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Abstract. Current state-of-the-art trackers only rely on a target ap-
pearance model in order to localize the object in each frame. Such ap-
proaches are however prone to fail in case of e.g.fast appearance changes
or presence of distractor objects, where a target appearance model alone
is insufficient for robust tracking. Having the knowledge about the pres-
ence and locations of other objects in the surrounding scene can be
highly beneficial in such cases. This scene information can be propa-
gated through the sequence and used to, for instance, explicitly avoid
distractor objects and eliminate target candidate regions.
In this work, we propose a novel tracking architecture which can utilize
scene information for tracking. Our tracker represents such information
as dense localized state vectors, which can encode, for example, if the
local region is target, background, or distractor. These state vectors are
propagated through the sequence and combined with the appearance
model output to localize the target. Our network is learned to effec-
tively utilize the scene information by directly maximizing tracking per-
formance on video segments. The proposed approach sets a new state-
of-the-art on 3 tracking benchmarks, achieving an AO score of 63.6% on
the recent GOT-10k dataset.

1 Introduction

Generic object tracking is one of the fundamental computer vision problems with
numerous applications. The task is to estimate the state of a target object in
each frame of a video sequence, given only its initial appearance. Most current
approaches [3,8,31,34,25,16,37] tackle the problem by learning an appearance
model of the target in the initial frame. This model is then applied in subsequent
frames to localize the target by distinguishing its appearance from the surround-
ing background. While achieving impressive tracking performance [29,23], these
approaches rely only on the appearance model, and do not utilize any other
information contained in the scene.

In contrast, humans exploit a much richer set of cues when tracking an object.
We have a holistic view of the scene, taking into consideration not only the target
object, but are also continuously aware of the other objects in the scene. Such
information is helpful when localizing the target, e.g. in case of cluttered scenes
with distractor objects, or when the target undergoes fast appearance change.
Consider the example in Figure 1. Given only the initial target appearance, it is
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Fig. 1. Current approaches (top) only utilize an appearance model to track the tar-
get object. However, such a strategy fails in the above example. Here, the presence of
distractor objects makes it virtually impossible to correctly localize the target based
on appearance only, even if the appearance model is continuously updated using pre-
vious frames. In contrast, our approach (bottom) is also aware of other objects in
the scene. This scene information is propagated through the sequence by computing a
dense correspondence (red arrows) between consecutive frames. The propagated scene
knowledge greatly simplifies the target localization problem, allowing us to reliably
track the target.

hard to confidently locate the target due to the presence of distractor objects.
However, if we also utilize the previous frame, we can easily detect the presence
of distractors. This knowledge can then be propagated to the next frame in order
to reliably localize the target. While existing approaches update the appearance
model with previously tracked frames, such a strategy by itself cannot capture
the locations and characteristics of the other objects in the scene.

In this work, we aim to go beyond the conventional frame-by-frame detection-
based tracking. We propose a novel tracking architecture which can propagate
valuable scene information through the sequence. This information is used to
achieve an improved scene aware target prediction in each frame. The scene in-
formation is represented using a dense set of localized state vectors. These encode
valuable information about the local region, e.g. whether the region corresponds
to the target, background or a distractor object. As the regions move through the
sequence, we propagate the corresponding state vectors by utilizing dense cor-
respondence maps between frames. Consequently, our tracker is ‘aware’ of every
object in the scene and can use this information in order to e.g. avoid distractor
objects. This scene knowledge, along with the target appearance model, is used
to predict the target state in each frame. The scene information captured by the
state representation is then updated using a recurrent neural network module.

Contributions: Our main contributions are summarized as follows. (i) We
propose a novel tracking architecture that exploits rich scene information, repre-
sented as dense localized state vectors. (ii) A propagation module is introduced
to map the states to subsequent frames by predicting soft correspondences. (iii)
We develop a predictor module which effectively combines the output of the tar-
get appearance model with the propagated scene information in order to deter-



Know Your Surroundings: Exploiting Scene Information for Object Tracking 3

mine the target location. (iv) The states are updated with the new information
by integrating a recurrent neural network module. (v) We train our network to
directly maximize tracking performance on complete video segments.

We perform comprehensive experiments on 5 challenging benchmarks: VOT-
2018 [29], GOT-10k [23], TrackingNet [36], OTB-100 [45], and NFS [14]. Our
approach achieves state-of-the-art results on all five datasets. On the challenging
GOT-10k dataset, our tracker obtains an average overlap (AO) score of 63.6%,
outperforming the previous best approach by 2.5%. We also provide an ablation
study analyzing the impact of key components in our tracking architecture.

2 Related Work

Most tracking approaches tackle the problem by learning an appearance model
of the target in the first frame. A popular method to learn the target appearance
model is the discriminative correlation filters (DCF) [5,21,10,9,26,33]. These ap-
proaches exploit the convolution theorem to efficiently train a classifier in the
Fourier domain using the circular shifts of the input image as training data.
Another approach is to train or fine-tune a few layers of a deep neural network
in the first frame to perform target-background classification [37,8,3,40]. MD-
Net [37] fine-tunes three fully-connected layers online, while DiMP [3] employs a
meta-learning formulation to predict the weights of the classification layer. In re-
cent years, Siamese networks have received significant attention [2,32,31,44,18].
These approaches address the tracking problem by learning a similarity measure,
which is then used to locate the target.

