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Abstract—Phishing is a major problem on the Web. Despite
the significant attention it has received over the years, there has
been no definitive solution. While the state-of-the-art solutions
have reasonably good performance, they require a large amount
of training data and are not adept at detecting phishing attacks
against new targets.

In this paper, we begin with two core observations: (a) although
phishers try to make a phishing webpage look similar to its target,
they do not have unlimited freedom in structuring the phishing
webpage; and (b) a webpage can be characterized by a small set
of key terms; how these key terms are used in different parts
of a webpage is different in the case of legitimate and phishing
webpages. Based on these observations, we develop a phishing
detection system with several notable properties: it requires
very little training data, scales well to much larger test data,
is language-independent, fast, resilient to adaptive attacks and
implemented entirely on client-side. In addition, we developed
a target identification component that can identify the target
website that a phishing webpage is attempting to mimic. The
target detection component is faster than previously reported
systems and can help minimize false positives in our phishing
detection system.

I. INTRODUCTION

Phishing webpages (“phishs”) lure unsuspecting web surfers

into revealing their credentials. As a major security concern

on the web, phishing has attracted the attention of many

researchers and practitioners. There is a wealth of literature,

tools and techniques for helping web surfers to detect and

avoid phishing webpages. Nevertheless, phishing detection

remains an arms race with no definitive solution. State-of-the-

art large scale real-time phishing detection techniques [?] are

capable of identifying phishing webpages with high accuracy

(>99%) while achieving very low rates of misclassifying

legitimate webpages (<0.1%). However, many of these tech-

niques, which use machine learning, rely on millions of

static features, primarily taking the bag-of-words approach.

This implies two major weaknesses: (a) they need a huge

amount of labeled data to train their classification models;

and (b) they are language- and brand-dependent and not

very effective at identifying new phishing webpages targeting

brands that were not already observed in previous attacks.

Commercial providers of phishing detection solutions struggle

with obtaining and maintaining labeled training data. From

the deployability perspective, solutions that require minimal

training data are thus very attractive.

In this paper, we introduce a new approach that avoids these

drawbacks. Our goal is to identify whether a given webpage

is a phish, and, if it is, identify the target it is trying to mimic.

Our approach is based on two core conjectures:

• Modeling phisher limitations: To increase their chances

of success, phishers try to make their phish mimic its

target closely and obscure any signal that might tip off the

victim. However, in crafting the structure of the phishing

webpage, phishers are restricted in two significant ways.

First, external hyperlinks in the phishing webpage, espe-

cially those pointing to the target, are to domains outside

the control of phishers. Second, while phishers can freely

change most parts of the phishing page, the latter part

of its domain name is constrained as they are limited

to domains that the phishers control. We conjecture that

by modeling these limitations in our phishing detection

classifier, we can improve its effectiveness.

• Measuring consistency in term usage: A webpage can

be represented by a collection of key terms that occur

in multiple parts of the page such as its body text, title,

domain name, other parts of the URL etc. We conjecture

that the way in which these terms are used in different

parts of the page will be different in legitimate and

phishing webpages.

Based on these conjectures, we develop and evaluate a

phishing detection system. We use comparatively few (212)

but relevant features. This allows our system, even with

very little labeled training data, to have high accuracy and

low rate of mislabeling legitimate websites. By modeling

inherent phisher limitations in our feature set, the system

is resilient to adaptive attackers who dynamically change a

phish to circumvent detection. Our basic phishing detector

component (Section IVPhishing Detection Systemsection.4)

does not require online access to centralized information and

is fast. Therefore, it is highly suited for a privacy-friendly

client-side implementation. Our target brand identification

component (Section ??) uses a simple technique to extract

a set of keyterms characterizing a webpage and, in case it

is a phish, uses the keyterms set to identify its target. Both

components eschew the bag-of-words approach and are thus

not limited to specific languages or targeted brands.



We claim the following contributions:

• a new set of features to detect phishing webpages

(Section IV-BComputing Featuressubsection.4.2) and a

classifier, built using these features, with the following

properties that distinguish it from previous work:

– it learns a generalized model of phishing and legitimate

webpages from a small training set (few thousands).

– it is language- and brand-independent.

– its features are extracted only from information re-

trieved by a web browser from the webpage and it does

not require online access to centralized information.

Hence it admits a client-side-only implementation that

offers several advantages including (a) better privacy,

(b) real-time protection and (c) resilient to phishing

webpages that return different contents to different

clients.

• comprehensive evaluation of this system, showing that

its accuracy (>99%) and misclassification rate (<0.1%)

are comparable to prior work while using significantly

smaller training data. (Section V-CPhishing Webpage

Classificationsubsection.5.3)

II. BACKGROUND

A. Phishing

Phishing refers to the class of attacks where a victim is lured

to a fake webpage masquerading as a target website and is

deceived into disclosing personal data or credentials. Phishing

campaigns are typically conducted using spam emails to drive

users to fake websites [?]. Impersonation techniques range

from technical subterfuges (email spoofing, DNS spoofing,

etc.) to social engineering. The former is used by techni-

cally skilled phishers while unskilled phishers resort to the

latter [?]. Phishing webpages mimic the look and feel of their

target websites [?]. In order to make the phishing webpages

believable, phishers may embed some content (HTML code,

images, etc.) taken directly from the target website and use

relatively little content that they themselves host [?]. This

includes outgoing links pointing to the target website. They

also use keywords referring to the target in different elements

of the phishing webpage (title, text, images, links) [?], [?],

[?], [?]. In this paper, our focus is on detection of phishing

webpages created by an attacker and hosted on his own web

server or on someone else’s compromised web server.

