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Since the emergence of the new severe acute respiratory syndrome-related coronavirus

2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coron-

avirus disease 2019 (COVID-19) pandemic, there have been huge efforts of many research

teams and governmental institutions worldwide to mitigate the current scenario. Reach-

ing more than 1,377,000 deaths in the world and still with a growing number of infections,

SARS-CoV-2 remains a critical issue for global health and economic systems, with an ur-

gency for available therapeutic options. In this scenario, as drug repurposing and discovery

remains a challenge, computer-aided drug design (CADD) approaches, including machine

learning (ML) techniques, can be useful tools to the design and discovery of novel potential

antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current

knowledge on this virus and the pandemic, the latest strategies and computational ap-

proaches applied to search for treatment options, as well as the challenges to overcome

COVID-19.

Introduction
In late December 2019 at Wuhan (China), an unknown acute respiratory disease was reported. At the
first week of January 2020, a new virus called the severe acute respiratory syndrome-related coronavirus 2
(SARS-CoV-2) was identified as the etiological agent of the related cases, which would be later named as
the coronavirus disease 2019 (COVID-19) [1,2]. Rapidly progressing from a local outbreak to a pandemic
scenario, by the end of November 2020, the SARS-CoV-2 infection had been diagnosed in more than 57.8
million people, with almost 50% of cases in the Americas and over 11,789,000 of them in the United States
of America (U.S.A.). Until 24 November 2020, over 1,377,000 deaths happened worldwide, with 252,460
(18.3%) in the U.S.A., due to the rapid SARS-CoV-2 spread and the severity of COVID-19 [2,3].
Figure 1 presents an overview of the main events occurring during the year of 2020 and related to

SARS-CoV-2, until the submission of this document. It comprises several key events, especially the num-
ber of deaths and the efforts made by the World Health Organization (WHO).

The coronaviruses, such as SARS-CoV-2, are from a large family (Coronaviridae) of spherical and en-
veloped virus, with 120–160 nm in diameter, and a single-stranded positive sense RNA (ssRNA+) genome,
containing approximately 26–32 kb. These viruses were named due to the solar crown (‘corona’, in latin)
aspect that the viral particles exhibit under electron microscopy due to the glycoproteins at its surface
[4,5].
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Figure 1. Main events related to SARS-CoV-2 during the year of 2020 (until 24 November)

Transmission of coronaviruses usually occurs by air, oral–fecal routes or fomites, associated with gastrointestinal
and respiratory infections, due to its tropism for epithelial cells [6–8]. Generally, these infections are asymptomatic
and mild, but some species of coronavirus cause serious diseases, such as hepatitis, neurological disorders, kidney
failure, and severe acute respiratory syndrome (SARS), which can lead to death [6,9].

There are six known human coronaviruses (HCoV) species, such as HCoV-229E and HCoV-NL63
(Alphacoronavirus genus), as well as HCoV-OC43 and HKU1 (Betacoronavirus genus), which mainly cause com-
mon colds, but can progress to severe infections of the lower respiratory tract, especially in children and the elderly.
In addition to these betacoronaviruses, two other species are highly virulent: the Middle East respiratory syndrome
coronavirus (MERS-CoV) and the severe acute respiratory syndrome-related coronavirus (such as SARS-CoV and
SARS-CoV-2) [1,10,11].
The transmission of SARS-CoV-2 occurs through airways and from direct contact, in addition to the contact with

contaminated objects and surfaces. Incubation periods may last up to 14 days (average of 5 days), and the most
common symptoms are fever, cough, fatigue, headache, and breathing difficulties (dyspnoea), as well as smell and
taste loss that can last over 2 weeks. In addition to these, sore throat,myalgia, diarrhea, vomiting, and nasal congestion
can also occur [12–15].
Similar to other ssRNA+ viruses, after infection of host cells, progeny occurs in the cytoplasm. During its infection,

SARS-CoV-2 particles bind to receptors at the cell surface by interaction of the receptor binding domain (RBD) of the
spike protein (S) with the cell receptor, the angiotensin II converting enzyme (ACE-II) [4,10]. After the virus entry to
the cells, during the expression of the viral replication complex, RNA is translated into two polyproteins (PP1a and
PP1ab), which encode 16 non-structural proteins (NSPs), such as the main protease (Mpro) and the RNA-dependent

