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1. Introduction

Large N gauge theories have been conjectured by ‘t Hooft to be related to string

theories. A particularly simple example of gauge theories is the Chern-Simons theory,

solved by Witten. It is thus natural to ask about the large N limit of Chern-Simons

theory and look for an appropriate stringy description. Some aspects of large N limit of

Chern-Simons theory were studied some time ago in [1], [2].

It was conjectured recently [3] that at least for some manifolds (including S3) the large

N limit does give rise to a topological string theory on a particular Calabi-Yau background.

This conjecture was checked at the level of the partition function on both sides; The Chern-

Simons answer was already well known, and the topological string partition function was

recently computed in two different ways (one by mathematicians, and one by using physical

reasoning about the structure of BPS states).

It is natural to extend the conjecture to the observables of Chern-Simons theory,

which are Wilson loop operators. Namely we should consider product of Wilson loop

observables for any choice of representation on each knot. We show how this question

can be formulated in the present context and explicitly check the map for the case of

the simple circle in S3 (“unknot”). The computation on the Chern-Simons side is well

known. On the topological string side, we end up with topological string amplitudes on

Riemann surfaces with boundaries. Mathematically these have not been studied, however

by connecting the partition function of topological strings to target space quantities we

compute them in terms of spectrum of M2 branes ending on M5 branes embedded in the

Calabi-Yau threefold. The target space interpretation is also related to generation of N = 1

superpotential terms in four dimensions (which we relate it analogously to the spectrum

of domain walls).

For a general knot finding the explicit form of the M5 brane embedded in the Calabi-

Yau is not trivial, though physically we argue it should be possible. In this way we

reformulate knot invariants in terms of new invariants capturing the spectrum of M2 branes

ending on M5 branes.

The organization of this paper is as follows: In section 2 we review the large N

conjecture for Chern-Simons theory. In section 3 we show how the Wilson Loop observable

for arbitrary knot and representation can be formulated in this set up, and apply the gauge

theory/geometry correspondence for the case of the simple knot. In section 4 we show how

the results anticipated from the Wilson loop observables can be directly obtained using
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the spectrum of M2 branes ending on M5 branes (or D2 branes ending on D4 branes). We

also point out connections with generation of superpotential terms with theories with 4

supercharges. In section 5 we present some concluding remarks and suggestions for future

work.

2. The Large N conjecture for Chern-Simons Theory

In this section we review the conjecture of [3] which relates large N limit of SU(N)

Chern-Simons gauge theory on S3 to a particular topological string amplitude. The mo-

tivation for the conjecture was that, in the context of topological strings of the A-type

on Calabi-Yau threefolds, there are D-branes with three-dimensional worldvolume which

support the Chern-Simons gauge theory [4]. So it is natural to expect that at least in some

cases, by putting many branes on some cycles and taking the large N limit, we end up

with a topological string on some deformed Calabi-Yau, but without branes. This is what

was found to be the case in [3], which we will now review.

2.1. The statement of the conjecture

The conjecture in [3] states that the Chern-Simons gauge theory on S3 with gauge

group SU(N) and level k is equivalent to the closed topological string theory of A-type on

the S2 blown up conifold geometry with

λ =
2π

k + N
, t =

2πiN

k + N
, (2.1)

where λ is the string coupling constant and t is the Kähler modulus of the blown-up

S2. The coupling constant gCS of the Chern-Simons theory, after taking into account

the finite renormalization, is related to λ as λ = g2
CS. Therefore the Kähler moduli t

given by (2.1) is i times the ’t Hooft coupling g2
CSN of the Chern-Simons theory. The

geometric motivation of the conjecture is based on starting with the topological strings

on conifold geometry T ∗S3 and putting many branes on S3, for which we get a large

N limit of Chern-Simons on S3 supported on the brane. The conjecture states that in

the large N limit the branes disappear but lead instead to the resolution of the conifold

geometry where an S2 has blown up. In fact this conjecture parallels the motivation for

the AdS/CFT correspondence conjecture: As noted in [3], since the open topological string

theory couples to closed topological string theory through a gravitational Chern-Simons
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action [4], putting 3-branes on S3 deforms the gravitational background so as to produce

a blown up S2. In fact the volume of the S2 was computed in this way.

The conjecture has been checked as follows: Start with the vacuum amplitude Z(S3)

of the Chern-Simons gauge theory on S3 (with the normalization Z(S2 × S1) = 1);

Z(S3) =
ei π

8 (N−1)N

(k + N)N/2

√

k + N

N

N−1
∏

s=1

[

2 sin

(

sπ

k + N

)]N−s

. (2.2)

The large-N expansion of log Z(S3) is given by

Z(S3) = exp

[

−

∞
∑

g=0

λ2g−2Fg(t)

]

, (2.3)

where λ and t as in (2.1),

F0 = −ζ(3) +
iπ2

6
t − i

(

m +
1

4

)

πt2 +
i

12
t3 +

∞
∑

n=1

n−3e−nt

F1 =
1

24
t +

1

12
log

(

1 − e−t
)

,

(2.4)

with m being some integer, and for g ≥ 2,

Fg =
(−1)g−1

2g(2g − 2)
Bg

[

(−1)g−1

(2π)2g−2
2ζ(2g − 2) −

1

(2g − 3)!