B. URL Structure

Webpages are addressed by a uniform resource locator

(URL). Fig. 1Structure of a URLfigure.caption.1 shows rele-

vant parts in the structure of a typical URL. It begins with the

protocol used to access the page. The fully qualified domain

name (FQDN) identifies the server hosting the webpage. It

consists of a registered domain name (RDN) and prefix which

we refer to as subdomains. A phisher has full control over the

subdomains portion and can set it to any value. The RDN

portion is constrained since it has to be registered with a

domain name registrar. RDN itself consists of two parts: a

public suffix (ps) preceded by a main level domain (mld). The

URL may also have a path and query components which,

too, can be changed by the phisher at will. We use the term

FreeURL to refer to those parts of the URL that are fully

controllable by the phisher.

protocol://[subdomains.]mld.ps[/path][?query]

FQDN

RDNFreeURL FreeURL

Fig. 1: Structure of a URL

Consider an example URL:

https://www.amazon.co.uk/ap/signin? encoding=UTF8

We can identify the following components:

• protocol = https

• FQDN = www.amazon.co.uk

• RDN = amazon.co.uk

• mld = amazon

• FreeURL = {www, /ap/signin? encoding=UTF8}

C. Data Sources

From analyzing phishing webpages, we identify the follow-

ing data sources, available to a web browser when it loads a

webpage, that can be useful in detecting phishing webpages:

• Starting URL: the URL given to the user to access the

website. It can be distributed in emails, instant messages,

websites, documents, etc.

• Landing URL: the final URL pointing to the actual

content presented to the user in his web browser. This

is the URL present in the browser address bar when the

page is completely loaded.

• Redirection chain: the set of URLs crossed to go from

the starting URL to the landing URL (including both).

• Logged links: the set of URLs logged by the browser

while loading the page. They point to sources from which

embedded content (code, images, etc.) in the webpage are

loaded.

• HTML: the HTML source code of the webpage and

IFrames included in the page. We consider four elements

extracted from this source code:

– Text: text contained between <body> HTML tags

(actually rendered on user’s display).

– Title: text contained between <title> HTML tags (ap-

pears in the browser tab title).

– HREF links: the set of URLs representing outgoing

links in the webpage.

– Copyright: the copyright notice, if any, in Text.

• Screenshot: an image capture of the loaded webpage.

III. DESIGN OVERVIEW

A. Modeling Phisher Limitations

In Section II-BURL Structuresubsection.2.2, we saw that

even on systems they control, phishers are constrained from



freely constructing URLs to pages they host. Similarly, in Sec-

tion II-APhishingsubsection.2.1, we saw that in order to max-

imize the believability of their phishing sites, phishers include

content from URLs outside their control. Thus, we divide the

data sources from Section II-CData Sourcessubsection.2.3 into

subcategories according to the level of control phishers may

have on them and the constraints on phishers.

Control: URLs from logged links and HREF links are subdi-

vided into internal and external according to their RDN. The

set of RDNs extracted from URLs involved in the redirection

chain are assumed to be under the control of the webpage

owner. Any URLs that include these RDNs are marked in-

ternal. Other RDNs are assumed to be possibly outside the

control of the webpage owner. URLs containing such RDNs

are marked external.

Constraints: Within a URL, we distinguish between RDN,

which cannot be freely defined by the webpage owner, and

(FreeURL), which can be.

B. Extracting Term Distributions

The primary technique of a phisher is essentially social

engineering: fooling a victim into believing that the phishing

webpage is the target [?]. Thus, it is plausible that lexical

analysis of the data sources will help in identifying phishing

webpages: we conjecture that legitimate webpages and phish-

ing webpages differ in the way terms are used in different

locations in those pages. To incorporate measurements of such

term usage consistency, we first define what “terms” are and

how they are extracted from a webpage. Let A be the set of

the 26 lowercase English letters: A = {a, b, c, ..., x, y, z}. We

extract terms from a data source as follows:

• canonicalize letter characters by mapping upper case

characters, accented characters and special characters to

a matching letter in A; e.g., { B, β, b̀, b̂ } → b.
• split the input into substrings whenever a character c /∈ A

is encountered.

• throw away any substring whose length is less than 3.

Let T = An|n ≥ 3 be the set of all possible terms. Suppose

TS = {ti∈{1;m} ∈ T } was extracted from a data source S and

ti occurs with probability pi. The set of m pairs (ti, pi) ∈
T × ]0, 1] , i ∈ {1;m} represents the term distribution DS of

S.

TABLE I: Term distributions

Distribution Data source

Dtext Text
Dtitle Title
Dcopyright Copyright notice
Dimage Webpage screenshot
Dstart Starting URL – FreeURL

Dland Landing URL – FreeURL

Dintlog Internal logged links – FreeURL

Dintlink Internal HREF links – FreeURL
Dstartrdn Starting URL – RDN

Dlandrdn Landing URL – RDN

Dintrdn Internal links (HREF and logged) – RDN

Dextrdn External logged links – RDN
Dextlog External logged links – FreeURL

Dextlink External HREF links – FreeURL

Table ITerm distributionstable.caption.2 defines the term

distributions we consider. The external sources extrdn,

extlog, extlink are those assumed to be outside the control

of the webpage owner. RDN data sources startrdn, landrdn,

intrdn are constrained by DNS registration. The rest is

controlled by the webpage owner without constraints. The

image data source is composed of terms extracted by optical

character recognition (OCR) from the screenshot of a rendered

webpage.