The discriminative approaches discussed above exploit the background in-
formation in the scene to learn the target appearance model. Moreover, a num-
ber of attempts have been made to integrate background information into the
appearance model in Siamese trackers [52,30,51]. However, in many cases, the
distractor object is indistinguishable from a previous target appearance. Thus,
a single target model is insufficient to achieve robust tracking in such cases. Fur-
ther, in case of fast motion, it is hard to adapt the target model quickly to new
distractors. In contrast to these works, our approach explicitly encodes local-
ized information about different image regions and propagates this information
through the sequence via dense matching. More related to our work, [46] aims
to exploit the locations of distractors in the scene. However, it employs hand-
crafted rules to classify image regions into background and target candidates
independently in each frame, and employs a linear motion model to obtain final
prediction. In contrast, we present a fully learnable solution, where the encoding
of image regions is learned and propagated by appearance-based dense tracking
between frames. Further, our final prediction is obtained combining the explicit
background representation with the appearance model output.

In addition to appearance cues, a few approaches have investigated the use
of optical flow information for tracking. Gladh et al [17] utilize deep motion fea-
tures extracted from optical flow images to complement the appearance features
when constructing the target model. Zhu et al [53] use optical flow to warp the
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feature maps from the previous frames to a reference frame and aggregate them
in order to learn the target appearance model. However, both these approaches
utilize optical flow to only improve the robustness of the target model. In con-
trast, we explicitly use dense motion information to propagate information about
background objects and structures in order to complement the target model.

Some works have also investigated using recurrent neural networks (RNN) for
object tracking. Gan et al [15] use a RNN to directly regress the target location
using image features and previous target locations. Ning et al [38] utilize the
YOLO [39] detector to generate initial object proposals. These proposals, along
with the image features, are passed through an LSTM [22] to obtain the target
box. Yang et al [49,50] use an LSTM to update the target model to account for
changes in target appearance through a sequence.

3 Proposed Method

We develop a novel tracking architecture capable of exploiting the scene infor-
mation to improve tracking performance. While current state-of-the-art meth-
ods [8,3,31] only rely on the target appearance model to process every frame
independently, our approach also propagates information about the scene from
previous frames. This provides rich cues about the environment, e.g. the location
of distractor objects, which greatly aids the localization of the target.

A visual overview of our tracking architecture is provided in Figure 2. Our
tracker internally tracks all regions in the scene, and propagates any information
about them that helps localization of the target. This is achieved by maintaining
a state vector for every region in the target neighborhood. The state vector
can, for instance, encode whether a particular patch corresponds to the target,
background, or a distractor object that is likely to fool the target appearance
model. As the objects move through a sequence, the state vectors are propagated
accordingly by estimating a dense correspondence between consecutive frames.
The propagated state vectors are then fused with the target appearance model
in order to predict the final target confidence values used for localization. Lastly,
the outputs of the predictor and the target model are used to update the state
vectors using a convolutional gated recurrent unit (ConvGRU) [1].

3.1 Tracking with Scene Propagation

Our tracker predictions are based on two cues: (i) appearance in the current
frame and (ii) scene information propagated over time. The appearance model τ
aims to distinguish the target object from the background. By taking the deep
feature map xt ∈ R

W×H×D extracted from frame t as input, the appearance
model τ predicts a score map st = τ(xt) ∈ R

W×H . Here, the score st(r) at every
spatial location r ∈ Ω := {0, . . . ,W − 1}×{0, . . . , H − 1} denotes the likelihood
of that location being the target center.

The target model has the ability to recover from occlusions and provides
long-term robustness. However, it is oblivious to the contents of the surrounding
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Fig. 2. An overview of our tracking architecture. In addition to using a target appear-
ance model τ , our tracker also exploits propagated scene information in order to track
the target. The information about each image region is encoded within localized states
h. Given the states ht−1 from the previous frame, the propagation module Π maps
these states from the previous frame to the current frame locations. These propagated
states ĥt−1, along with the propagation reliability ξt and appearance model score st
are used by the predictor P to output the final target confidence scores ςt. The state
update module Φ then uses the current frame predictions to provide the new states ht.

scene. In order to extract such information, our tracker maintains a state vector
for every region in the target neighborhood. Concretely, for every spatial location
r ∈ Ω in the deep feature representation xt, we maintain a S-dimensional state
vector hr for that cell location such that h ∈ R

W×H×S . The state vectors con-
tain information about the cell which is beneficial for single target tracking. For
example, it can encode whether a particular cell corresponds to the target, back-
ground, or is in fact a distractor that looks similar to the target. Note that we
do not explicitly enforce any such encoding, but let h be a generic representation
whose encoding is trained end-to-end by minimizing a tracking loss.

