category. Self-dual projectives have played a very important role in understand-
ing the structure of representation theoretic categories like Vλ. For example,
the unique self-dual projective in BGG category O for g was key in Soergel’s
analysis of that category [Soe90, Soe92], and the self-dual projectives in cate-
gory O for a rational Cherednik algebra provide an important perspective on the
Knizhnik-Zamolodchikov functor defined by Ginzburg, Guay, Opdam and Rouquier
[GGOR03]. In particular, following Mazorchuk and Stroppel [MS08], we use these
modules to identify the Serre functor in Chapter 2.

Consider the projectives where κ(i) = 0 for all i, in which case we will simply
denote the projective for κ by P 0

i . We note that P 0
i carries an obvious action of R

by composition on the bottom. We let P 0 = ⊕iP
0
i be the sum of all such projectives

with κ(i) = 0.

Theorem 5.30 If P is an indecomposable projective Tλ-module, then the follow-
ing are equivalent:

(1) P is injective.
(2) P is a summand of the injective hull of an indecomposable standard mod-

ule.
(3) P is isomorphic (up to grading shift) to a summand of P 0.

Proof. (3) → (1): To establish this, we show that P 0 is self-dual; that is,

there is a non-degenerate pairing P 0
i ⊗ P 0

i → �. This is given by (a, b) = trλ(aḃ),
where trλ is the Frobenius trace on End(P 0) ∼= Tλ given in Chapter 3. Thus P 0 is
both projective and injective, so any summand of it is as well.

(1) → (2): Since P is indecomposable and injective, it is the injective hull of
any submodule of P . Since P has a standard stratification, it has a submodule
which is standard.

(2) → (3): We have already established that P 0 is injective, so we need only
establish that any simple in the socle of Sκ

i is a summand of the cosocle of P 0 (since
the injective hull of Sκ

i coincides with that of its socle). It suffices to show that
there is no non-trivial submodule of Sκ

i killed by e0,j for all j. If such a submodule

M existed, then we would have Mθ̇κ = 0. Thus, its preimage M ′ in P κ
i satisfies
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84 5. STANDARD MODULES

M ′θ̇κ ⊂ U0
i . But the injectivity of Lemma 5.25 and the fact that Lκ

i θ̇κ = U0
i ∩P κ

i θ̇κ,
this implies that M = 0. �

For two rings A and B, we say an A-B bimoduleM has the double centralizer
property if EndB(M) = A and EndA(M) = B. In particular, this implies that if
M is projective as a B-module, the functor

Hom(M,−) : B -mod → A -mod

is fully faithful on projectives (it could be quite far from being a Morita equivalence,
as the theorem below shows).

Proposition 5.31 EndTλ(P 0) ∼= Tλ ∼= Rλ.

Proof. The first isomorphism follows from repeated application of Corollary
4.21. The second is just a restatement of Proposition 4.18 �

Corollary 5.32 The projective-injective P 0 has the double centralizer property
for the actions of Tλ and Tλ on the left and right.

Proof. By [MS08, Corollary 2.6], this follows immediately from the fact that
the injective hull of an indecomposable standard is also a summand of P 0. �

Thus, in this case, our algebra can be realized as the endomorphisms of a
collection of modules over Rλ, in a way analogous to the realization of a regular
block of category O as the modules over endomorphisms of a particular module over
the coinvariant algebra, or of the cyclotomic q-Schur algebra as the endomorphisms
of a module over the Hecke algebra.

In fact, these modules are easy to identify. Given (i, κ), we consider the element
yi,κ of P 0

i given by

yi,κ = ei

ℓ∏

j=1

n∏

k=κ(j)+1

y
λ
ik
j

k .

Pictorially this is given by multiplying the element θκ with no black/black crossings

going from (i, 0) to (i, κ) by its horizontal reflection θ̇κ, and then straightening the
strands.

λ1 λ2 λ3 λ4 1 5 4 2

θ̇0,1,1,3

θ0,1,1,3

Figure 1. The element y(1,5,4,2),(0,1,1,3).

Proposition 5.33 The algebra Tλ is isomorphic to the algebra EndTλ(
⊕

κ yi,κT
λ).
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4

5

6

3

2

1

4

3
(4, 3, 2, 1, 5, 4, 3, 6)

Figure 2. The stringy triple attached to a partition for n = 7
and i = 4.

Proof. Based on Corollary 5.32, all we need to show is that HomTλ(P 0, P κ
i )

∼=
yi,κP

0
i as a Tλ representation. A map m from P 0

i′ to P κ
i is simply a linear combina-

tion of diagrams starting at i with the correct placement of red strands and ending
at i′ with all red strands to the right. By Proposition 4.16, we can assure that all
red/black crossings occur above all black/black ones, so m = θκm

′, where m ∈ Tλ.
Thus, we have maps

HomTλ(P 0, P 0
i )

θκ−→ HomTλ(P 0, P κ
i )

θ̇κ−→ HomTλ(P 0, P 0
i )

given by composition. The first of these is surjective, as we argued above. Fur-
thermore, the latter is injective, by Proposition 5.25. Thus, HomTλ(P 0, P κ

i ) is
isomorphic to the image of the composition of these maps, which is yi,κT

λ. �

For some choices of i and κ, the element yi,κ has already appeared in work of
Hu and Mathas [HM10]. Assume that g = sln and specialize to the case where for
all j, we have λj = ωπj

for some πj . As suggested by the notation, we will later
want to think of πj as the numbers in a composition, not just arbitrary symbols
indexing the nodes of the Dynkin diagram. We can define stringy triples for this
algebra using the reduced decomposition of the longest element of the Weyl group
w0 = sn−1(sn−2sn−1) · · · (s1 · · · sn−1).

As illustrated in Figure 2, the stringy triples for the fundamental representation
Vωi

are gotten by

• taking a partition diagram which fits in an i× (n− i) box,
• filling the box at (k,m) with its content m− k + i,
• taking the row-reading word.

For a multipartition ξ = (ξ(1), . . . , ξ(ℓ)), with ξ(i) fitting in a πi × (n− πi) box, we
can thus define (iξ, κξ) where iξ is the concatenation of these row-reading words,
and κξ(k) is the number of the boxes in the first k − 1 partitions. The element
yiξ,κξ

is exactly that denoted ψtξtξ in [HM10,HM].
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Mathas and Hu have defined another algebra, which they call a quiver Schur
algebra1 Sλ

m.

Theorem 5.34 For g = sln, the category Vλ is equivalent (as a graded category)
to a sum of blocks of graded representations of Sλ

m for the charges (π1, . . . , πℓ).

If we considered the case where g = sl∞ (thought of as the Kac-Moody algebra
of the A∞-quiver), then we could say that Vλ is simply equivalent to ⊕mSλ

m -mod.

Proof. By [HM, 4.35], the graded category of projectives in a block of Hu
and Mathas’s algebra is equivalent to an additive subcategory of Tλ -mod. By
Proposition 5.33, the graded category of projectives in each weight space of Vλ

is also equivalent to such a subcategory. Thus, we need only show that these
subcategories coincide.

Each block of Sλ
m is the sum of images of the idempotents e(i) where i ranges

over all integer sequences with a fixed number mi of occurrences of i. As long as
mi is only non-zero for 1 ≤ i ≤ n− 1, we can associate to this multiplicity data a

weight μ = λ−∑imiαi. We wish to show that this block is equivalent to V
λ
μ . Let

m =
∑

mi.
The image of projective modules over Sλ

m is the subcategory additively gen-
erated by ψtξtξT

λ = yiξ,κξ
Tλ as we range over all multipartitions with m boxes

fitting inside the correct πi × (n − πi) boxes. These are the same as the images
of the projectives P

κξ

iξ
under the functor Hom(P 0,−). By Proposition 5.17, every

indecomposable projective over T
λ
μ is a summand of a unique one of these mod-

ules, so those which have weight μ already additively generate the image of the

T
λ
μ -pmod in Tλ

μ -mod. Thus, that image coincides with the corresponding image
for the quiver Schur algebra. �

1This is an unfortunate terminological clash with [SW], where a non-equivalent, but graded
Morita equivalent algebra is given the same name; after forgetting the grading, this is the differ-
ence between defining Schur algebras using all permutation modules attached to partitions or to
compositions.
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CHAPTER 6

Braiding functors

1. Braiding

Recall that the category of integrable Uq(g) modules (of type I) is a braided
category; that is, for every pair of representations V,W , there is a natural isomor-
phism σV,W : V ⊗W → W ⊗ V satisfying various commutative diagrams (see, for
example, [CP95, 5.2B], where the name “quasi-tensor category” is used instead).

This braiding is described in terms of an R-matrix R ∈ ̂U(g)⊗ U(g); here the hat
denotes the completion of the tensor square with respect to the kernels of finite
dimensional representations, as usual.

As we mentioned earlier, we were left at times with difficult decisions in terms
of reconciling the different conventions which have appeared in previous work. One
which we seem to be forced into is to use the opposite R-matrix from that usually
chosen (for example in [CP95]), which would usually be denoted R21. Thus, we
must be quite careful about matching formulas with references such as [CP95].

Our first task is to describe the braiding in terms of an explicit bimodule Bσ

attached to each braid. We will now define bimodules which we can use as building
blocks for these.

Fix a permutation w ∈ Sℓ.

Definition 6.1 A w-Stendhal diagram is a collection of curves which form a Stend-
hal diagram except that the red strands read from top to bottom trace out a reduced
string diagram of the permutation w (that is, one where no two strands cross twice).

We’ll draw these with the crossing of red strands given by an over-crossing
to remind the reader that ultimately these will define the bimodules for positive
braids.

λ1

λ1

· · · · · ·

λℓ

λℓ

λk+1

λk+1

λk

λk

· · ·

· · ·

Figure 1. An example of a w-Stendhal diagram for w = (k, k + 1).
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88 6. BRAIDING FUNCTORS

We can compose w-Stendhal diagrams with usual Stendhal diagrams. Unlike
in the usual case, the triples at the top and bottom of the diagram needn’t have
the same sequence of red strands; instead, the sequences λ and λ′ from the top and
bottom must differ by the permutation λ′ = w · λ.

Definition 6.2 Let ˜̃Bw denote the formal span of w-Stendhal diagrams over �.

We can consider this as a bimodule over ˜̃T using composition on the left and right
(that is, on the top and bottom of the diagram).

We grade w-Stendhal diagrams much the same as usual Stendhal diagrams, but
with a red/red crossing with labels λ and λ′ given degree −〈λ, λ′〉. Annoyingly, this
is typically not an integer. If the Cartan matrix of g is invertible, then this will be
an integer divided by its determinant. If the Cartan matrix is not invertible, then
this can be any complex number. To avoid trouble from now on, we’ll consider the

categories V
λ

C
and Vλ

C
of modules graded by C, not by Z.

Definition 6.3 Let B̃w be the quotient of ˜̃Bw by:

• All local relations of T̃ , including planar isotopy. That is, we impose
the relations of (2.5a–2.5g) and from equations (4.1a-4.2), but not the
relations killing violating strands.

• The relations (along with their mirror images):

(6.1a)

λk

λk

λk+1

λk+1

=

λk

λk

λk+1

λk+1

.

(6.1b)

λk

λk

λk+1

λk+1

=

λk

λk

λk+1

λk+1

.

(6.1c)

λk+1

λk+1

λk

λk

λk+1

λk+1

=

λk−1

λk−1

λk

λk

λk+1

λk+1

.
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1. BRAIDING 89

As in the usual case, we call a w-Stendhal diagram violated if for some y-value,
the leftmost strand is black. Let Bw be the quotient of B̃w by the sub-bimodule
spanned by violated w-Stendhal diagrams.

We can define a basis of B̃w much like that of T̃ . We fix a reduced expression of
w, and only consider diagrams where the string diagram formed by the red strands
follows this expression. For fixed bottom triple (i,λ, κ), we range over permutations
v ∈ Sn and top triples of the form (v · i, w−1 · λ, κ′); for each such v and κ′, we
let ψv,κ′e(i,λ, κ) be an arbitrarily chosen diagram with no dots such that the black
strands give a string diagram for a reduced decomposition of v.

Proposition 6.4 The set

Bw = {ψv,κ′e(i,λ, κ)ya|v ∈ Sn, i ∈ Γn, κ′ : [1, ℓ] → [0, n], a ∈ Zn
≥0}

is a basis of B̃w.

Proof. This is essentially the same as the proof of Proposition 4.16. The proof
that the diagrams ψv,κ′e(i,λ, κ)ya span all diagrams that have the same reduced
decomposition of w is exactly the same, using the relations (6.1a) and (6.1b) to
slide through red crossings. So, now we must check that the span of the vectors
ψv,κ′e(i,λ, κ)ya will not change if we change the reduced word for w.

Any two reduced words are related by switching commuting crossings and braid
moves. Obviously, if two red crossings commute, then we can isotope one past the
other with no problem. Thus, we need only to check that the vectors where the
red strands trace out one reduced word also span the space where they trace out
one that differs by a braid move. However, if 3 red strands form a triangle, we can
always choose ψv,κ′e(i,λ, κ) so that its strands avoid this triangle. In this case, we
can apply (6.1c) to get all diagrams where the crossings are in the opposite order.

The proof of linear independence is also similar. Applying the product θ(a) =

θ̇κ′aθκ to an sum of diagrams that is zero in B̃w results in a relation in R, as is easily
checked on a case-by-case basis. Thus, the map of R → B̃w placing a KL diagram
to the right of red strands tracing out w is injective. One can also check this by
defining a “polynomial” representation of ⊕w∈Sℓ

B̃w, where a red/red crossing acts
by the identity on the underlying polynomial rings.

Therefore, θ defines a linear map B̃w → R. Applying θ to any element of Bw

gives an element of Khovanov and Lauda’s basis of R modulo terms with fewer
crossings. Furthermore, if κ and κ′ are fixed, no two elements of Bw yield the same
one. Thus, the linear independence of Khovanov and Lauda’s basis shows the linear
independence of Bw as well. �

Lemma 6.5 If ℓ(ww′) = ℓ(w) + ℓ(w′), then B̃ww′
∼= B̃w ⊗T̃ B̃w′ and Bww′

∼=
Bw ⊗T Bw′ .

Proof. We have a map B̃w ⊗T̃ B̃w′ → B̃ww′ given by composition; thus we
wish to show that this map is an isomorphism.

First, we note that this map is a surjection. We can choose reduced expressions
of w and w′ and concatenate these to get one for ww′. Thus, we can choose the
element ψv,κ′e(i,λ, κ) so that the diagram above y = 1/2 has red strands permuted
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90 6. BRAIDING FUNCTORS

by w′ and below y = 1/2 has red strands permuted by w. This writes ψv,κ′e(i,λ, κ)
as the image of the tensor of the 2 halves of the diagram.

Now assume that we have an element p of the tensor product which is sent
to 0 in B̃ww′ . We can think of each pure tensor of w- and w′-Stendhal diagrams
as a ww′-Stendhal diagram by composition. The relations in B̃ww′ are the usual
local relations of Stendhal diagrams, and the relations in B̃w ⊗T̃ B̃w′ are those
relations applied to pictures in one of the two halves of the tensor (i.e. above or
below y = 1/2) and the fact that one can isotope diagrams from one side of y = 1/2
to the other. The image of the element p is thus a sum of ww′-Stendhal diagrams
which can be sent to 0 using our relations. In fact, as argued in Proposition 6.4,
we never need to use the relation (6.1c) to write this sum as a sum of basis vectors
(and thus to show that it is 0). Any other relation can be pushed above or below
the line y = 1/2 so that it is a relation in the tensor product. Thus, the map is
injective.

Now we turn to considering the tensor product Bw ⊗T Bw′ ; this obviously
receives a map from B̃w ⊗T̃ B̃w′

∼= B̃ww′ , and this map sends violated diagrams
to tensors of diagrams where one is violated. Thus, it induces a map Bww′ →
Bw ⊗T Bw′ which is inverse to the obvious composition map. This shows that
Bww′

∼= Bw ⊗T Bw′ �

Definition 6.6 Let Bw be the functor −
L
⊗Bw : D−(V

λ

C
) → D−(V

w·λ
C

). We’ll use
Bj to denote Bsj .

Here, D−(V
λ

C
) refers to the bounded above derived category ofV

λ

C
; a priori, the

functor Bk does not obviously preserve the subcategory Vλ

C
⊂ D−(V

λ

C
). In order to

show this, and certain other important properties of this functor, we require some
technical results. Of course, the image of a projective P κ

λ is easy to understand

in diagrammatic terms: Bw(P
κ
λ ) = e(i, κ)Bw is given by the span of w-Stendhal

diagrams with the top fixed to be the idempotent e(i, κ), and with Tw·λ acting by
attaching at the bottom (thought of as a 1-term complex).