C. Architecture

Our overall design consists of a phishing webpage detection

system (Section IVPhishing Detection Systemsection.4) and a

target identification system (Section ??). The phishing detec-

tion system is a classifier that identifies phishing webpages

based on a set of newly introduced features. The target

identification system identifies if a given webpage is a phish

by finding its target. Both systems can be used in a pipeline:

the phishing detection system tentatively identifies a potential

phish, which can be fed to the target identification system to

infer the purported target.

IV. PHISHING DETECTION SYSTEM

A. Feature Set Requirements

We consider some facts of phishing detection in order to

deduce requirements that a feature set must have:

Generalizability: Accumulating ground truth phishing and

legitimate data is challenging. Phishing websites have very

short lifetimes [?] and can display different content depend-

ing on a browser’s user-agent or user’s geographic location.

Labeled phishing and legitimate resources are often defined

by URLs (e.g. PhishTank1). Assigning correct labels (phish,

non-phish) to these URLs is difficult. But even if the initial

labeling was done correctly, information on the pages pointed

by them can also evolve over time: a legitimate domain name

can be hijacked to host phishing content for a while or a

phishing domain name can be parked or changed to contain

empty content after a short uptime. Therefore, crawling a set of

labeled URLs to gather ground truth data often leads to noisy

datasets that further require manual checking and cleaning up.

Thus it is desirable to select a feature set that allows a model

to be learned from as small a training set as possible while

remaining applicable to far larger test datasets. Using a much

larger test set than the training set also allows the detection

and avoidance of overfitting [?].

Adaptability: Several automated classification techniques [?],

[?], [?] rely on a static set of features learned from a training

set such as the bag-of-words model or “term frequency-inverse

document frequency” (TF-IDF) [?] computation. Such feature

models are language-dependent and vary with training sets.

Using such features shows [?] that certain terms such as

paypal are dominant features. Thus the efficacy of such models

on phishs that masquerade as previously unknown targets or

brands is questionable. In addition, phishers can adaptively

1PhishTank (https://www.phishtank.com/)



modify the content of their phish to circumvent detection by

such static models, e.g., by using words that typically occur

in legitimate webpages. An adaptable feature set must be

independent of learning instances, preferably defined manually

with motivated reasons, and be resilient to adaptive attacks.

Usability: It is desirable that features are computable on an

end user system without relying on online access to centralized

servers or proprietary data (e.g. Google PageRank). This

preserves user privacy since the scheme does not require users

to disclose their browsing history to an outside entity.

Computational Efficiency: Features must be quickly com-

putable to allow integration with real time detection systems

that do not impact users’ web surfing experience.

B. Computing Features

We now introduce 212 features and motivate their se-

lection. We intend to capture the constraints and de-

gree of control discussed earlier (Section III-AModeling

Phisher Limitationssubsection.3.1) as well as consistency

checking of term usage (Section III-BExtracting Term

Distributionssubsection.3.2). We group features into five cate-

gories (Table IIFeature setstable.caption.3).

TABLE II: Feature sets

Name Count Type

f1 106 URL
f2 66 Term usage consistency
f3 22 Usage of starting and landing mld
f4 13 RDN usage
f5 5 Webpage content

fall 212 Entire feature set

URL: First we define nine statistical features related

to the lexical composition of URLs (Table IIIURL

featurestable.caption.4). Feature 2 is meant to identify strings

in path and query that look like domain names. Phishing URL

and domain name obfuscation techniques [?] tend to produce

long URLs composed of many terms. This is the rationale for

features 3-8. The popularity rank of the domain (feature 9) is

based on a fixed, previously downloaded list of the Alexa top

million domain names2. If a domain is not in this list, feature

9 takes the default value of 1,000,001.

All nine features are extracted from the starting URL (9) and

landing URL (9). The mean, median and standard deviation

values are computed for features 3-9 on the following sets

of URLs: internal logged links, external logged links, internal

HREF links and external HREF links (4 ∗ 7 ∗ 3). Feature 1 is

computed on these sets as a ratio of URLs using https over

the total count of URLs for each set (4 ∗ 1). Feature 2 is

computed only for the starting and landing URLs. Thus, the

complete URL-based feature set (f1) consists of 106 features:

9 + 9 + 4 ∗ (7 ∗ 3 + 1) = 106.

Term usage consistency: The second set of features (f2)

captures the consistency of term usage between different

2Alexa (http://www.alexa.com/)

TABLE III: URL features

# Description

1 protocol used (http/https)
2 count of dots ‘.’ in FreeURL

3 count of level domains
4 length of the URL
5 length of the FQDN

6 length of the mld
7 count of terms in the URL
8 count of terms in the mld

9 Alexa ranking of the RDN

types (controlled vs. uncontrolled; constrained vs. uncon-

strained) of data sources in the page. Using 12 term dis-

tributions (we discard Dcopyright and Dimage) defined in

Section III-BExtracting Term Distributionssubsection.3.2 we

define 66 features (12 ∗ 11/2) depicting the similarity of pairs

of sources by computing pairwise Hellinger Distance between

their distributions. The Hellinger Distance [?] is a metric

used to quantify the dissimilarity between two probabilistic

distributions P and Q. It is an instance of f -divergence that

is symmetric and bounded in [0, 1]. The value 1 represents

complete dissimilarity (P ∩ Q = ∅) and the value 0 means

that P and Q are the same probabilistic distribution.