2 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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RNA polymerase (RdRp). The remainder of the genome encodes accessory and the structural proteins (spike, mem-
brane (M), nucleocapsid (N), and envelope (E)), followed by the assembly and release of viral particles [4,16].
Regarding the infection control measures, vaccines are considered a viable and important alternative, in particular

as the first line of prevention, even more in a pandemic scenario [17,18]. Some studies on different vaccine can-
didates to prevent SARS-CoV-2 infections have moved into Phases II and III trials, such as Pfizer-BioNTech [19],
AstraZeneca-Oxford [20], Moderna [21], Gamaleya [22], as well as Sinovac [23], some of which have successfully
completed Phase III clinical trials and/or licensed for early use in late November 2020. However, over the long-term
efficacy, safety or global production in large-scale and short period of time may still be a challenge to overcome, and
an immunization failure or insufficient coverage are not discarded, as observed with vaccines against other coron-
aviruses, such as SARS-CoV and MERS-CoV [16,24].
On the other hand, drug repurposing strategies could be promising in the fight against COVID-19. Approved or

licensed drugs, as previously assessed by studies that evaluated them in preclinical and clinical trials, show that these
approaches could potentially reduce time and costs formaking new therapies available [25]. Considering this scenario
and the possibility of novel outbreaks or pandemics, an approved drug may be also used to treat diseases caused by
other coronaviruses or even future mutations of SARS-CoV-2 [26–28]. Different repurposing strategies and drug
combinations have been proposed (e.g. remdesivir) but showed lack of inhibitory activity or inconclusive clinical
results, as well as having to take the account of side effects, thus leaving a significant opportunity for the design and
development of efficient drugs to face the challenges of SARS-CoV-2 and COVID-19 [29,30].
It is interesting to mention that in silico virtual screening approaches associated with structural and biophysical

techniques can help the design of specific inhibitors to SARS-CoV-2, and significantly enhance the quality of com-
pounds selected for in vitro and in vivo bioassays, increasing the success of drug discovery [31–34]. For instance,
structure-based approaches have shown some successful outcomes in the past, for example, the design and discov-
ery of boceprevir, an approved hepatitis C virus (HCV) protease inhibitor, as well as oseltamivir and zanamivir, both
anti-influenza drugs [35].
In the past few months, several small molecules have been described as possible inhibitors of different molecular

targets for SARS-CoV-2 [36]. However, it is important to note that many of these studies are still in the initial in silico
analyses, which only provide a preliminary theoretical view on the ligand–protein interactions and hence requiring
experimental validation of the molecular targets [33].
Among the molecular targets of SARS-CoV-2, main protease or 3-chymotrypsin-like protease (Mpro/3CLpro/nsp5)

[37], papain-like protease (PLpro/nsp3) [38], RNA-dependent RNA polymerase (RdRp/nsp12) [39], and heli-
case/NTPase (nsp13) [40] could be cited, which are highly conserved and essential to the viral cycle [36,41–45],
as illustrated in Figure 2. Since the main viral protease is extensively studied for the design of new drug candidates
to treat coronaviruses diseases, and most of the studies identified this enzyme as a valid target for broad spectrum
inhibitors, we will next focus on the discussion of this macromolecule in more details [33,46,47].

Computer-aided drug design strategies as useful tools
against SARS-CoV-2 macromolecules: targeting Mpro

Computer-Aided Drug Design (CADD) involves widely employed computational approaches to discover and/or de-
sign newbioactive compounds. As examples ofCADD techniqueswe can citemolecular docking,molecular dynamics
(MD) simulations, pharmacophoremodeling, similarity analysis, quantitative structure–activity relationship (QSAR)
analysis, and machine learning (ML) techniques [48–51] that will be discussed later.
Some recent studies have shown the feasibility of employing in silico methods such as molecular docking andMD

simulations to perform virtual screening of molecules against the SARS-CoV-2 macromolecules and, consequently,
obtaining potential repositioning drugs and selective inhibitors of these enzymes [52–54]. Figure 3 summarizes the
molecular structures of the potential inhibitors and drug candidates discussed in this review.
Mpro (nsp5) is one of the most attractive viral targets for the antiviral drug discovery against SARS-CoV-2, since it

plays a key role in the viral transcription and replication, and no human proteases are known with the same substrate
specificity [37,46,47,55]. Furthermore, the substrate-binding pocket of this enzyme is highly conserved among all
coronaviruses, suggesting that an antiviral drug targeting this active site may be effective against a broader spectrum
of these viruses [37,56,57]. Nonetheless, mutations leading to changes in some amino acid residues of Mpro may pro-
vide probable drug resistance phenotypes, in particular considering the enzyme loop and the possibility of a protein
folding [58]. In addition, protease resistance was also observed to MERS-CoV and other viruses, such as the human
immunodeficiency virus (HIV) and HCV [59].

