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Abstract. Public announcement logic is an extension of multiagent epistemic logic with dy-
namic operators to model the informational consequences of announcements to the entire group of
agents. We propose an extension of public announcement logic with a dynamic modal operator that
expresses what is true after any announcement: 3ϕ expresses that there is a truthful announcement
ψ after which ϕ is true. This logic gives a perspective on Fitch’s knowability issues: For which
formulas ϕ, does it hold that ϕ → 3Kϕ? We give various semantic results and show completeness
for a Hilbert-style axiomatization of this logic. There is a natural generalization to a logic for arbitrary
events.

1. Introduction. One motivation to formalize the dynamics of knowledge is to char-
acterize how truth or knowledge conditions can be realized by new information. From
that perspective, it seems unfortunate that in public announcement logic (Plaza, 1989;
Gerbrandy & Groeneveld, 1997; van Ditmarsch et al., 2007), a true formula may become
false because it is announced. The prime example is the Moore sentence “atom p is true
and you do not know that”, formalized by p ∧ ¬K p (Moore, 1942; Hintikka, 1962), but
there are many other examples (van Ditmarsch & Kooi, 2006). After the Moore sentence
is announced, you know that p is true, so p ∧ ¬K p is now false. This is formalized as
〈p ∧ ¬K p〉K p and 〈p ∧ ¬K p〉¬(p ∧ ¬K p), respectively. The part ‘〈p ∧ ¬K p〉’ is a
diamond-style dynamic operator representing the announcement. Therefore, the way to
make something known may not necessarily be to announce it. Is there a different way to
get to know something?
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The realization of knowledge (or truth) by new information can be seen as a specific
form of what is called ‘knowability’ in philosophy. Fitch (1963) addressed the problematic
question of whether what is true can become known. It is considered problematic (para-
doxical even) that the existence of unknown truths is inconsistent with the requirement
that all truths are knowable. Again, the Moore sentence p ∧ ¬K p provides the prime
example: It cannot become known because K (p∧¬K p) entails an inconsistency under the
standard interpretation of knowledge. For an overview of the literature on Fitch’s paradox,
see Brogaard & Salerno (2004); we later discuss some of that in detail, mainly Tennant’s
proposal on cartesian formulas (Tennant, 1997). The suggestion to interpret ‘knowable’ as
‘known after an announcement’ was made by van Benthem (2004).

Of course, some things can become known. For example, true facts p can always become
known by announcing them, formalized as p → 〈p〉K p (‘if the atom p is true, then
after announcing p, p is known’)—The aforementioned paradox involves announcement
of epistemic information. One has to be careful with what one wishes for: Some things
can become known that were not true in the first place. Consider factual knowledge again:
After announcing a fact, you also know that you know it. In other words, ‘knowledge of p’
is knowable in the sense that there is an announcement that makes it true: We now have that
〈p〉K K p. But K p was not true before that announcement, so this formula is not a knowable
truth, except in the trivial sense when it was already true before the announcement.

Consider an extension of public announcement logic wherein we can express what
becomes true, whether known or not, without explicit reference to announcements realizing
that. Let us work our way upward from a concrete announcement. When p is true, it
becomes known by announcing it. Formally, in public announcement logic,

〈p〉K p,

which stands for ‘the announcement of p can be made and after that the agent knows p’.
More abstractly, this means that there is a announcement ψ , namely, ψ = p, that makes
the agent know p, slightly more formal:

there is a formula ψ such that 〈ψ〉K p.

We introduce a dynamic modal operator that expresses that

3K p.

Obviously, the truth of this expression depends on the model: p has to be true. In case
p is false, we can achieve 3K¬p instead. The formula 3(K p ∨ K¬p) is valid. Actually,
we were slightly imprecise when suggesting that 3 means ‘there is a ψ such that’. In fact,
a restriction on ψ to purely epistemic formulas is required in the semantics, for a technical
reason. The resulting logic is called arbitrary public announcement logic, APAL, or in short,
arbitrary announcement logic.

Unlike the introductory examples so far, we present the logic as a multiagent logic,
wherein all knowledge operators are labeled with the knowing agent in question. For
example, we write the validity above as 3(Ka p ∨ Ka¬p), indicating that this concerns
what agent a can get to know. There are both conceptual and technical reasons for this
multiagent perspective: (i) Various paradoxical situations involving knowledge—that we
can in principle also address in arbitrary announcement logic—require more than one
agent (such as the Hangman Paradox, also known as the Surprise Examination; for a
dynamic epistemic analysis, see van Ditmarsch & Kooi, 2006). (ii) One technical reason
is that arbitrary announcement logic for more than one agent is strictly more expressive
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than public announcement logic, but that for a single agent, it is equally expressive. (iii)
We present interesting multiagent formulations of knowability, such as knowledge transfer
between agents and how to make distributive knowledge common knowledge.

1.1. Overview of contents. In Section 2, we define the logical language Lapal and its
semantics. This section also contains some technical tools repeatedly used in later sections.
Section 3 shows various semantic results, including a ‘knowable’ fragment of the language
(we do not fully characterize the knowable formulas) and an expressivity result: Indeed, our
logic can express more than the public announcement logic on which it is based. In Section
4, we provide a Hilbert-style axiomatization of arbitrary announcement logic. Section 5
discusses the generalization to a logic for arbitrary events.

2. Syntax and semantics. For both the language and the structures, we assume as
background parameters a finite set of agents A and a countably infinite set of atoms P .

2.1. Syntactic notions.

DEFINITION 2.1 ((Language). The languageLapal of arbitrary public announcement logic
is inductively defined as:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | 2ϕ

where a ∈ A and p ∈ P. Additionally, Lpal is the language without inductive construct
2ϕ, Lel the language without as well [ϕ]ϕ, and Lpl the language without as well Kaϕ.
The language with only 2 as modal operator is L2.

The languages Lpal , Lel , and Lpl are those of public announcement logic, epistemic
logic, and propositional logic, respectively. A formula in Lel is also called an epistemic
formula, and a formula in Lpl is also called a propositional formula or a boolean. For Kaϕ,
read ‘agent a knows that ϕ’. For [ϕ]ψ , read ‘(if ϕ is true, then) after announcement of ϕ,
ψ (is true)’. (Announcements are supposed to be public and truthful, and this is common
knowledge among the agents.) For 2ψ , read ‘after every announcement, ψ is true’. Other
propositional and epistemic connectives are defined by usual abbreviations. The dual of
Ka is K̂a , the dual of [ϕ] is 〈ϕ〉, and the dual of 2 is 3. For K̂aϕ, read ‘agent a considers
it possible that ϕ’; for 〈ϕ〉ψ , read ‘(ϕ is true and) after announcement of ϕ, ψ (is true)’;
and for 3ψ , read ‘there is an announcement after which ψ (is true)’. Write Pϕ for the
set of atoms occurring in the formula ϕ (and similarly for necessity and possibility forms,
below). Given some P ′ ⊆ P , Lx (P ′) is the logical language Lx (Lapal,Lel, . . .) restricted
to atoms in P ′.

2.1.1. Necessity and possibility forms. A necessity form (Goldblatt, 1982) contains a
unique occurrence of a special symbol �. If ψψψ is such a necessity form (we write boldface
Greek letters for arbitrary necessity forms) and ϕ ∈ Lapal, then ψψψ(ϕ) is obtained from ψψψ
by substituting ϕ for � in ψψψ . Necessity forms are used to formulate the axiomatization of
the logic (in Section 4) and in the proofs of several semantic results (in Section 3).

DEFINITION 2.2 (Necessity forms). Let ϕ ∈ Lapal. Then,

• � is a necessity form
• if ψψψ is a necessity form, then (ϕ → ψψψ) is a necessity form
• if ψψψ is a necessity form, then [ϕ]ψψψ is a necessity form
• if ψψψ is a necessity form, then Kaψψψ is a necessity form.

We also use the dual notion of possibility form. It can be defined by the dual clauses
to a necessity form: � is a possibility form, and if ϕ ∈ Lapal and ψψψ is a possibility form,
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then ϕ ∧ ψψψ , 〈ϕ〉ψψψ , and K̂aψψψ are possibility forms. To distinguish necessity forms from
possibility forms, we use different bracketing: Write ψψψ{ϕ} for the possibility form with a
unique occurrence of ϕ. For each necessity form ψψψ(�), there is a possibility form ψψψ ′′′{�}
such that for all ϕ, ¬ψψψ(ϕ) is logically equivalent to ¬ψψψ ′′′{¬ϕ}.

2.2. Structural notions.

DEFINITION 2.3 (Structures). An epistemic model M = (S, ∼, V ) consists of a domain
S of (factual) states (or ‘worlds’); accessibility ∼ : A → P(S × S), where each ∼(a) is an
equivalence relation; and a valuation V : P → P(S). For s ∈ S, (M, s) is an epistemic
state (also known as a pointed Kripke model). An epistemic frame S is a pair (S, ∼). For
a model, we also write (S, V ) and for a pointed model also (S, V, s).

For ∼(a), we write ∼a , and for V (p), we write Vp; accessibility ∼ can be seen as a
set of equivalence relations ∼a , and V as a set of valuations Vp. Given two states s, s′ in
the domain, s ∼a s′ means that s is indistinguishable from s′ for agent a on the basis of
its knowledge. We adopt the standard rules for omission of parentheses in formulas, and
we also delete them in representations of structures such as (M, s) whenever convenient
and unambiguous. Given a domain S of a model M , instead of s ∈ S, we also write
s ∈ M .

2.2.1. Bisimulation. Bisimulation is a well-known notion of structural similarity
(Blackburn et al., 2001) that we frequently use in examples and proofs, for example, to
achieve our expressivity results.

DEFINITION 2.4 ((Bisimulation). Let two models M = (S, ∼, V ) and M ′ = (S′, ∼′, V ′)
be given. A nonempty relation R ⊆ S × S′ is a bisimulation between M and M ′ iff for all
s ∈ S and s′ ∈ S′ with (s, s′) ∈ R:

atoms: for all p ∈ P: s ∈ Vp iff s′ ∈ V ′
p

forth: for all a ∈ A and all t ∈ S: if s ∼a t , then there is a t ′ ∈ S′ such that s′ ∼′
a t ′ and

(t, t ′) ∈ R
back: for all a ∈ A and all t ′ ∈ S′: if s′ ∼′

a t ′, then there is a t ∈ S such that s ∼a t and
(t, t ′) ∈ R.

We write (M, s)↔(M ′, s′) iff there is a bisimulation between M and M ′ linking s and s′,
and we then call (M, s) and (M ′, s′) bisimilar. The maximal bisimulationRmax between M
and itself is an equivalence relation, and the result of identifying allRmax bisimilar worlds
is a minimal model (also known as bisimulation contraction or strongly extensional model)
(Aczel, 1988). The construction preserves equivalence relations: If M is an epistemic
model, its minimal model is also an epistemic model.

2.3. Semantics.

DEFINITION 2.5 ((Semantics). Assume an epistemic model M = (S, ∼, V ). The inter-
pretation of ϕ ∈ Lapal is defined by induction. Note the restriction to epistemic formulas
in the clause for 2ϕ.