∞
∑

n=1

n2g−3e−nt

]

. (2.5)

Here Bg is the Bernoulli number, which is related to the Euler characteristic of the moduli

space Mg of genus-g Riemann surfaces as

χg =
(−1)g−1

2g(2g − 2)
Bg. (2.6)

By using this and the formula for the Chern-class of the Hodge bundle over the moduli

space
∫

Mg

c3
g−1 =

(−1)g−1

(2π)2g−2
2ζ(2g − 2)χg, (2.7)

which was derived in [5], one can rewrite (2.5) as

Fg =

∫

Mg

c3
g−1 −

χg

(2g − 3)!

∞
∑

n=1

n2g−3e−nt. (2.8)

It turns out that the expressions (2.4) and (2.8) for Fg are exactly those of the g-loop topo-

logical string amplitude on the resolved conifold. The constant map from the worldsheet
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to the target space gives rise to the term i
12 t3 in F0 [6]2, and 1

24 t in F1 [8], and
∫

Mg
c3
g−1

in Fg with g ≥ 2 [9]. Regarding worldsheet instantons, since the only non-trivial 2-cycle

in the target space is the blown-up S2, their contributions are from multi-coverings of the

Riemann surface onto the S2. For g = 0, 1 and 2, the expressions in the instanton terms

in (2.4) and (2.5) agree with the results of [6], [8], and [9] respectively. More recently,

the contribution of of the worldsheet instantons are evaluated for all g in [5], in complete

agreement with (2.8). These expressions can also be derived, as was done in [10], from

the target space view point by identifying what the topological strings compute in Type

IIA compactification on the corresponding Calabi-Yau threefold. It turned out that the

full structure of Fg is encoded in terms of the spectrum of wrapped D2 branes on the

Calabi-Yau. This will be reviewed later in this paper.

In this paper, we provide further evidence for the conjecture. We will show that the

Wilson loop expectation value of the Chern-Simons theory also has a natural interpretation

in terms of the topological string on the resolved conifold geometry.

2.2. Conifold transition

As noted above, the geometric insight that led to the conjecture is the fact that one

can view the Chern-Simons theory as the open topological string theory. Consider the

cotangent space T ∗S3 of S3 as the target space of the topological string. It was shown in

[4] that, if we wrap N D-brane on the base S3 of the cotangent space, the open topological

string theory on the D-brane is equivalent to the Chern-Simons theory with the gauge

group SU(N). The cotangent space has the canonical symplectic form

ω =
3

∑

i=1

dqi ∧ dpi, (q ∈ S3, p ∈ TqS
3), (2.9)

and the base S3 is a Lagrangian submanifold. Therefore the open string on the D-brane

allows the topological twist of the A-type.

At this point, it would be useful to review basic facts about the conifold transition.

The space T ∗S3 can also be regarded as a deformed conifold geometry,

4
∑

µ=1

y2
µ = a2, (y ∈ C4) (2.10)

2 The coefficients of 1 and t in F0 have analogous interpretations [7], and they also agree with

the Chern-Simons prediction [3].

4



where, without loss of generality, we assume the deformation parameter a to be real. To

see that (2.10) is indeed T ∗S3, we can set yµ = xµ + ipµ and rewrite the equation as

(xµ)2 − (pµ)2 = a2, xµpµ = 0. (2.11)

The first equation suggests that the base S3 of radius a is located at pµ = 0 and the second

equation shows that pµ are coordinates on the cotangent space at x ∈ S3. As a → 0, the

S3 shrinks to a point and a singularity appears. It is known as the conifold singularity.

In addition to the deformation by a, the conifold singularity

∑

µ

y2
µ = 0 (2.12)

can be smoothened out by the blow-up. It is described as follows. By introducing two pair

of complex coordinates (u, ũ) and (v, ṽ) by

u = y1 + iy2, ũ = y3 − iy4

v = y3 + iy4, ṽ = y1 − iy2,
(2.13)

the equation (2.12) can be written as

uṽ + vũ = 0. (2.14)

This means that there is some z such that

u = zũ, v = −zṽ. (2.15)

If we view z as a complex coordinate on S2 (as we should since ũ can be 0 and we need

to add z = ∞), one can interpret (2.15) as defining the bundle O(−1) + O(−1) over S2

where u and v are coordinates on the fibers. With respect to the original symplectic form

(2.9), the volume of S2 is zero, which is another way to see that the conifold geometry is

singular. We can remove the singularity by blowing up the S2; this process is called the

small resolution (as opposed to the deformation of complex structure a in the previous

paragraph). See Figure 1. The conifold singularity (2.14) can be either deformed to the

total space of T ∗S3 or resolved to the total space of O(−1)+O(−1) over S2. The transition

from one to the other is called the conifold transition.

The conjecture in [3] states that the open topological string theory on the N D-branes

on S3 of the deformed conifold is equivalent to the closed topological string theory (without

D-branes) on the resolved conifold with t = 2πiN/(k + N).
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T*S3

S3

S

deformed
resolved
conifold

conifold singularity

N=t i λ

conifold

Figure 1: The conifold singularity can be either deformed to T ∗S3 or resolved by the S2 blow-up.

The conjecture in [3] states that the open topological string theory on the N D-branes on S3 of

the deformed conifold is equivalent to the closed topological string theory on the resolved conifold

geometry.