Proposition 6.7 The functors Bk commute with all 1-morphisms in U ; in fact, Bk

is a strongly equivariant functor D−(V
λ

C
) → D−(V

skλ
C

).

Proof. Both Fi and Ei can be written as tensor product with bimodules
βFi

and βEi
; since both these functors are exact and preserve projectives, these

bimodules are projective as left and right modules. Thus, the desired isomorphism
of functors will be yielded by an isomorphism βEi

⊗ Bsk
∼= Bsk ⊗ βEi

; the same
result for Fi will follow by biadjunction. The bimodule Bsk ⊗ βEi

can be identified
with a subspace of Bsk where we require that the rightmost strand at the bottom
is black and colored i; the right (that is, bottom) action of T siλ ignores this strand
and acts on the others.

The tensor product βEi
⊗ Bsk maps injectively into this space; its image is

that of sk-Stendhal diagrams where the strand at far right at the bottom (i.e. that
which makes the cup) cannot pass below the red/red crossing, since we must have
pulled this to the side before adding the red/red crossing. But this map is easily
seen to be surjective, since the vector ψv,κ′e(i,λ, κ) can be chosen to never pass a
black strand under the red/red crossing, using the relation 6.1b.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



1. BRAIDING 91

This proves that for any 1-morphism u, we have an isomorphism βu ⊗Bsk
∼=

Bsk ⊗ βu; if we picture βu as in (4.6), the former module comes from putting the
red/red crossing at the bottom of the diagram, and the latter from putting it at the
top left. The isomorphism is simply using the relation (6.1b) to slide the crossing
from the top to the bottom or vice versa. Since the action of 2-morphisms is by
attachment at top right, it does not matter whether we do this before or after we
slide the crossing. This shows the strong equivariance of this functor. �

Note that P 0
i is the image of P 0

∅ = T
λ

λ under the 1-morphism in U given −i.

Abusing notation to let P 0
i denote the corresponding module over both Tλ and

T si·λ, this shows that:

Corollary 6.8 BiP
0
i
∼= P 0

i (〈λi, λi+1〉).

Let λ(j) be the sequence of sequences (λ1; . . . ;λj−1;λj , λj+1;λj+2; . . . ;λℓ); that
is almost all weights are singletons, but λj and λj+1 are together in a block. We

consider the category V
λ(j)

C
:= Tλ1 ⊗ · · · ⊗ T (λj ,λj+1) ⊗ · · · ⊗ Tλℓ -mod. We can

define a functor Bj : D
−(V

λ(j)

C
) → D−(V

sjλ
(j)

C
) by derived tensor product with the

bimodule

Tλ1 ⊠ · · ·⊠ Tλj−1 ⊠B⊠ Tλj+2 ⊠ · · ·⊠ Tλℓ

where B is the bimodule where we switch the two strands labeled with λj and λj+1.

Lemma 6.9 The functor Bj commutes with the standardization functor Sλ
(j)

.

Proof. As with the commutation of Bj with U , the proof in terms of naive
tensor products is simply identifying the pictures that describe elements of the
tensor product. So, having fixed a Stendhal triple at the top, elements of the 0th

cohomology of Bj ◦ Sλ
(j)

are just sj-Stendhal diagrams modulo

• the usual local relations,
• the standardly violating relations that kill a right crossing above all left
crossings on the red strands other than the λj and λj+1, and

• the same relation on the λj strand above the red/red crossing.

For Sλ
(j) ◦ Bj , we impose this last relation on the λj+1 strand below the red/red

crossing (so at horizontal slices where the λj+1 strand is left of the λj).
Now, assume we have a strand which originates between the λj and λj+1 red

strands and has a violation below the crossing. If at the y-value of the red/red
crossing, this strand is left of the crossing, it also has a violation above the crossing;
if it is right of the crossing, it must have crossed both red strands below the crossing,
and (6.1b) gives us a violation above it.

On the other hand, if we have a strand which originates right of both strands,
it can only violate below the crossing if it crosses both red strands, and we can use
(6.1b) again.

Thus, it suffices to check that the higher cohomology of both functors applied

to projectives vanishes. This is clear for Sλ
(j) ◦ Bj by the exactness of Sλ

(j)

, so

we need only show it for Bj ◦ Sλ
(j)

. We’ll prove this by induction on the preorder
on Stendhal triples. If α is maximal, then any induction of a projective is again
projective and we are done. If not, then there is a map from a projective Q to
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92 6. BRAIDING FUNCTORS

Sλ
(j)

(P ) such that the kernel K is filtered with higher standardizations. Consider
the usual long exact sequence:
(6.2)

· · ·Hk+1(Bj◦Sλ
(j)

(P )) → Hk(Bj(K)) → Hk(Bj(Q)) → Hk(Bj◦Sλ
(j)

(P )) → Hk−1(Bj(K)) → · · ·
Since the higher cohomology for both Q and K vanish, it immediately follows

that Hk(Bj ◦Sλ
(j)

(P )) = 0 for k > 1, and H1(Bj ◦Sλ
(j)

(P )) is the kernel of the map
H0(Bj(K)) → H0(Bj(Q)). Thus, it remains to show that this map is injective.

We can assume thatQ is of the form P κ
i and Sλ

(j)

(P ) is its standard quotient for

the sequence λ(j). This is not the module we denote Sκ
i , since we are not imposing

the standardly violating relation on the j +1st strand. In this case, K ⊂ P κ
i is the

set of all diagrams with a standardly violating strand on a red line other than the
j + 1st.

In order to show that Bj(K) → Bj(Q) is injective, it is enough to show that
any sum of sk-Stendhal diagrams which is 0 in Bj(Q) is a sum of arbitrary sk-
Stendhal diagrams composed with ones that are 0 in K. If one has a violated
sk-Stendhal diagram, then one can always push the red crossing below one of the
violation points. This is possible by isotopy as long as the violating strand does
not cross below the red/red crossing; if it does pass below, we can use the relations,
in particular (6.1b), to push the violating strand above the crossing. Thus, if we
isotope so that the red/red crossing is below y = 1/2 and one of the violations above
it, we can cut along y = 1/2, and obtain the desired composition.

This allows us to write any element of the kernel of Bj(K) → Bj(Q) in terms
of elements that are 0 in K, so the map is injective. Thus, substituting into (6.2),

we see that Bj ◦ Sλ
(j)

is exact. �

Proposition 6.10 Bj

(
Sλ(P...;ij ;∅;...)

) ∼= Sλ(P...;∅;ij ;...)
(〈

λj −α(j), λj+1

〉)

Proof. By Lemma 6.9, we can immediately reduce to the case where ℓ = 2. In
this case, Sλ(Pij ;∅) is projective, so Bj

(
Sλ(P...;ij ;∅;...)

)
is the naive tensor product of

these modules. The isomorphism to Sλ(P...;∅;ij ;...)
(〈

λj −α(j), λj+1

〉)
is the single

diagram shown in Figure 2. �

· · · · · ·

λj+1

λj+1

λj

λj

· · ·

· · ·

Figure 2. The generator of Bj

(
Sλ(P...;ij ;∅;...)

)
.
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1. BRAIDING 93

Corollary 6.11 The action of Bk categorifies the action of the braiding V C

λ → V C

skλ

switching the k and k + 1st representations with a positive crossing.

Proof. By Proposition 6.7, the induced action on Vλ, which we denote by
Rσ, commutes with the action of U−

q (g). Thus we need only calculate the action of
Rσ on a pure tensor of weight vectors with a highest weight vector vh in the j+1st
place, since these generate Vλ as a U−

q (g) -representation.

The space of such vectors is spanned by the classes of the form Sλ(P...;ij ;∅;...).
Thus, Proposition 6.10 implies that

Rσ(v1 ⊗ · · · ⊗ vj ⊗ vh ⊗ · · · ⊗ vℓ) = q〈wt(vj),λj+1〉v1 ⊗ · · · ⊗ vh ⊗ vj ⊗ · · · ⊗ vℓ

which is exactly what the braiding (1.1) does to vectors of this form. Since vectors
of this form generate the representation over Uq(g), there is a unique endomorphism
with this behavior, and Rσ is the braiding. �

Lemma 6.12 For any projective P κ
i , the module Bw(P

κ
i ) has a standard filtration.

If w > wsi then Bw
∼= Bwsi ⊗ Bi.

Proof. We will prove this by induction on the length of w. This induction is
slightly subtle, so rather than attempt each step in one go, we break the theorem
into 3 statements, and induct around a triangle. Consider the three statements (for
each positive integer n):

pn : For all w with ℓ(w) = n, if w > wsi then Bw
∼= Bwsi ⊗ Bi.

fn : For all w with ℓ(w) = n, Bw sends projectives to objects with standard
filtrations.

sn : For all w with ℓ(w) = n, Bw sends standards to modules; that is, Tork(Sκ
i ,Bw) =

0 for all k > 0.

Our induction proceeds by showing

· · · → pn → fn → sn → pn+1 → · · ·
These are all obviously true for w = 1, so this covers the base of our induction.
fn → sn: Consider the groups Tork(Sκ

i , Ṡ
κ′

i′ ). By symmetry, we may as-
sume that (κ, i) �< (κ′, i′) in which case Sκ

i has a projective resolution where all

higher terms are killed by tensor product with Ṡκ′

i′ , since they are projective cov-

ers of simples which do not appear as composition factors in Sκ′

i′ . Thus, we have

Tork(Sκ
i , Ṡ

κ′

i′ ) = 0 for k > 0, and for k = 0 if (κ, i) �= (κ′, i′).

If we let Ḃw be Bw with the left and right actions reversed by the dot-anti-
automorphism, then Ḃw

∼= Bw−1 . By fn, the bimodule Bw−1 has a standard
filtration as a right module, so Bw has a standard filtration as a left module. Thus,
we have Tork(Sκ

i ,Bw) for k > 0 and the same holds for any module with a standard
filtration.

sn + fn → pn+1: By Lemma 6.5, we have that Bw
∼= Bwsi ⊗Bi, so we need

only show that the higher Tor’s of this tensor product vanish. By fn, as a right
module Bwsi has a standard filtration, as does Bi as a left module by Lemma 6.9
(note that this follows from fn if n ≥ 1, but one needs to use Lemma 6.9 when
n = 0). Thus, as we argued above, the higher Tor’s vanish, and we are done.

pn → fn: Now, we construct the standard filtration on D = BwP
κ
i . Let Φ be

the parameter set of the standard filtration on the projective as defined on page
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94 6. BRAIDING FUNCTORS

78. We let w̌ be the permutation of terminals which keeps together a red strand
and the black block to its right, and permutes these groups according to w. We let
Φw be the permutations obtained by composing φ ∈ Φ with w̌ on the bottom.

We let yφ be a choice of w-Stendhal diagram which realizes the permutation
φ ∈ Φw with a minimal number of crossings; if w = 1, then these satisfy the same
conditions as the elements xφ defined earlier. The diagrams yφ are representatives
of the isotopy classes of diagrams where we cannot factor off a black/black crossing,
or a left crossing (as depicted in (5.3)) at the bottom of the diagram. Note that yφ
does not actually have to arise from composing xφ with an element of the bimodule
Bw; there may be strands that cross in xφ which do not in yφ. We might have a
situation like:

xφ = yφ = .

If g = sl2, λ = (1, 1), i = (1) and we consider κ(1, 2) = 0, 1 then both Φ and Φs

have two elements with associated diagrams given by

As before, we can preorder these elements according the preorder on the idempo-
tents found at their bottom. Note that the bijection between Φ and Φw is not order
preserving.

We wish to show that the elements yφ generate Bw as a right module. For ease,
let us isotope the diagram so that all red/red crossings occur above y = 1/2. Now
we wish to apply the relations to write an arbitrary element as a sum of diagrams
where the top half is of the form yφ. As usual, it is enough to start with an arbitrary
diagram, and rewrite as a sum of diagrams with top half given by yφ, plus elements
with fewer crossings, and then use induction.

As explained above, if the diagram above y = 1/2 is not isotopic to a yφ, then
we can perform an isotopy to move a dot, a black/black crossing or a left red/black
crossing to lie directly above y = 1/2; then we can isotope this offending element
through y = 1/2. Since this reduces the number of crossings or dots above y = 1/2,
eventually this process will terminate. This shows that the elements yφ generate.

This allows us to construct a filtration

D≤φ =
∑

φ′≤φ

yφT
w·λ D<φ =

∑

φ′<φ

yφT
w·λ

out of these elements and partial order; while the element yφ involves a choice
of reduced word, this filtration is independent of it. Multiplication by yφ gives a
surjection d : S

κφ

iφ
։ D≤φ/D<φ, which we aim to show is an isomorphism.

Since Bw categorifies the braiding attached to the positive lift of w to a braid,
when q is specialized to 1, it categorifies the permutation map Vλ → Vw·λ, and is
thus an isometry for 〈−,−〉1. In particular,

dimBw = 〈[Tw·λ], w · [Tλ]〉1 =
∑

φ∈Φ

〈[Tw·λ], [S
κφ

iφ
]〉1 =
∑

φ∈Φ

dimS
κφ

iφ

which shows that all the maps S
κφ

iφ
։ D≤φ/D<φ must be isomorphisms. �
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Lemma 6.13 The functor Bw sends Vλ

C
to Vw·λ

C
.

Proof. From Lemma 6.12, we find that Bw considered as a left module (which

is the same as Ḃw) has a standard filtration. By Corollary 5.24, standard modules
have finite length projective resolutions. So any projective module M is sent to a
finite length complex; since there are only finitely many indecomposable projectives,
the amount which this can decrease the lowest degree is bounded below. Thus, a

complex of projectives in C↑(V
λ

C
) is sent to another collection of projectives in

C↑(V
w·λ
C

). �

Consider the half twist τ . Note that according to our conventions, it is drawn
with the blackboard framing, not the one with ribbon half-twists as well. Recall
that a module M over a standardly stratified algebra is called tilting if

• M has a filtration by standards, that is, modules of the form Sλ1;...;λℓ(P )
for P projective and

• M⋆ has a filtration by standardizations, that is, modules of the form
Sλ1;...;λℓ(Q) for Q arbitrary.

Theorem 6.14 The modules BτP
κ
i are tilting, and every indecomposable tilting

module is a summand of these tiltings.

Proof. We show first that BτP
κ
i is self-dual. The pairing that achieves this

duality is a simple variant on that described in Chapter 3, where as before, we form
a closed diagram and evaluate its constant term.

The non-degeneracy of this pairing follows from that on P 0
i . In Lemma 5.25,

we have shown that P κ
i has an embedding into P κ

i into P 0
i consistent with the

standard filtration, given by left multiplication by the element θκ. The quotient
P 0
i /P

κ
i is again filtered by standard modules, and this is sent to a module by Bτ

by Lemma 6.12. Thus, the usual long exact sequence shows that the induced map

ι : BτP
κ
i → BτP

0
i
∼= P 0

i ((〈λ, λ〉 −
∑ℓ

i=1〈λi, λi〉)/2) is again an injection (the last
isomorphism follows by Corollary 6.8).

By Proposition 6.4, any non-zero diagram in BτP
κ
i can be drawn with a section

in the middle where all black strands are right of all red strands. Thus, the map
P 0
i → P κ

i given by multiplication by θ̇κ is not surjective, but the induced map

π : P 0
i ((〈λ, λ〉 −

∑ℓ
i=1〈λi, λi〉)/2) ∼= BτP

0
i → BτP

κ
i is.

Note that ιπ = yi,κ·. Thus, the pairing we desire is defined by:

〈π(a), π(b)〉BτPκ
i
= tr(ȧbyi,κ) = tr(yi,κȧb).

This is well defined since if π(a) = 0, then yi,κȧ = 0 and similarly for b.
We can alternatively define this as the unique pairing such that the maps π and

ι are adjoint with respect to the Frobenius pairing on P 0
i . This shows immediately

that the perpendicular to the image of the inclusion contains the kernel of the
surjection. Since these have the same dimension, they coincide and the pairing is
non-degenerate. Thus, BτP

κ
i is self-dual.

By Lemma 6.12, BτP
κ
i has a filtration by standards. Since the element τ

reverses the pre-order on standards, every standard which appears is below (κ′, i′),
the sequence obtained from reversing the blocks of (κ, i). So if (κ, i) (and thus
(κ′, i)) is stringy, the indecomposable tilting whose highest composition factor is
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96 6. BRAIDING FUNCTORS

the head of Sκ′

i′ is a summand of BτP
κ
i . Thus, any tilting is a summand of Bτ

applied to a projective. �

Theorem 6.15 The functor Bw is an equivalence Vλ

C
→ Vwλ

C
for every w ∈ W .