M, s |� p iff s ∈ Vp

M, s |� ¬ϕ iff M, s �|� ϕ

M, s |� ϕ ∧ ψ iff M, s |� ϕ and M, s |� ψ
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M, s |� Kaϕ iff for all t ∈ S : s ∼a t implies M, t |� ϕ

M, s |� [ϕ]ψ iff M, s |� ϕ implies M |ϕ, s |� ψ

M, s |� 2ϕ iff for all ψ ∈ Lel : M, s |� [ψ]ϕ.

In clause [ϕ]ψ for public announcement, epistemic model M |ϕ = (S′, ∼′, V ′) is defined
as:

S′ = {s′ ∈ S | M, s′ |� ϕ}
∼′

a = ∼a ∩ (S′ × S′)

V ′
p = Vp ∩ S′.

Formula ϕ is valid in model M, notation M |� ϕ, iff for all s ∈ S: M, s |� ϕ. Formula ϕ
is valid, notation |� ϕ, iff for all M: M |� ϕ.

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer. An-
nouncements are assumed to be truthful and public, and this is commonly known to all
agents. Therefore, the model M |ϕ is the model M restricted to all the states where ϕ is true,
including access between states. Similarly, the dynamic model operator 2 is interpreted as
an epistemic state transformer. Note that in the definiendum of 2ϕ, the announcements ψ
in [ψ]ϕ are restricted to purely epistemic formulas Lel . This is motivated in depth below.
For the semantics of the dual operators, we have that M, s |� 3ψ iff there is a ϕ ∈ Lel

such that M, s |� 〈ϕ〉ψ . In other words, M, s |� 〈ϕ〉ψ iff M, s |� ϕ and M |ϕ, s |� ψ .
Write [[ϕ]]M for the denotation of ϕ in M : [[ϕ]]M := {s ∈ S | M, s |� ϕ}. Given a sequence
�ψ = ψ1, . . . , ψk of announcements, write M | �ψ for the model (. . . (M |ψ1) . . . |ψk) that is
the result of the successive model restrictions.

The set of validities in our logic is called APAL. Formally, this is relative to given sets
of agents and atoms, but we also use APAL more informally to refer to arbitrary public
announcement logic, similarly for PL (propositional logic), EL (epistemic logic, a.k.a. S5n

where |A| = n), and PAL (public announcement logic).
Bisimilar states satisfy the same epistemic formulas. This extends to APAL. The reader

may easily verify that if the epistemic states (M, s) and (M ′, s′) are bisimilar, then for all
ϕ ∈ Lapal: (M, s) |� ϕ iff (M ′, s′) |� ϕ.

EXAMPLE 2.6. A valid formula of the logic is 3(Ka p ∨ Ka¬p). To prove this, let (M, s)
be arbitrary. Either M, s |� p or M, s |� ¬p. In the first case, M, s |� 3(Ka p ∨ Ka¬p)
because M, s |� 〈p〉(Ka p ∨ Ka¬p)—the latter is true because (M, s |� p and) M |p, s |�
Ka p ∨ Ka¬p and because M |p, s |� Ka p. M, s |� p and M |p, s |� Ka p; in the second
case, we analogously derive M, s |� 3(Ka p ∨ Ka¬p) because M, s |� 〈¬p〉(Ka p ∨
Ka¬p).

This example also nicely illustrates the order in which arbitrary objects come to light.
The meaning of |� 3ϕ is:

(i) for all (M, s), there is an epistemic ψ such that M, s |� 〈ψ〉ϕ.

This is really different from:

(ii) there is an epistemic ψ such that for all (M, s), M, s |� 〈ψ〉ϕ,

which might on first sight be appealing to the reader, when extrapolating from the incorrect
reading of |� 3ϕ as ‘there is an epistemic ψ such that |� 〈ψ〉ϕ’. For example, there is no
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epistemic formula ψ such that 〈ψ〉(Ka p ∨ Ka¬p) is valid. (Suppose there were. The,n ψ
would be valid, so an announcement of ψ would not be informative. Then, 〈ψ〉(Ka p ∨
Ka¬p) would be equivalent to Ka p ∨ Ka¬p. But in any model where it is not known
whether p the latter is false, so it is not valid. Contradiction.) In other words, (i) may be
true, even when (i i) is false.

2.3.1. Motivation for the semantics of 2. We now compare the given semantics for
2ϕ to two infelicitous alternatives, thus hoping to motivate our choice. The three options
are (infelicitous alternatives are *-ed):

M, s |� 2ϕ iff for all ψ ∈ Lel : M, s |� [ψ]ϕ (Definition 2.5)

∗M, s |� 2ϕ iff for all ψ ∈ Lapal : M, s |� [ψ]ϕ (intuitive)

∗M, s |� 2ϕ iff for all S′ ⊆ S containing s : M |S′, s |� ϕ. (structural)

The ‘intuitive’ version for the semantics of 2ϕ more properly corresponds to its intended
meaning ‘ϕ is true after arbitrary announcements’. This would be a circular definition,
as 2ϕ is itself one such announcement. It is not clear whether this is well defined, but
a restriction to announcements that are epistemic sentences seems at least reasonable in a
context of knowledge and belief change.

The ‘structural’ version for the semantics of 2ϕ is more in accordance with one of the
proposals of Fine (1970) for quantification over propositional variables in modal logic;
his work strongly inspired our approach. This structural version is undesirable for our
purposes, as it does not preserve bisimilarity of structures: Two bisimilar states can now
be separated because they may be in different subdomains. In dynamic epistemic logics,
it is considered preferable that action execution preserves bisimilarity; this is because
bisimilarity implies logical equivalence, and we tend to think of such actions as changing
the theories describing those structures, just as in belief revision. For an example, consider
the following epistemic state (M, 1)—It consists of two states 1 and 1 where p is true and
two states 0 and 0 where p is false; linking two states means that they are indistinguishable
for the agent labeling the link; and the underlined state is the actual state.

We have that M, 1 |� 3(Ka p ∧ ¬Kb Ka p) for the structural 2-semantics, as M |{1, 1, 0},
1 |� Ka p∧¬Kb Ka p. On the other hand, for the2-semantics as defined, M, 1 �|� 3(Ka p∧
¬Kb Ka p), which can be easily seen as that formula is also false in the two-state structure
(M ′, 1′) depicted as:

0′ 1′,a

where agent b can distinguish 0 from 1 but agent a cannot. Epistemic state (M, 1) is
bisimilar to (M ′, 1′), via the bisimulation R = {(0, 0′), (0, 0′), (1, 1′), (1, 1′)}. We make
two further observations concerning our preferred semantics ‘2ϕ (is true) iff [ψ]ϕ for all
ψ ∈ Lel’. First, given that truth is relative to a model, this semantics for 2 amounts to ‘2ϕ
is true in (M, s) iff ϕ is true in all epistemistically definable submodels of M’. Second, note
that public announcement logic is equally expressive as multiagent epistemic logic (Plaza,
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1989), so ‘2ϕ (is true) iff [ψ]ϕ for all ψ ∈ Lel’ corresponds to ‘2ϕ (is true) iff [ψ]ϕ for
all ψ ∈ Lpal.’ So in fact, we can replace boxes by announcements of any formula, except
those containing boxes—which comes fairly close to the intuitive interpretation again.

A theoretically quite justifiable and felicitous version of the ‘structural’ semantics for
2 above would equate truth of 2ϕ with truth for all subsets of the minimal model (see
page 308) of a model M that contain the actual state s (in other words, a subset must not
separate states that are in the maximal bisimulation relation on M). We did not explore
this alternative semantics for 2 in depth. For a given model, there may be more such
subsets than are epistemically definable, for example, there may be uncountably many
such subsets, whereas the epistemically definable subsets are countable.

3. Semantic results.
3.1. Validities.
3.1.1. Validities only involving 2: S4. The following validities demonstrate the ‘S4’

character of 2. These validities do not, as usual, straightforwardly translate to frame prop-
erties because we interpret 2 as an epistemic state transformer and not by way of an
accessibility relation.1 It is also unclear if the set of validities only involving 2 (i.e.,
L2 ∩ APAL) satisfies uniform substitution (replacing propositional variables by arbitrary
formulas is validity preserving). See further research in Section 6.

PROPOSITION 3.1 (S4 character of 2). Let ϕ,ψ ∈ Lapal . Then:

1. |� 2(ϕ ∧ ψ) ↔ (2ϕ ∧2ψ)

2. |� 2ϕ → ϕ

3. |� 2ϕ → 22ϕ

4. |� ϕ implies |� 2ϕ.

Proof.

1. Obvious.

2. Assume M, s |� 2ϕ. Then in particular, M, s |� [�]ϕ and therefore (as M, s |� �)
M, s |� ϕ.

3. Let M and s ∈ M be arbitrary. Assume M, s |� 33¬ϕ. Then, there are epistemic
χ and χ ′ such that M, s |� 〈χ〉〈χ ′〉¬ϕ. Using the validity (for arbitrary formulas)
[ϕ][ϕ′]ϕ′′ ↔ [ϕ ∧ [ϕ]ϕ′]ϕ′′, we therefore have M, s |� 〈χ ∧ [χ ]χ ′〉¬ϕ, from which
follows M, s |� 3¬ϕ.

4. Let M, s be arbitrary. We have to show that for ψ ∈ Lel: M, s |� [ψ]ϕ. From the
assumption |� ϕ follows |� [ψ]ϕ by necessitation for [ψ]. Therefore, also M, s |�
[ψ]ϕ. As ψ is arbitrary, also M, s |� 2ϕ. �

1 It is possible to associate an accessibility relation to 2. Given an model M , consider the union of
its epistemically definable submodels, where we label copies of states (in order to distinguish
them from their original) with an epistemic formula ψ representing (the class of formulas
logically equivalent to ψ , namely) [[ψ]]M . If M |ϕ|ψ = M |χ , now add pair (sϕ, sχ ) to the
accessibility relation Rψ for announcement operator [ψ]. Let R2 = ⋃

ψ∈Lel
Rψ . If we do this

just for announcements that correspond to sequences of announcements of a single epistemic
formula ψ , the result is known as the forest for (M, s) and ψ (van Benthem et al., 2007).
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Fig. 1. Church–Rosser for announcements: Given two announcements ϕ,ψ in some epistemic
state (M, s), there are subsequent announcements ϕ′, ψ ′ such that (M |ϕ|ϕ′, s) is bisimilar to
(M |ψ |ψ ′, s).

3.1.2. Validities only involving 2: MK and CR. Also valid are |� 23ϕ → 32ϕ
(McKinsey—MK) and |� 32ϕ → 23ϕ (Church–Rosser—CR). Axiom CR corresponds
to the well-known frame property of confluence: ∀xyz(Rxy ∧ Rxz → ∃w(Ryw ∧ Rzw)).
In our terms, this can be formulated as follows. Given two distinct (and true) announce-
ments ϕ,ψ in some epistemic state (M, s), then there are subsequent announcements
ϕ′, ψ ′ such that (M |ϕ|ϕ′, s) is bisimilar to (M |ψ |ψ ′, s) (Figure 1). The proofs of MK
and CR are both somewhat involved and include lemmas and such—The first two lemmas
take us to Proposition 3.4 showing validity of McKinsey and a subsequent trio of a lemma
and two propositions takes us to Proposition 3.8 showing validity of Church–Rosser.

LEMMA 3.2. Let ϕ ∈ Lapal. Consider the set Pϕ of atoms occurring in ϕ. Let M be a
model where all states correspond on the valuation of Pϕ . Then, M |� ϕ or M |� ¬ϕ, that
is, either ϕ or its negation is a model validity.