The state vectors are initialized in the first frame using a small network Υ

which takes the first frame target annotation B0 as input. The network generates
a single-channel label map specifying the target location. This is passed through
two convolutional layers to obtain the initial state vectors h0 = Υ (b0). The
state vectors contain localized information specific to their corresponding image
regions. Thus, as the objects move through a sequence, we propagate their state
vectors accordingly. Given a new frame t, we transform the states ht−1 from the
previous frame locations to the current frame locations. This is performed by
our state propagation module Π,

(ĥt−1, ξt) = Π(xt, xt−1, ht−1) (1)

Here, xt ∈ R
W×H×D and xt−1 ∈ R

W×H×D are the deep feature representations
from the current and previous frames, respectively. The output ĥt−1 represents
the spatially propagated state, compensating for the motions of objects and
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background in the scene. The propagation reliability map ξt ∈ R
W×H indicates

the reliability of the state propagation. That is, a high ξt(r) indicates that the

state ĥr

t−1 at r has been confidently propagated. The reliability map ξt can thus

be used to determine whether to trust a propagated state vector ĥr

t−1 when
localizing the target.

In order to predict the location of the target object, we utilize both the
appearance model output st and the propagated states ĥt−1. The latter cap-
tures valuable information about all objects in the scene, which complements
the target-centric information contained in the appearance model. We input the
propagated state vectors ĥt−1, along with the reliability scores ξt and the ap-
pearance model prediction st to the predictor module P . The predictor combines
these information to provide the fused target confidence scores ςt,

ςt = P (ĥt−1, ξt, st) (2)

The target is then localized in frame t by selecting the location r∗ with the
highest score: r∗ = argmax

r∈Ω ςt. Finally, we use the fused confidence scores ςt
along with the appearance model output st to update the state vectors,

ht = Φ(ĥt−1, ςt, st) (3)

The recurrent state update module Φ can use the current frame information
from the score maps to e.g. reset an incorrect state vector ĥr

t−1, or flag a newly
entered object as a distractor. These updated state vectors ht are then used to
track the object in the next frame. Our tracking procedure is detailed in Alg. 1.

3.2 State propagation

The state vectors contain localized information for every region in the target
neighborhood. As these regions move through a sequence due to e.g. object
or camera motion, we need to propagate their states accordingly, in order to
compensate for their motions. This is done by our state propagation module Π.
The inputs to this module are the deep feature maps xt−1 and xt extracted from
the previous and current frames, respectively. Note that the deep features x are
not required to be the same as the ones as used for the target model. However,
we assume that both feature maps have the same spatial resolution W ×H.

Algorithm 1 Tracking loop

Input: Image features {xt}
N

t=0, initial annotation b0, appearance model τ
1: h0 ← Υ (b0) # Initialize states
2: for i = 1, . . . , N do # For every frame
3: st ← τ(xt) # Apply appearance model
4: (ĥt−1, ξt)← Π(xt, xt−1, ht−1) # Propagate states
5: ςt ← P (ĥt−1, ξt, st) # Predict target confidence scores
6: ht ← Φ(ĥt−1, ςt, st) # Update states
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In order to propagate the states from the previous frame to the current frame
locations, we first compute a dense correspondence between the two frames. We
represent this correspondence as a probability distribution p, where p(r′|r) is
the probability that location r ∈ Ω in the current frame originated from r′ ∈ Ω

in the previous frame. The dense correspondence is estimated by constructing
a 4D cost volume CV ∈ R

W×H×W×H , as is commonly done in optical flow
approaches [12,42,47]. The cost volume contains a matching cost between every
image location pair from the previous and current frame. The element CV(r′, r)
in the cost volume is obtained by computing the correlation between 3 × 3
windows centered at r′ in the previous frame features xt−1 and r in the current
frame features xt. For computational efficiency, we only construct a partial cost
volume by assuming a maximal displacement of dmax for every feature cell.

We process the cost volume through a network module to obtain robust
dense correspondences. We pass the cost volume slice CVr

′(r) ∈ R
W×H for

every cell r′ in the previous frame, through two convolutional blocks in or-
der to obtain processed matching costs φ(r′, r). Next, we take the softmax of
this output over the current frame locations to get an initial correspondence

φ′(r′, r) =
exp(φ(r′,r))

∑
r
′′∈Ω

exp(φ(r′,r′′)) . The softmax operation aggregates information

over the current frame dimension and provides a soft association of locations
between the two frames. In order to also integrate information over the previous
frame locations, we pass φ′ through two more convolutional blocks and take soft-
max over the previous frame locations. This provides the required probability
distribution p(r′|r) at each current frame location r.

The estimated correspondence p(r′|r) between the frames can now be used

to determine the propagated state vector ĥr

t−1 at a current frame location r by
evaluating the following expectation over the previous frame state vectors.