Proof. We will first show Bτ is a derived equivalence. The higher Ext’s be-
tween tilting modules always vanish so we always have that Ext>0(BτP

κ
i ,BτP

κ′

i′ ) =
0; thus we need only show that induced map between endomorphisms of these mod-
ules is an isomorphism.

It follows from Corollary 6.11 that

dimHom(BτP
κ
i ,BτP

κ
i′ ) = 〈[BτP

κ
i ], [BτP

κ
i′ ]〉1 = 〈[P κ

i ], [P
κ′

i′ ]〉1 = dimHom(P κ
i , P

κ′

i′ ).

The functor Bτ induces a map

Hom(P κ
i , P

κ
i′ ) −→ Hom(BτP

κ
i ,BτP

κ
i′ ).

This is injective, since no element of the image kills the element which pulls all
black strands to the right of all red strands below all crossings, by Lemma 5.25.
Thus, it is surjective by the dimension calculation above.

It follows that Bτ is an equivalence. Since it factors through any Bk on the
left and right, the functor Bk is an equivalence as well. Since all other Bσ is a
composition of these functors and their adjoints, these are equivalences, finishing
the proof. �

If σ is a braid, recall that σ has a canonical factorization called Garside
decomposition σ = τpξ1 · · · ξm into minimal lifts of non-longest permutations
w1, . . . , wm, with τ a positive lift of the longest element of Sℓ, and p ∈ Z. First, p
is is the lowest integer such that τ−pσ is a positive braid. Then, the first factor ξ1
is by definition the longest positive lift of a permutation such that ξ−1

1 τ−pσ is still
positive, and the rest of the decomposition is constructed inductively.

Definition 6.16 Let Bσ := Bp
τBw1

· · ·Bwn
.

Corollary 6.17 If σ = τp
′

ξ′1 · · · ξ′q is any other factorization of σ into a power of τ
and minimal positive lifts of w′

1, . . . , w
′
q, then we have an isomorphism of functors

Bσ
∼= Bp′

τ Bw′
1
· · ·Bw′

q
.

Proof. By multiplying by a high power of τ , we can assume that the braid is
positive. Let us induct on the length ℓ(σ) of the braid. Pick a reduced expression
for each w′

j ; by induction, Bw′
j
is isomorphic to the composition of the functors

corresponding to these simple reflections. This allows us to reduce to the case
where each w′

j has length 1.
The result is true when the Garside decomposition has length 1, since we can

apply the statement pn proven in the proof of Lemma 6.12 to write Bw
∼= BwsBs.

In the general case, this shows that the resulting functor will not change when
one refines any factorization. This establishes the general case, since any two re-
duced expressions for the braid are related by a finite chain of Reidemeister III
moves, i.e. a chain where each consecutive pair are two different refinements of
a single factorization. Thus, starting with any factorization, we can refine to a
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1. BRAIDING 97

product of simple twists, and then apply Reidemeister III moves until we arrive at
a refinement of the Garside decomposition. �

Corollary 6.18 The functors Bσ induce a strong action of the braid group on the

categories
⊕

w∈Sℓ
Vw·λ
C

.

Proof. By work of Elias and Williamson [EW, 1.18], it suffices to show that
we have isomorphisms lifting the braid relations which satisfy the Zamolodchikov
tetrahedral equations. This will hold since we have defined a canonical functor not
just for braid generators, but for all positive lifts of permutations.

By Lemma 6.12, the composition Bσi
◦ Bσi+1

◦ Bσi
is the derived tensor prod-

uct with Bσi
⊗ Bσi+1

⊗ Bσi
∼= Bσiσi+1σi

. By Lemma 6.5, we have a canonical
isomorphism of this functor with Bσi+1

◦ Bσi
◦ Bσi+1

.
Given any reduced expression for the longest permutation of 4 consecutive

strands, we can apply these isomorphisms to go around the loop of the Zamolod-
chikov tetrahedral equation, collapsing empty red triangles in the desired sequence.
Since can use the relations to pull all black strands out of all the polygons created
by the red strands in the permutation of 4 strands, going around this loop sends a
diagram to itself.

This checks the necessary relation in terms of maps between modules. Thus the
induced natural transformations on projective resolutions satisfy the Zamolodchikov
tetrahedron equations up to homotopy, so the natural transformations between
derived functors satisfy the same equations on the nose. �

Recall that the Ringel dual of a standardly stratified category is the category
of modules over the endomorphism ring of a tilting generator, that is, the opposite
category to the heart of the t-structure in which the tiltings are projective.

Corollary 6.19 The Ringel dual of V
λ

C
is equivalent to V

τ ·λ
C

.

If Ci and C ′
i are semi-orthogonal decompositions indexed by i ∈ [1, n] then

C ′
i is the mutation of Ci by a permutation σ if, for each j ∈ [1, n], the category

generated by Ci for i ≥ j is the same as that generated by C ′
σ(i) for i ≥ j.

Proposition 6.20 For any braid σ, Bσ sends the semi-orthogonal decomposition
of Proposition 5.26 to its mutation by σ.

Proof. First, note that we need only show this for σk. Of course, an equiv-
alence sends one semi-orthogonal decomposition to another. Thus, the only point
that remains to show is that Bσk

(Sα) for α ≥ β generates the same subcategory as

S′
α for σ−1

k (α) ≤ β, where S′
α denotes the appropriate standard module in V

σk·λ
C

.
Call these subcategories C1 and C2. Now let Pα be the projective cover of Sα.
First, note that the category C1 is the same that generated by Bσk

(Pα) for α ≥ β,
since the kernel of the map Pα → Sα is filtered by summands of Sα′ for α′ > α by
Corollary 5.22. On the other hand, Bσk

(Pα) also has a filtration in which Sσk(β)

appears with multiplicity 1, and all other constituents are summands of S′
α with

α > σk(β) by Lemma 6.12. This completes the proof. �
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98 6. BRAIDING FUNCTORS

2. Serre functors

It is a well-supported principle (see, for example, Beilinson, Bezrukavnikov
and Mirković [BBM04] or Mazorchuk and Stroppel [MS08]) that for any suitable
braid group action on a category, the Serre functor will be given by the full twist.
Here the same is true, up to grading shift. Let R = B2

τ be the functor given by

a full positive twist of the red strands. Let S′ be the functor sending M ∈ Vλ

C,α

to M
(
− 〈α, α〉 +∑ℓ

i=1〈λi, λi〉
)
. Let Vλ

per be the full subcategory of Vλ

C
given by

bounded perfect complexes, that is, objects which have finite projective dimension.
We note that in general, this subcategory does not contain many of the important

objects in Vλ

C
; for example, it will contain all simple modules if and only if all λ

are minuscule.

Proposition 6.21 The right Serre functor of Vλ
per is given by S = RS′.

Proof. First consider the action ofS on projective-injectives. This is the same
as to say on P 0

i , since these modules generate the additive category of projective-
injectives. The twists of red strands are irrelevant to black strands that begin to
the right of all of them, so

R ∼= Id
(
〈λ, λ〉 −

ℓ∑

i=1

〈λi, λi〉
)

as functors on the projective-injective category. We let Iκi be the injective hull
of the cosocle of P κ

i . Since I0i
∼= P 0

i (〈λ, λ〉 − 〈α, α〉), on this subcategory SP 0
i =

P 0
i (〈λ, λ〉 − 〈α, α〉) ∼= I0i and so S is the graded Serre functor.

On general grounds, we know that the modules B−1
τ Iκi and BτP

κ
i are dual.

However, we proved in Theorem 6.14 that BτP
κ
i is a self-dual tilting module and

so B−1
τ Iκi

∼= BτP
κ
i (ignoring grading for the moment). Thus, RP κ

i
∼= Iκi (again,

ignoring the grading). In particular, R sends projectives to injectives, and is an
equivalence by Theorem 6.15. By [MS08, Theorem 3.4], the result follows. �
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CHAPTER 7

Rigidity structures

Throughout this chapter and the next, g is assumed to be finite-dimensional.
Let D be the determinant of the Cartan matrix. For technical reasons, most con-

venient to use V
1/D
λ = V Z

λ [q1/D]. To categorify this, we consider the categories V
λ
1/D

and Vλ
1/D where we allow gradings in 1

DZ rather than just Z.

1. Coevaluation and evaluation for a pair of representations

Now, we must consider the cups and caps in our theory. The most basic case
of this is λ = (λ, λ∗), where we use λ∗ = −w0λ to denote the highest weight of
the dual representation to Vλ. It is important to note that Vλ

∼= V ∗
λ∗ , but this

isomorphism is not canonical.
In fact, the representation K0(T

λ) comes with more structure, since it is an
integral form V Z

λ . In particular, it comes with a distinguished highest weight vector

vh, the class of the unique simple module over Tλ
λ
∼= � which is 1-dimensional and

concentrated in degree 0. Thus, in order to fix the isomorphism above, we need
only fix a lowest weight vector vl of Vλ∗ , and take the unique invariant pairing such
that 〈vh, vl〉 = 1.

Our first step is to better understand the lowest weight category Tλ
w0λ

-mod.
This is most efficiently done not by considering it in isolation, but in the context of
the other extremal weight spaces. Consider a reduced expression w = (si1 , . . . , sik)
of w ∈ W in the Weyl group of g, and let wj be the product of the first j reflections
in this word.

Definition 7.1 Consider the sequence

iλw = (i
(λi1 )
1 , i

((w1λ)
i2)

2 , . . . , i
((wk−1λ)

ik)
k )

For example, if g = sl3, λ = aω1 + bω2 and w = (1, 2, 1), then iλ(1,2,1) =

(1(a), 2(a+b), 1(b)). Note that the number of black strands for a reduced expression
of w0 is given by 2ρ∨(λ).

Proposition 7.2 The projective P 0
iλ
w

over Tλ is irreducible, and only depends on
w.

Proof. Since the corresponding weight space is one dimensional, there can
only be a single irreducible up to isomorphism, which shows that independence of
expression will follow from simplicity.

99
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100 7. RIGIDITY STRUCTURES

The irreducibility is easily proven by induction: P 0
iλ
∅

is obviously irreducible, and

if we assume that P 0
iλ
(si1

,...,sik−1)

is irreducible, [CR08, 5.20(a)] proves the simplicity

of P 0
iλ
w

applied to Fik (in place of E). �

Fix an expression w0 for the longest element w0 and consider this construction
for iλ = iλw0

. We fix vl = [P 0
iλ
]. Since this is a non-zero lowest weight vectors, we

can use this to fix an isomorphism Vλ
∼= V ∗

λ∗ which we use freely throughout the
rest of the paper.

We can now consider the standardization of P 0
iλ

⊠ P∅ obtaining the standard

and projective module S
(0,2ρ∨(λ))
iλ

= P
(0,2ρ∨(λ))
iλ

.

Lemma 7.3 The module S
(0,2ρ∨(λ))
iλ

has a unique simple quotient Lλ. The kernel

of the projection map S
(0,2ρ∨(λ))
iλ

→ Lλ is the sum of images of every map from a

projective P κ
i → S

(0,2ρ∨(λ))
iλ

with κ(2) < 2ρ∨(λ).

Proof. The existence of a unique simple quotient follows from Theorem 5.8
and Proposition 7.2. First, we must show that if κ(2) < 2ρ∨(λ), then Hom(P κ

i , Lλ) =
0. By adjunction, this is the same as proving that EiLλ = 0 for all i. By Theorem
5.14, there is a crystal isomorphism between the set of simples over Tλ,λ∗

and the

tensor product crystal. Thus, there is exactly one simple module over Tλ,λ∗

0 killed
by all Ei. Every simple module other than Lλ is the image under the map h of
simples (L1, L2) with the weight wt(L1) > w0λ and wt(L2) < λ∗; none of these are
killed by all Ei. Thus, by the pigeonhole principle, Lλ just be the unique simple
killed by these functors. This completes the proof. �

This theorem suggests a pictorial representation of Lλ which will be helpful for

us in the future. We represent the image of the generating vector of P
(0,2ρ∨(λ))
iλ

by
a small grey box, with the red and black lines we act on springing out, as shown
below:

(7.1)

λ λ∗ikikiki1 i1 i1

λi1 (sk−1λ)
ik

The elements of P
(0,2ρ∨(λ))
iλ

are given by attaching Stendhal diagrams to these

inputs and imposing the relations of T (λ,λ∗). Recall that since we have multiplied on
the left by Khovanov and Lauda’s idempotent in the nilHecke algebra on each group
of like-colored strands, any crossing of like-colored consecutive strands springing
from the box is trivial. Also, any black strand crossing the left red strand is trivial
by the violating relation.
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1. COEVALUATION AND EVALUATION FOR A PAIR OF REPRESENTATIONS 101

Passing to Lλ means that we also mod out by any crossing of a black strand
across the right red strand. Pictorially, we express these relations as:
(7.2)

λ λ∗ii

= 0

λ λ∗ ji

= 0

λ λ∗ji

= 0

At the moment, the reader can consider this graphical representation a conve-
nient mnemonic, but in the next section, this will help define a generalization of
this simple module.

Recall that the coevaluation C[q1/D, q−1/D] → Vλ,λ∗ is the map sending 1 to
the canonical element of the pairing we have fixed, and evaluation is the map
induced by the pairing Vλ∗,λ → C[q1/D, q−

1/D].

Definition 7.4 Let

Kλ,λ∗

∅ : V∅
1/D → Vλ,λ∗

1/D be the functor RHom�(L̇λ,−)(2〈λ, ρ〉)[−2ρ∨(λ)]

and

E∅
λ∗,λ : Vλ∗,λ

1/D → V∅
1/D be the functor −

L
⊗TλL̇λ∗ .

These functors preserve the appropriate categories since by Theorem 5.28, the

module Lλ has a projective resolution in Vλ
1/D.

Proposition 7.5 The functor Kλ,λ∗

∅ categorifies the coevaluation, and E∅
λ∗,λ the

evaluation.

Proof. Since Lλ is self-dual, we must first check that [Lλ] is invariant. Of
course, the invariants are the space of vectors of weight 0 such that {v|Eiv = 0}
for any i. To show this, its enough to see that Hom(P,EiLλ) = Hom(FiP,Lλ) = 0
for all projectives p and i ∈ Γ. This follows immediately from Lemma 7.3. Thus
[Lλ] is invariant. In fact, Lλ is the only invariant simple representation, since the
−λ∗-weight space of Vλ is 1 dimensional.

Now, we need just check the normalization is correct. Of course, [Lλ]’s projec-
tion to (Vλ)low ⊗ (Vλ∗)high is

[P
(0,2ρ∨(λ))
iλ

] = [P 0
iλ ]⊗ [P 0

∅ ] = Fiλvh ⊗ vh∗ .

Thus, by invariance, the projection to (Vλ)high ⊗ (Vλ∗)low is

vh ⊗ S(Fiλ)vh∗ = (−1)2ρ
∨(λ)q−2〈λ,ρ〉vh ⊗ vl.

On the other hand, Lemma 7.3 also implies that −
L
⊗Tλ L̇λ∗ kills all modules

of the form FiM , so it gives an invariant map, whose normalization we, again, just

need to check on one element. For example, P
(0,2ρ∨(λ))
iλ∗

⊗ Lλ∗
∼= �, so we get 1 on

vl ⊗ vh, which is the correct normalization for the evaluation. �

We represent these functors as leftward oriented cups as is done for the coeval-
uation and evaluation in the usual diagrammatic approach to quantum groups, as
shown in Figure 1.
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102 7. RIGIDITY STRUCTURES

λ λ∗

Kλ,λ∗

∅

λ∗ λ

E∅
λ∗,λ

Figure 1. Pictures for the coevaluation and evaluation maps.

In order to analyze the structure of Lλ, we must understand some projective
resolutions of standards. This can be done with surprising precision in the case
where ℓ = 2.

Fix a sequence i = (i1, . . . in). Define a map κj : [1, 2] → [0, n] by κj(2) = j
and κj(1) = 0. Given a subset T ⊂ [j + 1, n], we let iT be the sequence given by
i1, . . . , ij followed by T in reversed order, and then [j + 1, n] \ T in sequence and
let κT (2) = j +#T . Let

χT =
∑

k∈T

〈
αik ,−λ2 +

∑

j<m<k

αim

〉
.