Proof. Let ϕ(ψ/p) be the substitution of ψ for all occurrences of p in formula ϕ. (Note the
difference with the notation for necessity and possibility forms on page 307.) If p is true
on M , then M |� ϕ ↔ ϕ(�/p), otherwise M |� ϕ ↔ ϕ(⊥/p). The result of successively
substituting � or ⊥ for all atoms in ϕ in that way is the formula ϕ∅. Clearly, M |� ϕ ↔ ϕ∅.
As ϕ∅ does not contain atomic propositions, and given that |� Ka� ↔ �, |� Ka⊥ ↔ ⊥,
|� 2� ↔ �, and |� 2⊥ ↔ ⊥, we have that |� ϕ∅ ↔ � or |� ϕ∅ ↔ ⊥. Therefore,
M |� ϕ ↔ � or M |� ϕ ↔ ⊥, that is, M |� ϕ or M |� ¬ϕ. �

The characteristic formula δ
ϕ
s of the restriction of the valuation in a state s to the finite

set Pϕ of atoms occurring in ϕ is defined as follows:

δϕ
s =

∧
{p | p ∈ Pϕ and M, s |� p} ∧

∧
{¬p | p ∈ Pϕ and M, s �|� p}.

LEMMA 3.3. Let ϕ ∈ Lapal be arbitrary. Let M be a model, and s a world in M. Then,
M |δϕ

s , s |� ϕ → 2ϕ.

Proof. As δ
ϕ
s is boolean, we have that δ

ϕ
s is true in the model M |δϕ

s , that is, M |δϕ
s |� δ

ϕ
s ,

and remains true in any further restriction of M : For any formula ψ ∈ Lel , we have that
M |δϕ

s |ψ |� δ
ϕ
s . As δ

ϕ
s is a conjunction of literals determining the values of all the atoms of

ϕ, we have that for arbitrary epistemic formulas ψ , all states in models M |δϕ
s |ψ correspond
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on the valuation of Pϕ . By Lemma 3.2, we therefore have either M |δϕ
s |ψ |� ϕ for any ψ

or M |δϕ
s |ψ |� ¬ϕ for any ψ . In the former case, M |δϕ

s |� 2ϕ, and in the latter case,
M |δϕ

s |� 2¬ϕ. Hence, M |δϕ
s , s |� ϕ → 2ϕ. �

PROPOSITION 3.4 (MK is valid). |� 23ϕ → 32ϕ.

Proof. Let M, s be arbitrary and assume M, s |� 23ϕ. Consider the characteristic formula
δ
ϕ
s of the valuation in s restricted to the atoms in ϕ. From M, s |� 23ϕ and M, s |� δ

ϕ
s

follows M |δϕ
s , s |� 3ϕ. From that and twice Lemma 3.3, namely, in (also valid) dual form

M |δϕ
s , s |� 3ϕ → ϕ and original form M |δϕ

s , s |� ϕ → 2ϕ follows that M |δϕ
s , s |� 2ϕ.

Therefore, M, s |� 〈δϕ
s 〉2ϕ and thus M, s |� 32ϕ. �

We now proceed with matters toward proving Church–Rosser. We extend the substitu-
tion notation already in use (ϕ(ψ/p) is the substitution of ψ for all occurrences of p in
formula ϕ) to simultaneous substitution for infinite sequences ϕ(ψ0/p0, ψ1/p1, . . .).

LEMMA 3.5. Let Q = {qn | n ∈ N} ⊆ P be an infinite set of atoms, let θ ∈ Lel be an
epistemic formula such that Pθ ∩ Q = ∅, and let ϕ ∈ Lapal with Pϕ ∩ Q = ∅. Given a
frame S and a valuation V on S, there exists a valuation V ′ on S such that:

1. [[ϕ]]S,V ′ = [[ϕ]]S,V

2. for all θ ′ ∈ Lel:

[[θ ′]]S,V ′ = [[θ ′(θ/q0, q0/q1, . . . , qn/qn+1, . . .)]]S,V

[[θ ′]]S,V = [[θ ′(q1/q0, . . . , qn+1/qn, . . .)]]S,V ′

3. [[q0]]S,V ′ = [[θ ]]S,V ′ = [[θ ]]S,V .

Proof. The valuation V ′ needed is given by putting V ′(p) := V (p) for p �∈ Q, V ′(q0) :=
[[θ ]]S,V , and for all n ∈ N: V ′(qn+1) := V (qn). �

As a consequence of clause (2) of Lemma 3.5, we have that the epistemically definable
subsets of (S, V ) are the same as those of (S, V ′). We now use the lemma to show the
following.

PROPOSITION 3.6. If M, s |� 3ψ and p �∈ Pψ , then there exists a model M ′ only differing
from M in the valuation of atoms not occurring in ψ such that M ′, s |� 〈p〉ψ .

Proof. Let M = (S, V ) = (S, ∼, V ). We use first Lemma 3.5, namely, for:

Q := P \ Pψ , q0 := p, θ = �, and ϕ := 3ψ ,

obtaining a new valuation V ′ s.t. V ′(p) = S and [[3ψ]]S,V ′ = [[3ψ]]S,V . Therefore, there
must exist some θ ∈ Lel such that (S, V ′, s) |� 〈θ〉ψ , so s ∈ [[〈θ〉ψ]]S,V ′ . Furthermore, we
can assume that p �∈ Pθ : The valuation of p has been set to � in V ′; therefore, if there had
been occurrences of p in θ , they could have been replaced by �. We now apply Lemma 3.5
again, with:

Q := P \ (Pθ ∪ Pψ), q0 := p, ϕ := 〈θ〉ψ , and θ as given,

obtaining V ′′ such that s ∈ [[〈θ〉ψ]]S,V ′ = [[〈θ〉ψ]]S,V ′′ and [[p]]S,V ′′ = [[θ ]]S,V ′′ =
[[θ ]]S,V ′ . Hence, we obtain that s ∈ [[〈θ〉ψ]]S,V ′ = [[〈θ〉ψ]]S,V ′′ = [[〈p〉ψ]]S,V ′′ . �
Proposition 3.6 can be generalized to the following.
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PROPOSITION 3.7. Given a possibility form ηηη. If M, s |� ηηη{3ψ} and p �∈ (Pη ∪ Pψ),
then there exists a model M ′ only differing from M in the valuation of p such that M ′, s |�
ηηη{〈p〉ψ}.
Proof. The proof is straightforward and by induction on the complexity of possibility
forms. The basic case is the proof of Proposition 3.6. The case ‘conjunction’ starts with
M, s |� χ ∧3ψ and p �∈ Pχ ∪ Pψ , and so forth. �

We use Proposition 3.7 to prove, below, the soundness of a derivation rule in the axiom-
atization of arbitrary announcement logic. For now, we only need Proposition 3.7 to show
the CR property.

PROPOSITION 3.8 ((CR is valid). |� 32ϕ → 23ϕ.

Proof. Suppose that CR fails. Then, there exist M, s and ϕ such that M, s |� 32ϕ ∧
32¬ϕ. By applying Proposition 3.7 twice (namely, for the possibility form ‘conjunction’,
once for the left conjunct and once for the right conjunct), there are p, q �∈ Pϕ and a
model M ′ that is like M , except for the valuation of p and q, such that M ′, s |� 〈p〉2ϕ ∧
〈q〉2¬ϕ. We therefore also have M ′, s |� 〈p〉[q]ϕ∧〈q〉[p]¬ϕ from which follows M ′, s |�
〈p〉〈q〉ϕ ∧ 〈q〉〈p〉¬ϕ, and therefore as p and q are boolean (sequential announcement of
booleans corresponds to the announcement of their conjunction), M ′, s |� 〈p∧q〉(ϕ∧¬ϕ),
which is a contradiction. �

3.1.3. The relation between knowledge and arbitrary announcement.

PROPOSITION 3.9. Let ϕ ∈ Lapal. Then, |� Ka2ϕ → 2Kaϕ.

Proof. Suppose M, s |� Ka2ϕ and M, s |� ψ . Assume t ∈ M |ψ with s ∼a t . We have to
prove that M |ψ, t |� ϕ. Because state t is also in M , from the assumption M, s |� Ka2ϕ
and (in M) s ∼a t follows M, t |� 2ϕ. As ψ is true in t , M |ψ, t |� ϕ. �

Proposition 3.9 is shown in Figure 2. Although Ka2ϕ → 2Kaϕ is valid, the other
direction 2Kaϕ → Ka2ϕ is not valid. It is instructive to give a counterexample.

EXAMPLE 3.10 (2Kaϕ → Ka2ϕ is not valid). Consider the model:

0 1 0.b a

Fig. 2. Illustration of the principle Ka2ϕ → 2Kaϕ. Given 〈ψ〉K̂a¬ϕ, there is a χ such that
K̂a〈χ〉¬ϕ.
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We now have that M, 0 |� K̂a〈K̂b p〉(Ka p ∧ ¬Kb p) and hence M, 0 |� K̂a3(Ka p ∧
¬Kb p). On the other hand, M, 0 �|� 3(K̂a(Ka p ∧ ¬Kb p) because Ka p ∧ ¬Kb p is only
true in the model restriction {0, 1} that excludes the actual state 0. Therefore, 2Kaϕ →
Ka2ϕ is invalid. In simple words, it may unfortunately happen that we jump to a state
where a model restriction is possible that excludes the actual state. Therefore, things that
are true at that state may be impossible to realize by a reversal of that process.

3.1.4. Validities relating booleans and arbitrary announcements. The following
Proposition 3.11 will be helpful to show that in the single-agent case, every formula is
equivalent to an epistemic Lel-formula, as discussed in subsection 3.2.

PROPOSITION 3.11. Let ϕ, ϕ0, . . . , ϕn ∈ Lpl and ψ ∈ Lapal.

1. |� 2ϕ ↔ ϕ

2. |� 2K̂aϕ ↔ ϕ

3. |� 2Kaϕ ↔ Kaϕ

4. |� 2(ϕ ∨ ψ) ↔ (ϕ ∨2ψ)

5. |� 2(K̂aϕ0 ∨Kaϕ1 ∨ · · · ∨Kaϕn) ↔ (ϕ0 ∨Ka(ϕ0 ∨ ϕ1) ∨ · · · ∨Ka(ϕ0 ∨ ϕn)).

Proof. In the proof, we use the dual (diamond) versions of all propositions.

1. |� 3ϕ ↔ ϕ.
This is valid because 〈ψ〉ϕ ↔ ϕ is valid in PAL, for any ψ and boolean ϕ.

2. |� 3Kaϕ ↔ ϕ.
Right-to-left holds because ϕ → 〈ϕ〉Kaϕ is valid in PAL for booleans. The other
way round, |� 3Kaϕ → ϕ because 3Kaϕ → 3ϕ is valid in PAL, and 3ϕ ↔ ϕ is
valid in PAL as we have seen above (ϕ being boolean).

3. |� 3K̂aϕ ↔ K̂aϕ.
Right-to-left holds follows from the dual form of the validity 2ϕ → ϕ (Proposition
3.1). Left-to-right holds because 〈ψ〉K̂aϕ → K̂aϕ is valid in PAL for booleans ϕ.