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. Interventions of computational approaches on to the design and discovery of potential inhibitors againstmolecular

targets involved in the SARS-CoV-2 viral cycle

The diagram displays available methods that can be employed to both the Mpro and PLpro proteases (e.g. docking), as well as the

RNA polymerase and helicase (e.g. virtual screening).

Mpro is a cysteine protease with a catalytic Cys145 andHis41 dyad at its active site [60,61], which cleaves the polypro-
teins in at least 11 conserved sites, starting with its autolytic cleavage between nsp4 and nsp6 [62,63]. TheMpro struc-
ture is composed of three domains; the catalytic dyad is located in the cleft between domains I and II [37,64,65], and
the domain III is responsible for the enzyme dimerization, enabling the active form of the macromolecule [66,67].
Figure 4 illustrates X-ray crystal structures of SARS-CoV-2 Mpro in complex with some inhibitors.
Several inhibitors of SARS-CoV Mpro have been identified [46,47]. For instance, N3 (Figure 4A,B), a Michael

acceptor-based inhibitor, can specifically inhibit Mpro of different coronaviruses, including SARS-CoV and
MERS-CoV [56,64,69,70]. It has also showed antiviral activity in cell culture against SARS-CoV-2 and the ability
to bind to the substrate-binding pocket of SARS-CoV-2 Mpro, as proven by X-ray crystallography (Figure 4A,B) [37].
Docking approaches can predict inhibitory activity and help drug design or virtual screenings, which have resulted

in potential repurposing drugs against SARS-CoV-2 Mpro such as lopinavir and ritonavir [71]. The combination of
docking and MD simulations, for example, allows a refinement of docking results, specifically evaluating the fre-
quency of main interactions between residues and the drug candidates, as well as binding energy of the bioactive
substances at the target, number of contacts, occupancy and stability of the target–ligand complex [72–74].
These strategies can also expand the number of compounds to be assessed in virtual screening (VS) cam-

paigns, allowing thousands to millions of compounds to be screened from virtual chemical libraries. For instance,
Jiménez-Alberto et al. (2020) showed bromocriptine, simeprevir and other FDA approved drugs to have promising
inhibitory activity against the SARS-CoV-2 main protease, as result of VS and MD simulations [54]. Similarly, Ku-
mar et al. (2020) also screened antivirals as drug repurposing therapies for COVID-19, and these studies highlighted
lopinavir and ritonavir as potential treatments to be further evaluated in clinical trials against Mpro [53].
Another study investigated a combination of structure-based drug design, virtual and in vitro high-throughput

screening of a library with more than 10,000 compounds, identifying disulfiram, carmofur, ebselen, shikonin,
tideglusib, and PX-12 as SARS-CoV-2 Mpro inhibitors. Among these substances, ebselen exhibited the strongest an-
tiviral effects in SARS-CoV-2-infected Vero cells in the low micromolar range [37]. The X-ray crystal structure of
SARS-CoV-2 Mpro in complex with carmofur, an approved antineoplastic agent, also revealed that its carbonyl reac-
tive group reacts irreversibly to bind to the catalytic Cys145 (Figure 4C) [75].

4 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Two-dimensional (2D) chemical structures of the potential inhibitors and drug candidates presented in the present

study, along with the respective references

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. X-ray crystal structures of SARS-CoV-2 Mpro in complex with inhibitors

(A) Cartoon representation of one protomer of the dimeric Mpro in complex with N3 (PDB ID: 6L7U). (B–G) An enlarged view of the

substrate-binding pocket in a surface representation (red indicating hydrophobic residues, blue indicating charged residues, and

gray indicating polar ones) in complex with different compounds. The catalytic Cys145 and His41 dyad are highlighted. (B) N3, PDB

ID: 6LU7. (C) Carmofur, PDB ID: 7BUY. (D) 11a, PDB ID: 6LZE. (E) 13b, PDB ID: 6Y2F. (F) GC-376, PDB ID: 6WTT. (G) X77, PDB

ID: 6W63. Images were generated with PyMOL 0.99 [68].