Usage of starting and landing mld: Legitimate websites are

likely to register a domain name reflecting the brand or the

service they represent. However, phishers often use domain

names having no relation with their target [?]. Hence, we

expect the starting mld and/or the landing mld to appear in

several sources extracted from a legitimate webpage while

phishing webpages should not have this characteristic. We

define 22 features (f3) inferring the usage of the starting

and landing mld in the text, the title and FreeURL of the

logged links and HREF links. 12 binary features are set to

1 if the starting/landing mld appear in Dtext, Dtitle, Dintlog ,

Dextlog , Dintlink or Dextlink (6*2); 10 features are the sum

of probability from terms of Dtitle, Dintlog , Dextlog, Dintlink

and Dextlink that are substrings of starting/landing mld (5*2).

Dtext is not considered since it is often composed of many

short irrelevant terms that match several parts of a mld.

RDN usage: We define 13 features (f4) related to RDN usage

consistency. We compute statistics related to the use of similar

and different RDNs in starting URL, landing URL, redirection

chain, loaded content (logged links) and HREF links. We

expect legitimate webpages to use more internal RDNs and

less redirection than phishing webpages [?].

Webpage content: Finally, five features (f5) count the number

of terms in the text and the title (2), and the number of input

fields, images and IFrames (3) in the page. Phishing pages

tend to have minimal text to circumvent text-based detection

techniques [?] and use more images and HTML content loaded

from other sources. In addition, since phishing attacks seek to

steal user data, phishing webpages often contain several input

fields [?].

It is worth noting that while we use terms to compute

our feature set, it is not based on any observed language or

term usage knowledge. The computation relies solely on the



information gathered through a web browser albeit we use a

local copy of Alexa ranking list. Hence, it makes the feature

set adaptable and usable as well as fast to compute once the

data sources are available. Since the feature set is small (212)

we expect it to have good generalizability.

C. Phishing Detection Model

To use our feature set for discriminating phishing from

legitimate webpages, we use a supervised machine learning

approach. In supervised machine learning, a classification

model is learned from observations over a set of data labeled

with several classes. The learned model is used to predict the

class of unlabeled instances. We select Gradient Boosting [?]

to build the classification model. It was selected because [?]

(a) of its strong ability to select and weight the most relevant

features and (b) boosting algorithms are known to be fairly

robust to overfitting, enabling the resulting model to have good

generalization capabilities.

Gradient Boosting predicts the class of an unknown instance

by computing values defined in [0, 1] that gives the confidence

of the instance to belong to a given class. In the case of

predicting only two classes, the confidence value v1 for one

class is equal to 1− v2, where v2 is the confidence value for

the other class. A discrimination threshold predicts, according

to the computed confidence values, the class of an instance. By

tuning this threshold, we can favor the prediction of one class

over the other. The variation of the discrimination threshold

over [0, 1] is used to evaluate the accuracy of a given model

by examining how false positive rate varies with true positive

rate (ROC) or precision varies with recall.

V. EVALUATION

In this section, we present the performance evaluation of the

phishing detection system and the target identification method

presented in Sections IVPhishing Detection Systemsection.4

and ?? respectively.

A. Experimental Setup

Our system is composed of five Python modules:

Webpage scraper is only required for experiments to

gather the information sources defined in Section II-CData

Sourcessubsection.2.3. It can also be used for offline anal-

ysis. The scraper is implemented as a monitored Firefox

web browser (Selenium3) that extracts the data sources while

visiting a webpage at a given URL. It saves the data in json

format and a screenshot of the webpage.

Feature extractor extracts the 212 features (Section

IV-BComputing Featuressubsection.4.2) from the data sources

in the webpage and builds a feature vector.

Classifier takes the feature vector and a previously learned

classification model as input to predict the class, phishing or

legitimate, of a webpage. The implementation of the Gradient

Boosting is provided by the Scikit Learn4 Python package.

3Selenium HQ (http://www.seleniumhq.org/)
4Scikit Learn (http://scikit-learn.org/)

Keyterms extractor infers the keyterms of a webpage using

data gathered by the scraper.

Target identifier predicts the likelihood of a webpage being a

phish. In case of a phish, the modules also identifies its target.

B. Evaluation Datasets

We obtained URLs from two sources in order to gather

ground truth data of phishing and legitimate webpages (Table

IVDatasets descriptiontable.caption.5). Neither dataset con-

tains personal data. We will make both datasets available for

research use.

The phishing URL sets (Phish) were obtained through the

community website PhishTank. We conducted three differ-

ent collection “campaigns”. The first resulted in phishTrain

which was used for training the phishing detection classifier.