4. |� 3(ϕ ∧ ψ) ↔ ϕ ∧3ψ .
Left-to-right: First, 3 distributes over ∧, and second, |� 3ϕ ↔ ϕ as we have
established above. From right-to-left: ϕ ∧3ψ is equivalent to (apply Case 1) 2ϕ ∧
3ψ . From the semantics of 2 now directly follows 3(ϕ ∧ ψ).

5. |� 3(Kaϕ0 ∧ K̂aϕ1 ∧ · · · ∧ K̂aϕn) ↔ ϕ0 ∧ K̂a(ϕ0 ∧ ϕ1) ∧ · · · ∧ K̂a(ϕ0 ∧ ϕn).
We show this case for n = 1.
Left-to-right: Directly in the semantics. Let M, s be arbitrary and suppose M, s |�
3(Kaϕ0 ∧ K̂aϕ1). Let ψ be the epistemic formula such that M, s |� 〈ψ〉(Kaϕ0 ∧
K̂aϕ1). In the model M |ψ , we now have that M |ψ, s |� Kaϕ0 so M |ψ, s |� ϕ0.
Also, M |ψ, s |� K̂aϕ1. Let t be such that s ∼a t and M |ψ, t |� ϕ1. As M |ψ, s |�
Kaϕ0, and s ∼a t , also M |ψ, t |� ϕ0. Therefore, M |ψ, t |� ϕ0 ∧ ϕ1, and therefore,
M |ψ, s |� K̂a(ϕ0 ∧ ϕ1). So M |ψ, s |� ϕ0 ∧ K̂a(ϕ0 ∧ ϕ1), and as ϕ0 and ϕ1 are
booleans also M, s |� ϕ0 ∧ K̂a(ϕ0 ∧ ϕ1).2

Right-to-left: For the other direction, suppose M, s |� ϕ0 ∧ K̂a(ϕ0 ∧ ϕ1). Consider
the model M |ϕ0. Because M, s |� K̂a(ϕ0 ∧ ϕ1), and ϕ1 is boolean, there must be
a t ∈ M |ϕ0 such that M |ϕ0, t |� ϕ1. So M |ϕ0, s |� K̂aϕ1. Also, M |ϕ0, s |� Kaϕ0

2 Alternatively, one can use more straightforwardly the S5 validity (Kaϕ0 ∧ K̂aϕ1) → (Kaϕ0 ∧
K̂a(ϕ0 ∧ ϕ1)).
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because ϕ0 is boolean. So M |ϕ0, s |� Kaϕ0∧K̂aϕ1 and therefore M, s |� 3(Kaϕ0∧
K̂aϕ1). �

3.2. Expressivity. If there is a single agent only, arbitrary announcement logic reduces
to epistemic logic. But for more than one agent, it is strictly more expressive than public
announcement logic. We remind the reader that in the absence of common knowledge,
public announcement logic is equally expressive as epistemic logic.

First, we consider the single-agent case. Let A = {a}. We obtain the result by applying
Proposition 3.11. We need some additional terminology as well. A formula is in normal
form when it is a conjunction of disjunctions of the form ϕ ∨ K̂aϕ0 ∨ Kaϕ1 ∨ · · · ∨ Kaϕn ,
where ϕ, ϕ0, . . . , ϕn are all formulas in propositional logic. Every formula in single-agent
S5 is equivalent to a formula in normal form (Meyer & van der Hoek, 1995). A normal
form may not exist for a multiagent formula, for example, it does not exist for Ka Kb p.
This explains why the result below does not carry over to the multiagent case.

PROPOSITION 3.12. Single-agent arbitrary announcement logic is equally expressive as
epistemic logic.

Proof. We prove by induction on the number of occurrences of 2 that every formula in
single-agent arbitrary announcement logic is equivalent to a formula in epistemic logic. Put
the epistemic formula in the scope of an innermost 2 in normal form. First, we distribute
2 over the conjunction (Proposition 3.1, Part (1)). We now get formulas of the form 2(ϕ ∨
K̂aϕ0 ∨Kaϕ1 ∨ · · · ∨Kaϕn). These are reduced by application of Propositions 3.11, Parts
(4) and (5), to formulas (ϕ ∨ ϕ0) ∨Ka(ϕ0 ∨ ϕ1) ∨ · · · ∨Ka(ϕ0 ∨ ϕn). �

PROPOSITION 3.13. Arbitrary announcement logic is strictly more expressive than epis-
temic logic.

Proof. The proof follows an abstract argument. Suppose the logics are equally expressive,
in other words, that there is some reduction rule for arbitrary announcement such that
any formula can be reduced to an expression without 2. Given the reduction of PAL to
EL, this entails that every arbitrary announcement formula should be equivalent to an
epistemic logical formula. Now the crucial observation is that this epistemic formula only
contains a finite number of atomic propositions. We then construct models that cannot be
distinguished in the restricted language but can be distinguished in a language with more
atoms.

So it remains to give a specific formula and a specific pair of models. Note that the
formula must involve more than one agent, as single-agent arbitrary announcement logic
is reducible to epistemic logic (see Proposition 3.12).

Consider the formula 3(Ka p ∧ ¬Kb Ka p). Assume, toward a contradiction, that it is
equivalent to an epistemic logical formula ψ . W.l.o.g., we may assume that ψ only contains
the atom p.3 We now construct two different epistemic states (M, s) and (M ′, s′) involving
a new atom q such that 3(Ka p ∧ ¬Kb Ka p) is false in the first but true in the second. We
also take care that the two models are bisimilar with respect to the language without q.

3 The alternative is that ψ contains a finite number of atoms. What other atoms apart from p? It does
not matter: The contradiction on which the proof of Proposition 3.13 is based merely requires a
‘fresh’ atom not yet occurring in ψ .
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Therefore, the supposed reduction is either true or false in both models. Contradiction.
Therefore, no such reduction exists.

The required models are as follows. Epistemic state (M, 1) consists of the well-known
model M where a cannot distinguish between states where p is true and false, but b can (but
knows that a cannot, etc.), that is, domain {0, 1} with universal access for a and identity
access for b, where p is only true at 1, and 1 is the actual state. Visualized as:

0 1.a

Epistemic state (M ′, 10) consists of two copies of M , namely, one where a new fact q is
true and another one where q is false. In the actual state 10, q is false. We visualize this
as: We now have that (M, 1) is bisimilar to (M ′, 10) with regard to the epistemic language

for atom p and agents a, b. Therefore, M, 1 |� ψ iff M ′, 10 |� ψ . On the other hand,
(M, 1) is not bisimilar to (M ′, 10) with regard to the epistemic language for atoms p, q
and agents a, b. This is evidenced by the fact that M, 1 �|� 3(Ka p∧¬Kb Ka p), but instead,
M ′, 10 |� 3(Ka p ∧¬Kb Ka p). The latter is because M ′, 10 |� 〈p ∨q〉(Ka p ∧¬Kb Ka p):
the announcement p∨q restricts the domain to the three states where it is true, and M ′|(p∨
q), 10 |� Ka p ∧ ¬Kb Ka p because 10 ∼b 11 and M ′|(p ∨ q), 11 |� ¬Ka p.4 �

As an aside, because it departs from our assumption that all accessibility relations are
equivalence relations, we have yet another result concerning expressive power. Consider
the more general multiagent models M = (S, R, V ) for accessibility functions R : A →
P(S × S). Unlike the corresponding relations ∼a in epistemic models, the relations Ra

are not necessarily equivalence relations. We now interpret the same language on those
structures, with the obvious (only) difference that M, s |� Kaϕ iff for all t ∈ S : Ra(s, t)
implies M, t |� ϕ. Many results still carry over to the more general logic, but the expres-
sivity results are now different.

PROPOSITION 3.14. With respect to the class of multiagent models for (a single) acces-
sibility relation Ra, single-agent arbitrary announcement logic is strictly more expressive
than public announcement logic.

Proof. Along the same argument as in Proposition 3.13, on the assumption that a given
formula ϕ is logically equivalent to a 2-free formula ψ not containing some fresh atom q,
we present two models that are bisimilar with respect to the atoms in ψ and that therefore
cannot be distinguished by ψ but that have a different valuation for ϕ. From the contradic-
tion follows strictly larger expressivity.

4 Kooi, in a personal communication, suggested an interesting alternative proof of larger
expressivity that does not require a fresh atom but deeper and deeper modal nesting. The proof is
almost the same as the one we present here, but rather than an atom that distinguishes the worlds,
there are strings of worlds of different length attached to each world of the square.
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Consider the formula 3(Ka p ∧ ¬Ka Ka p) and assume that it is equivalent to an epis-
temic ψ only containing atom p; and consider models M and M ′ as follows.

Multiagent state (M, 1) consists of the familiar model M where a cannot distinguish
between states 1 and 0 where p is true and false, respectively, and where 1 is the actual
state. We now explicitly visualize all pairs in the accessibility relation and get: Multiagent

state (M ′, 10) consists of two copies of M , namely, a bottom one where a new fact q is false
and a top one where q is true. The actual state is 10. Accessibility relations are as shown—
note that there is no reflexive access on any world. We now have that (M, 1) is bisimilar to

(M ′, 10) with regard to the epistemic language for atom p and agent a but that (M, 1) is
not bisimilar to (M ′, 10) with regard to the epistemic language for atoms p, q and agent a.
Therefore, M, 1 |� ψ iff M ′, 10 |� ψ . On the other hand, M, 1 �|� 3(Ka p ∧ ¬Ka Ka p),
but M ′, 10 |� 3(Ka p ∧ ¬Ka Ka p), as M ′, 10 |� 〈p ∨ q〉(Ka p ∧ ¬Ka Ka p). �

3.3. Compactness and model checking.
3.3.1. Compactness. The counterexample used in the proof of Proposition 3.13 can be

adjusted to show that APAL is not compact.

PROPOSITION 3.15. Arbitrary announcement logic is not compact.

Proof. Take the following infinite set of formulas:

{[θ ](Ka p → Kb Ka p) | θ ∈ Lel} ∪ {¬2(Ka p → Kb Ka p)}.
By the semantics of 2, this set is obviously not satisfiable. But we show that any of its
finite subsets is satisfiable. This contradicts compactness. Let

{[θi ](Ka p → Kb Ka p) | 0 ≤ i ≤ n} ∪ {¬2(Ka p → Kb Ka p)}
be any such finite subset, and let q be an atomic sentence that is distinct from p and does
not occur in any of the sentences θi (0 ≤ i ≤ n). Take now the epistemic state (M ′, 10) as
in the proof of Proposition 3.13. As shown above, we have M ′, 10 |� 3(Ka p∧¬Kb Ka p),
and thus, M ′, 10 |� ¬2(Ka p → Kb Ka p). On the other hand, for the epistemic state
(M, 1) as in the above proof, we have shown above that we have M, 1 �|� 3(Ka p ∧
¬Kb Ka p), that is, M, 1 |� 2(Ka p → Kb Ka p). By the semantics of 2, it follows that
M, 1 |� [θi ](Ka p → Kb Ka p) for all 0 ≤ i ≤ n; but q does not occur in any of these
formulas, so their truth values must be the same at (M ′, 10) and (M, 1) (since as shown
above, the two epistemic states are bisimilar w.r.t. the language without q). Thus, we have
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Table 1. Overview of formula propertiesa

Positive ϕ ::= p|¬p|ϕ ∨ ϕ|ϕ ∧ ϕ|Kaϕ|[¬ϕ]ϕ|2ϕ
Preserved |� ϕ → 2ϕ
Successful |� [ϕ]ϕ
Knowable |� ϕ → 3Kaϕ

aA formula satisfying the condition in the right column is
said to have the property in the left column.