Moreover, some compounds designed and synthesized by analyzing the substrate-binding pocket of Mpro revealed
anti-SARS-CoV-2 activity in Vero cell cultures. For example, the crystal structure of the complexes SARS-CoV-2
Mpro-11a (Figure 4D) and Mpro-11b indicated the presence of these substances inside the substrate-binding pocket
and a similar inhibitory mechanism in which occurs the C–S covalent bond formation between Cys145 and these
compounds [76].
Zhang et al. also developed an optimized α-ketamide inhibitor of SARS-CoV-2 Mpro. The X-ray crystal structure

of α-ketoamide (compound 13b) in complex with SARSCoV-2Mpro shows the compound at the catalytic site of each
protomer, between the domains I and II (Figure 4E). Compound 13b effectively prevented the viral replication in
cell-based assays and exhibits a favorable pharmacokinetic in vivo profile [65]. Other work investigated boceprevir,
GC-376, and calpain inhibitors effects on SARS-CoV-2 Mpro in enzymatic assays in cell cultures. The crystal struc-
ture of SARS-CoV-2 Mpro in complex with GC-376 also revealed molecular details on the GC-376 inhibition of the
molecular target (Figure 4F) [77].

6 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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In addition to the studies above, several other structures of SARS-CoV-2 Mpro in complex with inhibitors have
been deposited at the Protein Data Bank (PDB), such as a non-covalent inhibitor X77 (PDB ID: 6W63) (Figure
4G), narlaprevir (PDB ID: 7D10), boceprevir (PDB ID: 7COM), GRL-2420 (PDB ID: 7JKV) and UAW246 (PDB
ID: 6XBG). However, most of these works have not so far been published in peer-reviewed papers.

Although additional research has also identified several inhibitors as promising drugs against SARS-COV-2 Mpro,
further biochemical and structural analyses, as well as in vitro and in vivo bioassays are still required. For example,
several investigations predicted various small-molecules, natural compounds and approved drugs [78–80] fromVS of
ZINC and DrugBank databases [81,82], in conjunction with the combination of molecular docking and MD studies
[53]. Focusing on drug repurposing, we can also highlight a study that apply molecular docking associated with
the SCAR (steric-clashes alleviating receptors) protocol, which can help to discovery of covalent and non-covalent
inhibitors in a docking model, solving, for example, steric conflicts between specific residues and reactive atoms in a
screening [83]. In addition, it can even be efficient in drug repurposing [84], another approach of interest facing the
urgency of the COVID-19 pandemic scenario.
It is important to mention that other strategies can evaluate and predict important characteristics of potential can-

didates and inhibitors of SARS-CoV-2 targets, for example, pharmacokinetics (absorption, distribution, metabolism,
and excretion—ADME) and toxicity or simply ADME-Tox properties. Hage-Melim et al. (2020) screened for po-
tential Mpro inhibitors and the top 100 hits were evaluated by bidimensional structural similarity in order to assess
their ADME-Tox properties, resulting in ten compounds, including potential repurposing drug candidates such as
lopinavir, ritonavir, and remdesivir [5]. Nonetheless, in a drug repurposing approach, this kind of evaluationmay not
be necessary, and a given candidate could proceed quickly to clinical trials, due to the previously assessed steps of an
approved or licensed drug [85].

The importance of multitargets to CADD approaches: PLpro

and RdRp
Another essential protease for the cleavage of the viral polyproteins is PLpro, a cysteine protease with a classical
Cys-His-Asp catalytic triad (Cys112, His273, Asp287), which cleaves the viral polyprotein releasing nsp1, nsp2 and
nsp3 [86,87]. This enzyme also recognizes the consensus cleavage sequence identified by cellular deubiquitinating
enzymes [87]. Therefore, substrate-derived inhibitors of PLpro would be expected to inhibit host cell deubiquitinases
[41,76,87].
Computational approaches have also been used to predict potential SARS-CoV-2 PLpro inhibitors. From integrated

in silico efforts, Mirza et al. pointed out a human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitor (com-
pound Z93) as a potential lead compound against SARS-CoV-2 PLpro [88]. A pharmacophore model of functional
centers of PLpro inhibitor-binding pocket and docking studies also identified 147 FDA-approved drugs, including
HIV, hepatitis C, and cytomegalovirus (CMV) inhibitors, as well as drugs that have demonstrated some activity in
MERS and SARS-CoV as potential opportunities for the treatment of COVID-19 [89].
Virtual screenings using ZINC and Chinese natural product databases [81], as well as FDA-approved drugs [90],