ĥr

t−1 =
∑

r
′∈Ω

hr
′

t−1p(r
′|r) . (4)

When using the propagated state vectors ĥt−1 for target localization, it is also
helpful to know if a particular state vector is valid i.e. if it has been correctly
propagated from the previous frame. We can estimate this reliability ξrt at each
location r using the correspondence probability distribution p(r′|r) for that lo-
cation. A single mode in p(r′|r) indicates that we are confident about the source
of the location r in the previous frame. A uniformly distributed p(r′|r) on the
other hand implies uncertainty. In such a scenario, the expectation 4 reduces to
a simple average over the previous frame state vectors hr

′

t−1, leading to an unre-

liable ĥr

t−1. Thus, we use the negation of the shannon entropy of the distribution

p(r′|r) to obtain the reliability score ξrt for state ĥr

t−1,

ξrt =
∑

r
′∈Ω

p(r′|r) log(p(r′|r)) (5)

The reliability ξrt is then be used to determine whether to trust the state ĥr

t−1

when predicting the final target confidence scores.
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3.3 Target Confidence Score Prediction

In this section, we describe our predictor module P which determines the target
location in the current frame. We utilize both the appearance model output st
and the scene information encoded by ĥt−1 in order to localize the target. The
appearance model score srt indicates whether a location r is target or background,

based on the appearance in the current frame only. The state vector ĥr

t−1 on the
other hand contains past information for every location r. It can, for instance,
encode whether the cell r was classified as target or background in the previous
frame, how certain was the tracker prediction for that location, and so on. The
corresponding reliability score ξrt further indicates if the state vector ĥr

t−1 is
reliable or not. This can be used to determine how much weight to give to the
state vector information when determining the target location.

The predictor module P is trained to effectively combine the information
from st, ĥt−1, and ξt to output the final target confidence score ςt ∈ R

W×H .
We concatenate the appearance model output st, the propagated state vectors
ĥt−1, and the state reliability scores ξt along the channel dimension, and pass the
resulting tensor through two convolutional blocks. The output is then mapped to
the range [0, 1] by passing it through a sigmoid layer to obtain the intermediate
scores ς̂t. While it is possible to use this score directly, it is not reliable in case
occlusions. This is because the state vectors corresponding to the target can leak
into the occluding object, especially when two objects cross each other slowly.
The fused scores can be thus be corrupted in such cases. In order to handle this,
we pass ς̂t through another layer which masks the regions from the score map
ς̂t where the appearance model score st is less than a threshold µ. Thus, we let
the appearance model override the predictor output in case of occlusions. The
final score map ςt is thus obtained as ςt = ς̂t · ✶st>µ. Here, ✶st>µ is an indicator
function which evaluates to 1 when st > µ and is 0 otherwise and · denotes
elementwise product. Note that the masking operation is differentiable and is
implemented inside the network.

3.4 State update

While the state propagation described in Section 3.2 maps the state to the new
frame, it does not update it with new information about the scene. This is
accomplished by a recurrent neural network module, which evolves the state in
each time step. As tracking information about the scene, we input the scores
st and ςt obtained from the appearance model τ and the predictor module P ,
respectively. The update module can thus e.g. mark a new distractor object
which entered the scene or correct corrupted states which have been incorrectly
propagated. This state update is performed by the recurrent module Φ (eq. 3).

The update module Φ contains a convolutional gated recurrent unit (Con-
vGRU) [1,6]. We concatenate the scores ςt and st along with their maximum
values in order to obtain the input ft ∈ R

W×H×4 to the ConvGRU. The prop-
agated states from the previous frame ĥt−1 are treated as the hidden states of
the ConvGRU from the previous time step. The ConvGRU then updates the
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Fig. 3. Visualization of intermediate representations used for tracking on two example
sequences. The green box in the previous frame (first column) denotes the target to be
tracked. For every location in the current frame (third column), we plot the estimated
correspondence with the marked region in the previous frame (second column). The
states propagated to the current frame using the estimated correspondence are plotted
channel-wise in the fourth column. The appearance model score (fifth column) fails to
correctly localize the target in both cases due to the presence of distractors. In contrast,
our approach can correctly handle these challenging scenarios and provides robust
target confidence scores (last column) by exploiting the propagated scene information.

previous states using the current frame observation ft to provide the new states
ht. A visualization of the representations used by our tracker is shown in Fig. 3.

3.5 Target Appearance Model

Our approach can be integrated with any tracking appearance model. In this
work, we use the DiMP tracker [3] as our target model component, due to its
strong performance. DiMP is an end-to-end trainable tracking architecture that
predicts the appearance model τw, parametrized by the weights w of a single con-
volutional layer. The network integrates an optimization module that minimizes
the following discriminative learning loss,

L(w) =
1

|Strain|

∑

(x,c)∈Strain

‖r(τw(x), c)‖
2 + ‖λw‖2 . (6)

Here, λ is the regularization parameter. The training set Strain = {(xj , cj)}
n
j=1

consists of deep feature maps xj extracted from the training images, and the
corresponding target annotations cj . The residual function r(s, c) computes the
error between the tracker prediction s = τw(x) and the groundtruth. The training
set is constructed in the initial frame by employing different data augmentation
strategies. We refer to [3] for more details about the DiMP tracker.

3.6 Offline Training

In order to train our architecture, it is important to simulate the tracking sce-
nario. This is needed to ensure that the network can learn to effectively propa-
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gate the scene information over time and determine how to best fuse it with the
appearance model output. Thus, we train our network using video sequences.
We first sample a set of Ntrain frames from a video, which we use to construct

the appearance model τ . We then sample a sub-sequence V = {(It, bt)}
Nseq−1
t=0

consisting of Nseq consecutive frames It along with their corresponding target
annotation bt. We apply our network on this sequence data, as it would be during
tracking. We first obtain the initial state h0 = Υ (b0) using the state initializer Υ .
The states are then propagated to the next frame (Sec. 3.2), used to predict the
target scores ςt (Sec. 3.3), and finally updated using the predicted scores (Sec.
3.4). This procedure is repeated until the end of the sequence and the training
loss is computed by evaluating the tracker performance over the whole sequence.