M ′, 10 |� [θi ](Ka p → Kb Ka p) for all 0 ≤ i ≤ n. Putting these together, we see that our
finite set of formulas is satisfied at the state (M ′, 10). �

3.3.2. Model checking. We preferred to keep some technical results on model checking
out of the article. The model checking problem for the logic APAL (to determine the
extension of a given formula in a given model) is PSPACE-complete (Work in progress
by Balbiani et al.).

Let us briefly sketch why the model checking problem for APAL is decidable. This
result is not trivial because of the implicit quantification over all atoms in the 2-operator.
Consider a finite model with a recursive valuation map (from the infinite set of atomic
sentences to the powerset of the model). It is well known that determining the largest
bisimulation on such a model is a decidable problem and so is finding all subsets of the
model that are closed under the largest bisimulation. Given such a model and a formula,
we can then replace all occurrences of 2ϕ in that formula by a finite conjunction of
announcement sentences [θ ]ϕ, where the denotation of the announced formulas θ ranges
over all the subsets that are closed under the largest bisimulation of the model. (We use
here the known fact that a subset of a finite model is definable in basic modal/epistemic
logic if and only if it is closed under the largest bisimulation.) To determine the truth of the
resulting formula, one can then use a model checking algorithm for public announcement
logic.

3.3.3. Decidability. The issue of the decidability of the logic has been resolved by
French & van Ditmarsch (2008): Arbitrary announcement logic is undecidable. A logic
is decidable iff there is a terminating procedure to determine whether a given formula is
satisfiable. French and van Ditmarsch proved via a tiling argument (and an embedding)
that it is co-RE complete to determine whether a given formula can be satisfied in some
model.

3.4. Knowability and other semantic or syntactic fragments. A suitable direction of
research is the syntactic or semantic characterization of interesting fragments of the logic.
In this section, we define positive, preserved, successful, and knowable formulas, and
investigate their relation (see Table 1, for an overview of definitions).

The positive formulas intuitively correspond to formulas that do not express ignorance;
in epistemic logical (Lel) terms: in which negations do not precede Ka-operators. We
consider a generalization of that notion to Lapal. The fragment of the positive formulas
is inductively defined as:

ϕ ::= p|¬p|ϕ ∨ ϕ|ϕ ∧ ϕ|Kaϕ|[¬ϕ]ϕ|2ϕ.

Note that the truth of the announcement is a condition of its execution, which, when seen as
a disjunction, explains the negation in [¬ϕ]. Unfortunately, the negation in [¬ϕ]ϕ makes
‘positive’ somewhat of a misnomer.
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The preserved formulas preserve truth under arbitrary (epistemically definable) model
restriction, also known as relativization. They are (semantically) defined as those ϕ for
which |� ϕ → 2ϕ.5 There is no corresponding semantic principle in public announcement
logic that expresses truth preservation.

We now prove that positive formulas are preserved. Restricted to epistemic logic with-
out common knowledge, this was observed by van Benthem (2006). van Ditmarsch &
Kooi (2006) extended van Benthem’s result, with an additional clause [¬ϕ]ϕ. (And also,
unlike here, an additional clause CBϕ for subgroup common knowledge operators, where
B ⊆ A.) Surprisingly, we can further extend the notion of ‘positive’ to arbitrary announce-
ment logic, by adding a clause 2ϕ: In the case 2ϕ of the inductive proof below to show
truth preservation, assuming the opposite easily leads to a contradiction.

PROPOSITION 3.16. Positive formulas are preserved.

Proof. For ‘M ′ is a submodel of M’, write M ′ ⊆ M . To prove the proposition, it is
sufficient to show the following:

Given M, M ′ with M ′ ⊆ M , a state s in the domain of M ′, and a positive
formula ϕ. If (M, s) |� ϕ, then (M ′, s) |� ϕ (i).

It is sufficient because it then also holds for all epistemically definable submodels M ′.
We show (i) by proving an even slightly stronger proposition, namely:

Given M, M ′, M ′′ with M ′′ ⊆ M ′ ⊆ M , state s in the domain of M ′′,
and positive ϕ. If (M ′, s) |� ϕ, then (M ′′, s) |� ϕ.

This has the advantage of loading the induction hypothesis. Loading is needed for the
case [¬ϕ]ψ of the proof, that is by induction on the formula. We assume most cases to be
well known, except for the case [¬ϕ]ψ , similarly shown in van Ditmarsch & Kooi (2006),
and 2ϕ, which is new.

Case [¬ϕ]ψ : Given is (M ′, s) |� [¬ϕ]ψ . We have to prove that (M ′′, s) |� [¬ϕ]ψ . As-
sume that (M ′′, s) |� ¬ϕ. Using the contrapositive of the induction hypothesis, (M ′, s) |�
¬ϕ. From that and the assumption (M ′, s) |� [¬ϕ]ψ follows (M ′|¬ϕ, s) |� ψ . Be-
cause (M ′, s) |� ¬ϕ, M ′′|¬ϕ is a submodel of M ′|¬ϕ. From (M ′|¬ϕ, s) |� ψ and
M ′′|¬ϕ ⊆ M ′|¬ϕ ⊆ M ′ ⊆ M , it follows from (the loaded version of!) induction that
(M ′′|¬ϕ, s) |� ψ . Therefore, (M ′′, s) |� [¬ϕ]ψ .

Case 2ϕ: Assume (M ′, s) |� 2ϕ. Suppose toward a contradiction that (M ′′, s) �|� 2ϕ.
Then, there is a ψ such that (M ′′, s) |� 〈ψ〉¬ϕ, from which follows (M ′′|ψ, s) �|� ϕ.
From M ′′|ψ ⊆ M ′′ ⊆ M ′ and contraposition of induction follows (M ′, s) �|� ϕ. But from
(M ′, s) |� 2ϕ follows (M ′, s) |� [�]ϕ which equals (M ′, s) |� ϕ that contradicts the
previous. �

van Benthem (2006) also shows that preserved formulas are (logically equivalent to)
positive. This is not known for the extension of these notions to public announcement
logic in van Ditmarsch & Kooi (2006), nor for arbitrary announcement logic. An answer
to this question seems hard.

Another semantic notion is that of success. Successful formulas are believed after their
announcement or, in other words, after ‘revision’ with that formula. This corresponds to
the postulate of ‘success’ in AGM belief revision. Formally, ϕ is a successful formula

5 In Moss & Parikh (1992), the same semantic condition defines the persistent formulas.
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iff [ϕ]ϕ is valid (see van Ditmarsch & Kooi, 2006, elaborating an original but slightly
different proposal in Gerbrandy, 1999). The validity of [ϕ]ϕ is equivalent to the validity
of ϕ → [ϕ]Kaϕ: “if ϕ is true, then after announcing ϕ, ϕ is believed.” (van Ditmarsch &
Kooi, 2006). This validity describes in a dynamic epistemic setting the postulate of success
for belief expansion: “if ϕ is true, then after expansion with ϕ, ϕ should be believed.”

PROPOSITION 3.17. Preserved formulas are successful.

Proof. |� ϕ → 2ϕ implies |� ϕ → [ϕ]ϕ, and |� ϕ → [ϕ]ϕ iff |� [ϕ]ϕ. �

COROLLARY 3.18. Positive formulas are successful.

Fitch observed that not all unknown truths can become known (Fitch, 1963; Brogaard
& Salerno, 2004), such as the well-known p ∧ ¬K p. Instead of calling this a paradox
(which Fitch did not do either!), we prefer to call it a fact, and the question then is what
unknown truths can become known. For a single agent a, we can define the knowable
formulas as those for which |� ϕ → 3Kaϕ, and the most obvious multiagent version
defines the knowable formulas as those for which, for all agents a ∈ A, |� ϕ → 3Kaϕ.
(See a paragraph below for some additional multiagent versions of knowability.) We can
now observe the following.

PROPOSITION 3.19. Positive, preserved, and successful formulas are all knowable.

Proof. Similar to the proof of Proposition 3.17. Observe that |� ϕ → 2ϕ implies
|� ϕ → [ϕ]ϕ, which is equivalent to |� ϕ → [ϕ]Kaϕ; |� ϕ → [ϕ]Kaϕ is equivalent
to |� ϕ → 〈ϕ〉Kaϕ; and |� ϕ → 〈ϕ〉Kaϕ implies |� ϕ → 3Kaϕ. �

The syntactic characterization of knowable formulas remains an open question, but we
would like to emphasize that given a choice of interpretation for 2 as in our logic, this
has become a purely technical question. We think that this is a proper way to address
knowability issues. Some knowable formulas are not positive, for example, ¬Ka p: If true,
announce �, and Ka¬Ka p (still!) holds. Therefore, |� ¬Ka p → 3Ka¬Ka p.

3.4.1. Other approaches. The excellent entry in the Stanford Encyclopedia of Philos-
ophy on Fitch’s Paradox (Brogaard & Salerno, 2004) gives an overview of semantic and
syntactic restrictions intended to avoid its paradoxical character.

It is relevant to mention Tennant’s cartesian formulas: A formula ϕ is cartesian iff Kϕ
is not provably inconsistent (Tennant, 1997). A semantic correspondent of that, more in-
line with semantic features of formulas that we distinguished above, would be to define
ϕ as cartesian iff Kϕ is satisfiable, or, in other terms, iff �|� ¬Kϕ. van Benthem (2004)
observed that cartesian formulas may not be knowable. For example, the formula p∧¬K q
is cartesian but not knowable:

Consider a model where the formula is satisfied in a state wherein p is true but q is
false. Now announce p. This results in a state where p is now known but ¬K q is of course
still true. So, with introspection for knowledge and distribution of K over ∧, we have that
K (p ∧ ¬K q) is true. Therefore, the formula is cartesian.

On the other hand, we have that �|� p ∧ ¬K q because in a model where the denotations
of atoms p and q are the same, p ∧ ¬K q is false in any model restriction. Therefore, the
formula is not knowable (in our sense).

It seems reasonable that this formula should be knowable in some other sense. But it
is unclear in what sense. For example, what if one characterizes the knowable formulas
as those for which for all agents—returning to the multiagent situation—ϕ → 3Kϕ is
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merely satisfiable and not necessarily valid? Unfortunately, every formula is knowable in
that sense. If ϕ is valid, then 2Kϕ is valid, and ϕ → 2Kϕ as well, so also ϕ → 3Kϕ, so
a fortiori it is satisfiable. If ϕ is not valid, there must be an epistemic model M and a state s
in that model where ϕ is false. But in that case, we also have, trivially, that M, s |� ϕ →
3Kϕ. Therefore, ϕ → 3Kϕ is satisfiable. Therefore, ϕ → 3Kϕ is satisfiable for all ϕ.

Another (rather summary) syntactic characterization, within an intuitionistic setting, is
that by Dummett (2001).