3. Wilson loop

3.1. Definition

The basic observables of the Chern-Simons gauge theory are the Wilson loops. For

each loop q(s) ∈ S3 (0 ≤ s < 2π), we can define a generating function of Wilson loops of

various representations of SU(N) in the following way. As shown in [4], the Chern-Simons

theory is the open topological string theory on N D-branes wrapping the base S3 of T ∗S3.

We can probe the dynamics on these D-branes by introducing another set of D-branes.

First we define a Lagrangian 3-cycle associated to the knot q(s) ∈ S3 as follows 3. At each

point q(s) on the loop, we consider 2-dimensional subspace of T ∗
q S3 orthogonal to dq/ds.

By going around the loop, we can define the 3-cycle,

C = { (q(s), p) | pi
dqi

ds
= 0, 0 ≤ s < 2π }. (3.1)

3 We thank C. Taubes for discussion on these Lagrangian cycles.
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The topology of C is R2 × S1. The symplectic form ω vanishes on C, so it is a Lagrangian

submanifold4. The 3-cycle intersects with the base S3 along the loop q(s). See Figure 2.

dq
ds

p

q(s)S3

Figure 2: For each loop q(s) ∈ S3, one can define a unique Lagrangian 3-cycle which extends in

the cotangent direction and intersects S3 on the loop q(s).

Now let us wrap M D-branes on C. We then have the SU(M) Chern-Simons theory

on C as well as the SU(N) Chern-Simons theory on S3. In addition, we also have a new

sector of open string with one end on C and the other on S3. One can easily quantize the

topological string in this sector and obtain a complex scalar field living on the intersection,

namely the loop q(s), which transforms according to the bi-fundamental of SU(N) ⊗

SU(M). To see that there is one complex scalar field of this type, we note that, in the

relevant open string sector i.e. the Ramond sector, there are two states one with N = 2

U(1) charge −1/2 (a scalar) and the other with +1/2 (a 1-form). The physical states of

the topological string come from the sector with U(1) charge −1/2, and that turns out to

correspond to the scalar living on the loop q(s). The action for the scalar field is Gaussian,

and integrating it out gives the determinant,

Z = exp

[

− log det

(

d

ds
+ (Ai − Ãi)

dqi

ds

)]

, (3.2)

where A and Ã are the Chern-Simons gauge fields on S3 and C respectively. We can

evaluate the determinant by diagonalizing A and Ã (this is allowed since we are dealing

with the one-dimensional problem along the intersection). By using the formula

log det

[

d

ds
+ iθ

]

=
∞
∑

n=−∞

log(n + θ) = log sin(πθ) + const, (3.3)

4 The cycle C defined here is Lagrangian but is not necessarily special Lagrangian. In order

for to make the topological A-twist, it is sufficient that ω vanishes on C.
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we find

Z(U, V ) = exp
[

−tr log
(

U−1/2 ⊗ V 1/2 − U1/2 ⊗ V −1/2
)]

= exp
[

−tr log
(

1 − U ⊗ V −1
)]

= exp

[

∞
∑

n=1

1

n
trUntrV −n

]

,

(3.4)

where U and V are path-ordered exponentials of the gauge fields along the loop,

U = P exp

∮

A ∈ SU(N), V = P exp

∮

Ã ∈ SU(M),

and we used det U = det V = 1.

We are interested in taking N to infinity for a fixed M . We view the M branes on C as

a probe. In this context, integrating out the gauge fields A will leave us with an effective

theory on the probe brane, which is an SU(M) Chern-Simons on C plus some corrections.

Let us define

exp(−F (t, V )) =
1

∫

[DA] exp(−SCS(A; S3))

∫

[DA] exp

[

−SCS(A; S3) +

∞
∑

n=1

1

n
trUntrV −n

]

= 〈Z(U, V )〉S3

(3.5)

which can be viewed as the generating functional for all the observables of the Chern-

Simons gauge theory on S3 associated to the unknot. Then we obtain an effective theory

on the C brane, which is the deformation of the Chern-Simons theory as

S = SCS(Ã; C) + F (t, V ). (3.6)

Here SCS(Ã; C) deonotes the Chern-Simons action on C.

3.2. Evaluation

Let us evaluate 〈Z(U, V )〉S3 explicitly when the loop q(s) is the unknot, i.e. a simple

circle in S3 which represents a trivial knot. In this case it is known [11] that, for an

admissible representation Rj of SU(N), the Wilson loop expectation value is

〈TrRj
U〉S3 =

S0j

S00
, (3.7)
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where Sij is the modular transformation matrix for the characters of the SU(N) current

algebra at level k. If we know 〈TrRj
U〉 for all the representations, we can compute any

product of traces of Un in the fundamental representation by using the Frobenius relation,

trUn1 · · · trUnh =
∑

Y

χ(Y ; , n1, . . . , nh)TrR(Y )U, (3.8)

where Y is the Young tableau with n = n1 + · · · + nh boxes, R(Y ) is the corresponding

representation of SU(N), and χ(Y ; n1, · · · , nh) is the character of the representation of the

permutation group Sn corresponding to Y , evaluated for the permutation with cycles of

sizes n1, · · · , nh (for example, see [12]). To actually evaluate 〈trUn1 · · · trUnh〉S3 , we use

the following trick. We first note that S0j is given by

S0j =
∑

w∈W

ǫ(w) exp

[

−
2πi

k + N
(w(ρ), λj + ρ)

]

, (3.9)

where W is the finite Weyl group of SU(N), ǫ(w) = ±1 is the parity of the element w ∈ W,

λj is the weight vector for the representation j, and ρ is a half of the sum of positive roots.