In order to obtain the tracking loss L, we first compute the prediction error
L
pred
t for every frame t using the standard least-squares loss,

L
pred
t = ‖ςt − zt‖

2
(7)

Here, zt is a label function, which we set to a Gaussian centered at the target. We
also compute a prediction error Lpred, raw

t using the raw score map ς̂t predicted by
P in order to obtain extra training supervision. To aid the learning of the state
vectors and the propagation module Π, we add an additional auxiliary task. We
use a small network head to predict whether a state vector hr

t−1 corresponds to
the target or background. This prediction is penalized using a binary cross entry
loss to obtain Lstate

t . The network head is also applied on the propagated state

vectors ĥr

t−1 to get Lstate, prop
t . This loss provides a direct supervisory signal to

the propagation module Π.
Our final tracking loss L is obtained as the weighted sum of the above indi-

vidual losses over the whole sequence,

L =
1

Nseq − 1

Nseq−1
∑

t=1

L
pred
t + αL

pred, raw
t + β(Lstate

t + L
state, prop
t ) . (8)

The hyper-parameters α and β determine the impact of the different losses.
Note that the scores st predicted by the appearance model can itself localize
the target correctly in a majority of the cases. Thus, there is a risk that the
predictor module only learns to rely on the target model scores st. To avoid this,
we randomly add distractor peaks to the scores st during training to encourage
the predictor to utilize the scene information encoded by the state vectors.

3.7 Implementation details

We use a pre-trained DiMP model with ResNet-50 [19] backbone from [7] as
our target appearance model. We use the block 4 features from the same back-
bone network as input to the state propagation module Π. For computational
efficiency, our tracker does not process the full input image. Instead, we crop a
square region containing the target, with an area 52 times that of the target. The
cropped search region is resized to 288 × 288 size, and passed to the network.
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We use S = 8 dimensional state vectors to encode the scene information. The
threshold µ in the predictor P is set to 0.05.

We use the training splits of TrackingNet [36], LaSOT [13], and GOT-10k [23]
datasets to train our network. Within a sequence, we perturb the target position
and scale in every frame in order to avoid learning any motion bias. While our
network is end-to-end trainable, we do not fine-tune the weights for the backbone
network due to GPU memory constraints. Our network is trained for 40 epochs,
with 1500 sub-sequences in each epoch. We use the ADAM [27] optimizer with an
initial learning rate of 10−2, which is reduced by a factor of 5 every 20 epochs. We
use Ntrain = 3 frames to construct the appearance model while the sub-sequence
length is set to Nseq = 50. The loss weights are set to α = β = 0.1.

During online tracking, we use a simple heuristic to determine target loss. In
case the fused confidence score ςt peak is smaller than a threshold (0.05), we infer
that the target is lost and do not update the state vectors in this case. We impose
a prior on the target motion by applying a window function on the appearance
model prediction st input to P , as well as the output target confidence score
ςt. We also handle any possible drift in the target confidence scores. In case
the appearance model scores st and target confidence score ςt only have small
offset in their peaks, we use the appearance model score to determine the target
location as it is more resistant to drift. After determining the target location,
we use the bounding box estimation branch in DiMP to obtain the target box.

4 Experiments

We evaluate our proposed tracking architecture on five tracking benchmarks:
VOT2018 [29], GOT-10k [23], TrackingNet [36], OTB-100 [45], and NFS [14].
Detailed results are provided in the supplementary material. Our tracker oper-
ates at around 20 FPS on a single Nvidia RTX 2080 GPU. The complete training
and inference code will be released upon publication.

4.1 Ablation study

We conduct an ablation study to analyze the impact of each component in
our tracking architecture. We perform experiments on the combined NFS [14]
and OTB-100 [45] datasets consisting of 200 challenging videos. The trackers
are evaluated using the overlap precision (OP) metric. The overlap precision
OPT denotes the percentage of frames where the intersection-over-union (IoU)
overlap between the tracker prediction and the groundtruth box is higher than
a threshold T . The OP scores over a range of thresholds [0, 1] are averaged to
obtain the area-under-the-curve (AUC) score. We report the AUC and OP0.5

scores for each tracker. Due to the stochastic nature of our appearance model,
all results are reported as the average over 5 runs. Unless stated otherwise, we
use the same training procedure and settings mentioned in sections 3.6 and 3.7,
respectively, to train all trackers evaluated in this section.
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Table 1. Impact of each component in our tracking architecture on the combined NFS
and OTB-100 datasets. Compared to using only the appearance model, our approach
integrating scene knowledge, provides a significant 1.3% improvement in AUC score.

