
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 20, Number 1, January 1989 

KNOTS ARE DETERMINED BY THEIR COMPLEMENTS 

C. McA. GORDON AND J. LUECKE 

Two (smooth or PL) knots K, K' in S3 are equivalent if there exists a 
homeomorphism h: S3 —• S3 such that h(K) = K'. This implies that their 
complements S3 - K and S3 - K' are homeomorphic. Here we announce 
the converse implication. 

THEOREM 1. If two knots have homeomorphic complements then they 
are equivalent. 

This answers a question apparently first raised by Tietze [T, p. 83]. 
It was previously known that there were at most two knots with a given 

complement [CGLS, Corollary 3]. 
Whitten [W] has shown that prime knots with isomorphic groups have 

homeomorphic complements. Hence we have 

COROLLARY 1.1. If two prime knots have isomorphic groups then they 
are equivalent. 

The notion of equivalence of knots can be strengthened by saying that 
K and K' are isotopic if the above homeomorphism h is isotopic to the 
identity, or equivalently, orientation-preserving. The analog of Theorem 
1 holds in this setting too: if two knots have complements which are home
omorphic by an orientation-preserving homeomorphism, then they are iso
topic. 

Theorem 1 and its orientation-preserving version are easy consequences 
of the following theorem concerning Dehn surgery. 

THEOREM 2. Nontrivial Dehn surgery on a nontrivial knot never yields 
S3. 

The arguments used to prove Theorem 2 also lead to restrictions on 
when Dehn surgery on a knot yields a reducible manifold. (It is conjec
tured that this happens only with torus knots and cable knots.) 

THEOREM 3. If a 3-manifold obtained by Dehn surgery on a nontrivial 
knot is reducible then it has a lens space as a connected summand. 

COROLLARY 3.1. Any homology 3-sphere obtained by Dehn surgery on a 
knot is irreducible. 

Theorem 3 also gives a new proof of the following result of Gabai [Ga], 
which includes the Property R Conjecture. 
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COROLLARY 3.2 (GABAI). Any 3-manifold obtained by a 0-framed sur
gery on a nontrivial knot is irreducible. 

SKETCH PROOF OF THEOREM 2. Let K be a knot in S3, with tubular 
neighborhood N(K), and let X = S3 - N(K) be the exterior of K. Let 
p be a slope on dX, that is, the unoriented isotopy class of an essential 
simple loop on dX. Let K(p) denote the closed 3-manifold obtained by 
p-Dehn surgery on K, in other words, the result of attaching a solid torus 
V to X so that p bounds a disk in V. Let p be the slope of a meridian 
of K. Then the trivial Dehn surgery yields K(p) = S3. Let p' be another 
slope on dX, having minimal geometric intersection number n > 1 with 
//. 

The starting point of the proof of Theorem 2 is the following proposi
tion. David Gabai has independently proved this proposition. 

PROPOSITION 1. IfK(p') is homeomorphic to S3, then there exist planar 
surfaces P, P' properly embedded in X such that 

(i) dP(dP') consists of parallel copies of p (resp. p')\ 
(ii) P and P' are in mutual general position, and each component ofdP 

intersects each component ofdP' in n points; 
(iii) no arc ofP n P' is boundary-parallel in either P or P'. 

The construction of P and P' is based on [Ga, §4(A)]. P is the inter
section with X of a suitable level 2-sphere in S3 for a height function h 
with respect to which K is in thin presentation [Ga, p. 491]. Since K(pf) is 
homeomorphic to S3, the core of the attached solid torus F is a knot K', 
say, and P' likewise comes from a level 2-sphere of a height function h' 
with respect to which K' is in thin presentation. Given P', the argument 
in [Ga, §4(A)] produces P such that (i) and (ii) hold and no arc of P n P' 
is boundary-parallel in P'. Similarly, given P, one can find P' satisfying 
(i) and (ii) such that no arc on P n P' is boundary-parallel in P. The 
additional content of Proposition 1 is that we can find P and P' so that 
these conditions hold simultaneously. 

To do this, we pick a 1-parameter family of level 2-spheres of h in 
K(p) between an adjacent local maximum and local minimum of K. This 
family becomes a 1-parameter family {P(X)} of punctured 2-spheres in X. 
We put the family {P(X)} in general position with respect to the height 
function h'\X. This means that for all but finitely many X, h'\P(X) is a 
Morse function, and each P(X) such that h'\P(X) is not Morse has a single 
singularity corresponding to a birth, death or an exchange of tangencies. 

Assume for a contradiction that Proposition 1 is false. The argument 
in [Ga, §4(A)], using the thin presentation of AT', allows one to associate to 
each P(X) such that h'\P{X) is Morse, a punctured level 2-sphere of h', say 
P[> which intersects P(X) transversely and is such that P(X) D P[ contains 
an arc which is boundary-parallel in P[. If the corresponding arc in dP[ 
lies above (below) P(X) in K{p) then P{X) is called low (high, respectively), 
as in [Ga, §4(A)]. One observes that as X increases, P{X) starts off high and 
ends up low. By the thinness of K under h, a change from high to low in 
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{P(A)} can only occur at a Ao such that h'\P(Xo) is not Morse. One analyses 
what happens at 2>(Ao) using the special way in which P'x is constructed for 
P(A), and eventually arrives at a contradiction to the thinness of K under 
h. 