Therefore S0j/S00 takes the form of the character of the finite dimensional group SU(N),

namely

〈TrRj
U〉S3 = TrRj

U0, (3.10)

where U0 is a fixed element of SU(N) which, in the fundamental representation, takes the

form

U0 =









e
πi(N−1)

k+N 0 0 · · · 0
0 e

(N−3)πi

k+N 0 · · · 0
0 0 · · · · · · 0
0 0 0 · · · e

πi(1−N)
k+N









. (3.11)

Since U0 in (3.10) is the same for any Rj , to evaluate correlation functions of the Wilson

loops, we can simply replace U by the c-number matrix U0 as

〈trUn1trUn2 · · · trUnh〉 = trUn1
0 trUn2

0 · · · trUnh

0 , (3.12)

and

trUn
0 =

sin
(

nNπ
k+N

)

sin
(

nπ
k+N

) = −i
ent/2 − e−nt/2

2 sin (nλ/2)
, (3.13)

where λ and t are as defined in (2.1). Substituting this back into (3.4), we find

〈Z(U, V )〉S3 = exp

[

−i

∞
∑

n=1

ent/2 − e−nt/2

2n sin (nλ/2)
trV −n

]

. (3.14)

As we will see, this is exactly the form we expect for the topological string on the resolved

conifold geometry.
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3.3. Conifold transition of the Wilson loop

In the case of the unknot, it is straightforward to identify the effect of the conifold

transition on the Lagrangian submanifold C. Let us start with T ∗S3 expressed as (2.10),

and consider the following anti-holomorphic involution on it.

y1,2 = ȳ1,2, y3,4 = −ȳ3,4. (3.15)

Since the symplectic form ω changes its sign under the involution, its fixed point set

is automatically a Lagrangian submanifold of T ∗S3. This will be our C. If we write

yµ = xµ + ipµ, the invariant locus of the action (3.15) is

p1,2 = 0, x3,4 = 0 (3.16)

and the equation (2.10) becomes

(x1)2 + (x2)2 = a2 + (p3)
2 + (p4)

2. (3.17)

Therefore C intersects with S3 along the equator of S3, i.e. the loop q(s) is the unknot.

The loop q(s) in this case is identified with

q(s) : (x1)2 + (x2)2 = a2, x3 = x4 = 0.

To define C after the conifold transition, we continue to identify it with the invariant

locus of the anti-holomorphic involution. To describe this explicitly let us use the coor-

dinates (u, v, z) or (ũ, ṽ, z−1) defined by (2.13) and (2.15). In these coordinates, the Z2

invariant set C is characterized by

u = ¯̃v, v = −¯̃u, (3.18)

and the conifold equation (2.14) restricted on C becomes

uū = vv̄. (3.19)

The complex coordinate on the base S2 defined by (2.15) is

z = −
u

v̄
. (3.20)

10



Because of (3.19), z is pure phase. Therefore one may view that C is a line bundle over

the equator |z| = 1 of S2 (the fiber being the subspace of O(−1) + O(−1) given by

u+ zv̄ = 0). In particular, C intersects with the base S2 along |z| = 1. See Figure 3. Since

the intersection is one-dimensional, C remains a Lagrangian submanifold even after the S2

is blown up and the symplectic form ω is modified.

v

u

S2

| z | = 1

u + z v = 0

Figure 3: After the conifold transition, the Lagrangian 3-cycle touches the base S2 along the

equator |z| = 1 and extends in the fiber directions following the constraint u + zv̄ = 0. The

worldsheet instanton can either wrap the northern hemisphere, as shown in the figure, ending on

the equator, or wrap the southern hemisphere.

According to the conjecture of [3], topological string with N D-branes wrapping on

the base S3 of T ∗S3 is equivalent to topological string on the resolved conifold without

D-branes. Here we are adding M D-branes on C on one side, and have traced it over to the

other side. On the T ∗S3 side, the effective theory on the M probe branes was the Chern-

Simons action plus some corrections (3.6). So the conjecture gives the falsifiable prediction

that, after the conifold transition, we should also see the effective theory on the brane to be

a deformed version of the Chern-Simons theory (3.6). Indeed it has been shown in [4] that

when there are holomorphic maps from Riemann surfaces with boundaries to the target

space, with boundaries lying on the D-brane, the Chern-Simons action gets deformed. In

the original geometry of T ∗S3, there are no such maps. However we got the deformation

by integrating the gauge theory on S3 and the scalar field living on the knot. At large N ,

we have made a transition to a new geometry without any other sectors. But now, there

are non-trivial holomorphic maps that can end on C! Since C intersects with the base S2
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of the resolved conifold along |z| = 1, there are holomorphic maps from Riemann surface

with a boundary with the image having the topology of disc. It is shown in [4] that the

effective theory on C should now be of the form as predicted in (3.6) with F (t, V ) given by

F (t, V ) =

∞
∑

g=0

∞
∑

h=1

∞
∑

n1,···,nh

λ2g−2+hFg;n1,···,nh
(t)trV n1 · · · trV nh . (3.21)

Here Fg;n1,···,nh
is the topological string amplitude on a genus-g surface with h boundaries.