Proposition 7.6 The standard S
κj

i has a projective resolution of the form

· · · −→
⊕

|T |=k

P κT

iT
(χT ) −→ · · · −→ P

κj

i −→ S
κj

i

Proof. We induct on n− j. If j = n, then S
κj

i is itself projective, so we may
take the trivial resolution. Let i′ be i with its last entry removed, and i′′ be i with
its last entry moved to the j + 1st position. As shown in Proposition 5.5, we have
an exact sequence

(7.3) 0 −→ S
κj+1

i′′

(〈
αin ,−λ2 +

∑

j<ℓ<n

αiℓ

〉)
−→ FinS

κj

i′ −→ S
κj

i −→ 0.

The right hand map is the obvious projection, which imposes the standardly violat-
ing condition on the strand added by Fin . The kernel of this map is thus spanned by
diagrams where at the top, the strand added by Fin crosses the second red strand
and all black ones to its right. Thus the left hand map is given by attaching a
diagram in S

κj+1

i′′ to this diagram:

λ1

λ1

d

i1 in

λ2

λ2

d′

ij+1in−1

λ1

λ1

d

i1 in

λ2

λ2

d′

ij+1in−1

Applying the inductive hypothesis, we obtain projective resolutions of the left
two factors. In the terms that appear in FinS

κj

i′ , we have taken a subset T ′ ⊂
[j + 1, n− 1] and moved these to the left of the second red strand (reversing their
order). Clearly, we have i′T ′ = iT and κT ′ = κT where we take T := T ′. In S

κj+1

i′′ ,

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



1. COEVALUATION AND EVALUATION FOR A PAIR OF REPRESENTATIONS 103

we have now taken a subset of [j + 2, n], and moved these left of the red line, and
right of the j + 1st strand, which has label in. Thus, if we take T = T ′ − 1 ∪ {n},
then i′′T ′ = iT and (κj+1)T ′ = κT , and

〈
αin ,−λ2 +

∑
j<ℓ<n αiℓ

〉
+ χT ′ = χT . This

shows why we must reverse the order of T : in i′′T ′ , all the strands for T ′ are right
of j +1st, reversing the order from i. Thus, between these two resolutions we have
all the terms that appear in our expected resolution, in the correct degree shifts.

Now, we can lift the leftmost map of (7.3) to a map between projective resolu-
tions. The cone of this map is the desired projective resolution of S

κj

i . �

The same principle can be used for any value of ℓ to construct an explicit
description of a projective resolution for any standard, but carefully writing this
down is a bit more subtle and difficult than the ℓ = 2 case, so we will not do so
here.

This provides a resolution of the standard module Mλ = Sκ0

iλ∗
. In particular, it

shows that

Corollary 7.7 Exti(Mλ, Lλ) =

{
0 i �= 2ρ∨(λ)

�(2〈λ, ρ〉) i = 2ρ∨(λ)
.

Proof. All of the projectives which appear in the resolution of Mλ have no
maps to Lλ except the last term where T = [1, 2ρ∨(λ)]. We can break up the grading
shift χ[1,2ρ∨(λ)] of this term into the pieces corresponding to simple reflections in a
reduced expression for a longest word of W , which are in turn in canonical bijection
with the set of positive roots R+. Thus, we have

n∑

i=1

〈
αik ,−λ∗ +

∑

m<k

αim

〉
=
∑

α∈R+

〈α,−λ∗〉 = −2〈λ∗, ρ〉 = −2〈λ, ρ〉.

Thus, the last term in the resolution is P
κ2ρ∨(λ)

iλ
(−2〈λ, ρ〉). Thus we have

Exti(Mλ, Lλ) ∼= Exti−2ρ∨(λ)(P
κ2ρ∨(λ)

iλ
(−2〈λ, ρ〉), Lλ)

and the result follows. �

It also shows more indirectly that Lλ has a beautiful, if more complicated
resolution.

Proposition 7.8 There is a resolution

· · · −→ Mj −→ · · · −→ M1 −→ M0 −→ Lλ −→ 0

of Lλ with the property that

• M2ρ∨(λ)−j lies in the subcategory generated by S
κj

i for all different choices
of i. In particular, if j > 2ρ∨(λ), then Mj = 0.

• M2ρ∨(λ)
∼= Mλ(−2〈λ, ρ〉).

Proof. We prove this statement by induction on j. We take M0 to be the
standard S

κ2ρ∨(λ)

iλ
; by definition, we have a surjective map M0 → Lλ. Let M ′

1 be
the kernel of this map. We wish to show that we have a surjective map from a sum
of standards of the form S

κ2ρ∨(λ)−1

i . By the upper-triangularity of multiplicities
in standards, this will follow if we show that all the simples that receive a non-
zero map from M ′

1 are quotients of S
κ2ρ∨(λ)−1

i for some i, and not of Sκk

i for k <
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2ρ∨(λ)− 1. The simple quotients of Sκk

i are the same as the submodules of (Sκk

i )⋆.

Thus, we wish to show that Hom
(
M ′

1, (S
κk

i )⋆
)
= 0 for k < 2ρ∨(λ) − 1. Since

Exti
(
S
κ2ρ∨(λ)

iλ
, (Sκk

i )⋆
)
= 0, the long exact sequence shows that

Hom
(
M ′

1, (S
κk

i )⋆
) ∼= Ext1

(
Lλ, (S

κk

i )⋆
)
.

Dualizing the projective resolution of Proposition 7.6, we see that this can only be
non-zero if k = 2ρ∨(λ)− 1. Thus, there exists the module M1 as desired.

Now, we let M ′
2 be the kernel of the map M1 → M ′

1. The composition factors
of this module are quotients of Sκk

i for k ≤ 2ρ∨(λ) − 2. We now wish to show
that that this inequality is sharp for any simple quotient as before. The long exact
sequence applied again shows that

Hom
(
M ′

2, (S
κk

i )⋆
) ∼= Ext2

(
Lλ, (S

κk

i )⋆
)
.

Applying the projective resolution of Proposition 7.6 again, we see that this can
only be non-zero if k = 2ρ∨(λ)− 2.

Applying this argument inductively, we see that we can constructMi as desired.
Now we wish to analyze M2ρ∨(λ). This is in the subcategory generated by Mλ.

Since Exti(Mλ,Mλ) vanishes for i > 0, we must have that M2ρ∨(λ) is a sum of
grading shifts of Mλ. By our projective resolution, we have

Hom(M2ρ∨(λ),
(
Sκ0

iλ

)⋆
) ∼= Ext2ρ

∨(λ)
(
Lλ,
(
Sκ0

iλ

)⋆) ∼= �(−2〈λ, ρ〉).

This can only be the case if M2ρ∨(λ)
∼= Mλ(−2〈λ, ρ〉), since Hom(Mλ,

(
Sκ0

iλ

)⋆
) ∼=

�. �

Corollary 7.9 Exti(Lλ,Mλ) =

{
0 i �= 2ρ∨(λ)

�(2〈λ, ρ〉) i = 2ρ∨(λ)
.

Corollary 7.10 Tori(Mλ, L̇λ) =

{
0 i �= 2ρ∨(λ)

�(−2〈λ, ρ〉) i = 2ρ∨(λ)
.

2. Ribbon structure

This calculation is also important for showing how Lλ behaves under braiding:

Proposition 7.11 Bσ1
Lλ

∼= Lλ∗ [−2ρ∨(λ)](−2〈λ, ρ〉 − 〈λ, λ〉).

Proof. Note that Lλ is the unique simple module such that for all j < 2ρ∨(λ)

(7.4) Lλe(i, κj) ∼= Lλ

L
⊗ Ṗ

κj

i
∼= 0.

Thus we wish to check that Bσ1
Lλ has the same property. Assume i is a sequence

of length 2ρ∨(λ). If j < 2ρ∨(λ), then B
L
⊗ Ṗ

κj

i
∼= Fi(B

L
⊗ Ṗ

κj

i′ ) for a shorter sequence

i′. Thus, B
L
⊗ Ṗ

κj

i has a projective resolution in which P
κ2ρ∨(λ)

i never appears, and

Bσ1
Lλe(i, κj) ∼= Lλ

L
⊗B

L
⊗ Ṗ

κj

i
∼= 0.

The property shows that the only composition factor which can occur in the coho-
mology BLλ is Lλ∗ . Now we need only show that it only appears with multiplicity
1 in the correct degree.
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2. RIBBON STRUCTURE 105

In order to see this, we note that Proposition 6.10 implies that B
L
⊗ Ṗ

κ2ρ∨(λ)

iλ
∼=

Ṁλ(−〈λ, λ〉). Thus, by Corollary 7.10, we have an isomorphism of vector spaces

BLλe(iλ) ∼= Lλ

L
⊗B

L
⊗Ṗ

κ2ρ∨(λ)

iλ
∼= Lλ

L
⊗Ṁλ(−〈λ, λ〉) ∼= �[−2ρ∨(λ)](−2〈λ, ρ〉−〈λ, λ〉).

By the exactness of tensoring with a projective, we see that as a Tλ∗,λ representa-
tion, the cohomology of BLλ must be simple, and thus

BLλ
∼= Lλ∗ [−2ρ∨(λ)](−〈λ, λ〉 − 2〈λ, ρ〉). �

Now, in order to define quantum knot invariants, we must also have have quan-
tum trace and cotrace maps, which can only be defined after one has chosen a
ribbon structure. The Hopf algebra Uq(g) does not have a unique ribbon structure;
in fact topological ribbon elements form a torsor over the characters Y/X → {±1}.
Essentially, this action is by multiplying quantum dimension by the value of the
character.

The standard convention is to choose the ribbon element so that all quantum
dimensions are Laurent polynomials in q with positive coefficients; however, the
calculation above shows that this choice is not compatible with our categorification!
Instead we define:

Definition 7.12 The ribbon functor Ri is defined by

RiM = M [2ρ∨(λi)](2〈λi, ρ〉+ 〈λi, λi〉).

By Proposition 7.11, we have

B2Lλ = Lλ[−4ρ∨(λ)](−4〈λ, ρ〉 − 2〈λ, λ〉).
Thus, our ribbon functor R satisfies the equations

B2Lλ
∼= R−2

1 Lλ = R−2
2 Lλ = R−1

1 R−1
2 Lλ,

which are necessary for topological invariance (as we depict in Figure 2).

=

Figure 2. The compatibility of double twist and the ribbon element.

Taking Grothendieck group, we see that we obtain the ribbon element in Uq(g)
uniquely determined by the fact that it acts on the simple representation of highest
weight λ by (−1)2ρ

∨(λ)q〈λ,λ〉+2〈λ,ρ〉. This is the inverse of the ribbon element con-
structed by Snyder and Tingley in [ST09]; we must take inverse because Snyder
and Tingley use the opposite choice of coproduct from ours. See Theorem 4.6 of
that paper for a proof that this is a ribbon element.

From now on, we will term this the ST ribbon element. It may seem strange
that this element appears more naturally from the perspective of categorification
than the standard ribbon element, but it is perhaps not so surprising; the ST ribbon
element is closely connected to the braid group action on the quantum group, which
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106 7. RIGIDITY STRUCTURES

also played an important role in Chuang and Rouquier’s early investigations on
categorifying sl2 in [CR08]. It is not surprising at all that we are forced into a
choice, since ribbon structures depend on the ambiguity of taking a square root;
while numbers always have 2 or 0 square roots in any given field (of characteristic
�= 2), a functor will often only have one.

Due to the extra trouble of drawing ribbons, we will draw all pictures in the
blackboard framing.

This different choice of ribbon element will not seriously affect our topological
invariants; we simply multiply the invariants from the standard ribbon structure
by a sign depending on the framing of our link and the Frobenius-Schur indicator
of the label, as we describe precisely in Proposition 8.8.

=

Figure 3. Changing the orientation of a cap

Proposition 7.13 The quantum trace and cotrace for the ST ribbon structure are
categorified by the functors

Cλ∗,λ
∅ : V∅

1/D → Vλ∗,λ
1/D given by RHom(L̇λ∗ ,−)(2〈λ, ρ〉)[−2ρ∨(λ)]

and

T∅
λ,λ∗ : Vλ,λ∗

1/D → V∅
1/D given by −⊗Tλ L̇λ.

Proof. As the picture Figure 3 suggests, by definition the quantum trace
is given by applying a negative ribbon twist of one strand, and then applying a
positive braiding, followed by the evaluation; that is, it is categorified by

(BR1−)⊗ L̇λ
∼= −⊗ (BR1L̇λ) ∼= −⊗ L̇λ.

The result thus immediately follows from Proposition 7.11, and our definition of R.
The same relation between evaluation and quantum trace follows from adjunction.

�

λ∗ λ

Cλ∗,λ
∅

λ λ∗

T∅
λ,λ∗

Figure 4. Pictures for the quantum (co)trace.
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3. COEVALUATION AND QUANTUM TRACE IN GENERAL 107

3. Coevaluation and quantum trace in general

More generally, whenever we are presented with a sequence λ and a domi-
nant weight μ, we wish to have a functor relating the categories λ and λ+ =
(λ1, . . . , λj−1, μ, μ

∗, λj , . . . , λℓ). This will be given by left tensor product with a
particular bimodule.

Definition 7.14 We let a (λ,λ+)-Stendhal diagram be a collection of curves like a
Stendhal diagram, except that we allow a single cap given by a red strand connecting
the bottom to itself; like in (7.1), we insert an element of Lμ at the maximum of
this cup, with appropriate inputs exploding out of its bottom.

The (λ,λ+)-Stendhal diagrams are obtained by attaching normal Stendhal
diagrams to the top and bottom of diagrams of the form:

λ1

λ1

i

i

· · ·

μ μ∗

· · ·

λℓ

λℓ

j

jikikiki1 i1 i1

μi1 (sk−1μ)
ik

v

where v is an element of Lλ.
Let gi be the number of times i appears in iλw for any reduced expression for

the longest element w0. These numbers can also be defined as the unique integers
so that λ− w0(λ) =

∑
i giαi. In particular, the sum

∑
gi is precisely the quantity

2ρ∨(λ), which we have considered extensively

Definition 7.15 We let K̃
λ+

λ be the quotient of the �-span of all (λ,λ+)-Stendhal

diagrams by:

• We impose all local relations of T̃ , including planar isotopy. That is, we
impose the relations of (2.5a–2.5g) and (4.1a-4.2), but not the relations
killing violating strands.

• diagrams only involving strands that hit the maximum of the cup can act
on elements of Lλ as expected.

• The relations:
(7.5)

μ μ∗

j

j

v

=

μ μ∗

j

j

(−1)gj
∏

i 	=j

tgiij

v

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



108 7. RIGIDITY STRUCTURES

(7.6) μ∗μ

j

j

v

=

μ∗μ

j

j

v

One can think of the relation above as categorifying the equality (Fiv)⊗
K = Fi(v ⊗K) for any invariant element K.

In order to check the coherence of these relations, we will need to check that
we can pull a strand which passes over the cup and back either off the bottom or
off using the usual relations, and obtain the same answer. That is:

Lemma 7.16
(7.7)

μ μ∗

j

j

(−1)gj
∏

i 	=j

tgiij

v

=

μ μ∗

j

j

v

Proof. We note, this is equivalent to checking a relation in T̃μ,μ∗

: if we re-
move the box from the top of the diagrams, we must obtain that the RHS of (7.7)
is equal to the LHS plus a sum of diagrams that give zero when they act on the cap.
Unfortunately, this is quite a difficult computation and it would not be straight-
forward to present it cogently here. It will be greatly simplified if we can also use
upward strands and assume that the weight labeling the region outside the cup is
0.

In order to do this, it is enough to check that our relation holds in T (ν,μ,μ∗) for
ν sufficiently large, after adding a red strand at the left. Finally, given a element
d in Tλ, let γ(d) be the same diagram with the sequence iν

∗

added and then a red
strand at far left with weight ν∗. This is a non-unital homomorphism, so e = γ(1)
is an idempotent. We claim that:

(7.8) eT (ν∗,λ) ∼= S(ν
∗);λ
(
e(iν∗)T ν∗ ⊠ Tλ

)
.

This is clear if λ = ∅. As usual, we can prove this by induction on the number of
red and black strands. If we add a new red strand turning λ to (λ, λℓ+1), this is
clear, since

Iλℓ+1
(eT (ν∗,λ)) ∼= Iλℓ+1

S(ν
∗);λ
(
e(iν∗)T ν∗ ⊠ Tλ

)

∼= S(ν
∗);(λ,λℓ+1)

(
e(iν∗)T ν∗ ⊠ Iλℓ+1

(Tλ)
)
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3. COEVALUATION AND QUANTUM TRACE IN GENERAL 109

by the associativity of standardization. If we add a black strand with label in+1,
then we have that

Fin+1
(eT (ν∗,λ)) ∼= Fin+1

S(ν
∗);λ
(
e(iν∗)T ν∗ ⊠ Tλ

) ∼= S(ν
∗);λ
(
e(iν∗)T ν∗ ⊠ Fin+1

Tλ
)

by Proposition 5.5, since Fin+1
(e(iν∗)T ν∗) = 0. This establishes (7.8).