Ours Only Appearance No State No Propagation No Appearance
Model τ Propagation Π Reliability ξt Model τ

AUC(%) 66.4 65.1 64.9 66.1 49.2
OP0.5 83.5 81.9 81.2 82.9 60.1

Impact of scene information: In order to study the impact of integrating
scene information for tracking, we compare our approach with a tracker only
employing target appearance model τ . This version is equivalent to the standard
DiMP-50 [3]. The results are reported in Tab. 1. Note that our appearance model
is itself a state-of-the-art tracker, obtaining the best tracking performance on
multiple tracking benchmarks [3]. Compared to using only the appearance model,
our approach exploiting scene information provides an improvement of 1.3% and
1.6% in AUC and OP0.5 scores, respectively. These results clearly demonstrates
that scene knowledge contains complementary information that benefits tracking
performance, even when integrated with a strong appearance model.
Impact of state propagation: Here, we analyze the impact of state prop-
agation module (Sec. 3.2), which maps the localized states between frames by
generating dense correspondences. This is performed by replacing the propaga-
tion module Π in (1) and (4) with an identity mapping ĥt−1 = ht−1. That is, the
states are no longer explicitly tracked by computing correspondences between
frames. The results for this experiment are shown in Table 1. Interestingly, the
approach without state propagation performs slightly worse (0.2% in AUC) than
the network using only the appearance model. This shows that state propagation
between frames is critical in order to exploit the localized scene information.
Impact of propagation reliability: Here, we study the impact of the propaga-
tion reliability score ξt for confidence score prediction. We compare our approach
with a baseline tracker which does not utilize ξt. The results indicate that using
reliability score ξt is beneficial, leading to a +0.3% AUC improvement.
Impact of appearance model: Our architecture utilizes the propagated scene
information to complement the frame-by-frame prediction performed by the tar-
get appearance model. By design, our tracker relies on the appearance model to
provide long-term robustness in case of e.g. occlusions, and thus is not suited
to be used without it. However, for completeness, we evaluate a version of our
tracker which does not utilize any appearance model. That is, we only use the
propagated states ĥt−1, and the reliability score ξt in order to track the tar-
get. As expected, not using an appearance model substantially deteriorates the
performance by over 17% in AUC score.

4.2 State-of-the-art Comparison

In this section, we compare our proposed tracker with the state-of-the-art ap-
proaches on five tracking benchmarks.
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Fig. 4. Success plots on GOT-10k (a), OTB-100 (b) and NFS (c). The AUC scores are
shown in legend. Our approach obtains the best results on both GOT-10k and NFS
datasets, outperforming the previous best method by 2.5% and 1.6% AUC, respectively.

VOT2018 [29]: We evaluate our approach on the VOT2018 dataset consist-
ing of 60 videos. The trackers are compared using the measures robustness and
accuracy. Robustness indicates the number of tracking failures, while accuracy
denotes the average overlap between tracker prediction and the ground-truth
box. Both these measures are combined into a single expected average overlap
(EAO) score. We compare our proposed tracker with the state-of-the-art ap-
proaches. Results are shown in Tab. 2. Note that all top ranked approaches on
VOT2018 only utilize a target appearance model for tracking. In contrast, our
approach also exploits explicit knowledge about other objects in the scene. In
terms of the overall EAO score, our approach outperforms the previous best
method DiMP-50 with a large margin, achieving a relative gain of 5.0% in EAO.

GOT10k [23]: This is a recently introduced large scale dataset consisting of
over 10, 000 videos. In contrast to other datasets, trackers are restricted to use
only the train split of the dataset in order to train networks i.e. use of external
training data is forbidden. Accordingly, we train our network using only the train
split. We ensure that our appearance model τ is also trained using only the train
split. The results are reported on the test split consisting of 180 videos. The
results, in terms of average overlap (AO) and success rates at overlap thresholds
0.5 and 0.75 are shown in Table 3, while Figure 4a shows the success plots.
Among the previous methods, the appearance model used by our tracker, namely
DiMP-50, obtains the best results. Our approach, integrating scene information
for tracking, significantly outperforms DiMP-50, setting a new state-of-the-art on
this datatset. Our tracker achieves an AO score of 63.6, a relative improvement

Table 2. State-of-the-art comparison on the VOT2018 in terms of expected average
overlap (EAO), accuracy and robustness. Our approach obtains the best EAO score,
outperforming the previous best approach DiMP-50 with a EAO relative gain of 5.0%.

DRT RCO UPDT DaSiam- MFT LADCF ATOM SiamRPN++ DiMP-50 Ours
[41] [29] [4] RPN [52] [29] [48] [8] [31] [3]

EAO 0.356 0.376 0.378 0.383 0.385 0.389 0.401 0.414 0.440 0.462
Robustness 0.201 0.155 0.184 0.276 0.140 0.159 0.204 0.234 0.153 0.143
Accuracy 0.519 0.507 0.536 0.586 0.505 0.503 0.590 0.600 0.597 0.609
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Table 3. State-of-the-art comparison on the GOT-10k test set in terms of average
overlap (AO) and success rates (SR) at overlap thresholds 0.5 and 0.75. Our approach
obtains the best results in all three measures, achieving an AO score of 63.6.

MDNet CF2 ECO CCOT GOTURN SiamFC SiamFCv2 ATOM DiMP-50 Ours
[37] [35] [9] [11] [20] [2] [43] [8] [3]

SR0.50 (%) 30.3 29.7 30.9 32.8 37.5 35.3 40.4 63.4 71.7 75.1
SR0.75 (%) 9.9 8.8 11.1 10.7 12.4 9.8 14.4 40.2 49.2 51.5
AO (%) 29.9 31.5 31.6 32.5 34.7 34.8 37.4 55.6 61.1 63.6

Table 4. State-of-the-art comparison on the TrackingNet test set in terms of precision,
normalized precision, and success. Our approach performs similarly to previous best
method DiMP-50, achieving an AUC score of 74.0%.