have also found potential PLpro inhibitors. Nonetheless, alternative approaches, such as assessing inhibitors activity
in Vero cell cultures [91], as well as in vitro protease and structural assays [92], can also be mentioned. The crystal
structure of GRL0617 in complex with SARS-CoV-2 PLpro demonstrated that the inhibitor occupies the active site of
the enzyme (Figure 5A,B) [92]. In addition, inhibition of the viral cycle has been demonstrated by GRL0617 against
SARS-CoV [93].
The RdRp (nsp12) has also been described as an important coronavirus target for drug design [41,44,45]. It has an

essential role in the viral cycle of coronaviruses, since it is responsible for the replication of the viral genome, with the
assistance of nsp7 and nsp8 viral proteins in a polymerase complex [39,94,95]. In this sense, RdRp is considered as
a primary target for nucleotide analog antiviral inhibitors such as remdesivir [96,97], which has been investigated in
clinical trials against COVID-19. One study indicated that this drug seems to be capable of reducing the recovery time
of severe hospitalized patients [98]. Regarding studies on the molecular target validation for this drug, the structure
of the complex nsp12–nsp7–nsp8 associated with template-primer RNA and remdesivir shows that it is covalently
incorporated at the first replicated base pair into the primer strand, blocking the RNA chain elongation (Figure 5C–E)
[95].
Other studies applied a molecular docking approach and identified galidesivir, remdesivir, ribavirin, sofosbuvir,

and tenofovir as potential drug candidates against SARS-CoV-2 RdRp [99]. Elfiky (2020) used sequence analysis,
modeling and docking, identifying sofosbuvir, IDX-184, ribavirin, and remdesivir as potential therapies [100]. Be-
clabuvir, an HCV RdRp inhibitor, has also been predicted to bind SARS-CoV-2 RdRp [101].

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).
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Figure 5. Crystal structure of SARS-CoV-2 PLpro in complex with inhibitor GFL0617 and cryo-electron microscopy structure

of the SARS-CoV-2 remdesivir and RNA bound RdRp complex

(A) Cartoon representation of papain-like protease, PDB ID: 7CMD. (B) An enlarged view of PLpro substrate-binding pocket with

GFL0617. (C) Cartoon representation of the nsp12–nsp7–nsp8 RdRp complex with a template-primer RNA and remdesivir. The

structure is colored by the elements: nsp12 in pale cyan, nsp7 in pale yellow, nsp8 in bright orange, primer RNA in purple and

template RNA in light magenta, PDB ID: 7BV2. (D) Close-up view on the RdRp active site showing the covalently bound remdesivir

in its monophosphate form—RMP, pyrophosphate and magnesium ions represented by gray spheres. (E) RdRp binding-pocket in

a different view. Images were generated with PyMOL 0.99 [68].

Helicase/NTPase (nsp13) has also been cited as a molecular target of SARS-CoV-2. This macromolecule is re-
sponsible for unwinding DNA and RNA, separating them into two single-stranded nucleic acids in the coronaviruses
viral cycle [102,103]. Molecular docking analyses and structure modeling approaches have also suggested drugs and
natural products as potential SARS-CoV-2 helicase inhibitors [80,104].

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. ML approaches

(A) Random Forest (RF); (B) SVM; (C) Multilayer Perceptron (MLP) and (D) Deep Neural Network (DNN).

In addition, a cryo electron microscopy (cryo-EM) structure of the complex nsp13:holo-RdRp:RNA complex sug-
gests a possible role of helicase (nsp13) in the viral replication/transcription process, which needs to be confirmed
through in vitro or in vivo studies [40]. Crystal structure of helicase in complex with Z198195770 (PDB ID: 5RL6), as
well as other different compounds, has been determined, which can increase the recognition of this enzyme as a drug-
gable target against SARS-CoV-2. However, in vitro and in vivo studies are necessary to confirm this macromolecule
as an effective molecular target for the development of drugs against COVID-19.