Proposition 5.26 shows that standardization is fully-faithful, so

(7.9) EndT (ν∗,ν,μ,μ∗)

(
S(ν

∗);(ν,μ,μ∗)
(
e(iν∗)T ν∗ ⊠ T (ν,μ,μ∗)

))
∼=

EndTν∗⊗T (ν,μ,μ∗)(e
(
iν∗)T ν∗ ⊠ T (ν,μ,μ∗)

)
∼= e(iν∗)T ν∗e(iν∗)⊗T (ν,μ,μ∗) ∼= T (ν,μ,μ∗)

where we apply the standard observation for any algebra A and idempotent e, we
have EndA(eA) ∼= eAe. This also shows that

(7.10) EndT (ν∗,ν,μ,μ∗)(eT (ν∗,ν,μ,μ∗)) ∼= eT (ν∗,ν,μ,μ∗)e.

Thus (7.8) applied with λ = (ν, μ, μ∗) together with (7.9–7.10) shows that the map
γ induces an isomorphism T (ν,μ,μ∗) → eT (ν∗,ν,μ,μ∗)e. After doing this, we see that
the label on the region above the cup is 0. Theorem 4.30 now shows that we can
perform our calculation in DT (ν∗,ν,μ,μ∗), for sufficiently large ν.

We begin with the left-hand picture, and add a curl. Push the left side of the
curl through the strands. The primary term that we arrive at has a curl wrapped
over all strands; all the correction terms have a strand pulled right out of the cap,
and thus are 0. By the relations (2.3c) and (2.4a) of U , this term is multiplied by
t−1
ij each time we cross a strand labeled i for i �= j, and by −1 when we cross one
labeled j. Thus we obtain the equality:

(7.11)

μ μ∗

j

j

0

(−1)gj
∏

i 	=j

tgiij

v

=

μ μ∗

j

j

0

(−1)gj
∏

i 	=j

tgiij

v

=

μ μ∗

j

j

0
v

Next we move the crossing in the RHS of (7.11) left over the red strand using (4.1a).
There is one term in the result where we simply isotope the crossing to the left side,
and then there are others where the crossing is broken, and on the resulting strands
there are m = (μ∗)j − 1 total dots. If we choose the reduced word for w0 used to
define iμ so that the last reflection appearing is sj , then we can assume the m+ 1
rightmost black strands inside the cup are labelled j, and are multiplied by the
divided power idempotent em+1. That is, fixing a+ b = m, these have the form:

μ μ∗

j

j

ab

jjj

v

Since we have multiplied by the divided power idempotent where this group of
strand with label j meet the gray box, we can write this element as an element of
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110 7. RIGIDITY STRUCTURES

Lλ times the half twist on these m strands, that is, the element Dm in the notation
of [KLMS12, §2.2]. Taking the top row of crossings of the right most strand with
these (in the dashed parallelogram above), we actually have Dm+1 on these m+ 1
strands with label j inside the dashed parallelogram. Applying [KLMS12, (2.28)]
to the m+ 1 black strands, we see this element is 0, since b < m. Thus, we have

(7.12)

μ μ∗

j

j

0
v

=

μ μ∗

j

j

0
v

Now, we move the crossing in the RHS of (7.12) left through all the black strands,
using (2.5g). There is a “dominant” term where the crossing simply isotopes
through. There are also correction terms coming from the leftmost term in the
triple point relation (2.5g), when crossing a strand of label i with cji < 0. In these,

• the outside strand makes bigons with all the rightmost 2ρ∨(μ)− k black
strands, and the rightward red, and carries some number of dots a ≥ 0

• a bubble is laid over the leftmost k−1 black strands and the leftward red,
and carries some number of dots b ≥ 0 with a+ b+ 1 = −cji.

• there is a single strand between these which is black with label i.

Schematically, these look like:

μ μ∗

j

j

ab

i

v

We intend to show that all these correction terms kill the cap.
We do this by applying Theorem 4.16 to simplify the diagrams inside the dashed

boxes (which only involve downward strands). First, in the righthand box, we
use a reduced expression for each permutation where the rightmost transposition
only occurs once. In each diagram, if the rightmost terminal at the top and the
bottom are connected by a single strand, then this strand will not cross any other
strands. Otherwise, the strands connected to these terminals cross to the right of
the red strands. In this case, the resulting diagram acts trivially, by Lemma 7.3
(as expressed in (7.2)). Thus, we can assume the rightmost strand never enters the
cap.
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3. COEVALUATION AND QUANTUM TRACE IN GENERAL 111

Now consider the lefthand box, and use a reduced expression for each permu-
tation where the leftmost transposition only occurs once. We leave unchanged the
upward oriented segment of a strand left of the red strands. As above, we divide
these diagrams into those where a single strand connects the lefthand terminals, and
those the strands from these terminals cross immediately right of the red strand.
In the former case, the upward segment closes up to a bubble just to the right
of the red strand, without intersecting any black strand, and we can pull this to
the left resulting in a positive degree bubble at the far left. In the latter, it has a
self-intersection before crossing any others, and we can apply the relation
(7.13)

0

μ

μ j

j

=

0
μ

μ

j

j

+

0

μ

μ

j μj − 1

j

j

+

0

μ

μ

j

2

μj − 2

j

j

+ · · ·

The leftmost term kills the cap by Lemma 7.3 and (7.2) again, so all the remaining
terms have a positive degree bubble left of the cap.

Thus, the result is that the only correction terms that matter are those where
there is a positive degree bubble at the far left and a rightmost strand that does
not cross any of the reds. Since the total diagram has degree 0, the diagram acting
between the red strands must have negative degree. This means that it must act
trivially on Lμ, so all correction terms act trivially.

Therefore, we have that:

μ μ∗

j

j

0v

=

μ μ∗

j

j

0v

In order to finish, we apply the relation (7.13) again; as argued for the correction
terms, all terms but the first on the RHS of (7.13) acts trivially, since each has a
positive degree bubble. Thus we are just left with the first term which is precisely
the RHS of the statement (7.7). �

Like its analogues, the module K̃
λ+

λ has a basis. First one considers the basis

B for T̃λ and chooses a basis B′ of Lλ given by Stendhal diagrams; we’ll define a

spanning set B′′ for K̃
λ+

λ is indexed by triples consisting of

(1) an element of b ∈ B,
(2) an element of b′ ∈ B′,
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112 7. RIGIDITY STRUCTURES

(3) a shuffle of the bottom of b′ (a sequence in Γ) and the j − 1st black block
of the bottom of b; that is, an order on the union of these sequences that
coincides with the usual sequence order on each of them.

The elements of B′′ are obtained by inserting the maximum of the cup after the
j − 1st black block at the top of the diagram, and using a minimal number of
crossings to attain the shuffle; in particular, we never pass any black strands above
the minimum of the cup, always going under it instead. A schematic representation
of one of these basis vectors looks like:

(7.14)

b

b′

As usual, there are choices involved in this definition, and we arbitrarily fix one
for each triple.

Lemma 7.17 The set B′′ is a basis of K̃
λ+

λ .

Proof. Let K be the formal span of the elements of B′′. One can define a
bimodule structure on K as follows:

• When one acts at the top, one uses the usual action of elements of T̃λ on
the formal span of the elements B from the top (i.e. the left), and leaves
the element b′ unchanged; that is, one simply does simplifications above
the maximum of the cap.

• If one acts at the bottom with a crossing or dot on strands which are not

between the left edge of the cap and the jth red strand from the top (the
next one to the right of the cap), one simply isotopes the diagram up to
the top and lets it act on the formal span of B by the usual multiplication
on the bottom (i.e. the right).

• If at the bottom, we cross the left edge of the cap with a black strand to
its left, that is a new basis vector where we have only changed the shuffle.

• If we apply a crossing or dot to the strands between the left edge of the
cap and the jth red strand from the top, then we apply Theorem 4.16 to
rewrite the portion of the diagram below b′ using basis diagrams that put
all dots and all crossings between pairs of strands both from b or both
from b′ occur above those between strands coming from b and b′. Once we
have fixed basis diagrams, as we can using a fixed longest reduced word,
this expansion is unique.

That is, our diagrams look like the one above, with a shuffle between
strands from b and b′ at the bottom, and the elements b and b′ at the top,
but possibly with some crossings and dots on the strands coming out of b
and on those coming out of b′ at the y-value where there is a dashed line.
We let these crossings and dots act on the span of B and B′ in the usual
way, by thinking of them as bases of T̃λ and Lλ.
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3. COEVALUATION AND QUANTUM TRACE IN GENERAL 113

• If at the bottom, we cross a black strand from the left over the jth red
strand (from the top), then the strand must have come from b, and passed
under b′. We simply pull the strand through the top of the cap, multiply-
ing by a scalar as in (7.5). Similarly, when the black strand comes from
the right, we must do this operation in the opposite direction.

Now, we wish to define a map K̃
λ+

λ → K. The local relations (2.5a–2.5g) and

(4.1a-4.2) are immediate, so we need only confirm (7.5–7.6). The relation (7.5)
holds by the definition of the action, and (7.6) follows from Lemma 7.16. This map
is surjective since every element of B′′ is in the image.

We need only show that K̃
λ+

λ is spanned by B′′. This is easily shown using

techniques analogous to Lemma 4.11; the only new trick needed is to show that we
don’t need diagrams where a strand starts left of the jth red strand, but passes
right of the maximum of the cap. This is avoided using (7.5). �

As usual, we let K
λ+

λ be the quotient of K̃
λ+

λ by the submodule spanned by

violated diagrams.

Definition 7.18 The coevaluation functor is

Kλ+

λ = −
L
⊗Tλ+ K

λ+

λ : Vλ
1/D → Vλ+

1/D.

Similarly, the quantum trace functor is the right adjoint to this given by

Tλ+

λ = RHomTλ(K
λ+

λ ,−)(2〈λ, ρ〉)[−2ρ∨(λ)] : Vλ+

1/D → Vλ
1/D.

The evaluation and quantum cotrace are defined similarly.

As with the functors B, these functors can be worked with using their relation-

ship with standardization. Let Sλ be the usual standardization functor and Sλ
+

+

denote the standardization functor where (μ, μ∗) one of the subsequences and all
others are singletons.

Lemma 7.19

Kλ+

λ ◦ Sλ ∼= Sλ
+

+ ◦Kλ+

λ Tλ+

λ ◦ Sλ
+

+
∼= Sλ ◦ Tλ+

λ

Proof. The 0th cohomology of both Kλ+

λ ◦ Sλ and Sλ
+

+ ◦ Kλ+

λ are given by

tensor product with the bimodule given by the quotient of K
λ+

λ by standardly

violating strands. Thus we need to show that Kλ+

λ ◦Sλ applied to a projective gives

a module. The proof of this using exact sequences is sufficiently similar to Lemma
6.9 that we leave the details to the reader.

The argument for Tλ+

λ is a variation on this. Consider the functors Tλ+

λ ◦ Sλ
+

+

and Sλ ◦Tλ+

λ applied to a module of the form P = P1⊠ · · ·⊠Pj−1⊠I⊠Pj⊠ · · ·⊠Pℓ

with Pi projective and I injective. This may seem like a strange module, but it
appears naturally as B2

j−1 applied to a usual standard module.

The functor Sλ ◦ Tλ+

λ sends P to Sλ(P1 ⊠ · · ·⊠ Pℓ)⊗Hom(Lλ, I). An element

of Tλ+

λ ◦ Sλ
+

+ gives an element of Sλ ◦ Tλ+

λ by considering the image of diagrams

with no crossings or dots. We apply the same induction argument to show that
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Tλ+

λ ◦ Sλ
+

+ has no higher cohomology as for Kλ+

λ , but now viewing Sλ
+

+ (P ) as a

quotient of B2
j−1 applied to a projective, with the kernel filtered by Bj−1 applied

to standards. �

Since K
λ+

λ is projective as a left module, tensor with it gives an exact functor.

The quantum trace functor, however, is very far from being exact.

Proposition 7.20 Kλ+

λ categorifies the coevaluation and Tλ+

λ the quantum trace.

Proof. We need only prove the former, since the latter follows by adjunction.
Furthermore, we may reduce to the case where μ is added at the end of the sequence,
since all other cases are obtained from this by the action of U .

In this case, consider Kλ+

λ (Sκ
i ). The resulting module is isomorphic to the

standardization

Sλ;μ,μ∗

(Sκ
i ⊠ Lμ)(2〈λ, ρ〉)[−2ρ∨(λ)]

by Lemma 7.19.
This reduces to the case where λ = ∅, which we have covered in Propositions

7.5 and 7.13. �

Proposition 7.21 The functors Kλ+

λ and Tλ+

λ are strongly equivariant.

Proof. By taking adjoint, one can reduce to just the case Kλ+

λ . The proof is

essentially the same as Lemma 6.7; the composition of functors u◦Kλ+

λ and Kλ+

λ ◦u
are both given by tensor product with honest modules by the exactness of u and the
bimodules are easily identified. The difference is that in the first bimodule grabs
strands below the maximum, whereas the second grabs them above it. These are
equivalent by the relations (7.5) and (7.6). �

The most important property of these functors is that they satisfy the obvious
isotopy. To see this, consider the two functors

S1 = T
λ1λ;λ

∗,λ;λ2

λ1λλ2
K

λ1;λ,λ
∗;λλ2

λ1λλ2
S2 = T

λ1;λ,λ
∗;λλ2

λ1λλ2
K

λ1λ;λ
∗,λ;λ2

λ1λλ2

which come from adding a pair of the representations are added on the left of an
entry λ, and removing them on the right of λ or vice versa. These functors are
depicted in more usual topological form in Figure 5.

Proposition 7.22 The functors S1 and S2 are isomorphic to the identity functor.

Proof. One can use Lemma 7.19 to reduce to the case where λ1 = λ2 = ∅.
Furthermore, by Lemma 7.21, it suffices to check that S1P∅

∼= S2P∅
∼= P∅

∼= �,
since any choice of isomorphism between these objects will induce isomorphisms
between the functors. To prove the result for S2, we must check that

Sλ;λ
∗,λ(P∅ ⊠ Lλ)

L
⊗Tλ Sλ,λ

∗;λ(L̇λ ⊠ Ṗ∅)(2〈λ, ρ〉)[−2ρ∨(λ)] ∼= �

Applying the dot involution to switch left/right, the symmetry of tensor product
shows that S1 reduces to the same calculation.
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3. COEVALUATION AND QUANTUM TRACE IN GENERAL 115

Figure 5. The “S-move”

We can use Lemma 7.8 to expand Lλ into a complex, and then use the spec-
tral sequence attached to tensoring these complexes. The E2-page of this spectral
sequence has entries

E2
k,m =

⊕

i+j=m

Tork
(
Sλ;λ

∗,λ(P∅ ⊠Mi), S
λ,λ∗;λ(Ṁj ⊠ Ṗ∅)(2〈λ, ρ〉)

)
.

By the Tor-vanishing discussed in the proof of 6.12, this will be 0 unless the
two factors lie in the same piece of the semi-orthogonal decomposition, that is, if
i = 0, j = 2ρ∨(λ) and k = 0. This term is exactly

Sλ;λ
∗;λ(P∅ ⊠ Piλ ⊠ P∅))⊗Tλ Sλ,λ

∗;λ(Ṗ∅ ⊠ Ṗiλ ⊠ Ṗ∅)[−2ρ∨(λ)] ∼= �[−2ρ∨(λ)].

The homological shift above is cancelled by the fact that m = j = 2ρ∨(λ). Thus,
the result follows. �

It is extremely tempting to conclude that this proposition shows that the func-
tors K and T are biadjoint; in fact, they are not always, though the adjunction on
one side is clear from the definition. Rather, this is reflecting some sort of biad-
junction between the 2-functors of “tensor with Vλ” and “tensor with Vλ∗

” on the
2-category of representations of U . While there is not a unified construction of a
tensor product of two U categories, one can easily generalize the definition of Vλ

to describe auto-2-functors of U representations given by adding one red line; we
will discuss this construction in more detail in forthcoming work [Web15].
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CHAPTER 8

Knot invariants

As in Chapter 7, we assume that g is finite dimensional in this chapter.