To prove Theorem 2 we now carry out a combinatorial analysis of the 
intersection of the planar surfaces P and P', ultimately deriving a contra
diction. More precisely, we cyclically number the boundary components 
of P(P') in the order they occur on dX, and label the endpoints of the arcs 
of P n P' in P(P') with the corresponding boundary component of P'(P). 
Assigning (arbitrary) orientations to P and P' allows us to refer to + and 
- boundary components of P and P', according to the direction of the 
induced orientation of a boundary component as it lies on dX. Then for 
any arc a of P n P', the boundary components of P joined by a on P have 
the same sign if and only if the boundary components of P' joined by a 
on P' have opposite sign. Capping off the boundary components of P(P') 
with disks, we regard these disks as forming the 'fat' vertices of a graph 
r (P) in S2, the edges of T(P) corresponding to the arcs of PnP' in P(P'). 
We thus obtain two labeled graphs in S2, whose edges are in one-one corre
spondence, such that the labeling satisfies the sign condition noted above, 
and such that neither graph contains a trivial loop (by condition (iii) of 
Proposition 1). 

A (disk) face of F corresponds to a subdisk of P' which we may regard 
as lying in K(ju) with its boundary contained in P U dN(K). Similarly, 
the faces of F may be regarded as lying in K(/i'). This allows us to infer 
topological properties of K(/i) {K(/À')) from graph-theoretic properties of 
F(T). 

For n > 2, this program is already carried out in [CGLS, §2.5 and 2.6; 
see Proposition 2.5.6]. There it is shown that given a pair of graphs T, F as 
above, one of them, say T, contains a special kind of face (a Scharlemann 
cycle), which implies that K(ii') contains a punctured lens space. 

We therefore focus on the case n = 1, where the above assertion is false 
and more delicate graph-theoretic arguments are needed. To describe the 
result, note that a disk face of F (say) corresponds to a disk E in P' whose 
boundary dE can be expressed as a sequence of arcs a\,b\t... ,ak>bk, 
where a,- lies in P n P' and b\ lies in dN(K), 1 < / <k. If the boundary 
components of P are labeled l,...,p (in order on dN(K)), then each bt 
joins some consecutive pair of boundary components jtji + 1. Orienting 
dE, we regard bt as representing (jiJt + 1) or -(ji>ji + 1) according as bt 
runs from jt to ji + 1 or vice versa. In this way, dE represents an element 
a(E) = (a\ (E),..., ap(E)) of the free abelian group on the set of consecu
tive label-pairs ( 1,2), (2,3),. . . , (p - 1, p), (p, 1). We say that F represents 
all types if there exists a collection 8? of disk faces of F such that 

(1) for each E e g? and for each label-pair (j,j + 1), all occurrences 
of U» 7 + 1) in 02? have the same sign; 
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(2) for each sequence (e\,...,ep)9 where c,- = ±, 1 < / < p, there 
exists E G I? and r\ = ± such that 

sign a/(is) = J/e, for all i such that at(E) ^ 0. 

(Clearly (1) and (2) are independent of the orientation of dE.) 
We remark that if F contains a Scharlemann cycle E, then taking W = 

{E} shows that F represents all types. 
We prove the following result. 

PROPOSITION 2. Let T, F be a pair of graphs as described above. Either 
T contains a Scharlemann cycle or P represents all types. 

The final step in the proof of Theorem 2 is supplied by the following 
proposition (in which we do not assume that K{p') is S3). 

PROPOSITION 3. Suppose that X contains properly embedded planar sur
faces P,P' satisfying conditions (i), (ii) and (iii) of Proposition 1, where P 
is the intersection with X of a level 2-sphere in a thin presentation ofK. Let 
T, P be the associated graphs. Then P does not represent all types. 

Proposition 3 is proved by showing that under the given hypotheses, a 
collection 1? of faces of P representing all types would ultimately lead to 
the existence of a punctured lens space in K(ju) = *S3, which is absurd. 

Propositions 2 and 3 imply that K(JLI') contains a punctured lens space. 
Since, in the context of Theorem 2, K(nf) is also homeomorphic to S3, 
this contradiction completes the proof. 

SKETCH PROOF OF THEOREM 3. Let p' be a slope on dX such that K{p') 
is reducible. Then there exists a properly embedded, incompressible (and 
non-boundary-parallel) planar surface P' in X whose boundary compo
nents have slope //'. By [Ga, §4(A)] there is a planar surface P in X, 
coming from a level sphere in a thin presentation of K, such that P and 
P' satisfy conditions (i), (ii), and (iii) of Proposition 1. Exactly as in the 
proof of Theorem 2, Propositions 2 and 3 now show that K{fx') contains 
a punctured lens space. 

We understand that David Gabai and Will Kazez, using a similar ap
proach, have independently obtained some partial results on Theorem 2. 
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