The second, collected at a later point in time, resulted in

phishTest which was used as the test set. The last, phish-

Brand, was used for evaluating our target identification scheme

(Section V-DTarget Identificationsubsection.5.4). It consists

of 600 phishing webpages for each of which we manually

identified the target, resulting in a total of 126 different

targets. Each campaign consisted of checking for new entries

in PhishTank every hour and scraping the webpages for those

URLs. These are in several languages. The datasets were

further manually cleaned to remove any legitimate or unavail-

able websites and parked domain names. Table IVDatasets

descriptiontable.caption.5 provides a detailed description of

these datasets including the date and the count of elements

before and after cleaning.

TABLE IV: Datasets description

Set Name Date (2015) Initial Clean

Phish phishTrain Jul-23/Aug-3 1213 1036
phishTest Sep-13/Sep-24 1553 1216
phishBrand Sep-22/Sep-28 600 600

Leg legTrain Jul-15/Jul-22 5000 4531
English Aug-17/Sep-23 100,000 –
French Sep-28 10,000 –
German Sep-29 10,000 –
Italian Sep-30 10,000 –
Portuguese Oct-1 10,000 –
Spanish Oct-2 10,000 –

The legitimate URLs (Leg) were provided by Intel Secu-

rity5. We processed them same way as for the phishing URLs.

Intel gave us several datasets. First, an English training set

(legTrain) of 5,000 legitimate webpages was cleaned up to

remove unavailable websites and dead links. Six larger test sets

of webpages in different languages (English, French, German,

Portuguese, Italian and Spanish) were gathered and did not

receive any cleaning treatment. A detailed description of these

sets is provided in Table IVDatasets descriptiontable.caption.5

as well. The variety and popularity of the URLs in the test set

is reflected in the fact that 65,302 (43.5%) of the 150,000 test

URLs in Leg have RDNs ranked in Alexa top 1M.

5Intel Security (http://www.intelsecurity.com/)



C. Phishing Webpage Classification

We now present detailed evaluation of our phishing detec-

tion method. We focus on three primary aspects of classifi-

cation performance. First is accuracy which entails precision,

recall and false positive rate. Second is Receiver Operating

Characteristic (ROC), which shows the change of false posi-

tive rate with respect to true positive rate. Third is scalability

where we evaluate how accuracy changes as we scale from

small to large test datasets. We evaluate the performance of

our method across six different languages so as to demonstrate

its language independence. The evaluation scenario for all

languages consists of the same learning stage on legTrain

and phishTrain (5,567 webpages), being the oldest captured

datasets. Prediction is based on phishTest and each individual

language-specific test dataset of legitimate URLs.

TABLE V: Detailed accuracy evaluation for six languages

Language Pre. Recall F1-score FP Rate AUC

English 0.956 0.958 0.957 0.0005 0.999
French 0.970 0.958 0.964 0.0036 0.997
German 0.981 0.958 0.970 0.0022 0.998
Portuguese 0.967 0.958 0.962 0.004 0.997
Italian 0.982 0.958 0.970 0.0021 0.998
Spanish 0.982 0.958 0.970 0.0021 0.998

Accuracy: The detailed evaluation results for precision, recall

and false positive rate, using legitimate datasets of six different

languages are shown in Table VDetailed accuracy evaluation

for six languagestable.caption.6. These values were obtained

by setting the discrimination threshold of Gradient Boosting

to 0.7, which favors the prediction of legitmate webpages

([0, 0.7[) over phishs ([0.7, 1]). In this table, we see that our

method achieves significantly high precision for all languages

(0.95–0.98). This holds for recall as well (around 0.95). Hence,

the F1-score, which is the harmonic mean of precision and

recall, is also significantly high (0.95–0.97). The false positive

rate is significantly low, i.e., in the range of 0.0005–0.004,

across all languages.
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In many large-scale, real-world scenarios (especially in web

security domain), a machine learning model is considered
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Fig. 3: ROC evaluation results for six languages

usable only if it achieves high precision (e.g., 0.9 or 0.95)

with significant recall (e.g., 0.5 or 0.6) [?]. In order to test

our method against this criterion, we evaluated how recall of

the proposed method changes with precision by varying the

discrimination threshold from 0 to 1. The result is shown in

Fig. 2Precision vs recall evaluationfigure.caption.7 where we

see that when the precision is higher than 0.9, the recall for

all languages is significantly high and is always in the range

of 0.64–0.98. This shows that from the accuracy perspective,

our method is readily applicable in large-scale, multi-lingual

business scenarios.

ROC: Another metric for predictive performance of the pro-

posed method is ROC and corresponding AUC (Area Under

the Curve). Along the lines of accuracy evaluation, we examine

the ROC and AUC metrics across all languages. The objective

of ROC evaluation is to examine the increase in false positive

rate with the increase in true positive rate while varying the

discrimination threshold of the classifier. The evaluation results

for all languages are shown in Fig. 3ROC evaluation results for

six languagesfigure.caption.8. We see that, at the significantly

high true positive rate of 0.9, the false positive rate for all

languages is less than 0.008 which is considered quite low.

As the true positive rate increases to around 0.95, the false

positive rate does not increase much. Even at true positive

rate of 0.98, the false positive rate stays substantially low at

0.02. In line with these results, the AUC is around 0.999 for all

languages, as shown in Table VDetailed accuracy evaluation

for six languagestable.caption.6. Note that these results are

consistent across all languages, which is very desirable in a

multi-lingual phishing detection scenario.