Moss and Parikh’s topologic (Moss & Parikh, 1992; Parikh et al., 2007) has the same
language combining the knowledge operator K with box 2, although for a single agent
only. They interpret 2 not in our temporal sense but in a spatial sense. With us, 3ϕ
means ‘ϕ is true after a sequence of announcements’, that is, ‘after some time’. Moss
and Parikh suggest to interpret 3ϕ as ‘ϕ is true when taking some effort narrowing down
the possibilities’, that is, ‘closer’. How they relate K and 2 in their semantics is differ-
ent from our approach because the structure on which they interpret their language is a
topology of subsets of the domain of states. Most interestingly, an open set in a topology
is characterized by a ‘knowability-like’ formula: M |� ϕ → 3Kϕ iff [[ϕ]]M is an open set
(Moss & Parikh, 1992, p. 98). An open set is a subset of the domain of the model M with
a certain property relative to the topology defined on that domain. They do not observe
the relevance of their logic for knowability issues. Incidentally, Fitch leaves the question
of how to interpret 2 open in Fitch (1963) and explicitly says that it does not have to be
interpreted temporally: “the element of time will be ignored in dealing with these various
concepts [such as knowledge]” (Fitch, 1963, p.135).

3.4.2. Multiagent versions of knowability. There are various multiagent versions of
knowability that can be explored. To name a few:

• ϕ → 3CAϕ: commonly knowable truths
• Kaϕ → 3CAϕ: an individual can publish his knowledge
• Kaϕ → 3Kbϕ: knowledge transfer from a to b
• DAϕ → 3CAϕ: distributed knowledge can be made common.

Such notions are useful for the specification of both static and dynamic aspects of multia-
gent systems, including properties of communication protocols. They suffer from similar
constraints as the original Fitch knowability. For example, my knowledge that p is true
and that you are ignorant of p, formalized as Kme(p ∧ ¬Kyou p), is not transferable to
you, as Kyou(p ∧ ¬Kyou p) is inconsistent for knowledge. The question what distributed
knowledge can be made common is relevant to compute the global consequences of local
propagation of information through distributed networks.

4. Axiomatization.
4.1. The axiomatization APAL and its soundness. We now provide a complete ax-

iomatization of Lapal .

DEFINITION 4.1. The axiomatization APAL is given in Table 2. A formula is a theorem
if it belongs to the least set of formulas containing all axioms and closed under the rules.
If ϕ is a theorem, we write � ϕ.

PROPOSITION 4.2 (Soundness). The axiomatization APAL is sound. We only pay atten-
tion to the axiom and the derivation rule involving 2.
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Table 2. The axiomatization APAL

All instantiations of propositional tautologies
Ka(ϕ → ψ) → (Kaϕ → Kaψ) distribution of knowledge over implication
Kaϕ → ϕ truth
Kaϕ → KaKaϕ positive introspection
¬Kaϕ → Ka¬Kaϕ negative introspection
[ϕ]p ↔ (ϕ → p) atomic permanence
[ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) announcement and negation
[ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) announcement and conjunction
[ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ) announcement and knowledge
[ϕ][ψ]χ ↔ [(ϕ ∧ [ϕ]ψ)]χ announcement composition
2ϕ → [ψ]ϕ, where ψ ∈ Lel arbitrary and specific announcement
From ϕ and ϕ → ψ , infer ψ modus ponens
From ϕ, inferKaϕ necessitation of knowledge
From ϕ, infer [ψ]ϕ necessitation of announcement
From ψ → [θ ][p]ϕ, infer ψ → [θ ]2ϕ,

where p �∈ Pψ ∪ Pθ ∪ Pϕ deriving arbitrary announcement / R(2)

1. 2ϕ → [ψ]ϕ, where ψ ∈ Lel (arbitrary and specific announcement).

2. From ψ → [θ ][p]ϕ, infer ψ → [θ ]2ϕ, where p �∈ (Pψ ∪ Pθ ∪ Pϕ) (deriving
arbitrary announcement).

Proof.

1. The soundness of ‘arbitrary and specific announcement’ follows directly from the
semantics of 2. The restriction to epistemic formulas is important. Without that
restriction, it is unclear if the axiom is sound.

2. To show the soundness of ‘deriving arbitrary announcement’, we first observe that
the formulas ψ → [θ ][p]ϕ and ψ → [θ ]2ϕ are necessity forms, such that their
negations are equivalent to possibility forms (see Definition 2.2 on page 307). We
then use Proposition 3.7, which says that diamonds in possibility forms can be
witnessed by fresh atoms.
Suppose, toward a contradiction, that ψ → [θ ][p]ϕ is valid but that ψ → [θ ]2ϕ
is not valid, that is, we have a model such that (S, V, s) |� ¬(ψ → [θ ]2ϕ). As
it is the negation of a necessity form, formula ¬(ψ → [θ ]2ϕ) is equivalent to a
possibility form χχχ{3¬ϕ}. (Note that ¬(ψ → [θ ][p]ϕ) is therefore equivalent to
the possibility form χχχ{〈p〉¬ϕ}.) From (S, V, s) |� χχχ{3¬ϕ} and Proposition 3.7
follows that there exists a valuation V ′ and an atom p �∈ (Pψ ∪ Pθ ∪ Pϕ) such that
(S, V ′, s) |� χχχ{〈p〉¬ϕ}. As fresh atom p, we may choose the p in ψ → [θ ][p]ϕ.
So (S, V ′, s) |� ¬(ψ → [θ ][p]ϕ). This contradicts the validity of ψ → [θ ][p]ϕ.�

4.2. Example derivations.

EXAMPLE 4.3. We show that the validity 2p → 22p is also a theorem. In Step 4, we
use that the axiomatization for public announcement logic PAL satisfies the property of
‘substitution of equivalents’ (see Plaza, 1989, 2007, or van Ditmarsch et al., 2007, for
details). In Step 8 of the derivation, we use that 2p → [q]� is a necessity form, and in
Step 9 of the derivation, we use that 2p → � is a necessity form.

1. � 2p → [q ∧ (q → r)]p arbitrary and specific announcement

2. � (q → r) ↔ [q]r atomic permanence



324 PHILIPPE BALBIANI et al.

3. � (q ∧ (q → r)) ↔ (q ∧ [q]r) 2, propositionally

4. � [q ∧ (q → r)]p ↔ [q ∧ [q]r ]p substitution of equivalents for PAL (*)

5. � [q ∧ [q]r ]p ↔ [q][r ]p announcement composition

6. � [q ∧ (q → r)]p ↔ [q][r ]p 4,5, propositionally

7. � 2p → [q][r ]p 1,6, propositionally

8. � 2p → [q]2p 7, deriving arbitrary announcement

9. � 2p → 22p 8, deriving arbitrary announcement.

EXAMPLE 4.4. For another example, we show that [2p]p is a theorem. This means that
regardless of the restriction in axiom 2ϕ → [ψ]ϕ (arbitrary and specific announcement)
that ψ ∈ Lel, there are already very basic theorems of the form [ψ]ϕ where ψ is not an
epistemic formula. The restriction is therefore not ‘per se’ a reason to fear incompleteness
of the logic.

1. � 2p → [�]p arbitrary and specific announcement

2. � [�]p → (� → p) atomic permanence

3. � (� → p) ↔ p propositionally

4. � 2p → p 1,2,3, propositionally

5. � [2p]p ↔ (2p → p) atomic permanence

6. � [2p]p 4,5, propositionally.

Finally, we show that a derivation rule for necessitation of 2 is derivable in APAL. The
proof presents another, very short, example of a derivation. But as the reader might have
expected this rule in the proof system, we present the result as a proposition and not as
an example. In Proposition 3.1, Part (4), on page 311. we proved the soundness of this
principle.

PROPOSITION 4.5. Necessitation of arbitrary announcement is derivable in APAL.

Proof.

1. � ϕ assumption

2. � [p]ϕ 1, necessition of announcement; choose p �∈ Pϕ

3. � 2ϕ 2, deriving arbitrary announcement.

�
4.3. Variants of the rule for deriving arbitrary announcement. We now prove com-

pleteness for the logic APAL. We do this indirectly, by way of an infinitary variant of the
axiomatization APAL, that we can show to be complete with respect to the APAL seman-
tics. We apply a technique suggested by Goldblatt (1982) using the ‘necessity forms’ that
were introduced in Definition 2.2 on page 307. Necessity forms are used in the formulation
of two variants R1(2) and Rω(2), now to follow, of the rule R(2) (‘deriving arbitrary
announcement’) from system APAL.

DEFINITION 4.6.

• From ϕ → [θ ][p]ψ , infer ϕ → [θ ]2ψ , where p �∈ (Pϕ ∪ Pθ ∪ Pψ) R(2).
(already defined)

• From ϕϕϕ([p]ψ), infer ϕϕϕ(2ψ), where p �∈ Pϕϕϕ ∪ Pψ R1(2).
• From ϕϕϕ([χ ]ψ) for all χ ∈ Lel , infer ϕϕϕ(2ψ) Rω(2).
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Axiomatization APALω is the variant of APAL with the infinitary rule Rω(2) instead of
R(2). Axiomatization APAL1 is the variant of APAL with the different finitary rule R1(2)
instead of R(2).

PROPOSITION 4.7. The rules R1(2) and Rω(2) are sound.

Proof. The reader may easily verify that the rule Rω(2) is sound, as this directly corre-
sponds to the semantics for 2: A formula of the form 2ψ is valid, if [ϕ]ψ is valid for
all epistemic ϕ. Now replace ‘valid’ by ‘derivable’ and observe that the argument can be
generalized for other necessity forms than the basic necessity form.

The soundness of rule R1(2) is shown exactly as the soundness of R(2): In the sound-
ness proof of R(2), it was only essential that ϕ → [θ ][p]ψ and ϕ → [θ ]2ψ were in
necessity form. �

Next, we show in Proposition 4.9 that every APAL theorem is a APAL1 theorem, and
vice versa. That proposition requires a lemma.

LEMMA 4.8. Given a necessity form ϕϕϕ(�), there are ψ,χ ∈ Lapal such that for all θ ∈
Lapal:

� ϕϕϕ(θ) iff � ψ → [χ ]θ.

Proof. Let ϕϕϕ(θ) be a theorem. Such an instance of a necessity form ϕϕϕ(�) has the following
shape: The formula θ is entirely on the right (or, if you wish, entirely on the inside); it
is successively bound by, in arbitrary order and arbitrarily often, Ka-operators, announce-
ment operators [χ ′], and implicative forms χ ′′ → . . .. We can ‘rearrange the order of
these bindings’, so to speak, to get the required form ψ → [χ ]θ . This, of course, is still
a necessity form. But a fairly simple one. For these rearrangements, it does not matter
whether the formula ϕϕϕ(θ) contains other logical connectives (or even 2 operators!) that
were not used as constructors for the necessity form: These remain bound as they already
were. We are only shifting around epistemic operators, announcements, and implications
that were used to construct the necessity form and other subformulas remain unchanged.

First, we examine all the public announcement modalities occurring in ϕϕϕ(θ). Using the
reduction axioms for public announcement logic, we can push these modalities inside, past
all the other components of the necessity form. To push them past the knowledge operators
Ka , we use the reduction axiom ‘announcement and knowledge’:

[ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ).

To push them past implications, we use the axioms ‘announcement and negation’ and
‘announcement and conjunction’. So now all the announcement modalities are ‘stacked’
on the bottom of the necessity form, right in front of θ . We repeatedly apply the axiom
announcement composition:

[ϕ][ψ]η ↔ [ϕ ∧ [ϕ]ψ]η,

so that we can collapse all these announcement modalities into one announcement
modality.