1. Constructing knot and tangle invariants

Now, we will use the functors from the previous chapter to construct tangle

invariants. Using these as building blocks, we can associate a functor Φ(T ) : Vλ
1/D →

Vµ

1/D to any diagram of an oriented labeled ribbon tangle T with the bottom ends

given by λ = {λ1, . . . , λℓ} and the top ends labeled with µ = {μ1, . . . , μm}.
As usual, we choose a projection of our tangle such that at any height (fixed

value of the x-coordinate) there is at most a single crossing, single cup or single cap.
This allows us to write our tangle as a composition of these elementary tangles.

For a crossing, we ignore the orientation of the knot, and separate crossings
into positive (right-handed) and negative (left-handed) according to the upward
orientation we have chosen on R2.

• To a positive crossing of the i and i+1st strands, we associate the braiding
functor Bσi

.
• To a negative crossing, we associate its right adjoint Bσ−1

i
(the left and

right adjoints are isomorphic, since B is an equivalence).

For the cups and caps, it is necessary to consider the orientation, following the
pictures of Figures 1 and 4.

• To a clockwise oriented cup, we associate the coevaluation.
• To a clockwise oriented cap, we associate the quantum trace.
• To a counter-clockwise cup, we associate the quantum cotrace.
• To a counter-clockwise cap, we associate the evaluation.

Proposition 8.1 The map induced by Φ(T ) : Vλ
1/D → Vµ

1/D on the Grothendieck

groups V
1/D
λ → V

1/D
µ is that assigned to a ribbon tangle by the structure maps of

the category of Uq(g) with the ST ribbon structure.
In particular, the graded Euler characteristic of the complex Φ(T )(�) for a

closed link is the quantum knot invariant for the ST ribbon element.

Proof. We need only check this for each elementary tangle, which was done
in Corollary 6.11, Chapter 2 and Proposition 7.20. �

117
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118 8. KNOT INVARIANTS

Theorem 8.2 Consider a link L. The cohomology of Φ(L)(�) is finite-dimensional
in each homological degree, and each graded degree is a complex with finite dimen-
sional total cohomology. In particular the bigraded Poincaré series

ϕ(L)(q, t) =
∑

i

(−t)−i dimq H
i(Φ(L)(�))

is a well-defined element of Z[q1/D, q−1/D]((t)).

Proof. We note that the category V∅
1/D is the category of complexes of graded

finite dimensional vector spaces

· · · ←− M i+1 ←− M i ←− M i−1 ←− · · ·

such that M i = 0 for i ≫ 0 and for some k, the vector space M i is concentrated
in degrees above k − i. Thus, Φ(L)(�) lies in this category. In particular, each
homological degree and each graded degree of Φ(L)(�) is finite-dimensional. �

The only case where the invariant is known to be finite dimensional is when
the representations λ are minuscule; recall that a weight μ is called minuscule if
every weight with a non-zero weight space in Vμ is in the Weyl group orbit of μ.

Proposition 8.3 If all λi are minuscule, then the cohomology of Φ(T )(�) is finite-
dimensional.

Proof. If all λi are minuscule, then the preorder on standard modules is a
true partial order, since there are never two standard modules with the same weight
in each component. Furthermore, since every weight space of the categorification
of a minuscule is equivalent to the category of vector spaces, End(S) ∼= � for any
indecomposable standard.

These properties show that Tλ -mod is a highest weight category. Any highest
weight category with finitely many simples has finite homological dimension (in fact,
the homological dimension is no more than twice the number of simple objects).

Thus, in this case, the functor given by RHom or
L
⊗ with a finite dimensional

module preserves being quasi-isomorphic to a finite length complex. �

2. The unknot for g = sl2

Unfortunately, the cohomology of the complex Φ(T )(�) is not always finite-
dimensional. This can be seen in examples as simple as the unknot U for g = sl2
and label 2.

In this case, the module L2 has a standard resolution of the form

0 −→ S
(0,0)

1(2)
(−2) −→ S

(0,1)
1,1 /(y1 + y2)(−1) −→ S

(0,2)

1(2)
−→ L2 −→ 0.

We let A = EndV2,2(S
(0,1)
1,1 , S

(0,1)
1,1 ) ∼= �[y1, y2]/(y

2
1 , y

2
2); the middle piece of the

semi-orthogonal decomposition is equivalent to representations of this algebra.
Taking ⊗ of this resolution with its dual, we observe that all Tor’s vanish be-

tween terms that do not lie in the same piece of the semi-orthogonal decomposition,
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3. INDEPENDENCE OF PROJECTION 119

so

Tor•(Lλ, Lλ) = Tor•(S
(0,2)

1(2)
, (S

(0,2)

1(2)
)⋆)

⊕ Tor•(S
(0,1)
1,1 /(y1 + y2), (S

(0,1)
1,1 /(y1 + y2))

⋆)[2](−2)⊕ Tor•(S
(0,2)

1(2)
, (S

(0,2)

1(2)
)⋆)[4](−4)

∼= �⊕ Tor•A(A/(y1 + y2), A/(y1 + y2))[2](−2)⊕ �[4](−4)

The module A/(y1 + y2)A has a minimal projective resolution given by

· · · y1+y2−→ A(−4)
y1−y2−→ A(−2)

y1+y2−→ A −→ A/(y1 + y2)A −→ 0.

After taking ⊗, this becomes

· · · 0−→ A/(y1+y2)(−4)
y1−y2−→ A/(y1+y2)(−2)

0−→ A/(y1+y2)
∼−→ A/(y1+y2) −→ 0.

Thus, we have that

ToriA(A/(y1 + y2), A/(y1 + y2)) ∼=

⎧
⎪⎨
⎪⎩

A/(y1 + y2) i = 0

�(−2i) i > 0, odd

�(−2i− 2) i > 0, even

Thus, we have that

Proposition 8.4 ϕ(U) = q−2t2 + 1 + q2t−2 +
q−2 − q−2t

1− t2q−4
.

It is easy to see that the Euler characteristic is q−2+1+q2 = [3]q, the quantum
dimension of V2. As this example shows, infinite-dimensionality of invariants is
extremely typical behavior, and quite subtle. This same phenomenon of infinite
dimensional vector spaces categorifying integers has also appeared in the work of
Frenkel, Sussan and Stroppel [FSS12], and in fact, their work could be translated
into the language of this paper using the equivalences of Chapter 9; it would be
quite interesting to work out this correspondence in detail.

Conjecture 8.5 The invariant Φ(L) for a link L is only finite-dimensional if all
components of L are labeled with minuscule representations.

3. Independence of projection

While Theorem 8.1 shows the action on the Grothendieck group is independent
of the presentation of the tangle, it doesn’t establish this for the functor Φ(T ) itself.

Theorem 8.6 The functor Φ(T ) does not depend (up to isomorphism) on the
projection of T .

Proof. We have already proved the ribbon Reidemeister moves in at least one
position: RI in Proposition 7.11 and RII and RIII as part of Theorem 6.15, and
also the “S-move” shown in Figure 5 in Proposition 7.22. There is only one move
of importance left for us to establish: the pitchfork move, shown in Figure 2.

Once we have established this move, we can easily show the others which are
necessary. The illustrative example of the “χ-move” follows from the pitchfork and
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120 8. KNOT INVARIANTS

Figure 1. The “χ-move”

S-move, shown in Figure 1. The other moves in the list of Ohtsuki [Oht02, Theorem
3.3] follow in the same way.

So, let us turn to the pitchfork. We may assume that the pictured red strands
are the only ones using Lemma 7.19 as in earlier proofs. We must prove that this
move holds for all reflections and orientations. The vertical reflection of the version
shown in Figure 2 follows from that illustrated by adjunction. We may assume that
the cup is clockwise oriented, since the counter clockwise move can be derived from
that one using Reidemeister moves II and III. The orientation of the “middle tine”
is irrelevant, so we will ignore it. Thus, we have reduced to the case of Figure 2
and its reflection “through the page.”

For the orientation shown in Figure 2, we need only show this move holds for
P∅ again, since we again have equivariance for the U action by Lemma 7.21.

μ

μ λλ

=

μ

μ λλ

Figure 2. The “pitchfork” move

We have two functors Vμ
1/D → Vλ,μ,λ∗

1/D given by

Π1 = Bσ−1
1

◦ Sμ,λ+λ∗

(P∅ ⊠−) Π2 = Bσ2
◦ Sλ+λ∗,μ(−⊠ P∅).

Lemma 8.7 The functors Π1 and Π2 coincide.

Proof. First, we multiply both sides by Bσ1
, so we must show that we have

isomorphisms of functors

Sμ,λ+λ∗

(P∅ ⊠−) ∼= Bσ1
◦ Bσ2

◦ Sλ+λ∗,μ(−⊠ P∅).

We need only exhibit a natural transformation and show it is an isomorphism when
applied to projectives.

The isomorphism is given by the diagram

· · ·

· · ·

· · ·

· · ·
,
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3. INDEPENDENCE OF PROJECTION 121

and is essentially the same as that of Proposition 6.10. We note that this element
has degree zero because we are assuming that the roots on the black strands add
to λ+λ∗. Any diagram in the module Bσ1

Bσ2
Sλ+λ∗,μ(P κ

i ⊠P∅) can be prefixed by
this element, so the map is surjective. Any element which is sent to 0 by adjoining
this diagram is easily seen to be 0, since the standardly violating strand can be slid
downward to become a violating strand, so the map is also injective. �

The pitchfork move shown in Figure 2 follows from this lemma, since two sides
of the depicted move are

−⊗T Π1Lλ(2〈λ, ρ〉)[−2ρ∨(λ)] and −⊗TΠ2Lλ(2〈λ, ρ〉)[−2ρ∨(λ)].

The only variation remaining to check is the case where the move is reflected through
the page (i.e. with the signs of the crossings given reversed), but this follows from
the lemma as well since the two sides are

−⊗T (Π1Lλ)
⋆(2〈λ, ρ〉)[−2ρ∨(λ)] and −⊗T (Π2Lλ)

⋆(2〈λ, ρ〉)[−2ρ∨(λ)]. �

Some care must be exercised with the normalization of these invariants, since
as we noted in Chapter 2, they are the Reshetikhin-Turaev invariants for a slightly
different ribbon element from the usual choice. However, the difference is easily
understood. Let L be a link drawn in the blackboard framing, and let Li be its
components, with Li labeled with λi. Recall that the writhe wr(K) of a oriented
ribbon knot is the linking number of the two edges of the ribbon; this can be calcu-
lated by drawing the link the blackboard framing and taking the difference between
the number of positive and negative crossings. Here we give a slight extension of
the proposition of Snyder and Tingley relating the invariants for different framings
[ST09, Theorem 5.21]:

Proposition 8.8 The invariants attached to L by the standard and Snyder-Tingley
ribbon elements differ by the scalar

∏
i(−1)2ρ

∨(λi)·(wr(Li)−1).

Proof. The proof is essentially the same as that of [ST09, Theorem 5.21]
with a bit more attention paid to the case where the components have different
labels. The proof is an induction on the crossing number of the link. The formula
is correct for any framing of an unlink, which gives the base case of our induction.

Now note that the ratio between the knot invariants only depends on the num-
ber of rightward oriented cups and caps, so both the ratio between the invariants
for the usual and ST ribbon structures and the formula given are insensitive to
Reidemeister II and III as well as crossing change (which changes the writhe, but
by an even number). These operations can be used to reduce any link to an unlink
with some framing. Since we have already considered this case, we are done. �

One of the main reasons for interest in these quantum invariants of knots is
their connection to Chern-Simons theory and invariants of 3-manifolds, so it is
natural to ask:

Question 8.9 Can these invariants glue into a categorification of the Witten-
Reshetikhin-Turaev invariants of 3-manifolds?

Remark 8.10 The most naive ansatz for categorifying Chern-Simons theory, fol-
lowing the development of Reshetikhin and Turaev [RT91] would associate
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122 8. KNOT INVARIANTS

• a category C(Σ) to each surface Σ, and
• an object in C(Σ) to each isomorphism of Σ with the boundary of a 3-
manifold

such that

• the invariants K we have given are the Ext-spaces of this object for a knot
complement with fixed generating set of C(T 2) labeled by the representa-
tions of g, and

• the categorification of the WRT invariant of a Dehn filling is the Ext space
of this object with another associated to the torus filling.

4. Functoriality

One of the most remarkable properties of Khovanov homology is its functori-
ality with respect to cobordisms between knots [Jac04]. This property is not only
theoretically satisfying but also played an important role in Rasmussen’s proof of
the unknotting number of torus knots [Ras10]. Thus, we certainly hope to find
a similar property for our knot homologies. While we cannot present a complete
picture at the moment, there are promising signs, which we explain in this chapter.
We must restrict ourselves to the case where the weights λi are minuscule, since
even the basic results we prove here do not hold in general. We will assume this
hypothesis throughout this section.

The weakest form of functoriality is putting a Frobenius structure on the vector
space associated to a circle. This vector space, as we recall, is

Aλ = Ext•(Lλ, Lλ)[2ρ
∨(λ)](2〈λ, ρ〉).

This algebra is naturally bigraded by the homological and internal gradings. The
algebra structure on it is that induced by the Yoneda product. Recall that S

denotes the right Serre functor of V(λ,λ∗)
1/D , discussed in Chapter 2.

Theorem 8.11 For a minuscule weights λ, we have a canonical isomorphism

SLλ
∼= Lλ(−4〈λ, ρ〉)[−4ρ∨(λ)].

Thus, the functors K and T are biadjoint up to shift.

In particular, Ext4〈λ,ρ〉(Lλ, Lλ) ∼= Hom(Lλ, Lλ)
∗, and the dual of the unit

ι∗ : Ext4〈λ,ρ〉(Lλ, Lλ) → �

is a symmetric Frobenius trace on Aλ of degree −4〈λ, ρ〉

One should consider this as an analogue of Poincaré duality, and thus is a piece
of evidence for Aλ’s relationship to cohomology rings.

Proof. As we noted in the proof of 8.3, Tλ has finite global dimension if the
weights λ are minuscule. The result then follows immediately from Proposition
6.21. �

It would be enough to show that this algebra is commutative to establish the
functoriality for flat tangles; we simply use the usual translation between 1+1
dimensional TQFTs and commutative Frobenius algebras (for more details, see
the book by Kock [Koc04]). At the moment, not even this very weak form of
functoriality is known.
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4. FUNCTORIALITY 123

Question 8.12 Is there another interpretation of the algebra Aλ? Is it the coho-
mology of a space?

One natural guess, based on the work of Mirković-Vilonen [MV07] and the
symplectic duality conjecture of the author and collaborators [BLPW], is that Aλ

is the cohomology of the corresponding Schubert variety Grλ in the Langlands dual
affine Grassmannian.

Another candidate algebra is the multiplication induced on Vλ by the quantized
“shift of function algebra” Af for a regular nilpotent element f studied by Feigin,
Frenkel, and Rybnikov [FFR10].

We can use the biadjunction of K and T to give a rather simple prescription
for functoriality: for each embedded cobordism in I × S3 between knots in S3, we
can isotope so that the height function is a Morse function, and thus decompose
the cobordism into handles. Furthermore, we can choose this so that the projection
goes through these handle attachments at times separate from the times it goes
through Reidemeister moves. We construct the functoriality map by assigning

• to each Reidemeister move, we associate a fixed isomorphism of the asso-
ciated functors.

• to the birth of a circle (the attachment of a 2-handle), we associate the
unit of the adjunction (K,T) or (C,E), depending on the orientation.

• to the death of a circle (the attachment of a 0-handle), we associate the
counits of the opposite adjunctions (T,K) or (E,C) (i.e., the Frobenius
trace).

• to a saddle cobordism (the attachment of a 1-handle), we associate (de-
pending on orientation) the unit of the second adjunction above, or the
counit of the first.

Conjecture 8.13 This assignment of a map to a cobordism is independent of the
choice of Morse function, i.e. this makes the knot homology theory K(−) functorial.

In the case of sl2, there is a homology theory which we believe to coincide with
ours, defined by Cooper, Hogancamp and Krushkal [CK12,CHK11]. A version
of functoriality for this theory has been given by Hogancamp [Hog], overcoming
some of the difficulties posed by the failure of finite global dimension this case, but
still not giving an answer for every cobordism between knots.
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CHAPTER 9

Comparison to category O and other

knot homologies

Now, we specialize to the case where g ∼= sln and � = C. In this case, we
can reinterpret our results in terms of the work of Brundan and Kleshchev [BK08,
BK09] who have shown that the cyclotomic Khovanov-Lauda algebras for sln are
isomorphic to cyclotomic degenerate affine Hecke algebras (cdAHA). Proposition
5.33 allows us to embed the category of projectives over Tλ in the category of all
Tλ-modules. Transporting structure via Brundan and Kleshchev’s isomorphism,
we obtain a subcategory of modules over the degenerate affine Hecke algebra. We
will show that this subcategory is also the image of the embedding of a block of
parabolic category O via a well-known functor. In particular, this will allow us to
match our categories Vλ with blocks of category O in type A and compare the
knot homologies constructed in Chapter 8 to those constructed using category O
by Mazorchuk, Stroppel and Sussan [MS09,Sus07].