ML during a pandemic: actual state and future perspectives
against SARS-CoV-2
Machine learning (ML) techniques are a valuable new tool for drug discovery against SARS-CoV-2, since they can
be applied to build predictive models based on previous experience (e.g. by using as training instances molecules
already tested against other coronaviruses targets). ML applications in drug design commonly involves regression
or classification methods for assessing the activity of compounds against a target before clinical trials. In this paper,
we present the main aspects of ML approaches that may accelerate COVID-19 drug discovery, such as Ensemble
Learning, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Deep Learning (DL) models
[105–107]. In addition, integration of Artificial Intelligence (AI) and mechanistic modeling of signal transduction
circuits, with ML algorithms, are also some recent approaches to drug repurposing models for COVID-19 [108,109].
Figure 6 presents an overview of some ML techniques.
Ensemble learning is a simple and effective learning model. The basic idea behind this approach is to build mul-

tiple models and combine their decisions in some manner [110]. Random forest (RF), illustrated in Figure 6A, is
an ensemble of decision trees that uses the concept of bagging, which consists of randomly select samples to create
the individual trees. Such random behavior leads to a more diverse set of decision trees, thus producing combined
predictions that are more accurate than any of the individual ones. Similar approaches to RF include extra trees [111]
and XGboost [112].
Aiming at discovering potential candidates to treat COVID-19, Rodrigues et al. (2020) applied computational tools

to investigate the potential of diterpenes in inhibiting Mpro [113]. The authors collected a set of molecules from
ChEMBL and Sistematx [114] databases to construct QSAR models using RF and multidescriptor read-across (Mu-
DRA) models [115]. The models were used to perform a ligand-based VS, combined with a structure-based VS using
Molegro Virtual Docker v6.0.1 [116]. Although no antiviral activity assays were performed, four diterpenes were
selected as potential active inhibitors against the six different species of HCoV.

Similarly, Alves et al. (2020) presented a detailed study employing both structure and ligand-based computational
approaches to select a set of compoundswith the potential to inhibitMpro [117]. In this work, RFwas used to construct

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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binary QSAR models with a set of molecules obtained from the ChEMBL and PBD databases. Different descriptors
were used to build the RFmodels, resulting in a set of 42 potential hits from the DrugBank database, 11 of which were
also available in the National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection. The
authors’ predictions found three compounds to be active and comparable to the cytopathic effect (CPE) assay data of
NCATS.
Another important method used in QSAR studies is SVM (Figure 6B), which is a supervised approach based on

the statistical learning theory [118]. The SVM algorithm incorporates the principles of structural risk minimization
in its learning process and the reduction in complexity of mathematical functions used by the classifier. In summary,
SVM constructs a separating hyperplane that maximizes the distance between the classifier and the nearest sample
of each class, defined as margin separation [105]. Support vectors are the data points that lie closest to the decision
surface (or hyperplane).
Although SVM presents an elegant mathematical formulation and good predictive performance, it also has some

limitations, including the importance of making the right choice of hyperparameters and difficult interpretation of
models. Fortunately, different strategies for tuning SVM hyperparameters can be found in literature [119,120].

Kowalewski and Ray (2020) developed a ML drug discovery pipeline to identify drug candidates for COVID-19.
Initially, they collected assay data for 65 human targets with known interaction with SARS-CoV-2 proteins. SVM
(for classification and regression) and RF were applied to predict the inhibitory activity and to screen FDA registered
compounds and approved drugs. The predictions were filtered according to the estimated mammalian toxicity and
vapor pressure with the aim at identifying volatile candidates and other inhibitors against multiple targets [121].

Inspired by the biological neural system, ANN are also interesting ML approaches. Multilayer perceptron (MLP)
(Figure 6C) is a feed-forward neural network that has been widely applied in regression and classification tasks [110].
Its architecture consists of an input layer of neurons, an arbitrary number of hidden layers, and an output layer. Since
the numbers of hidden layers and hidden neurons strongly influence the performance of the model, it is crucial to
employ the right strategy to select hyperparameters in order to avoid overfitting and increase the generalization power
of the network.
In comparison to MLP, DL neural networks architectures consist of a more complex set of hidden layers (Figure