ECO SiamFC CFNet MDNet UPDT DaSiam- ATOM SiamRPN++ DiMP-50 Ours
[9] [2] [43] [37] [4] RPN [52] [8] [31] [3]

Precision (%) 49.2 53.3 53.3 56.5 55.7 59.1 64.8 69.4 68.7 68.8
Norm. Prec. (%) 61.8 66.6 65.4 70.5 70.2 73.3 77.1 80.0 80.1 80.0
Success (AUC) (%) 55.4 57.1 57.8 60.6 61.1 63.8 70.3 73.3 74.0 74.0

of 4.1% over the previous best method. These results clearly show the benefits
of exploiting scene knowledge for tracking.

TrackingNet [36]: The large scale TrackingNet dataset consists of over 30, 000
videos sampled from YouTube. We report results on the test split, consisting of
511 videos. The results in terms of precision, normalized precision, and success
are shown in Table 4. The baseline approach DiMP-50 already achieves the best
results with an AUC of 74.0. Our approach achieves a similar performance to
the baseline, showing that it generalizes well to such real world videos.

OTB-100 [45]: Figure 4b shows the success plots over all the 100 videos.
Discriminative correlation filter based UPDT [4] tracker achieves the best results
with an AUC score of 70.4. Our approach obtains results comparable with the
state-of-the-art, while outperforming the baseline DiMP-50 by over 1% in AUC.

NFS [14]: The need for speed dataset consists of 100 challenging videos cap-
tured using a high frame rate (240 FPS) camera. We evaluate our approach
on the downsampled 30 FPS version of this dataset. The success plots over all
the 100 videos are shown in Fig. 4c. Among previous methods, our appearance
model DiMP-50 obtains the best results. Our approach significantly outperforms
DiMP-50 with a relative gain of 2.6%, achieving 63.5% AUC score.

5 Conclusions

We propose a novel tracking architecture which can exploit the scene information
to improve tracking performance. Our tracker represents the scene information
as dense localized state vectors. These state vectors are propagated through the
sequence and combined with the appearance model output to localize the target.
We evaluate the proposed approach on 5 tracking benchmarks. Our tracker sets
a new state-of-the-art on 3 of these benchmarks, demonstrating the benefits of
exploiting scene information for tracking.
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12. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: ICCV (2015)

13. Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C.,
Ling, H.: Lasot: A high-quality benchmark for large-scale single object tracking.
CoRR abs/1809.07845 (2018), http://arxiv.org/abs/1809.07845

14. Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: A
benchmark for higher frame rate object tracking. In: ICCV (2017)

15. Gan, Q., Guo, Q., Zhang, Z., Cho, K.: First step toward model-free, anonymous
object tracking with recurrent neural networks. ArXiv abs/1511.06425 (2015)

16. Gao, J., Zhang, T., Xu, C.: Graph convolutional tracking. In: CVPR (2019)
17. Gladh, S., Danelljan, M., Khan, F.S., Felsberg, M.: Deep motion features for visual

tracking. 2016 23rd International Conference on Pattern Recognition (ICPR) pp.
1243–1248 (2016)

18. He, A., Luo, C., Tian, X., Zeng, W.: Towards a better match in siamese network
based visual object tracker. In: ECCV workshop (2018)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

https://github.com/visionml/pytracking
http://arxiv.org/abs/1809.07845


16 Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte

20. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 fps with deep regression
networks. In: ECCV (2016)

21. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. TPAMI 37(3), 583–596 (2015)

22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9,
1735–1780 (1997)

23. Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. arXiv preprint arXiv:1810.11981 (2018)

24. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

25. Kenan, D., Dong, W., Huchuan, L., Chong, S., Jianhua, L.: Visual tracking via
adaptive spatially-regularized correlation filters. In: CVPR (2019)

26. Kiani Galoogahi, H., Fagg, A., Lucey, S.: Learning background-aware correlation
filters for visual tracking. In: ICCV (2017)

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2014)

28. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Čehovin, L., Fernández, G.,
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Supplementary Material

The supplementary material provides additional details about the network
architecture and results. In Section 6, we provide details about our tracking
architecture. Section 7 contains detailed results on the VOT2018 dataset, while
Section 8 provides qualitative comparison of our approach with the baseline
tracker DiMP-50 [3].

6 Network details

In this section, we provide more details about our tracking architecture.
State initializer Υ : Given the first frame target annotation B0 as input, the
initializer network Υ first generates a single-channel label map specifying the
target center. We use a Gaussian function to generate this label map. The label
map is passed through a single convolutional layer with 3×3 kernels. The output
is then passed through a tanh activation to obtain the initial state vectors.
State propagation: We use the features from the fourth convolutional block
of ResNet-50 [19], having a spatial stride of 16, to construct our cost volume.
Our network can process images of any input resolution. However, in all our
experiments, we resize the input search region crop to 288×288 for convenience.
Thus the features x used for computing the cost volume have the size W = H =
18, with Dm = 1024 channels. The maximal displacement dmax for cost volume
computation is set to 9.