1. Cyclotomic degenerate Hecke algebras

Definition 9.1 The degenerate affine Hecke algebra (dAHA) Hd is the algebra
generated by the polynomial ring �[x1, . . . , xd] and the group ring �[Sd] subject to
the relations

sixj = xsi·jsi − δj,i + δj,i+1 xixj = xjxi

for the simple reflections in si ∈ Sd.

We have a natural action of Hd on the glN module P ⊗ V ⊗d for any glN
representation P , where V = CN is the defining representation of glN :

• Sd acts on the d copies of V , and
• x1 acts by C ⊗ 1⊗d−1 where C is the Casimir element of glN .

We’ll be interested in applying this result in one particular context. Fix a parabolic
p ⊂ glN . Without loss of generality, we can assume that p is the precisely this subal-
gebra of block upper-triangular matrices attached to a composition π = (π1, . . . , πℓ).
These can be used to define a weight λ =

∑
i ωπi

∈ Y (g); that is, λj = #{i|πi = j}.

Definition 9.2 Parabolic category O, which we denote Op, is the full subcategory
of glN -modules with a weight decomposition where p acts locally finitely.

Since induction sends finite-dimensional modules to p-locally finite modules,
P⊗V ⊗d ∼= U(gln)⊗U(p)(W⊗V ⊗d) lies in this category forW any finite dimensional
p-representation.

125
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126 9. COMPARISON TO CATEGORY O AND OTHER KNOT HOMOLOGIES

We’ll index the parabolic Verma module in Op by their ρ-shifted highest weight.
That is, we’ll letMp(a1, . . . , aN ) be the parabolic Verma module where the diagonal
elementary matrix eii acts by ai+i−1, and L(a1, . . . , aN ) be the simple glN module
with this highest weight. We’ll only consider the case where ai is an integer in this
paper. For example, the trivial module is L(0,−1, . . . ,−N + 1). Of course, for
certain highest weights, L(a1, . . . , aN ) will not lie in Op. In this case, by convention,
Mp(a1, . . . , aN ) = 0. For example, the module L(a1, . . . , aN ) will be in OglN if and
only if the entries ai are strictly increasing.

More generally, L(a1, . . . , aN ) will be in Op if and only if the associated highest
weight is dominant when restricted to the Levi l of block triangular matrices. That
is, if we have that a1 > · · · > aπ1

, aπ1+1 > · · · > aπ1+π2
, etc.

Following Brundan and Kleshchev [BK08, §4.2], we can conveniently package
this condition by thinking of the numbers ai as the column reading of the entries of
a tableau on the Young pyramid for the composition π. To fix conventions, we read
the columns from top to bottom and in order from left to right. The inequalities
above are the statement that the tableau is column-strict, i.e. its entries increase
in each column decrease when read from top to bottom. Thus, we have that:

Lemma 9.3 The simple module L(a1, . . . , aN ) is in Op if a is the column reading
of a column-strict tableau.

This labeling is particularly convenient, since two simples L(a1, . . . , aN ) and
L(a′1, . . . , a

′
N ) are in the same block of Op if and only if ai = a′w(i) for some per-

mutation w. From now on, we let P = Mp(π1, . . . , 1, π2, . . . , 1, . . . , πℓ, . . . , 1). The
corresponding “ground state” tableau fills each box with its height. Note that this
is the only column-strict tableau with these entries, so there are no other simples
in the same block as P . Thus P is simple, projective and injective in Op.

Now, consider the action of dAHA on ⊕dP ⊗ V ⊗d. This action is not faithful,
but there is a very convenient description of its kernel:

Definition 9.4 The cyclotomic degenerate affine Hecke algebra is the quo-
tient of the dAHA given by

Hλ
d = Hd/

〈 n∏

i=1

(x1 − i)λ
i
〉

Hλ ∼=
⊕

d≥0

Hλ
d .

We let ed be the idempotent which projects to Hλ
d in Hλ.

Theorem 9.5 (Brundan-Kleshchev [BK08, Th. B]) When

P = M(π1, . . . , 1, π2, . . . , 1, . . . )

as above, the action of dAHA on P ⊗ V ⊗d factors through a faithful action of Hλ
d .

Thus, we have a functor HomglN
(P ⊗ V ⊗d,−) : Op → Hλ -mod. This functor

is very far from being an equivalence, but on each block of Op it is either 0, or
fully faithful on projectives by [BK08, 6.10]. Thus, certain blocks of Op can be
described in terms of endomorphism rings of modules over Hλ, as in [BK08, Th.
C].

The center ofHλ
d is generated by the symmetric polynomials in the alphabet xi.

Particular, this algebra decomposes into summands according to the joint spectrum
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of these symmetric polynomials. For any list (a1, . . . , ad) of integers, we have a
summand

Hλ
d (a1, . . . , ad) = {m ∈ Hλ

d |(f(x)− f(a))jm = 0

for j ≫ 0 and any symmetric polynomial f . The projection to this summand is
given by multiplication by a central idempotent e(a) ofHλ

d , since it is an idempotent
bimodule endomorphism of Hλ

d .
We let eg be the idempotent projecting to the subalgebra

⊕

(a1,...,ad)∈[1,n]d

Hλ
d (a1, . . . , ad).

We can alternately describe this as projection to the kernel of
∏d

i=1

∏n
j=1(xi − j)N

for N ≫ 0.
In this chapter, we use the polynomials Qij as defined in the previous chapter

for a fixed orientation of the type A (or later, affine type A) quiver. The most
obvious choice is

Qij(u, v) =

⎧
⎪⎨
⎪⎩

1 i �= j ± 1

u− v i = j + 1

v − u i = j − 1

Proposition 9.6 ([BK09]) There is an isomorphism Υ: Tλ → egH
λeg

def
= Hλ,n.

Under this map, we have that Υ(yje(i)) = e(i)(xj − ij), and Υ−1(si) is in a
linear combination of yai y

b
i+1ψie(i) and yai y

b
i+1e(i) by [BK09, (3.41-42)].

2. Comparison of categories

First, let us endeavor to understand how we can translate the Tλ-modules
yi,κT

λ defined in Chapter 5 into the language of the cdAHA using Υ. It’s immediate
from Proposition 9.6 that

Υ(yi,κ) = e(i)

ℓ∏

j=1

n∏

k=κ(j)+1

(xk − ik)
λ
ik
j .

However, the strong dependence of this element on e(i) makes it problematic for
use in the Hecke algebra. We first specialize to the case where all the weights λj are
fundamental. That is, we have λj = ωπj

for some πj . As suggested by the notation,
we will later want to think of πj as a composition. This bit of notation allows us
to associate to each κ an element of Hλ,n (note that there is no dependence on i):

(9.1) zκ =
ℓ∏

j=1

n∏

k=κ(j)+1

(xk − πj)

We let Mκ
i = e(i)zκH

λ,n and Mκ = zκH
λ,n.

Proposition 9.7 If λj = ωπj
, then for all i, we have Υ(yi,κ)H

λ,n = Mκ
i . In

particular, we have an isomorphism Tλ ∼= End(⊕κM
κ).
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Proof. If a �= ik, then we can rewrite e(i) as

e(i) = (xk − a)e(i)

( −1

a− ik
− xk − ik

(a− ik)2
− (xk − ik)

2

(a− ik)3
− · · ·
)

since (xk − ik)e(i) is nilpotent. It follows that

(9.2) e(i)(xk − πj)H
λ,n = e(i)(xk − ik)

λ
ik
j Hλ,n

since λik
j = δπj ,ik . Thus, applying (9.2) to each term in zκ, the result follows. �

We note that the modules Mκ are closely related to the permutation modules
discussed by Brundan and Kleshchev in [BK08, §6]. Each way of filling π as a
tableau such that the column sums are κ(i) − κ(i − 1) results in a permutation
module which is a summand of Mκ.

Now we wish to understand how the modules Mκ are related to parabolic
category O. Let N =

∑
j πj be the number of boxes in π. As before, the πi give

a composition of N , and thus a parabolic subgroup p ⊂ glN , which is precisely the
operators preserving a flag V1 ⊂ V2 ⊂ · · · ⊂ V . If, as usual, κ is a weakly increasing
function on [1, ℓ] with non-negative integer values and further κ(ℓ) ≤ d, then we let

V d
κ = V

⊗κ(1)
1 ⊗ V

⊗κ(2)−κ(1)
2 ⊗ · · · ⊗ V d−κ(ℓ)

as a p-representation. We can induce this representation to an object in Op which
we denote

Pκ
d
∼= U(gln)⊗U(p) (C−ρ ⊗ V d

κ ),

where C−ρ is the 1-dimensional p-module defined in [BK08, pg. 4]. These modules
contain as summands the divided power modules

U(gln)⊗U(p) (C−ρ ⊗ Symκ(1)(V1)⊗ Symκ(2)−κ(1)(V2)⊗ · · · ⊗ Symd−κ(ℓ)(V ))

defined by Brundan and Kleshchev in [BK08, §4.5].
All the objects Pκ

d live in the subcategory we denote Op
>0 which is generated

by all parabolic Verma modules whose corresponding tableau has positive integer
entries. We also consider a much smaller subcategory which has only finitely many
simple objects: let Op

n be the subcategory of Op generated by all parabolic Vermas
whose corresponding tableau only uses the integers [1, n]. Let prn : Op → Op

n be
the projection to this subcategory (Op

n is a sum of blocks, so there is a unique
projection).

Proposition 9.8 If one ranges over all κ and all integers d, then ⊕κ,dP
d
κ is a

projective generator for Op
>0.

Proof. This follows from a simple modification of the proof of [BK08, The-

orem 4.14]. In the notation of that proof, we have that Pκ
d
∼= R(Pκ−

κ(ℓ) ⊗ C−ρ) ⊗
V ⊗d−κ(ℓ), where κ− is the restriction of κ to [1, ℓ − 1]. As noted in that proof,
by induction, this is two functors which preserve projective modules applied to a
projective module; thus Pκ

d is projective.
Each of Brundan and Kleshchev’s divided power modules is a summand in one

of the Pκ
d , as we noted earlier. Since any indecomposable projective of Op is a

summand of a divided power module, the same is true of the Pκ
d ’s. �
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Proposition 9.9 For all d, κ, we have

zκH
λed ∼= Hom(P ⊗ V ⊗d,Pd

κ)

Mκed ∼= Hom(P ⊗ V ⊗d, prn(P
d
κ)).

Proof. This rests on a single computation, which is that the image in P ⊗ V

of the action of
∏ℓ

i=j+1(x1 − πi) is

U(gln)⊗U(p) (C−ρ ⊗ Vj) ⊂ U(gln)⊗U(p) (C−ρ ⊗ V ) ∼= P ⊗ V ;

this follows from [BK08, Lemma 3.3]. This shows that the image of zκ acting on
P ⊗ V ⊗d is Pd

κ, so by the projectivity of P ⊗ V ⊗d, every homomorphism to Pd
κ

factors through this one.
We can identify those homomorphisms whose image is in prn(P

d
κ) ⊂ Pd

κ as those
killed by some power of χn

j =
∏n

i=1(xj − i) for each j (if a number m appears in
a tableau, then xj − m is nilpotent for some j, and so if m /∈ [1, n], then χn

j is

invertible for that j). Thus, this homomorphism space is the subspace of zκH
λed

on which all χn
j act nilpotently, which is precisely Mκed. �

Corollary 9.10 For the sequence of weights λ = (ωπ1
, . . . , ωπℓ

), we have an equiv-

alence Ξ : Vλ
∼=−→ Op

n.

We can generalize this statement a bit further: let us now consider the case
where the weights λi are not fundamental. In this case, to each weight λi we have
a unique Young diagram given by writing it as a sum of fundamental weights, and
we obtain a pyramid π by concatenating these horizontally (this is the pyramid
associated earlier to the refinement of λ into fundamental weights). We associate
a parabolic p with the pyramid as on the previous page.

For each collection of semi-standard1 tableaux Ti on each of these diagrams
which only use the integers [1, n], this gives a tableau on π (now just column-strict).
Such a tableau can be converted into a module in Op for glN (where N =

∑
πi) by

taking the projective cover of the p-parabolic Verma module corresponding to this
tableau. Let Op

λ be the subcategory of modules presented by these projectives.

Proposition 9.11 The functor Ξ induces an equivalence of Op
λ and Vλ.

Proof. Let πi be a composition chosen so that λ′ = (ωπ1
, . . . , ωπq

) is one way
of splitting λ into fundamental weights. By Lemma 4.21, we have an embedding
Vλ →֒ Vλ′

as the objects represented by P κ
i where κ is constant on the blocks of

fundamental weights obtained by breaking up λi.
Corollary 9.10 thus shows that Vλ is equivalent to the subcategory of Op

λ′

consisting of objects presented by projectives prn(P
d
κ) where κ is constant on the

blocks of fundamental weights obtained by breaking up λi. In terms of category O,
these are the result of inducing finite-dimensional p-modules obtained by tensoring
the vector spaces which appear in a particular flag preserved by p, the gaps of which
encode the sequence λ.

That is, the indecomposable projectives of Vλ are sent to the indecomposable
projectives which appear as summands of these prn(P

κ
d). Thus these are in bijection,

1In [BK08], these are called “standard.”
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130 9. COMPARISON TO CATEGORY O AND OTHER KNOT HOMOLOGIES

and there can only be dimVλ of the latter. Since there is exactly that number of
tableaux which are semi-standard in blocks as described above, we need only show
that these occur as summands.

This follows from the relationship between the crystal structure on tableaux
and projectives in categoryO. Specifically, since any tableau which is semi-standard
in blocks can be obtained from the empty tableau by the operations of attaching
a fresh Young diagram filled with the ground state tableau and of applying crystal
operators, the argument from [BK08, Corollary 4.6] shows that the projective
corresponding to such a tableau is a summand of an appropriate Pκ

d . �

We note that this shows that our categorification agrees with that for twice
fundamental weights of sln recently given by Hill and Sussan [HS10].

The category Op has a natural endofunctor given by tensoring with V . Re-
stricting to Op

n, we can take the functor f• = prn(− ⊗ V ). This functor has a
natural decomposition f• = ⊕n

i=1fi in terms of the generalized eigenspaces of x1

acting on − ⊗ V ; we need only take i ∈ [0, n] since these are the only eigenvalues
of x1 on the projection to Op

n.

Proposition 9.12 We have a commutative diagram

Op
nOp

n

VλVλ

fi

Fi

ΞΞ

Proof. The functor f• corresponds to tensoring a Hλ,n
d -module with Hλ,n

d+1.

By Proposition 9.6, this corresponds to tensoring over T
λ
μ with ⊕iT

λ
μ−αi

via the
map ⊕νi. This is, of course, the functor ⊕n

i=1Fi. Via Brundan and Kleshchev’s
isomorphism, xn acts on FiM for any M by yn+ i; that is, xn− i acts invertibly on
FjM for j �= i and nilpotently on FiM . This shows the desired isomorphism. �

For any parabolic subalgebra q ⊃ p with Levi l = q/rad q, we have an induction
functor

ind
glN
l

def
= U(glN )⊗U(q) − : Op(l) → Op

where Op(l) denotes the parabolic category O for l and the parabolic p/rad q (here
l-representations are considered as q representations by pullback).

Choices of q are in bijection with partitions of λ into consecutive blocks λ1, . . . ,λk.
Let Ξl : V

λ1;...;λk → Op(l) be the comparison functor analogous to Ξ for l.
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Proposition 9.13 We have a commutative diagram

Op
nOp

n(l)

VλVλ1;...;λk

ind
glN
l

Sλ1,...,λk

ΞΞl

Proof. We know that both functors are exact, by Proposition 5.7; thus need
only check this on projectives. Consider a representation of l given by an exterior
product of projectives in category O for each of its glj-factors

P = P1 ⊠ · · ·⊠ Pk.

Then the induction ind
glN
l P is a quotient of the projective P ′ corresponding to the

concatenation T of the tableaux Ti for the Pi. The kernel is the image of all maps
from projectives higher than T in Bruhat order through a series of transpositions
which change the content of at least one of the Ti.

Similarly, the standardization Sλ1;...;λk(Ξ−1
l (P )) is a quotient of Ξ−1(P ′); the

kernel is the image of all maps from projectives that correspond to idempotents for
sequences where at least one black strand has been moved left from one block to
the other. Thus, these functors agree on the level of projective objects.