We now take care of epistemic modalities. So far, what is left of the necessity form ϕϕϕ(θ)
is a sequence of symbols of the forms (ϕ → . . . or Ka . . .), followed by, at the bottom (‘at
right’), [χ ]θ . We do not yet have the desired form ‘ψ → [χ ]θ ’ because, for example, the
right-hand side of the status quo of our efforts may look like . . . Ka[χ ]θ . First, we get rid
of all Ka-modalities in that sort of position: We push all the implication symbols → past
all the Ka-modalities using that in the axiomatization S5 theorems of form ϕ → Kaψ can
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be transformed into theorems of form K̂aϕ → ψ , and vice versa. From left-to-right: apply
monotonicity of K̂a to both sides of ϕ → Kaψ , getting the theorem K̂aϕ → K̂a Kaψ . In
S5, K̂a Kaψ is equivalent to Kaψ , so we get K̂aϕ → Kaψ . Using veracity for Ka , we get
K̂aϕ → ψ . From right-to-left is similar, except that we now first derive Ka K̂aϕ → Kaψ
from K̂aϕ → ψ . In this way, we iteratively remove all Ka-modalities in wrong position.

Finally, we take care of implications. We now have a theorem of the form (ϕ1 → . . . →
(ϕn → [χ ]θ) . . .). By a number of propositional steps, this gives us a theorem of form
ψ → [χ ]θ , as desired.

Clearly, the argument works both ways, as all axioms applied are equivalences. �

PROPOSITION 4.9 (APAL1 = APAL). Every APAL1 theorem is an APAL theorem, and
vice versa.

Proof. Suppose we have a derivation involving an application of R1(2), such that given
some ϕϕϕ([p]ψ), we infer ϕϕϕ(2ψ). We can now transform this into a derivation with an
application of R(2). Apply Lemma 4.8 to ϕϕϕ([p]ψ) for θ = [p]ψ . From the result of form
ϕ → [χ ][p]ψ , we now infer ϕ → [χ ]2ψ by applying rule R(2). Again using Lemma
4.8, now for θ = 2ψ , we get a derivation of ϕϕϕ(2ψ). Repeat this for all applications of
R1(2). The resulting derivation does not have a single R1(2) application! The argument
works in both directions. �

Finally, we show that every APALω theorem is a APAL1 theorem.

PROPOSITION 4.10 (APALω ⊆ APAL1). Every APALω theorem is an APAL1 theorem.

Proof. Let us observe that the rule R1(2) is stronger than the rule Rω(2): If we can prove
ϕϕϕ([θ ]ψ) for all epistemic formulas θ , then we can prove in particular ϕϕϕ([p]ψ) for some
atom p �∈ Pϕϕϕ∪Pψ . As a result, we can derive the conclusion of the infinitary rule using only
the finitary rule R1(2), and the axiomatization based on the infinitary rule Rω(2) defines
a set of theorems that is included in or equal to the set of theorems for the axiomatization
based on the finitary rule R1(2). �

4.4. Completeness of the axiomatization APALω. Let us now demonstrate that the
axiomatization based on the infinitary rule Rω(2) is complete with respect to the seman-
tics. We use Goldblatt’s technique applying necessity forms, where the main effect of rule
Rω(2) is that it makes the canonical model (consisting of all maximal consistent sets of
formulas closed under the rule) standard for 2.

A set x of formulas is called a theory if it satisfies the following conditions:

• x contains the set of all theorems
• x is closed under the rule of modus ponens and the rule Rω(2).

Obviously, the least theory is the set of all theorems, whereas the greatest theory is the set of
all formulas. The latter theory is called the trivial theory. A theory x is said to be consistent
if ⊥ �∈ x . Let us remark that the only inconsistent theory is the set of all formulas. We
shall say that a theory x is maximal if for all formulas ϕ, ϕ ∈ x or ¬ϕ ∈ x . Let x be a
set of formulas. For all formulas ϕ, let x + ϕ = {ψ | ϕ → ψ ∈ x}. For all agents a, let
Ka x = {ϕ | Kaϕ ∈ x}. For all formulas ϕ, let [ϕ]x = {ψ | [ϕ]ψ ∈ x}.
LEMMA 4.11. Let x be a theory, ϕ be a formula and a be an agent. Then, x + ϕ, Ka x and
[ϕ]x are theories. Moreover, x + ϕ is consistent iff ¬ϕ �∈ x.
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Proof. We only prove that Ka x is a theory. First, let us prove that Ka x contains the set
of all theorems. Let ψ be a theorem. By the necessitation of knowledge, Kaψ is also a
theorem. Since x is a theory, then Kaψ ∈ x . Therefore, ψ ∈ Ka x . It follows that Ka x
contains the set of all theorems. Second, let us prove that Ka x is closed under modus
ponens. Let ψ,χ be formulas such that ψ ∈ Ka x and ψ → χ ∈ Ka x . Thus, Kaψ ∈ x and
Ka(ψ → χ) ∈ x . Since Kaψ → (Ka(ψ → χ) → Kaχ) is a theorem and x is a theory,
then Kaψ → (Ka(ψ → χ) → Kaχ) ∈ x . Since x is closed under modus ponens, then
Kaχ ∈ x . Hence, χ ∈ Ka x . It follows that Ka x is closed under modus ponens. Third, let
us prove that Ka x is closed under Rω(2). Let ϕϕϕ be a necessity form and ψ be a formula
such that ϕϕϕ([χ ]ψ) ∈ Ka x for all χ ∈ Lel . It follows that Kaϕϕϕ([χ ]ψ) ∈ x for all χ ∈ Lel .
Since x is a theory, then Kaϕϕϕ(2ψ) ∈ x . Consequently, ϕϕϕ(2ψ) ∈ Ka x . It follows that Ka x
is closed under Rω(2). �

LEMMA 4.12 (Lindenbaum lemma). Let x be a consistent theory. There exists a maximal
consistent theory y such that x ⊆ y.

Proof. Let ψ0, ψ0, . . . be a list of the set of all formulas. We define a sequence y0, y1, . . . of
consistent theories as follows. First, let y0 = x . Second, suppose that, for some n ≥ 0, yn

is a consistent theory containing x that has been already defined. If yn + ψn is inconsistent
and yn + ¬ψn is inconsistent, then, by Lemma 4.11, ¬ψn ∈ yn and ¬¬ψn ∈ yn . Since
¬ψn → (¬¬ψn → ⊥) is a theorem, then ¬ψn → (¬¬ψn → ⊥) ∈ yn . Since yn is closed
under modus ponens, then ⊥ ∈ yn : a contradiction. Hence, either yn + ψn is consistent or
yn +¬ψn is consistent. If yn +ψn is consistent, then we define yn+1 = yn +ψn . Otherwise,
¬ψn ∈ yn and we consider two cases.

In the first case, we suppose that ψn is not a conclusion of Rω(2). Then, we define
yn+1 = yn .

In the second case, we suppose that ψn is a conclusion of Rω(2). Let ϕϕϕ1(2χ1), . . .,
ϕϕϕk(2χk) be all the representations of ψn as a conclusion of Rω(2). We define the sequence
y0

n , . . . , yk
n of consistent theories as follows. First, let y0

n = yn . Second, suppose that, for
some i < k, yi

n is a consistent theory containing yn that has been already defined. Then, it
contains ¬ϕϕϕi(2χi ). Since yi

n is closed under Rω(2), then there exists a formula ϕi ∈ Lel

such that ϕϕϕi([ϕi ]χi ) is not in yi
n . Then, we define yi+1

n = yi
n + ¬ϕϕϕi([ϕi ]χi ). Now, we put

yn+1 = yk
n . Finally, we define y = y0 ∪ y1 ∪ . . .. It is straightforward to prove that y is a

maximal consistent theory such that x ⊆ y. �
The canonical model of Lapal is the structureMc = (W, ∼, V ) defined as follows:

• W is the set of all maximal consistent theories.
• For all agents a, ∼a is the binary relation on W defined by x ∼a y iff Ka x = Ka y.
• For all atoms p, Vp is the subset of W defined by x ∈ Vp iff p ∈ x .

Note that the relations ∼a are indeed equivalence relations.

LEMMA 4.13 (Truth lemma). Let ϕ be a formula in Lapal . Then for all maximal consis-
tent theories x and for all finite sequences �ψ = ψ1, . . . , ψk of formulas in Lapal such that
ψ1 ∈ x, [ψ1]ψ2 ∈ x, . . ., [ψ1] . . . [ψk−1]ψk ∈ x:

Mc| �ψ, x |� ϕ iff [ψ1] . . . [ψk]ϕ ∈ x .

Proof. The proof is by induction on ϕ. The base case follows from the definition of V . The
Boolean cases are trivial. It remains to deal with the modalities.
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Case Kaϕ: If Mc| �ψ, x �|� Kaϕ, then there exists a maximal consistent theory y such
that x ∼a y, ψ1 ∈ y, [ψ1]ψ2 ∈ y, . . ., [ψ1] . . . [ψk−1]ψk ∈ y, and Mc| �ψ, y �|� ϕ.
By induction hypothesis, [ψ1] . . . [ψk]ϕ �∈ y. Since x ∼a y, then Ka x = Ka y. Thus,
Ka[ψ1] . . . [ψk]ϕ �∈ x and [ψ1] . . . [ψk]Kaϕ �∈ x . Reciprocally, if [ψ1] . . . [ψk]Kaϕ �∈ x
then Ka[ψ1] . . . [ψk]ϕ �∈ x . Let y = Ka x + ¬[ψ1] . . . [ψk]ϕ. The reader may easily verify
that y is a consistent theory. By Lindenbaum lemma, there is a maximal consistent theory
z such that y ⊆ z. Hence, Ka x ⊆ z and [ψ1] . . . [ψk]ϕ �∈ z. Consequently, x ∼a z, ψ1 ∈ z,
[ψ1]ψ2 ∈ z, . . ., [ψ1] . . . [ψk−1]ψk ∈ z and, by induction hypothesis, Mc| �ψ, z �|� ϕ.
Therefore,Mc| �ψ, x �|� Kaϕ.

Case [ψ]ϕ: Let x be a state in the canonical model Mc and let ψ1, . . . , ψk−1, ψk

be formulas such that ψ1 ∈ x, . . . , [ψ1] . . . [ψk−1]ψk ∈ x . If Mc| �ψ, x �|� [ψ]ϕ, then
Mc| �ψ, x |� ψ andMc| �ψ |ψ, x �|� ϕ. Thus, by induction hypothesis, [ψ1] . . . [ψk−1][ψk]
ψ ∈ x and [ψ1] . . . [ψk−1][ψk][ψ]ϕ �∈ x . Reciprocally, if [ψ1] . . . [ψk−1][ψk][ψ]ϕ �∈ x ,
then [ψ1] . . . [ψk−1][ψk]ψ ∈ x and, by induction hypothesis, Mc| �ψ |ψ, x �|� ϕ. Thus,
Mc| �ψ, x �|� [ψ]ϕ.