The factors trV ni are picked up by the boundary of the worldsheet, which wraps |ni|-times

the equator of the S2 either clockwise ni > 0 or counterclockwise ni < 0 depending on

whether the worldsheet is mapped to the upper or the lower hemisphere.

To see that the Chern-Simons computation (3.14) agrees with this expectation, we

note that, in the topological string computation, amplitudes are assumed to be analytic in

t. By performing the analytic continuation5, we can rewrite 〈Z(U, V )〉 as

〈Z(U, V )〉S3 = exp

[

i
∞
∑

n=1

trV n + trV −n

2n sin (nλ/2)
e−nt/2

]

. (3.22)

This agrees with the general form (3.21) expected for the topological string amplitude. We

could make a more quantitative comparison by counting holomorphic maps. There are only

two basic holomorphic maps (with the image being a disc) with boundaries on C, which

are the upper and the lower hemispheres of the S2, together with their multicoverings, and

with the higher genus coverings of them (see Figure 3). In particular, the comparison of

(3.21) and (3.22) suggests that all the relevant instantons have one boundary ending on C,

wrapping the equator of S2 either clockwise or counterclockwise. It would be interesting

to verify the prediction of the Chern-Simons computation (3.22) explicitly using the world-

sheet instanton calculus extending the results from the closed string case to open strings.

In this paper, we will take an alternative route, by giving the target space interpretation of

F (t, V ) and evaluate it explicitly by the Schwinger-type computation, similar to what was

done in the closed string case in [10]. We will find that the prediction (3.22) is precisely

reproduced in this way.

5 By the analytic continuation, we can replace
∑

∞

n=1
n2atrV nent/2 by −

∑

∞

n=1
n2atrV −ne−nt/2+

const for any integer a.
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4. Target Space Interpretation

Topological strings are useful in computing superpotential-type terms in the context

of superstring compactification on Calabi-Yau manifold. In particular it is known [13] that

topological closed strings amplitude Fg(ti) at genus g, where ti are the Kähler moduli of

a Calabi-Yau threefold, computes the low energy effective theory terms of the Type IIA

compactification,
∫

d4xd4θFg(ti)
(

W 2
)g

, (4.1)

where the integral is on the 4d N = 2 superspace, ti denote a vector multiplet with the

Kähler expectation values as the top element. Wαβ denote the graviphoton multiplet (with

self-dual graviphoton field strength as the top component), α, β denote symmetric spinor

indices and

W 2 = WαβWα′β′ǫαα′

ǫββ′

.

In fact it was through this connection where Fg(ti) were reinterpreted in [10] in terms

of spectrum of wrapped M2/D2 branes in the Calabi-Yau threefold. In particular it was

shown that

∑

g

Fg(ti)λ
2g−2 =

∞
∑

n=1

∑

Q∈H2(M,Z)

∞
∑

s=0

NQ,s (2sin(nλ/2))
2s−2 e−ntQ

n
,

where tQ =
∫

Q
k is the area of the cycle and NQ,s denotes the (net) number of M2 brane

bound states of charge Q and SU(2)L content
[

2(0) + ( 1
2)

]⊗s
(for more detail see [10]). This

was obtained by computing the effective one-loop Schwinger-type correction to the terms

of the form R2
+F 2g−2

+ , with D2 brane bound states going around the loop [14]. The sum

over n above arises because every D2 brane can bind exactly once to an arbitrary number

of D0 branes, i.e. every M2 bound state can have arbitrary momentum around the circle.

In other words the sum over arbitrary number of D0 branes gives rise to a delta function,

which effectively replaces the Schwinger time integral by a discrete sum represented by n

above. The factor of (2 sin(nλ/2))
2s−2

arises from a (2 sin(nλ/2))
2s

having to do with the

extra contribution of a states of spin content
[

2(0) + ( 1
2)

]⊗s
running around the loop in

the Schwinger computation, as compared to a spin 0 which would give (2 sin(nλ/2))
−2

.

We would like to repeat an analogous scenario for reinterpretation of topological A-

model with D-branes which include a supersymmetric 3-cycle in the internal Calabi-Yau

threefold as its worldvolume. There are various cases one can consider. We will consider in

particular the Type IIA compactification on a Calabi-Yau, with one additional D4 brane
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wrapped around a supersymmetric 3-cycle S and filling an R2 ⊂ R4 in the uncompactified

spacetime. Suppose the first Betti number of S is r = b1(S). Then on R2 subspace of R4

live r (2,2) supersymmetric chiral superfields Σi corresponding to the scalar moduli of S

in the Calabi-Yau threefold [15]. The top component of this chiral field is a complex field

whose phase is related to the expectation value of the Wilson line of the gauge field A on

the D4-brane around the corresponding 1-cycle of S. Moreover Σi can be viewed as a (2, 2)

vector multiplet on R2. The U(1) gauge field on R2 corresponds to the magnetic 2-form B

field on the D4 brane dB = ∗dA and taking the component of B along the corresponding

cycle in S, to yield a gauge field on R2. One could generalize this by considering M copies

of the D4 brane. We will get in this case M copies of the U(1) gauge field and so the

fields Σα
i will be naturally in the adjoint of U(1)M . The permutation groups SM which

is the symmetry of D4 branes acts on this set of fields to permute the Σi. Giving vev

to 〈Σα
i 〉 = θα

i allows us to think of each i-direction a diagonal U(M) matrix of holonomy

given by diagonal elements exp(iθα
i ). Let us denote this U(M) matrix by Vi.