6D) [122]. Such models contain hundreds to millions of units and require a great amount of training data to learn
parameters, which is a computationally intensive process. One of the main advantages of DLmodels is their ability to
handle complex data (i.e. text and images) by accomplishing automatic feature extraction from raw data, also called
feature learning. Another frequently mentioned benefit is related to the scalability of such networks, referring to their
ability to adjust the trade-offs between response time and accuracy [123].
There are a number of DL architectures that carry out specialized tasks such as (i) convolutional neural networks,

which perform object detection; (ii) recurrent neural networks, commonly used for time series analysis; and (iii)
adversarial neural networks, that can learn about the input data and attempt to reconstruct it as faithful as possible
by only using its underlying patterns [107]. In Figure 7, we present two DL architectures recently applied in studies
involving SARS-CoV-2. Figure 7A presents an example of convolutional neural networks, while Figure 7B shows an
example of adversarial neural networks.
DL models have also been applied in studies related to COVID-19 identification, starting from detecting some of

the disease patterns in lung X-ray images [124]. Khandelwal et al. (2020) also selected a set of molecules as drug can-
didates to treat COVID-19 using DL. The authors undertook a careful study on 31 drug candidates againstMpro (PDB
ID: 6LU7), whereDL architectureswere employed to generate shape-basedmolecules starting froma 3D shape of their
seed compound’s pharmacophoric features. In this work, a convolutional neural network was trained as a variational
autoencoder to learn the shape of PubChem’s chemical structures. Recurrent neural networks were applied to sample
and generate new molecules that were evaluated according to physicochemical characterization and drug-likeness.
Using this procedure, they obtained a set of molecules (remdesivir, valrubicin, aprepitant, fulvestrant, and a novel
therapeutic compound named nCorv-EMBS) as potential inhibitors and possible therapeutics for COVID-19, after
evaluation in antiviral activity assays [125].
Bung et al. (2020) combined a generative DL model, transfer learning, and reinforcement learning to design

molecules capable of inhibiting Mpro. The authors trained a generative model using a dataset with approximately
1.6 million drug-like molecules from ChEMBL. Transfer learning was employed to retrain the model with over 2,500
various protease inhibitor molecules, and reinforcement learning was applied to modulate the generative model aim-
ing at producing molecules with desired properties. The trained model sampled 50,000 molecules from the chemical
space, which were filtered based onmany physicochemical properties. This process was followed by virtual screening
and docking, resulting in a list of 31 compounds as potential hits which could be optimized into new therapies for

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Special architectures of DL models

(A) Convolutional Neural Networks (CNN) and (B) Autoencoders.

COVID-19 [126]. Moreover, some important details of the docking methodology, such as definition of binding site,
ligand and receptor preparation, and stereochemistry, have not also been described.
Gawriljuk et al. (2020) provided a detailed study of molecules as potential candidates against HeLa-ACE2. For

this purpose, they compared different ML algorithms, including RF, support vector classification (SVC), k-nearest
neighbors (kNN), and DL models, using a training dataset composed of 63 molecules and a test set containing 30
molecules. The results showed that RF and SVC presented the best prediction performance. It is worth mentioning
that the DLmodels showed the poorest performance due to the lack of sufficient training data. The best models were
employed in a virtual screening for selecting promising molecules, which were submitted to in vitro assays. Two
of these compounds presented antiviral activity, with IC50 values of 8.4 µM and 540 nM, these representing useful
potential starting points for COVID-19 focused drug discovery programs [106].

Conclusions
Everyday, as more lives are lost, a common effort from science, government, and population tries to gradually tackle
COVID-19, aiming to mitigate its continuously growing number of disease sequels, morbidities and deaths, with
the urge and rapid progression of the current pandemic scenario. Taking into account that there are not approved
or licensed drugs to treat COVID-19 so far, the race to find potential drug candidates benefits from computational
strategies, which have proven to be a powerful tool, with the potential to obtain a successful combined approach in
the arduous process of drug design and discovery. The urgency to obtain inhibitors and potential drug candidates
remains as a major objective to mitigate the disease outcomes, including the death toll. CADD and ML techniques
have been employed in many protocols targeting SARS-CoV-2 macromolecules and are one the feasible options to
speed up the drug design and discovery processes, leading to novel inhibitors and repurposing drugs. In this review,

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
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we explored the potential of these many different approaches to find out or repurpose SARS-CoV-2 inhibitors as
antivirals to treat COVID-19, facing, against the time, this pandemic scenario with an unflagging scientific effort.
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screening of lamiaceae diterpenes with potential activity against a novel coronavirus (2019-NCOV). Curr. Top. Med. Chem. 20, 2126–2145,

https://doi.org/10.2174/1568026620666200716114546

114 Scotti, M.T., Herrera-Acevedo, C., Oliveira, T.B., Costa, R.P.O., Santos SYK de, O., Rodrigues, R.P. et al. (2018) SistematX, an online web-based

cheminformatics tool for data management of secondary metabolites. Molecule (Basel) 23, 103, https://doi.org/10.3390/molecules23010103