Case 2ϕ : Let x be a state in the canonical modelMc and let ψ1, . . . , ψk−1, ψk be for-
mulas such that ψ1 ∈ x , . . ., [ψ1] . . . [ψk−1]ψk ∈ x . IfMc| �ψ, x �|� 2ϕ, then there is a 2-
free formula ψ such thatMc| �ψ, x �|� [ψ]ϕ. Thus, by induction hypothesis, [ψ1] . . . [ψk−1]
[ψk][ψ]ϕ �∈ x . Using the axiom2ϕ → [ψ]ϕ and applying k times the rule of necessitation,
this implies that [ψ1] . . . [ψk−1][ψk]2ϕ �∈ x . Reciprocally, if [ψ1] . . . [ψk−1][ψk]2ϕ �∈ x ,
then using the fact that x is closed with respect to the special inference rule for2, there is a
2-free formula ψ such that [ψ1] . . . [ψk−1][ψk][ψ]ϕ �∈ x . Thus, by induction hypothesis,
Mc| �ψ, x �|� [ψ]ϕ andMc| �ψ, x �|� 2ϕ. �

4.5. Completeness of the axiomatization APAL. As a result, we now have complete-
ness for our logic APAL.

PROPOSITION 4.14 (Completeness). Let ϕ be a formula in Lapal. Then, ϕ is a theorem
(in APAL) if ϕ is valid.

Proof. Let ϕ be valid. From Lemmas 4.11, 4.12, and 4.13 follows that ϕ is a theorem in
APALω. From that, Proposition 4.9, and Proposition 4.10 follows that ϕ is a theorem in
APAL. �

THEOREM 4.15 (Soundness and completeness). Let ϕ be a formula in Lapal. Then, ϕ is
a theorem iff ϕ is valid.

Proof. Soundness was proved in Proposition 4.2. Completeness was proved in Proposition
4.14. �

4.6. Further proof theoretical observations. We emphasize the rather peculiar nature
of this completeness proof. Given a logic APAL, a finitary axiomatization APAL, and an
infinitary version APALω of that axiomatization with the infinitary rule Rω(2), we have
been proceeding as follows. First, we showed that every theorem of APAL is a validity of
APAL (soundness). Then, we showed that every validity of APAL is derivable in APALω

by a canonical model argument (completeness). Finally, we observed that every theorem
of APALω is also derivable in APAL, by two observations. First, an application of Rω(2)
can be adjusted to an application of R1(2): Instead of deriving the conclusion with unique
occurrence 2ψ from an infinite set (namely, for all epistemic formulas ϕ) of premisses
[ϕ]ψ , we pick out a premiss with a fresh atom among that infinity and derive the conclusion
from [p]ψ only. Second, the other observation is that we can transform derivations with
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Fig. 3. Method to prove soundness and completeness.

R1(2) applications into derivations with R(2) applications. See Figure 3 for an overview
of our method to prove completeness.

The crucial aspect is that the canonical model is for the infinitary version APALω of
the proof system and not for the finitary proof system APAL. The infinitary version is
strongly complete: From Lemmas 4.12 and 4.13 follows that every consistent theory is
satisfied in a model, one of the formulations of strong completeness. But this does not
imply compactness because the proof system is not finitary.

The finitary proof system APAL is only weakly complete: When proving theorems, or
in other words proofs without premisses, applications of the infinitary rule Rω(2) can be
replaced by applications of the finitary rule R(2), and that proof can then be transformed
to one using the finitary rule in APAL. But in infinitary proofs, starting from infinitely
many assumptions, we cannot use this trick without getting rid of our proof assumptions.
So strong completeness cannot be shown for the finitary axiomatization APAL, and indeed,
as we have seen in Proposition 3.15, APAL is not compact.

5. Arbitrary events. Along a common line in dynamic epistemics, one might con-
sider more general accessibility relations on our structures (as summarily explored in
Proposition 3.14), and one might expand the language with additional modal operators,
in particular: with common knowledge, with actions that are not public (such as private
announcements), and with assignments (actions that change the truth value of atomic
propositions). Let us consider ‘arbitrary events’ in the sense of arbitrary action models
(Baltag et al., 1988).

In public announcement logic, all events are public. More complex dynamics is also
conceivable, such as private messages, events involving partial observation. Action models
formalize such more complex dynamics. These were proposed by Baltag et al. (1988).
We refrain from giving sufficient technical details to understand how these action models
work for a reader who has not come across them before and merely mention that an action
model is a structure exactly as a Kripke model, except that elements of the domain are
called ‘events’ u instead of ‘states’ s and that instead of a valuation V , that for each state
determines which facts are true and false, we now have a precondition function pre, that
to each event assigns a formula called a precondition. This formula is the precondition
for the execution of that event. A singleton action model with universal access for all
agents corresponds to a public announcement, and the precondition for the event ‘public
announcement’ is the announcement formula.

Let U be a finite action model. Some possible generalizations are as follows (∗ is
arbitrary finite iteration). A sensible restriction in the semantics for arbitrary actions is
that all preconditions must be epistemic formulas.
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1 M, s |� 〈U 〉ϕ iff there is a u ∈ U : M, s |� 〈U, u〉ϕ
2 M, s |� 3ϕ iff M, s |� 〈U 〉∗ϕ for a given U

3 M, s |� 3ϕ iff there is a U of a given signature : M, s |� 〈U 〉ϕ
4 M, s |� 3ϕ iff there is a U : M, s |� 〈U 〉ϕ

In the first two proposals, a given action model U is a parameter of the language. The
first was investigated by (Hoshi, 2006, p. 8). The second can be seen as a generalization
of iterated relativization that was investigated in Miller & Moss (2005), and it results in
undecidable logics. In the third, we allow action models of a given signature, that is, an
action model frame without preconditions for action point execution. The logic APAL
comes under this category: It is arbitrary event logic for the signature ‘singleton’: This
sort of action model corresponds to an announcement.

The last proposal seems the end point of further generalization. From a multiagent per-
spective, where more complex than public events are conceivable, this also seems the most
obvious perspective for multiagent knowability. Note that action model logic (without 2)
is again equally expressive as multiagent logic. All validities in Proposition 3.1 hold, and
we conjecture that CR also holds. Axiom MK does not hold. Even in finite models, there
are infinite chains of informative actions because the uncertainty of agents about each
other’s uncertainty can be arbitrarily complex. An example is, given initial uncertainty
of two agents a, b about the value of an atom p, that a privately learns that p, after
which b privately learns that a privately learnt that p, after which a privately learns that,
and so on, thus creating an arbitrarily large finite model satisfying Ka Kb Ka Kb . . . p but
where b does not know that. Proposition 3.6 stating that the truth of 3ψ can always be
simulated by the truth of 〈p〉ψ for some fresh atom p has a natural generalization to replac-
ing formula preconditions in action models by fresh atoms. In the axiomatization APAL
(Table 2), we have to add the various axioms reducing the postconditions of updates, and
we have to replace the axiom ‘announcement and knowledge’ by its action model reducing
counterpart:

2ϕ → [U ]ϕ, where for all events u ∈ U, pre(u) ∈ Lel (arbitrary and specific event).

Unfortunately, it is unclear what derivation rule should allow the introduction of a 2-
formula; an inference involving announcement of a fresh atomic variable is certainly not
good enough: This atom only ‘witnesses’ a public announcement and not other action
models.

If factual change is also permitted, one has the peculiar result that 3ϕ is valid for
all consistent ϕ, in other words, all satisfiable formulas are realizable (reachable) in any
information state (subject to the restriction that the information state is finite). This applies
a technical result in van Ditmarsch & Kooi (2008): Given two finite information states,
there is an event transforming the first into the second. Allowing factual change seems a
too drastic departure from the original Fitch question what true formulas are knowable:
That seems to suggest that only informative actions are allowed to get to know things but
not factual change.

6. Conclusions and further research. We proposed an extension of public announce-
ment logic with a dynamic modal operator 2ϕ expressing that ϕ is true after every
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announcement ψ . We gave various semantic results, defined fragments of ‘knowable’
formulas in the Fitch sense that |� ϕ → 3Kaϕ, and showed completeness for a Hilbert-
style axiomatization of this logic.

We anticipate a number of further investigations, by us or others. More details on model
checking and decidability would be relevant—in particular the somewhat surprising unde-
cidability result. For that, see French & van Ditmarsch (2008).

Results on model checking and decidability are also relevant for the ‘grander scheme’
comparing dynamic and temporal epistemic logics, as in recent work by van Benthem et al.
(2007) and in work in progress by Hoshi (2008). In the comparison between temporal with
dynamic epistemics, if we let an announcement correspond to a tick of the clock, a dynamic
announcement operator [ϕ] therefore corresponds to a temporal ‘next’ operator, and our
arbitrary announcement operator 3 then corresponds to the temporal future operator F ,
for ‘some time in the future’.

Given the proved validities for 2, a relevant question seems where in the S4 scheme
of logics, the logic APAL resides. It is not S5, but at least (given CR and MK), S4.1 and
S4.2. Unfortunately, it is unclear whether 2 is a normal modal operator, more concretely:
whether the schematic validities (i.e., those employing formula variables, such as 2ϕ →
22ϕ, not those employing propositional variables, such as 2p ↔ p) in L2 ∩ APAL
satisfy uniform substitution. Tentative evidence against it is that public announcement
logic is not normal, for example, [p]p is valid but [p ∧ ¬K p](p ∧ ¬K p) is invalid.
Further tentative evidence against normality is that an interpretation of 2 in terms of
neighborhood semantics is conceivable (Ågotnes & van Ditmarsch, 2008), which points
to nonnormality. On the other hand, arbitrary announcement logic with 2 but without
announcements might just as well be equally expressive as APAL. This is the logic with
language ϕ ::= p|¬ϕ|ϕ ∧ ϕ|Kaϕ|2ϕ and with 2-semantics: M, s |� 2ϕ iff for all
ψ ∈ Lel : M, s |� ψ implies M |ψ, s |� ϕ. If so, that would be suggestive evidence
for normality of 2.

Because of these uncertainties about the character of 2, it is sometimes difficult to
interpret our results. For example, the principle MK (23ϕ → 32ϕ) in conjunction with
4 (2ϕ → 22ϕ) correspond to the frame property of atomicity, defined as ∀x∃y(Rxy ∧
∀z(Ryz → z = y)) (Blackburn et al., 2001, p. 167, example 3.57). In our terms, atomicity
seems to describe that one can always make a most informative announcement. But this
is false! Consider the model consisting of 2|P| states, namely, one for each valuation of
atomic propositions, and with universal access on the domain for all agents. Every given
epistemic formula contains only a finite number of atoms, so after its announcement,
a further informative announcement remains possible. So a most informative announce-
ment cannot always be made. This puzzles us.

Our 2-operator is an implicit quantification over announcements. Of course, one can
also make the quantification explicit. In other words, instead of 3ϕ, we may as well write
∃ψ〈ψ〉ϕ. This approach is currently investigated by Baltag.

Unlike public announcement logic, arbitrary announcement logic can also be used to
specify planning problems, as in AI: We can express some initial knowledge conditions
and a final desideratum in terms of knowledge, and a diamond 3 of unknown instantiation
representing a sequence of announcements supposedly realizing it. In other words, some-
thing of the form init → 3K final. Different variants of this theme are conceivable. If our
logic ‘works’, we can reduce and manipulate such an expression so that it should ultimately
deliver the concrete announcements needed to realize the final knowledge conditions: a
plan. We did not pursue this matter, although a tableaux calculus for APAL may be relevant
to mention here (Balbiani et al., 2007).
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