Now we are ready to state what physical amplitude the topological string computes

in the presence of D-branes. The topological strings in this case computes

∫

d4xd4θδ2(x)δ2(θ)Fg,h(Vi, t)
(

W 2
)g

(W · v)
h−1

, (4.2)

where W · v = Wαβvµνγµν
αβ, and vµν denotes the vector orthogonal to the noncompact

worldvolume of D4 brane, and γµν are the usual gamma matrices. The delta function

above localizes the contribution to the superspace defined by the noncompact part of the

D4 brane. Here

Fg,h(Vi, t) =
∑

ni
j

Fg,ni
α
(t)

h
∏

α=1

tr ⊗
b1(S)
i=1 V

ni
α

i , (4.3)

and Fg,ni
α
(t) denotes the topological string amplitude at genus g with h holes, labeled by

α = 1, · · · , h and where on each hole α the circle on the Riemann surface is mapped to the

boundary of S characterized by the H1(S) class ni
α. The trace factors above are just the

usual Chan-Paton factors. The derivation of (4.2) is similar to that for the closed string

case and can be done most conveniently in the Berkovits formalism [16], similar to what

was done in the closed string case for the Calabi-Yau topological amplitudes in [17].

As in the closed string case, we would like to connect (4.2) with contributions due

to wrapped D2 branes. The main additional ingredient in this case is that the D2 brane

can end on the D4 brane S. This will give a state magnetically charged under the U(1)M
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living on the D4 brane. One term included in (4.2) after doing the superspace integral is a

term of the form RF 2g−2+h where F denotes the expectation value of the 4d graviphoton

field strength restricted to the uncompactified worldvolume of the D4 brane. If we give a

vev to the graviphoton, 〈F 〉 = λ, this would compute correction to
∫

R as a function of

F (t, Vi) =
∑

g,h

Fg,h(t, Vi)λ
2g−2+h.

This is the summed up version of the topological string amplitudes over all genera and

holes, where the role of the string coupling constant λ is played by the vev of F .

We thus compute the contribution of magnetically charged D4 branes ending on S

to
∫

R in the presence of the background F . Each such particle will transform according

to some representation R for ⊗iUi(1)M/SM , where i runs from i = 1, · · · , b1(S). We in

principle do not know if they form representation of U(M) (for each element of b1(S))6,

but nevertheless we can assign them to representatitions of U(M) if we allow negative

multiplicity. This is because any SM symmetric spectrum for U(1)M can be written as

combination of weights appearing in various representations of U(M). From this point

on, we will therefore take R to be a representation of U(M) (for each b1(S)) and allow

negative multiplicities. In addition every such state is characterized by its bulk D2 brane

charge Q ∈ H2(M, S), i.e. a 2-cycle in the Calabi-Yau threefold ending on S. Every

such field will be represented by some spin s field in 2 dimensions, where 2s is a positive

or negative integer. To determine s, it is most convenient to view it from the M-theory

perspective; In the strong coupling limit this geometry gets related to M-theory on the

Calabi-Yau threefold, with M5 brane filling S×R3. The magnetic charged state correspond

to particles in 3 dimensions with M2 branes ending on the M5 brane. The little group

of massive particles in three dimensions is SO(2) and so the particle carries a 3d spin s.

Upon reduction to 2d, this particle is realized by a field with spin s. Moreover each such

particle can be bound to an arbitrary number of D0 branes. This is clear also from the

M-theory perspective as each particle carries an arbitrary momentum as we go down from

3 dimensions to 2 on a circle. The computation then is as in the closed string case, where

we effectively get the Schwinger computation for a scalar field (with the supersymmetry

being responsible for generating
∫

R), and

F (t, Vi) = i
∞
∑

n=−∞

∑

R,Q,s

∫ ∞

0+

dτ

τ

NR,Q,s

2sin(τλ/2)
eisλτ Tr e(−mR,Q+2πin)τ .

6 There is a priori no reason why M coincident branes give rise to a magnetic U(M) gauge

theory.
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Here NR,Q,s denotes the net number of magnetically charged states with charges given by

R, Q and spin s. The parameter τ is the Schwinger time, the sum over n is the sum over

the D0 brane bound states, and mR,Q + 2πin denotes the BPS mass of the wrapped D2

brane, which is given by

Tr e−mR,Q+2πin = e−tQ+2πinTrR

b1(S)
∏

i=1

Vi,

where tQ =
∫

Q
k. To see how the above expression arises, note that for one D4 brane

this follows from the fact that
∫

Q
k is just the bulk contribution to the BPS formula and

TrR
∏b1(S)

i=1 Vi arises from the fact that giving vev to the U(1) fields for each one gives a

BPS mass qθ, where q is the charge under U(1) and θ denotes the vev of a the scalar in

U(1) multiplet. Doing the sum over n in the above gives a delta function
∑∞

n=−∞ δ(τ −n),

which converts the τ integral into a sum, and we obtain

F (t, Vi) = i
∞
∑

n=1

∑

R,Q,s

NR,Q,s

2nsin(nλ/2)
en(−tQ+isλ)TrR

b1(S)
∏

i=1

V n
i . (4.4)

Note that to compare it with (4.3) one has to expand the trace from representation R in

terms of fundamental representation of U(M). Note that the above expression has strong

integrality predictions which would be interesting to verify.