Scalability: We now examine the effect of scale on the

predictive performance of our method, i.e., if the size of the

test dataset increases considerably with time, then what effect

does it have on the precision, recall and false positive rate? We

initialize our test set with 10,000 legitimate and 100 phishing

examples extracted randomly from the English dataset and

phishTest respectively. Thereafter, we iteratively increment the

size of the test set by 10,000 legitimate webpages and 100

phishs randomly picked from the remaining instances of the
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English dataset and phishTest.

The results are shown in Fig. 4Performance vs the scale

of datafigure.caption.9, where we see that precision as well

as recall increase with scale, whereas the false positive rate

decreases. This indicates that the increase in the number of

errors (i.e., false positives and false negatives) is significantly

less than the increase in the size of test set, which causes the

increase in overall precision and recall and decrease in the

false positive rate as we scale up the size of test set. This kind

of predictive performance on large test set, while learning a

model from a small training set, is exactly what is required

in a desirable machine learning model that is deemed fit for

usage in large-scale practical scenarios.

Median Average StDev

Webpage scraping 12787 12798 4898
Loading data 1 2 2
Features extraction 890 1282 1586
Classification < 1 < 1 < 1

Total (no scraping) 891 1283 1588

TABLE VI: Processing time (milliseconds)

Table VIProcessing time (milliseconds)table.caption.10 de-

picts the median, average and standard deviation of the time

taken by each operation involved in phishing webpage classi-

fication on a laptop with 2.7GHz Intel Core i5 processor and

16GB memory. We can see that most of the time is dedicated

to webpage scraping, which is not part of the classification

process in the case of client-side implementation. Except

that, the total median classification time is 891 milliseconds,

showing that the system is able to render a decision in less

than 1 second. These performance figures are based on a stan-

dalone Python prototype. Subsequently, we also implemented

an optimized JavaScript version as a browser add-on which

exhibits better performance characteristics [?].

D. Target Identification

To assess the performance of target identification, we used

the 600 phishing webpages of phishBrand. Since target iden-

tification can provide up to three candidate targets for an ana-

lyzed webpage, we evaluate the likelihood of the correct target

being part of top-1, top-2 and top-3 results provided by our

scheme. Table VIITarget identification resultstable.caption.11

presents the count of correctly identified targets, unknown

targets and missed targets considering these three sets. The last

column gives the success rate of each method. The 17 pages

with unknown target corresponds to webpages including only

some input fields and no hint about the target. We were not

able to infer the target with manual analysis. These webpages

with unknown targets are thus included in the computing of

the success rate. The accuracy of identifying the correct target

(top-1) is 90.5%. If the criteria is identifying the correct target

among a possible set of 3 (top-3) then the accuracy increases

to 97.3%. These results are comparable to the best state of the

art method for target identification [?] that reaches a 92.1%

success rate.

TABLE VII: Target identification results

Targets Identified Unknown Missed Success rate

top-1 526 17 57 90.5%
top-2 558 17 25 95.8%
top-3 567 17 16 97.3%

To see how the target identification system can complement

our phishing detection system we fed the former with misclas-

sified legitimate webpages identified in Section V-CPhishing

Webpage Classificationsubsection.5.3 when assessing phishing

detection with the English dataset. 53 out of 100,000 legitimate

webpages were misclassified. The target identification system

identified four of these as phish with an identified target. 10

were considered as suspicious (no target identified and no

legitimate confirmation) and 39 were confirmed as legitimate.

Considering these results, using the target identification in a

second step for instances identified as phishs by the phishing

detection system can be beneficial. On the English dataset,

it would reduce the false positive rate to 0.0001, which is

equal to the best state-of-the-art phishing detection system

[?]. However, according to accuracy in target identification

(97.3%) it would as well reduce the number of identified

phishs while keeping precision and recall over 0.90.

VI. DISCUSSION

A. Relevance of Feature Sets

We have seen in Section V-CPhishing Webpage

Classificationsubsection.5.3 that our features set yielded

results that outperform previous work. The main reason for

this improvement is the new separation scheme applied to

data sources related to their level of control and constraints

(Section III-AModeling Phisher Limitationssubsection.3.1).

Analysing the weight of each features in the learnt

classification model we observed that individually, features

belonging to f2, were the most relevant. We omit details

about feature analysis for lack of space, see our research

report [?] for details. This explains the reason why we

obtained comparable results to the best existing techniques

[?], while relying on less features and training data.

In addition, we assessed that our feature set meets

the requirements introduced in Section IV-AFeature Set



Requirementssubsection.4.1. It has good generalizability be-

ing able to learn a classification model from few thousand

instances and accurately predicting the class of 100,000+

unknown webpages. It is adaptable and language/brand inde-

pendent achieving comparable performances across different

languages. It is usable as it does not rely on online access to

centralized information and is fast to render a decision with a

median processing time lower than 1 second.

B. Limitations

The main strength of our technique, its language indepen-

dence, is though its main weakness. We chose to split strings

according to any characters that are not part of the English

dictionary and to only consider terms composed of at least

three characters to discard stop words and recurrent short

terms having no meaning. This raised some issues in term

distribution comparisons. Long subdomains such as theinstan-

texchange or insuranceservicenow were considered as single

term. In contrast, short domain name string corresponding to

brand and composed of separating characters (digit, hyphen,

etc.) such as dl4a, s2mr or e-go were split and the resulting

terms were discarded as too short. The inconsistent usage

of abbreviations or acronyms like intl for international or

pfa for premier financial online also had a negative impact.