The network architecture used to map the raw cost volume slices to obtain the
processed matching costs φ is shown in Table 5. Note that the network weights
are shared for all cost volume slices. We use an identical network architecture to
process the initial correspondence φ′.
Target Confidence Score Prediction: The network architecture for our
predictor module P is shown in Table 6.
State update: The state update module Φ contain a convolutional gated
recurrent unit (ConvGRU) [1] which performs the state updates. The input
ft ∈ R

W×H×4 to the ConvGRU is obtained by concatenating the target con-
fidence scores ςt ∈ R

W×H×1 and the appearance model output st ∈ R
W×H×1,

along with their maximum values along the third dimension. The propagated
state vectors ĥt−1 ∈ R

W×H×S are treated as the hidden states of the Con-
vGRU from the previous time-step. We use the standard update equations for
ConvGRU,

zt = σ
(

Conv(ft ⊕ ĥt−1)
)

(9a)

rt = σ
(

Conv(ft ⊕ ĥt−1)
)

(9b)

h̃t = tanh
(

Conv(ft ⊕ (rt ⊙ ĥt−1))
)

(9c)

ht = (1− zt)⊙ ĥt−1 + zt ⊙ h̃t . (9d)

Here, ⊕ denotes concatenation of the feature maps along the third dimension,
while ⊙ denotes element-wise product. σ and tanh denote the sigmoid and hy-
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Layer Operation Output size

1 Conv + BN + ReLU 18× 18× 8
2 Conv + BN 18× 18× 1

Table 5. The network architecture used to process cost volume slices. The network
takes individual cost volume slices (size 18× 18× 1) as input. All convolutional layers
use 3× 3 kernels. BN denotes batch normalization [24].

Layer Operation Output size

1 Conv + ReLU 18× 18× 16
2 Conv + Sigmoid 18× 18× 1

Table 6. The network architecture for predictor module P . The input to the network
is obtained by concatenating the propagated states ĥt−1 (18× 18× 8), reliability score
ξt (18×18×1), and appearance model output st (18×18×1). All convolutional layers
use 3× 3 kernels.

perbolic tangent activation functions, respectively. We use 3 × 3 kernels for all
the convolution layers, represented by Conv.

7 Detailed Results on VOT2018

Here, we provide detailed results on the VOT2018 [29] dataset, consisting of 60
challenging videos. The trackers are evaluated using the expected average overlap
curve, which plots the expected average overlap between the tracker prediction
and groundtruth for different sequence lengths. The average of the expected av-
erage overlap values over typical sequence lengths provides the expected average
overlap (EAO) score, which is used to rank the trackers. We refer to [28] for
more details about EAO score computation.

We compare our approach with the recent state-of-the-art trackers: DRT [41],
RCO [29], UPDT [4], DaSiamRPN [52], MFT [29], LADCF [48], ATOM [8],
SiamRPN++ [31], and DiMP-50 [3]. Figure 5 shows the expected average overlap
curve. The EAO score for each tracker is shown in the legend. Our approach
obtains the best results with an EAO score of 0.462, outperforming the previous
best method DiMP-50 with a relative improvement of 5%. This demonstrates
the benefit of exploiting scene information for tracking.

8 Qualitative Results

Here, we provide a qualitative comparison of our approach with the baseline
tracker DiMP-50 [3], which uses only an appearance model. Figure 6 shows the
tracking output for both the trackers on a few example sequences. DiMP-50
struggles to handle distractor objects which are hard to distinguish based on
only appearance (second, third, fifth). In contrast, our approach is aware of the
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Fig. 5. Expected average overlap curve on the VOT2018 dataset. The plot shows the
expected overlap between the tracker prediction and groundtruth for different sequence
lengths. The expected average overlap (EAO) score, computed as the average of ex-
pected overlap values over typical sequence lengths (shaded region) is shown in the leg-
end. Our tracker obtains the best EAO score, outperforming the previous best method
DiMP-50 with a relative improvement of 5% in EAO.

distractor objects in the scene and can exploit this scene information to achieve
robust tracking. Propagating the scene information is also helpful in case of fast
target appearance changes (first and fourth rows). In these cases, keeping track
of the background regions can be useful to eliminate target candidate regions,
greatly simplifying target localization. The last row shows a failure case of our
approach. Here, the appearance model fails to detect the occlusion caused by
the white dog. As a result, the state vectors are updated incorrectly, and the
tracker starts tracking the white dog.
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Ours DiMP-50

Fig. 6. A qualitative comparison of our approach with the baseline appearance model,
DiMP-50. Our tracker extracts information about other objects in the scene and ex-
ploits this knowledge to provide scene-aware predictions. Consequently, our approach
can handle distractor objects which are hard to distinguish based on appearance only
(second, third, and fifth rows). The propagated scene information is also beneficial to
eliminate target candidate regions, which can be helpful in case of fast target appear-
ance changes (first and fourth rows). The last row shows a failure case of our approach.
Here, the appearance model cannot detect the occlusion caused by the white dog. This
results in incorrect state updates, leading to tracking failure.
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