Note that for the special case of g = 0, h = 1, i.e. the disc amplitude (4.2) computes

theta terms in gauge theory. Namely for each diagonal element of Vi, denoted by exp(iθα
i )

the term
∂F0,1

∂θα
i

(t, Vi),

denotes the correction to the theta term
∫

Fα
i where Fα

i denotes the field strength for the

corresponding U(1) gauge field in 2d. From (4.4) we can read the prediction for this, which

is given by

i

∞
∑

n=1

∑

vα
i
∈R,Q,s

NR,Q,s qα
i

1

n
e−n(tQ+ivα

i θα
i )

= −i
∑

vα
i
∈R,Q,s

NR,Q,s qα
i log(1 − e−tQ−ivα

i θα
i )

= −i

∞
∑

m=−∞

∑

vα
i
∈R,Q,s

NR,Q,s qα
i log(tQ + iv · θ + 2πim)

,
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which is the expected correction to the theta angle in 2d N = 2 gauge theory from charged

matters with BPS masses tQ + iv · θ + 2πim and charge qα
i (see in particular a similar

correction which was studied in [18]). Note that from (4.4) we can write F0,1 in the form7,

F0,1(t, Vi) = i
∞
∑

n=1

∑

v∈R,Q,s

NR,Q,s
1

n2
e−n(tQ+iv·θ). (4.5)

4.1. Applications to N = 1, d = 4 systems

In the above to interpret the topological string amplitudes with boundaries, we used

a D4 brane system with worldvolume R2 × S. Instead we could have used a D6 brane

system with worldvolume R4 × S. This would only make sense in the context of non-

compact Calabi-Yau manifolds (otherwise the flux of D6 brane charge has nowhere to go).

Then again the fields Vi correspond to chiral fields in d = 4. In this case the interpretation

of the topological amplitudes given in (4.2) gets modified. The simplest case to consider

turns out to be h = 1 and g arbitrary. In this case the topological string amplitudes

compute
∫

d4xd4θδ2(θ)Fg,1(Vi, t)
(

W 2
)g

, (4.6)

and in particular F0,1, i.e. topological disc amplitudes computes superpotential terms for

N=1 theories in four dimensions. This has already been noted in [13][19] and is being

further studied in [20]. Let us call F0,1 = W (Vi, t), the superpotential. From the formula

(4.5) we thus have a general expression for the superpotential W in terms of the spectrum

of BPS states namely

W (t, Vi) =
∞
∑

n=1

∑

v∈R,Q,s

NR,Q,s
1

n2
e−n(tQ+iv·θ). (4.7)

A special simple case of this is when we have a single brane where Vi can be viewed

as a complex superfield eiθi . Given that our derivation of this term seems to require

2-dimensional concepts, it is natural to ask if we could also reproduce this from a 4-

dimensional viewpoint. As we will see this is also possible. In the case of D6 branes with

worldvolume R4 × S, the magnetically charge branes are D4 branes ending on the D6

brane. This will correspond to a domain wall in R4. The expression (4.7) then suggests

that we should be able to relate the superpotential term, to the structure of domain walls

7 As before we are dropping terms polynomial in t and θ’s which would have corresponded to

n = 0 in the above sum.
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by “integrating them out.” However unlike the 2-dimensional case, we cannot send the

domain walls around the loop, so the question is how would we obtain such an expression

by integrating fields out in the 4d case.

A hint comes from the recent work [21] and a similar case studied in [22], where it

was shown how extra fields are relevant for reproducing the domain wall structure. For

each domain wall, we introduce a field Yα as a chiral superfield, which characterizes it by

shifting by 2πi as we go across the domain wall. Since we can have a priori an arbitrary

number of domain walls, we must thus have infinitely many vacua, given by shifting the

expectation value of Yα by 2πin. Moreover the tension for the domain wall should be given

by the BPS formula,

W (Y + 2πi) − W (Y ) = 2πiZ. (4.8)

The superpotential satisfying these constraints which was found in [21] in a similar context

is given by

W = ZαYα + exp(−Yα).

Note that the critical points obeying dY W = 0 are given by

exp(−Yα) = Zα,

namely Yα = −logZα + 2πin, and that the equation (4.8) is satisfied. If we integrate out

the hidden variable Yα we obtain by replacing Yα by its critical value a superpotential

term

W = Zα(1 − logZα). (4.9)

In the case at hand for each element v in a representation v ∈ R of the magnetic charges,

and charge Q in the bulk we have NR,Q,0 net BPS domain walls for each integer m, with

BPS tension

Zα = tQ + iv · θ + 2πim.