Similarity of synonyms cannot be inferred. Most misclassified

legitimate webpages (>50%) had one of these characteristics.

Despite these misclassifications we achieve a low false positive

rate (0.0005). Many of these misclassified instances can be

identified as legitimate by the target identification system.

A second limitation relates to the identification of some

empty/unavailable webpages and parked domain names as

phishs. The former is explained by the lack of information

contained in empty/unavailable webpages. Several parked do-

main names are domains that have been used for malicious

purposes like phishing [?] and are thus obfuscated FQDNs

registered to trap users. Moreover, parked domain names use

similar composition schemes and obfuscation techniques as

phishing domains [?] such as typosquatting [?]. Parked do-

main names and phishing domain names have other common

characteristics. Parked domains are involved in advertisement

networks [?] and the delivered ad content tends to be correlated

with the domain name parked, for instance ads for Amazon

Inc. are delivered for the RDN amaaon.com. From the point of

view of our classification system, these parked pages have the

same characteristics as phishing pages. This misclassification

of unavailable and parked domain names is not of major

concern since, for the former no content access is prohibited by

the system since the link point empty resources. For the latter,

domain parking is considered as spam by major Internet actors

(e.g. Google) and some efficient state-of-the-art techniques [?]

or the target identification system can be applied to discard

these webpages from phishing identification.

A last limitation was the low accuracy observed in classi-

fication of IP-based phishing URLs. Out of 25 such URLs in

phishTest, only 19 were correctly classified rendering a lower

recall (0.76) than the global recall presented by the system

(>0.95). The reason is that FQDNs based term distributions

for such URLs are empty leading to several null features.

However, such URLs represent less than 2% (41) of the

URLs present in all phishing datasets and is thus not a major

limitation.

Although we did not observe this in our datasets, webpages

whose content is in one alphabet and URL in another may

be misclassified. So far we have only tested webpages in

European languages. Classifier performance on pages in other

languages may be lower.

C. Evasion Techniques

As we saw, one way to evade detection is to use IP-based

URLs. These are less likely to be detected by our system.

However, relying on IP address rather than domain names

deprives phishers from the flexibility brought by the DNS to

change the hosting location of their phishing content while

keeping the same link. Moreover, IP blacklisting is widely

used to prevent access to malicious hosting infrastructure, so

phishers would have to face other issues.

Another evasion technique is to limit the text content avail-

able in a webpage: use few external links, do not load external

content and build short URLs [?]. We observed some of these

techniques actually being used individually in webpages of

both phishing datasets used for evaluation. They did not impact

classifier performance because even though they prevent some

features from being computed, others, such as those based on

title, starting/landing URL and logged links could still lead

to effective detection of phishs. Simultaneous use of multiple

evasion techniques may impact classifier performance. How-

ever, using such subterfuges would impact the quality of the

phishing webpage and reduce the number of victims.

A final probable evasion technique is to use typosquatting

domains and misspelled terms in the different data sources

we analyze. When different but similar terms like paypal,

paypaI or paipal are used in different sources, our distribu-

tions comparison metric would not infer any similarity. The

classifier would thus probably conclude that the webpage is

legitimate. However, the presence of references to the target

would disclose the real target. In addition, misspellings may

tip-off potential victims.

For target identification, the best evasion technique is not

to provide any indication about the target in the webpage and

rather focus on using lures in the message containing the

link to the fake website. But this has two negative effects,

first, the phishing webpage seems less legitimate and second,

the phisher exposes himself to alternative target identification

techniques applied to other content than webpages [?].

VII. RELATED WORK

The obfuscation and mimicry characteristics of phishing

webpages have been the basis of several solutions proposed

for phishing detection and target identification.

Phishing webpage detection: Analysis of the content [?],

[?] and code execution (e.g. the use of javascript, pop-up



Testing set Legitimate Train Leg
Technique Legitimate Phish set /Test /Phish Evaluation FPR Pre. Recall Acc.

Cantina [?] 2,100 19 English - 110/1 no learning 0.03 0.212 0.89 0.969
Cantina+ [?] 1,868 940 several 1/4 2/1 old/new 0.013 0.964 0.955 0.97
Xiang et al. [?] 7,906 3,543 several - 2/1 no learning 0.019 0.957 0.9 0.955
Ma et al. [?] 15,000 20,500 DMOZ 1/1 3/4 cross-valid 0.001 0.998 0.924 0.955
Whittaker et al. [?] 1,499,109 16,967 several 6/1 90/1 old/new 0.0001 0.989 0.915 0.999

Thomas et al. [?] 500,000 500,000 several 4/1 1/1 cross-valid 0.003 0.961 0.734 0.866

Ramesh et al. [?] 1,200 3,374 top Alexa - 1/3 no learning 0.005 0.998 0.996 0.996
Chen et al. [?] 404 1,945 top Alexa 9/1 1/5 cross-valid 0.007 0.992 1 0.994

Our method 100,000 1,216 English 1/18 85/1 old/new 0.0005 0.956 0.958 0.999

Our method 150,000 1,216 several 1/27 125/1 old/new 0.001 0.857 0.958 0.998

TABLE VIII: Phishing detection system performances comparison

windows, etc.) [?] of a webpage provides relevant informa-

tion to identify phishing webpages. Some detection methods

rely on URL lexical obfuscation characteristics [?], [?] and

webpage hosting related features [?], [?] to render a decision

about the legitimacy of a webpage. The visual similarity of a

phishing webpage with its target was also exploited to detect

phishs [?], [?]. Phishing detection based on visual similarity

presuppose that a potential target is known a priori. In contrast,

our approach is to discover the target.