Now, we must show that they agree on morphisms; that is, we must show

that the action of Tλ1 ⊗ · · · ⊗ Tλk induced on ind
glN
l (Ξ(Tλ1 ⊗ · · · ⊗ Tλk)) agrees

with that on Ξ(Sλ1,...,λk(Tλ1 ⊗ · · · ⊗ Tλk)) under an isomorphism between these

objects. Since T
λ1
α1 ⊗ · · · ⊗ T

λk
αk is the full-endomorphism algebra of Sα, it is also

the full endomorphism algebra of Ξ(Sα). Thus, in fact, any isomorphism Ξ(Sα) ∼=
ind

glN
l (Ξ(T

λ1
α1 ⊗ · · · ⊗ T

λk
αk )) induces an isomorphism of functors. �

Some care is required here on the subject of gradings. Brundan and Kleshchev’s
results relating category O to Khovanov-Lauda algebras are ungraded; they imply
no connection between the usual graded lift of Õp of category O and the graded
category of modules over Tλ. Luckily, the uniqueness of Koszul gradings proven
in [BGS96, 2.5.2] implies that any Morita equivalence between two Koszul graded
algebras can be lifted to a graded equivalence.

There are now two proofs in the literature that in the type A case, when all
weights are fundamental, these algebras are Koszul. Hu and Mathas have shown
that their quiver Schur algebra is Koszul [HM, Th. C]; thus, we may use the Morita
equivalence of Theorem 5.34 to transport this result to Tλ. The author has also
given a direct geometric proof in [Webc, Th. B], by directly constructing a graded
isomorphism of Tλ with an Ext-algebra in the Koszul dual of Op

n.

Proposition 9.14 When g = sln and λ is a list of fundamental weights, the algebra

T
λ
μ is Koszul.

If λ is not a list of fundamental weights, then we expect that Tλ will never be
Koszul.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



132 9. COMPARISON TO CATEGORY O AND OTHER KNOT HOMOLOGIES

Corollary 9.15 The equivalence Ξ has a graded lift.

We note that both the action of projective functors and of induction functors on
Op have graded lifts which are unique up to grading shift, and thus are determined
by their action on the Grothendieck group. Thus the graded lifts given by the
action of U and S agree, up to an easily understood shift, with those used in other
papers on graded category O (most importantly for us, this is used in the work
of Mazorchuk-Stroppel [MS08] and Sussan [Sus07] on link homologies, which we
build upon later).

3. The affine case

We note that the constructions of the previous section generalize in an ab-
solutely straightforward way to the affine case by simply replacing the results of
Section 3 of [BK09] with Section 4.

We let Ĥd denote the affine Hecke algebra (not the degenerate one we considered
earlier). Fix an element ζ ∈ �, the separable algebraic closure of � such that

1 + ζ + ζ2 + · · ·+ ζn−1 = 0,

and n is smallest integer for which this holds (for example, if � is characteristic 0,
these means that ζ is a primitive nth root of unity). The cyclotomic affine Hecke
algebra or Ariki-Koike algebra (introduced in [AK94]) for λ is the quotient

Ĥλ =
⊕

d

Ĥd/〈(X1 − ζi)α
∨
i (λ)〉.

where we adopt the slightly strange convention that if ζ ∈ Z, then ζi = ζ + i, and
otherwise it is the usual power operation.

Theorem 9.16 ([BK09, Main Theorem]) When g ∼= ŝln, there is an isomorphism

Tλ ∼= Ĥλ.

This symmetric Frobenius algebra has a natural quasi-hereditary cover, called
the cyclotomic q-Schur algebra, defined by Dipper, James and Mathas [DJM98].
Indecomposable projectives over this algebra are indexed by ordered k =

∑n
i=0 α

∨
i (λ)-

tuples of partitions.

Proposition 9.17 When g = ŝln, then Vλ is equivalent to the subcategory of
representations of the cyclotomic q-Schur algebra consisting of objects presented
by certain projective modules.

If all λi are fundamental, then these are exactly the projectives for the multi-
partitions where each constituent partition is n-regular.

The results [Webd, 5.5& 5.8] actually allow one to write an explicit isomor-
phism between Tλ and an endomorphism ring over projectives for the cyclotomic
q-Schur algebra, giving a more explicit version of this theorem.

Proof. By Corollary 5.32, Tλ is the endomorphism algebra of certain modules
over Tλ, which one can see by the same arguments as Proposition 9.9 are of the
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form ẑλT
λ where

ẑκ =
ℓ∏

j=1

n∏

k=κ(j)+1

(xk − ζπj ).

These are permutation modules for the Ariki-Koike algebra, exactly those corre-
sponding to the multipartitions where the kth component is of the form (1mk).

Corresponding to the summands of these modules, we have a subset S of the
indecomposable projectives over the cyclotomic q-Schur and the corresponding sim-
ple quotients. The modules over the cyclotomic q-Schur algebra carry a categorical

action of ŝln as argued in [Wad, 5.8]. This is coincides with the action defined
by Shan [Sha11] under an equivalence of categories by [Wad, 6.3]. Thus, we can
transport Shan’s crystal structure to simple modules over the cyclotomic q-Schur
algebra; by [Sha11, 6.3], this crystal is the tensor product of ℓ copies of a level 1
Fock crystal.

The simples S are a subcrystal of this structure. Furthermore, if we con-
sider all ranks together, this set is closed under the operation sending an (ℓ − 1)-
multipartition ν(i) to an ℓ-multipartition with ν(ℓ) = ∅. There is only one such
subset: the ℓ-multipartitions where all components are n-regular. �

If λi is a general weight, as before, we can define λ′ by breaking every λi

into fundamental weights. In this case, Vλ will be equivalent to the subcategory
presented by projectives where the first k1 =

∑n
i=1(λ

i
1) partitions, the next k2, etc,

for an n-Kleshchev multipartition.
Thus, our categorification can be seen a generalization of the Ariki categorifica-

tion theorem [Ari96]. As mentioned in the introduction, the author and Stroppel
address the question of how to describe the entirety of the cyclotomic q-Schur al-
gebra diagrammatically and obtain categorifications of other interesting objects in
affine representation theory in [SW,Webe,Webd].

4. Comparison to other knot homologies

A great number of other knot homologies have appeared on the scene in the last
decade, and obviously, we would like to compare them to ours. In this chapter we
check the isomorphism which seems most straightforward based on the similarity
of constructions: we describe an isomorphism to the invariants constructed by
Mazorchuk-Stroppel and Sussan for the fundamental representations of sln.

In order to compare knot homologies, we must compare the functors we have
described on our categories Vλ and those on Õp

n. In order to keep combinatorics
simpler, we consider our fundamental weights as weights of gln; this only affects
the inner products between elements of the weight lattice, neither of which are in
the root lattice. This has the advantage of assuring that all inner products between
weights are integral, so we have no need of fractional gradings.

For simplicity, in this chapter we will assume that λ is a sequence of funda-
mental weights. In this paper, we are only concerned about commuting up to
isomorphism of functors; thus when we say a diagram of functors “commutes” we
mean that the functors for any two paths between the same points are isomorphic.

First, let us consider the braiding functors. Associated to each permutation of
N letters, we have a derived twisting functor Tw : Db(On) → Db(On) (see [AS03]
for more details and the definition). We let Tw also denote the graded lift of this
functor, which is normalized so that the Verma module for a dominant weight μ

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



134 9. COMPARISON TO CATEGORY O AND OTHER KNOT HOMOLOGIES

generated in degree 0 is sent to that of highest weight w(λ+ ρ)− ρ also generated
in degree 0.

Proposition 9.18 When λ = (ω1, · · · , ω1), then p = b and we have a commutative
diagram

Db(Õn)Db(Õn)

VλVλ

Tv

Bv

ΞΞ

Proof. We note that the functors Tv commute with translation functors by
[AS03, Lemma 2.1(5)]. The same holds for Ξ ◦ Bv ◦ Ξ−1 by Propositions 6.7 and
9.12.

Every projective object in Õn is a summand of a composition of translation
functors applied to a dominant Verma module, and every morphism is the image of
a natural transformation between these. The we need only compute the behavior
of the functors Tv and on Verma modules Ξ ◦ Bv ◦ Ξ−1 on the level of objects in
order to check isomorphisms of functors.

By Proposition 6.20, Bv sends the exceptional collection of standard objects
to its mutation by using v to reorder the root functions α given by the sum of
the roots that appear between the red lines. On the other hand, the functor Tv

sends the exceptional collection of Verma modules to its mutation by the change of
order associated to the action of v on tableaux. By Proposition 9.13, these changes
of partial order are intertwined by the correspondence between standard modules
and Verma modules given by Ξ. Thus the mutations also match under Ξ, so the
diagram commutes. �

Finally, we turn to describing the functors associated to cups and caps. If π
has a column of height n in the kth position, then any block of category Õp

n is

equivalent to the block of category Õp′

n associated to π′, the diagram π with that
column of height n removed. The content of the tableaux in the new block is that of
the original block with the multiplicity of each number in [1, n] reduced by 1. The
effect of this functor on the simples, projectives and Vermas is simply removing that
column of height n (which by column strictness must be the numbers [1, n] in order).

The functor that realizes this equivalence ζ : Õp
n → Õp′

n is the Enright-Shelton
equivalence, which is developed in the form most useful for us in [Sus07, §3.2].

Having already developed the equivalence Ξ, this functor is actually quite easy
to describe. Let Pκ

d denote the module attached to κ and d for p′ as above, and let
Q

κ+

d be the module attached in the same way to p, where

κ+(j) =

{
κ(j) j ≤ k

κ(j − 1) j > k.

We already have equivalences of Vλ with the category generated by prn(P
κ
d) and

with that generated by prn(Q
κ
d); under these two equivalences, prn(P

κ
d) and prn(Q

κ
d)
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are sent to the same projective. The functor ζ is the composition of the second
equivalence with the inverse of the first.

We will also use also have Zuckerman functors, which are the derived func-
tors of sending a module in Õ to its largest quotient which is locally finite for p.
These are left adjoint to the forgetful functor Db(Õp) → Db(Õ).

Begin with a pyramid π, and assume π′ is obtained from π by replacing a
pair of consecutive columns whose lengths add up to n (a pair of consecutive dual
representations in the sequence λ), with one of length n, and π′′ is obtained by
deleting them altogether.

Definition 9.19 The ES-cup functor K : Õπ′′ → Õπ is the composition of the
inverse of the Enright-Shelton equivalence for π′′ and π′ with the forgetful functor
from Õπ′

to Õπ (which corresponds to an inclusion of parabolic subgroups).

The ES-cap functor T : Õπ → Õπ′′

is the composition of the Zuckerman
functor from Õπ to Õπ′

with the Enright-Shelton functor ζ : Õπ′ → Õπ′′

.

Proposition 9.20 Both squares in the diagram below commute.

D↑(Õp
n)D↑(Õp′

n )

Vλ+Vλ

K

T

K,C

T,E

ΞΞ

Proof. We need only check this for K, since in both cases, the functors above
are in adjoint pairs.

Using the compatibility results for functors proved in Propositions 9.12 and
9.13, we can reduce to the case where the cup is added at the far right. Let l is be
the standard Levi of type (N − n, n). In this case, the ES-equivalence is just given

by ind
glN
l (− ⊗ Cn), since this sends prn(P

κ
d) to prn(Q

κ
d). On the other hand, we

already know by Proposition 9.13 that this is intertwined with Sλ,(ω1,ωn−1)(−, Lω1
),

which matches with K as shown in Lemma 7.19. �

These propositions show that our work matches with that of Sussan [Sus07]
and Mazorchuk-Stroppel [MS09], though the latter paper is “Koszul dual” to our

approach above. Recall that each block of Õn has a Koszul dual, which is also
a block of parabolic category O for glN (see [Bac99]). In particular, we have a
Koszul duality equivalence

� : D↑(Õp
n) → D↓(np Õ)

where n
p Õ is the direct sum over all n part compositions μ (where we allow parts

of size 0) of a block of pμ-parabolic category Õ for glN with a particular central
character depending on p.
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136 9. COMPARISON TO CATEGORY O AND OTHER KNOT HOMOLOGIES

Now, let T be an oriented tangle labeled with λ at the bottom and λ′ at top,
with all appearing labels being fundamental. Then, as before, associated to λ and
λ we have parabolics p and p′.

Proposition 9.21 Assume λ and λ′ only contain the fundamental weights ω1 and
ωn−1. Then we have a commutative diagram

D↓(np′Õ)D↓(np Õ)

D↑(Õp′

n )D↑(Õp
n)

Vλ′Vλ

F(T )

F(T )

Φ(T )

ΞΞ

��

where F(T ) is the functor for a tangle defined by Sussan in [Sus07] and F(T ) is
the functor defined by Mazorchuk and Stroppel in [MS09].

Our invariant K thus coincides with the knot invariants of both the above pa-
pers when all components are labeled with the defining representation. In partic-
ular, it coincides with Khovanov homology when g = sl2 and Khovanov-Rozansky
homology when g = sl3.

Proof. We need only check that we define the same functors as Sussan and
Mazorchuk-Stroppel on a single crossing of strands labeled ω1 and on cups and
caps. In [Sus07, §6], the action of crossings is given by twisting functors and in
[MS09, §6] by shuffling functors; thus, Proposition 9.18 identifies our crossing with
Sussan’s and the duality of twisting and shuffling functors proven in [RH04] shows
that it matches that of Mazorchuk and Stroppel.

Since Sussan’s cup and cap functors defined in [Sus07, §3.2] are defined by ap-

plying a Zuckerman functor after the ES-equivalence Op
n
∼= Op′

n on objects, Propo-
sition 9.20 shows that our functors agree with his; similarly, Mazorchuk and Strop-
pel’s functor is an ES-equivalence Koszul dual to ours, followed by a translation
functor, which matches our Zuckerman functor by [RH04]. �

We believe strongly that this homology agrees with that of Khovanov-Rozansky
when one uses the defining representation for all n (this is conjectured in [MS09]),
but actually proving this requires an improvement in the state of understanding
of the relationship between the foam model of Mackaay, Stošić and Vaz [MSV09]
and the model we have presented. Progress in this direction was recently made
by Lauda, Queffelec and Rose[LRQ,QR] using skew Howe duality to relate foam
categories and U ; the author and Mackaay will explain one version of this connection
in future.

It would also be desirable to compare our results to those of Cautis-Kamnitzer
for minuscule representations, and Khovanov-Rozansky for the Kauffman polyno-
mial, but this will require some new ideas, beyond the scope of this paper.
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for categorified quantum sl(2), Mem. Amer. Math. Soc. 219 (2012), no. 1029, vi+87,

DOI 10.1090/S0065-9266-2012-00665-4. MR2963085
[Koc04] J. Kock, Frobenius algebras and 2D topological quantum field theories, London Mathe-

matical Society Student Texts, vol. 59, Cambridge University Press, Cambridge, 2004.
MR2037238 (2005a:57028)

[KR07] M. Khovanov and L. Rozansky, Virtual crossings, convolutions and a categorification
of the SO(2N) Kauffman polynomial, J. Gökova Geom. Topol. GGT 1 (2007), 116–
214. MR2386537 (2009j:57012)

[KR08a] M. Khovanov and L. Rozansky, Matrix factorizations and link homology. II, Geom.
Topol. 12 (2008), no. 3, 1387–1425, DOI 10.2140/gt.2008.12.1387. MR2421131
(2010g:57014)

[KR08b] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math.
199 (2008), no. 1, 1–91, DOI 10.4064/fm199-1-1. MR2391017 (2010a:57011)

[KR11] A. Kleshchev and A. Ram, Representations of Khovanov-Lauda-Rouquier algebras
and combinatorics of Lyndon words, Math. Ann. 349 (2011), no. 4, 943–975, DOI
10.1007/s00208-010-0543-1. MR2777040 (2012b:16078)

[Lau10] A. D. Lauda, A categorification of quantum sl(2), Adv. Math. 225 (2010), no. 6,
3327–3424, DOI 10.1016/j.aim.2010.06.003. MR2729010 (2012b:17036)

[Lau11] A. D. Lauda, Categorified quantum sl(2) and equivariant cohomology of iterated flag
varieties, Algebr. Represent. Theory 14 (2011), no. 2, 253–282, DOI 10.1007/s10468-
009-9188-8. MR2776785 (2012e:17039)

[LRQ] Aaron D. Lauda, David E. V. Rose, and Hoel Queffelec, Khovanov homology is a skew
howe 2-representation of categorified quantum sl(m), arXiv:1212.6076.

[Lus93] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110,
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