Plugging this into (4.9) and summing over all such states, we obtain the formula (4.7).
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4.2. Application to D-brane on O(−1) + O(−1) over S2

In this section we will show how the results of the previous section are in agreement

with the above analysis, and in particular gives an independent derivation for topological

A-model in O(−1)+O(−1) over S2 with the 3 cycle C we have discussed. In that case the

b1(C) = 1 and so we have only one chiral field, which gives rise to one holonomy matrix

V . It is clear what the magnetically charges states are; they correspond to the D2 brane

wrapping the northern hemisphere and ending on S or the one wrapping the southern

hemisphere and ending on S. The first one has (tQ,R) given by (t/2, fundamental) and

the second has (t/2, anti-fundamental). They both have spin 0, as there is no moduli for

them. We thus obtain from (4.4):

F (t, V ) = i

∞
∑

n=1

trV n + trV −n

2n sin(nλ/2)
e−nt/2,

which agrees with the knot invariant predicted for the unknot, as discussed in the previous

section, with t = 2πiN/(k + N) and λ = 2π/(k + N).

5. Suggestions for Future Work

Here we have mainly concentrated in computing the expectation value of the Wilson

loop for a simple knot, and have found a striking agreement with the predictions of topolog-

ical strings in the Large N limit, anticipated from the large N Chern-Simons/topological

string duality proposed in [3]. This was done by independently computing both sides and

checking that they agree. On the topological string we used D-branes ending on branes to

get a prediction for what the topological string should reduce to.

It would be nice to generalize this for arbitrary knots. There are two obstacles to

overcome. On the Chern-Simons side we need to compute

〈Z(U, V )〉S3 =

〈

exp

[

∞
∑

n=1

tr
1

n
UntrV −n

]〉

S3

.

This is already rather difficult to do, even though in principle it should be possible. The

reason for this is the appearance of all the powers of trUn. In particular we need to know

all correlations 〈trUn1 · · · trUnk〉. For a general knot, the correlators do not decouple,

unlike the unknot (3.12). Even though it is in principle possible to compute them, they

have not been computed in the full generality we need. Nevertheless the structure of the
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answer for the 〈trU · · · trU〉 dictated by the Skein relations [11] are compatible with the

general answer expected for the knot invariants, which follows from the discussion in the

previous section, in particular (4.4). Note that we are mapping all the knot invariants

for arbitrary representations, into new integer invariants NQ,R,s, where two different Q’s

differ by an integer (so they can be parametrized by an integer), s denotes a positive

(or zero) spin representation, and R is a representation of U(M) for any M . We expect

that for each knot R will stabilize for large enough M . What we mean by this is that it

will given by representations with finite number of boxes in the Young tableau (or whose

conjugate has finite number of boxes). Thus for M large enough we have ‘probed’ the full

content of R representation (for example for the unknot we found that already M = 1

is sufficient and the structure for higher M ’s can be induced from that). This may be a

very useful reformulation of knot invariants, somewhat analogous to the reformulation of

Gromov-Witten invariants, in terms of the new invariants defined in [10]. In particular the

knot invariants would be given by8

〈Z(U, V )〉S3 = exp



i

∞
∑

n=1

∑

R,Q,s

NR,Q,s

2nsin(nλ/2)
en(−tQ+isλ)TrRV n





For understanding this new formulation of knot invariants, we also have to construct

a Largrangian submanifold for an arbitrary knot, on the resolution of the conifold, gen-

eralizing our explicit construction for the unknot. That there should be such a canonical

Lagrangian submanifold for each knot is natural. This is because we already have identified,

for an arbitrary knot, the Lagrangian submanifold on the T ∗S3 side, and small resolution

does not change the geometry of the Lagrangian submanifold at infinity. So with some

deformation near the origin we should be able to obtain the Lagrangian submanifold after

the conifold singularity is blown up. Then we are predicting that the topological string

amplitudes, whose answer must have the structure (4.4), compute the knot invariants.

This would be a very important subject to develop, not only for a deeper understanding of

knot invariants, but also for a better understanding of topological strings with boundaries.

8 In comparing with the knot invariants, it is natural to do analytic continutation, as we

have seen in the case of the unknot, in the case where the representation are tensor products of

the fundamental representation of U(M) (as opposed to tensor products of the anti-fundamental

representation). This would be equivalent to replacing for those representations the corresponding

tQ → −tQ, and changing the sign of the power of V and putting an overall sign in front of those

terms.
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Also we have seen in this paper how we can compute superpotential terms on the

Type IIA compactifications on Calabi-Yau threefold in the presence of D6 brane, at least

in some simple cases. In a more general case, doing the computation on the mirror should

be simpler [23]. Some examples of this have been recently studied in [20]. This may well

lead to a method for geometric engineering of N = 1 and its solution in terms of the type

IIB mirror. Namely, we start with the usual geometric engineering of N = 2, introduce

additional D6 branes to break the N = 2 to N = 1 (effectively giving mass terms to the

adjoint fields) and then using the type IIB mirror to compute the superpotential terms

generated, very much the way prepotential for N = 2 theories were computed using mirror

symmetry. This would be very exciting to develop further.
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Note Added

After the completion of this work, beautiful computations were done [24] for checking

the predictions made in this paper for the case of torus knots and finding impressive

agreement with what was anticipated. We would like to thank J. Labastida and M. Mariño,

who informed us of their computation prior to publication which prompted us to correct

an error we had made in the Schwinger computation in an earlier version of this paper.
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