115 Alves, V.M., Golbraikh, A., Capuzzi, S.J., Liu, K., Lam, W.I., Korn, D.R. et al. (2018) Multi-Descriptor Read Across (MuDRA): a simple and transparent

approach for developing accurate quantitative structure-activity relationship models. J. Chem. Inf. Model. 58, 1214–1223,

https://doi.org/10.1021/acs.jcim.8b00124

116 Thomsen, R. and Christensen, M.H. (2006) MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49, 3315–3321,

https://doi.org/10.1021/jm051197e

117 Alves, V., Bobrowski, T., Melo-Filho, C., Korn, D., Auerbach, S., Schmitt, C. et al. (2020) QSAR Modeling of SARS-CoV M pro inhibitors identifies

Sufugolix, Cenicriviroc, Proglumetacin, and other drugs as candidates for repurposing against SARS-CoV-2. Mol. Inform. 40, 2000113,

https://doi.org/10.1002/minf.20200011

118 Pedrycz, W. (1999) Advances in Kernel Methods. Support Vector Learning (Scholkopf, B., Burges, C.J.C. and Smola, A.J., eds), p. 376, MIT Press,

Cambridge, ISBN 0-262-19416-3. Neurocomputing. 2002

119 Mantovani, R., Rossi, A., Vanschoren, J. and Carvalho, A. (2015) Meta-learning recommendation of default hyper-parameter values for SVMs in

classifications tasks. CEUR Workshop Proceedings 1455

120 Mantovani, R., Rossi, A., Alcobaça, E., Castro Gertrudes, J., Barbon, S. and de Carvalho, A. (2020) Rethinking defaults values: a low cost and efficient

strategy to define hyperparameters. pp. 1–36, Cornell University, arXiv:2008.00025v2

121 Kowalewski, J. and Ray, A. (2020) Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon 6,

e04639

122 LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature 521, 436–444, https://doi.org/10.1038/nature14539

123 Zhang, L., Tan, Z., Song, J., Chen, J., Bao, C. and Ma, K. (2019) SCAN: a scalable neural networks framework towards compact and efficient models.

pp. 1–10, Cornell University., arXiv:1906.03951v1

124 Luz, E., Silva, P., Pedrosa Silva, R., Silva, L., Moreira, G. and Menotti, D. (2020) Towards an effective and efficient deep learning model for COVID-19

patterns detection in X-ray images. pp. 1–31, Cornell University., arXiv:2004.05717v4

125 Nayarisseri, A., Khandelwal, R., Madhavi, M., Selvaraj, C., Panwar, U., Sharma, K. et al. (2020) Shape-based machine learning models for the potential

novel COVID-19 protease inhibitors assisted by molecular dynamics simulation. Curr. Top. Med. Chem. 20, 2146–2167,

https://doi.org/10.2174/1568026620666200704135327

126 Bung, N., Krishnan, S.R., Bulusu, G. and Roy, A. (2020) De novo design of new chemical entities (NCEs) for SARS-CoV-2 using artificial intelligence.

Fut. Med. Chem., https://doi.org/10.4155/fmc-2020-0262

16 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

s
c
ire

p
/a

rtic
le

-p
d
f/4

1
/3

/B
S

R
2
0
2
0
2
6
1
6
/9

0
6
0
0
0
/b

s
r-2

0
2
0
-2

6
1
6
c
.p

d
f b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://doi.org/10.1016/j.lfs.2020.117477
https://doi.org/10.20944/preprints202003.0395
https://doi.org/10.1128/JVI.78.11.5619-5632.2004
https://doi.org/10.1128/mSphere.00235-16
https://doi.org/10.5114/aoms.2020.94567
https://doi.org/10.2174/092986712802884259
https://doi.org/10.1101/2020.06.16.154765
https://doi.org/10.1016/S2589-7500(20)30192-8
https://doi.org/10.1038/s41392-020-00417-y
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.2174/1568026620666200716114546
https://doi.org/10.3390/molecules23010103
https://doi.org/10.1021/acs.jcim.8b00124
https://doi.org/10.1021/jm051197e
https://doi.org/10.1002/minf.20200011
https://doi.org/10.1038/nature14539
https://doi.org/10.2174/1568026620666200704135327
https://doi.org/10.4155/fmc-2020-0262