Multi-criteria methods [?], [?] have been proved the most

efficient to detect phishing websites. These techniques use a

combination of webpage features (HTML terms, links, frame,

etc.), connection features (HTML header, redirection, etc.)

and host based features (DNS, IP, ASN, geolocation, etc.) to

infer webpage legitimacy. They are implemented as offline

systems checking content pointed by URLs to automatically

build blacklists. This process induces a delay of several hours

[?] that is problematic in the context of phishing detection,

since phishing attacks have a median lifetime of a few hours

[?]. In addition, it is reportedly costly [?] and use [?] some

proprietary features preventing usage on the end-user devices.

The identification method uses machine learning techniques

fed with hundreds of thousands of features. These features

are mostly static and learned from training sets containing

data such as IP address, Autonomous System Number (ASN),

bag-of-words for different data sources (webpage, URL, etc.).

This limits the generalizability of the approach as it requires

large training datasets, numbering hundreds of thousand of

webpages [?].

Other methods focused, as we do, on the study of terms that

compose the data sources of a webpage [?], [?]. Cantina [?],

[?] was among the first systems to propose a lexical analysis

of terms that compose a webpage. In Cantina [?] key terms

are selected using TF-IDF to provide a unique signature of

a webpage. Using this signature in a search engine, Cantina

infers the legitimacy of a webpage. A similar method [?],

based on TF-IDF and Google search, checks for inconsistency

between a webpage identity and the identity it impersonates

to identify phish. The main difference between these methods

and ours is language independence since these methods rely

on TF-IDF computation to infer their keyterms.

Table VIIIPhishing detection system performances

comparisontable.caption.12 presents comparative

performances results of our phishing detection system

to the most relevant state-of-the-art systems. It presents the

size of the testing sets used to evaluate each system and the

provenance of the legitimate set, showing how representative

the set is. For example, using popular websites (such as top

Alexa sites) [?], [?] as the legitimate set is not representative.

The ratio of training to testing instances indicates the

scalability of the method and the ratio of legitimate to

phishing instances shows the extent to which the experiments

represents a real world distribution (≈ 100/1) [?], [?]. We

also identify the evaluation method (e.g., cross validation vs.

training with old data and testing with new data). Finally,

we present several metrics for assessing the classification

performance. If data for any of the columns were missing

from the original paper describing the system, we estimated

them. For comparison purposes, if several experimental setups

were proposed in a paper, we selected the most relevant to

assess their practical efficacy using the following ordered

criteria:

1) learning and testing instances are different,

2) the ratio of legitimate to phishing in the testing set is

representative of real world observations (≈ 100/1),

3) the learning set is older than the testing set,

4) the false positive rate (FPR) is minimized.

We can see that among the eight most relevant state-of-

the-art techniques, only two [?], [?] have comparable false

positive rates to ours (≤ 0.001). A low false positive rate is

paramount for a phishing detection technique, since this relates

to the proportion of legitimate webpages to which a user will

be incorrectly denied. The technique proposed by Ma et al.

[?] has a lower accuracy than in our system (0.955 < 0.999).

In addition, they use a testing set that does not represent real

world distribution (3 legs/4 phishs) and use a cross-validation

that does not assess scalability of the approach with a 1/1 ratio

for learning to testing instances. Whittaker et al. [?] report

results similar to us in several metrics. However, they use a

huge training set (>9M instances) and their test set is actually

smaller than the training set (a sixth, at 1.5M)! Scalability and

language/brand independence are likely to be poor since they

use 100,000 mostly static features (bag-of-words).

In contrast to the state-of-the-art in phishing detection,

our solution is language independent, scalable, requires much

smaller training sets than test sets, and does not rely on real-



time access to external sources, while performing better than

or as well as the state-of-the-art.

Target identification: One proposal [?] was to use a similar

technique as Cantina with keywords retrieval and Google

search to discover a list of potential target as the top results

of the search, but the authors do not report accuracy figures

for target identification. HREF links have been used to build

community graphs of webpages. By counting the mutual

links between two webpages and further performing visual

similarity analysis between suspicious webpages, Liu et al.

[?] identify the target of a given phishing website with an

accuracy of 92.1%. However, this technique is slow because

of the need to crawl many additional websites to build the

community graph. Conditional Random Fields and Latent

Dirichlet Allocation (LDA) [?] have been applied to phishing

email content to identify their target [?] with a success rate of

88.1%.

The technique we propose, in contrast to previous tech-

niques is language independent for keyterms inference. It is as

efficient as any state-of-the-art solutions achieving a maximum

success rate of 90.5-97.3%.

VIII. CONCLUSION

We presented novel techniques for efficiently and economi-

cally identifying phishing webpages and their targets. By using

a set of features that capture inherent limitations that phishers

face, our system has excellent performance and scalability

while requiring much smaller amounts of training data. We

have also implemented a fully client-side phishing prevention

browser add-on implementing this technique [?].
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